WO2005024309A1 - Finned heat exchanger and method of manufacturing the same - Google Patents

Finned heat exchanger and method of manufacturing the same Download PDF

Info

Publication number
WO2005024309A1
WO2005024309A1 PCT/JP2004/012889 JP2004012889W WO2005024309A1 WO 2005024309 A1 WO2005024309 A1 WO 2005024309A1 JP 2004012889 W JP2004012889 W JP 2004012889W WO 2005024309 A1 WO2005024309 A1 WO 2005024309A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fin
fins
heat transfer
leeward
Prior art date
Application number
PCT/JP2004/012889
Other languages
French (fr)
Japanese (ja)
Inventor
Shouichi Yokoyama
Hirokazu Sakai
Narito Yamaguchi
Takashi Sugio
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2005024309A1 publication Critical patent/WO2005024309A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • F24F1/0067Indoor units, e.g. fan coil units characterised by heat exchangers by the shape of the heat exchangers or of parts thereof, e.g. of their fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/08Fins with openings, e.g. louvers

Definitions

  • the present invention relates to a finned heat exchanger and a method for manufacturing the same.
  • the indoor unit of an air conditioner is provided with one or more suction ports such as a suction port 62a on the front and a suction port 62b on the top, and a bottom At least one outlet such as an outlet 63 is provided, and a once-through blower 65 and a heat exchanger with fins 64 are housed in the housing 61.
  • the conventional heat exchanger with fins 64 is disposed on the front side inside the housing 61, and has a main front-side heat exchanger 64A that is bent near the center in the vertical direction, and the housing 6
  • the rear heat exchangers 64 B arranged on the rear side of the inside of 1 and the auxiliary heat exchangers 64 C and 64 D attached to the front of the front heat exchanger 64 A, respectively It is composed of
  • the front-side heat exchanger 64A and the rear-side heat exchanger 64B arrange the once-through blower 65 such that it surrounds the windward side from the windward side. Contains a heat exchanger.
  • the auxiliary heat exchangers 64 C and 64 D are provided to improve the heat exchange capacity, but are different from the main front heat exchanger 64 A and the rear heat exchanger 64 B.
  • Fig. 5 shows a case where an additional connection is made to the main front-side heat exchanger 64A.
  • a spacer 66 is provided to prevent this from happening because it may pass through the heat exchanger.
  • this patent specification encloses a part of the periphery of the once-through blower 73 with the shape of the fin 72 of the front-side heat exchanger 71A.
  • an indoor unit of an air conditioner formed in an arc shape is disclosed.
  • a plurality of rows of heat transfer tubes 74 inserted through the front-side heat exchanger 71 A at a substantially right angle are provided, and an isosceles triangle is formed between the upwind side row and the downwind side row of these heat transfer tubes 74. It is arranged so as to draw.
  • the step pitch A of the leeward heat transfer tubes 74 arranged inside the arc-shaped portion is equal to the step pitch of the heat transfer tubes 74 arranged in the windward row arranged outside the arc-shaped portion. It is formed smaller than B.
  • the spacer 66 is not required, and no waste material is generated at a location corresponding to the spacer 66 in the material of the fin 72 at the time of manufacturing.
  • the amount of waste material can be reduced, and the bending pitch of the hairpin and return bend that connects the heat transfer tubes 74
  • the spacer 66 is not provided, the area of the fins 72 is increased by a portion corresponding to the spacer 66, and the heat exchange capacity is improved.
  • the front heat exchanger 71A has an arc shape, and the upper part of the fins 72 has a gentler slope, so that the heat exchanger with fins is loose.
  • the condenser is used as an evaporator, the condensed water stays at the top of the fins 72, or in the worst case, the condensed water does not flow along the fins 72 and the once-through blower 73 Water droplets may fall onto the air outlet and scatter from the outlet 75.
  • the present invention solves such a conventional problem, and improves the form of the heat exchanger with fins and the method for manufacturing the same, and reduces the space in the indoor unit of the air conditioner, particularly the depth is narrow.
  • a heat exchanger with fins as large as possible is housed in the space to significantly improve the heat exchange capacity and to allow water condensed on the fin surface to flow smoothly down the fins when used as an evaporator. It is an object of the present invention to provide a heat exchanger with a fin that can perform the heat treatment.
  • a heat exchanger with fins of the present invention includes a housing provided with a suction port on the front surface side and a blowout port on the lower surface side, and a once-through blower housed in the housing. Installed in an indoor unit of an air conditioner with a wind circuit
  • the front-side heat exchanger and the rear-side heat exchanger are arranged in parallel at predetermined intervals, and a number of fins through which gas flows, and a refrigerant inserted into the fins at a substantially right angle to allow the refrigerant to flow inside. Composed of a number of flowing heat transfer tubes,
  • the fin in the front-side heat exchanger is folded by the two straight line portions, the upwind leading edge and the leeward trailing edge each forming the same obtuse angle, and one curved portion connecting these two straight lines.
  • the distance between the leeward leading edge and the leeward trailing edge in the region is shorter than the distance between the leeward leading edge and the leeward trailing edge in the region farther from the once-through blower.
  • the leeward leading edge and the leeward trailing edge of the fin in the front-side heat exchanger respectively connect two straight portions forming the same obtuse angle and connect between these two straight lines.
  • the two regions formed between the straight frontward edge of the fin and the straight rearward edge of the fin in the bent front-side heat exchanger The distance between the leeward leading edge and the leeward trailing edge in the area closer to the once-through blower is shorter than the distance between the leeward leading edge and the leeward trailing edge in the area farther from the once-through blower. This allows a larger heat exchanger with fins to be accommodated in a limited space, especially in a space with a small depth, and exhibits a greater heat exchange capacity.
  • the front side heat exchanger does not need to be bent later, and the spacer required when bent is naturally unnecessary.
  • this heat exchanger with fins is used as an evaporator, water droplets condensing on the fins in each of the front-side heat exchanger and the rear-side heat exchanger travel along both continuous fins. Runs down smoothly.
  • the upper side of the fin in the front heat exchanger is inclined at a constant angle close to the vertical line between the straight line on the windward leading edge and the straight line on the leeward trailing edge. No water droplets condensing on the surface of the glass stay.
  • the distance between the leading edge and the trailing edge on the side close to the once-through blower is set to 20 to 23 mm, and the distance farther from the once-through blower is increased.
  • the distance between the windward leading edge and the leeward trailing edge in the area is set to 24 to 27 mm.
  • the area farthest from the once-through blower is as thin as 24 to 27 mm in the area, and the distance between the leeward leading edge and the leeward trailing edge in the area near the once-through blower is Since it is made even thinner to 20 to 23 mm, the depth required for the wind circuit including the heat exchanger can be made considerably smaller, and therefore, the indoor unit can be made thinner. it can.
  • both the leeward leading edge side and the leeward trailing edge side of the fin have the same shape.
  • the curved part of the fin of the front-side heat exchanger in the above-mentioned heat exchanger are arc-shaped.
  • the curved portions of the windward leading edge and the leeward trailing edge of the fin in the front-side heat exchanger are formed in an arc shape, thereby facilitating processing and maintenance of the fin press die. It will be easier.
  • the leeward leading edge and the leeward trailing edge of the fin in the rear side heat exchanger are formed of straight lines parallel to each other, and the leeward leading edge and the leeward trailing edge of the fin.
  • the distance to the edge is the windward in the area farther from the once-through blower, of the two areas between the straight windward leading edge and the linear leeward trailing edge of the fin in the front heat exchanger. It is equal to the distance between the leading edge and the leeward trailing edge.
  • the upwind leading edge and the downwind trailing edge of the rear-side heat exchanger are constituted by parallel straight lines, so that a larger heat exchanger with fins can be accommodated in a limited space.
  • a larger heat exchange capacity can be exhibited.
  • the fin can be a single fin in which the upper end of the fin in the front heat exchanger is connected to the upper end of the fin in the rear heat exchanger. In such a case, continuous press working can be performed with high productivity.
  • the region farther from the once-through blower The outer diameter of the heat transfer tube inserted in the fin portion of the heat transfer tube and the heat transfer tube inserted in the portion of the rear heat exchanger sandwiched between the straight portion on the windward front edge and the straight portion on the leeward rear edge is 4 to 6.4 mm, and three rows of heat transfer tubes are arranged in the row direction along the main flow direction of the gas, and the arrangement pitch of the heat transfer tubes in the step direction perpendicular to the main flow direction of the gas is 14 5 to 16 mm.
  • heat transfer tubes with an outer diameter of 4 to 6.4 mm are arranged in three rows and stepwise pitch Is set to 14.5 to 16 mm, it is possible to obtain a high air-side heat transfer coefficient without increasing the ventilation resistance, and thus to improve the air volume at the same The ability to exchange can be demonstrated.
  • Heat transfer tubes with the larger outer diameter are placed in the most upstream row of the gas flow, and near the refrigerant outlet when the finned heat exchanger is used as a condenser or gas cooler. Formed in one pass as a heat transfer tube or as a heat transfer tube near the refrigerant inlet when used as an evaporator,
  • the heat transfer tube with the smaller outer diameter is used as the heat transfer tube on the upstream side of the refrigerant from the heat transfer tube with the larger outer diameter.
  • the refrigerant is formed by four passes as a heat transfer tube on the downstream side of the refrigerant from the heat transfer tube with the larger outer diameter, and the refrigerant flows therethrough.
  • the heat exchanger with the fin is connected to the condenser or the gas generator.
  • a heat transfer tube near the refrigerant outlet when used as a scooter or a heat transfer tube with an outer diameter of 4 to 6.4 m2 near the refrigerant inlet when used as an evaporator, and the most wind of gas flow in three rows By arranging it in the upper row and forming it in one pass, it is possible to improve the heat transfer coefficient in the pipe and to arrange the airflow and the temperature difference between the air and the refrigerant in countercurrent flow, so that the heat exchange capacity is increased. be able to.
  • the refrigerant in this region has a high density, the flow resistance of the refrigerant does not increase so much that the increase of the heat exchange capacity is not prevented.
  • the heat exchanger with the fin is used as a condenser or gas cooler with an outer diameter of 4 to 6.4 mm, it is used as a heat transfer tube or evaporator near the refrigerant outlet.
  • a heat transfer tube with a smaller outer diameter than the heat transfer tube near the refrigerant inlet is formed in one pass near the refrigerant outlet.
  • heat transfer tube on the upstream side of the heat transfer tube or as a heat transfer tube on the downstream side of the heat transfer tube formed in one pass near the refrigerant inlet when the heat exchanger with fins is used as an evaporator. By forming it in four passes, it is possible to achieve both a high heat transfer coefficient in the pipe and a low refrigerant flow resistance, and to increase the heat exchange capacity.
  • the outer diameter of the heat transfer tube inserted into the fin portion and the outer diameter of the heat transfer tube inserted into the region between the curved upwind leading edge and the curved downwind trailing edge of the fin are respectively 6
  • the heat transfer tubes are arranged in two rows in a row direction which is in a direction along the main flow direction of the gas and has a range of 5 to 8.5 mm, and a step direction which is perpendicular to the main flow direction of the gas.
  • the arrangement pitch of the heat transfer tubes in the front direction is in the range of 16 to 22 mm, and the linear leeward leading edge and the linear leeward trailing edge of the fin in the front-side heat exchanger.
  • the heat transfer tubes with outer diameter of 6.5 to 8.5 mm are arranged in two rows and the stepwise pitch is set to 16 to 22 mm, the ventilation resistance in the two-row configuration is slightly higher. High heat transfer coefficient on the air side can be obtained, and the difference in ventilation resistance of the heat exchanger as a whole can be reduced to improve the wind speed distribution. You can demonstrate your ability.
  • a stepwise direction of a heat transfer tube inserted into a portion of an area between a curved upwind front edge and a curved downwind rear edge of the fin in the front heat exchanger is provided.
  • the arrangement pitch is such that the row on the windward side of the gas flow is less than or equal to the row on the leeward side.
  • the number of heat transfer tubes inserted in the stepped direction in the region between the curved frontward edge of the fin and the rearward curved edge of the fin in the front-side heat exchanger is reduced.
  • the heat transfer tubes having the larger outer diameter are arranged in the most leeward row of the gas flow, and near the refrigerant inlet when the heat exchanger with fins is used as a condenser or a gas cooler.
  • the heat exchanger with the fin was used as a condenser or gas cooler for the heat exchanger tube used as a heat exchanger tube or as a heat exchanger tube near the refrigerant outlet when used as an evaporator.
  • a heat transfer tube upstream of the heat transfer tube having a larger outer diameter when used as a heat transfer tube downstream of the heat transfer tube having a larger outer diameter, or when used as an evaporator, a heat transfer tube upstream of the heat transfer tube having a larger outer diameter.
  • the refrigerant is formed in two passes and the refrigerant flows therethrough.
  • the heat exchanger near the refrigerant inlet when the heat exchanger with fins is used as a condenser or a gas cooler or the heat exchanger near the refrigerant outlet when used as an evaporator is used. Since the diameter is in the range of 6.5 to 8.5 mm, it is wider than any other heat transfer tubes, and it is arranged in the leeward row of the gas flow in a two-row configuration, it is formed in two passes. With respect to the temperature difference between the refrigerant and the refrigerant, the performance is improved by the counterflow arrangement, and the heat transfer coefficient in the pipe is slightly reduced, but the refrigerant flow resistance can be significantly reduced, and thus the heat exchange Capability can be greatly increased.
  • the heat exchanger with fin when used as a condenser or gas cooler with an outer diameter in the range of 6.5 to 8.5 mm, it was used as a heat transfer tube or evaporator near the refrigerant inlet.
  • the heat exchanger with the fin When cold, the heat exchanger with the fin is used as a condenser or gas cooler, the heat exchanger with the smaller outer diameter than the heat exchanger near the medium outlet is used.
  • the heat exchanger with the fins When the heat exchanger with the fins is used as a heat exchanger tube downstream of the heat exchanger tube formed by the two paths with the largest outer diameter near the refrigerant outlet, or when the heat exchanger with the fin is used as an evaporator, By forming the heat transfer tube on the upstream side of the refrigerant from the heat transfer tube formed with two paths with the largest outer diameter in two passes, it is possible to improve the heat transfer coefficient in the tube and increase the heat exchange capacity .
  • the shortest distance between the heat transfer tube and the leading or trailing edge of the fin is set to 1.8 mm or more.
  • the distance between the heat transfer tube and the leading edge or the trailing edge of the fin is set to at least 1.8 mm, so that when the heat exchanger with the fin is used as an evaporator, It is possible to suppress the phenomenon that condensed water adhering to the fin surface and flowing down hits the heat transfer tube and jumps out from the windward leading edge or the leeward trailing edge of the fin.
  • the rear heat exchanger when the dehumidifying operation is performed by using the reheater and the evaporator separately in the stage direction, the straight upwind front edge of the fin in the front heat exchanger and the straight Of the two areas sandwiched between the leeward trailing edge and the area away from the once-through blower, the rear heat exchanger is used as a reheater,
  • the area closer to the once-through blower and the curved fin of the fin is used as an evaporator.
  • the heat loads of the reheater and the evaporator are properly balanced. Good dehumidification operation.
  • the reheater is disposed vertically above the evaporator, condensed water condensing on the fins in the area of the evaporator collides with the fin surface of the reheater and re-evaporates. Humidification of the room can be prevented.
  • a plurality of cut-and-raised portions that are opened in the main flow direction of the gas are provided on the fin surface between the heat transfer tubes that are adjacent in the stage direction,
  • the rising portions of the cut-and-raised portions near the heat transfer tubes are formed in a direction substantially along the circumference of the heat transfer tubes, and the ratio of the width between the cut-and-raised portions in the column direction to the width of the cut-and-raised portions in the column direction. Is from about 2 to about 2.5.
  • a plurality of cut-and-raised temperature boundary layer leading edges that are opened in the main flow direction of the gas on the fin surface between the heat transfer tubes adjacent in the stepwise direction have a high air-side heat transfer coefficient.
  • the rising portion of the cut-and-raised portion near the heat transfer tube is formed in a direction roughly along the circumference of the heat transfer tube, so that the air flow can be guided to the downstream portion of the heat transfer tube, and therefore the effective transfer can be achieved. Since the heat area increases, heat exchange performance can be improved.
  • the conventional ratio is about 3
  • the heat exchange capacity can be improved as compared with the case.
  • the height of the cut-and-raised portion is set to about 1/4 to about 3/4 of the pitch between adjacent fins.
  • the cut-and-raised height is set to about 1/4 to about 3Z4 of the pitch between the adjacent fins, so that the wind halo at the same noise is reduced. It can be increased to achieve greater heat exchange capacity.
  • the cut-and-raised height is set to about 1 Z2 of the pitch between adjacent fins in a region where the wind speed at which the finned heat exchanger approaches the once-through blower is high.
  • the pitch between adjacent fins is set to about 3Z4. According to this configuration, the height of the cut-and-raised portion is reduced by the wind speed at which the heat exchanger with the fin approaches the once-through blower.
  • the ventilation resistance is relatively large as about 1/2 of the pitch between adjacent fins, and in other areas, the ventilation resistance is about 3/4 of the pitch between adjacent fins.
  • the shortest distance between the cut-and-raised portion and the windward leading edge or the leeward trailing edge of the fin is set to 1.8 mm or more.
  • the distance between the cut-and-raised edge and the leeward leading edge or the leeward trailing edge of the fin is at least 1.8 mm, so that the heat exchanger with the fin is used as an evaporator.
  • the fin at the center between the rows of the two heat transfer tubes is roughly arranged in a stepwise direction.
  • a notch is provided along the direction.
  • the heat exchanger with the fin when used in a stepwise manner by dividing the heat exchanger into a reheater and an evaporator to perform the dehumidification operation, the above-mentioned filter between the reheater area and the evaporator area is used.
  • the entire heat exchanger with fins is used as an evaporator, water that condenses on the fin surface does not stay in the cuts, but smoothly passes through the very small connected portions of the fins. Can flow down.
  • any one of HFC refrigerant, HC refrigerant and carbon dioxide is used as the refrigerant flowing inside the heat transfer tube.
  • This configuration contributes to the protection of the global environment by using one of HFC refrigerant, HC refrigerant and carbon dioxide with a low ozone destruction coefficient as the refrigerant fluid flowing inside the heat transfer tubes. can do.
  • HC refrigerant and carbon dioxide are refrigerants with a low global warming potential, which can further contribute to the protection of the global environment.
  • the heat exchanger is manufactured in a state where the upper end of the fin of the front heat exchanger and the upper end of the fin of the rear heat exchanger are connected.
  • the arrangement pitch of the fin collars at an adjacent location at the boundary between the front-side heat exchanger and the rear-side heat exchanger is set to be shorter than the arrangement pitch in other step directions.
  • the pitch in the step direction of the fin collar at the location adjacent to the boundary between the front heat exchanger and the rear heat exchanger is equal to the pitch in the other adjacent steps.
  • the method for manufacturing a heat exchanger according to the present invention is a method for manufacturing a heat exchanger as described above including a front-side heat exchanger and a back-side heat exchanger,
  • the upper end of the fin in the front-side heat exchanger and the upper end of the fin in the back-side heat exchanger are continuously pressed as one fin in a state where they are connected at a boundary. After laminating a large number of fins,
  • each of the fins is cut at a boundary between the front-side heat exchanger and the rear-side heat exchanger, and separated into the front-side heat exchanger and the rear-side heat exchanger.
  • the heat exchanger with fins can be manufactured more efficiently than when the front heat exchanger and the rear heat exchanger are manufactured separately. Can. Also, heat transfer tubes inserted into one fin with different diameters, different numbers of rows, different row pitches or different step pitches may be mixed. Objects with different heights can be mixed.
  • the upper end of the fin of the front-side heat exchanger and the upper end of the fin of the rear-side heat exchanger are connected as a single fin in a state of being connected at a boundary.
  • the pitch of the fin collars for inserting the heat transfer tubes is the same as the pitch of the other tiers in the portions adjacent to the fin collars formed on the front heat exchanger and the rear heat exchanger, respectively.
  • the pitch in the step direction of the fin collar at an adjacent portion at the boundary between the front heat exchanger and the rear heat exchanger is made equal to the pitch in the step direction in the other vicinity.
  • the waste material of the fin material can be reduced.
  • FIG. 1 is a cross-sectional view of an indoor unit of an air conditioner containing a finned heat exchanger according to an embodiment of the present invention
  • Fig. 2 is a side view of the fin of the heat exchanger with fin
  • Fig. 3 is an enlarged side view of the main part of the fin of the heat exchanger with fin.
  • Figure 4 is a side view showing an image in which the fins of the heat exchanger with fins are continuously arranged in the feed direction of two presses.
  • Fig. 5 is a cross-sectional view of the indoor unit of an air conditioner containing a conventional heat exchanger with fins.
  • Fig. 6A is a schematic side view of the fin of another conventional finned heat exchanger
  • Fig. 6B is an air conditioner housing the finned heat exchanger using the fin shown in Fig. 6A.
  • Fig. 7 is a diagram showing the relationship of the arrangement pitch of the heat transfer tubes in the fins of another conventional finned heat exchanger.
  • FIG. Figure 1 is a longitudinal sectional view of this indoor unit.
  • the casing 2 of the indoor unit 1 of the air conditioner is provided with inlets 3a and 3b on the front and upper surfaces, and is provided with an outlet 4 on the lower surface.
  • the housing 2 houses the once-through blower 5 and the heat exchanger 10 with fins.
  • the heat exchanger with fins 10 is composed of a front heat exchanger 20 arranged on the front side of the housing 2 and a rear heat exchanger 40 arranged on the rear side of the housing 2.
  • the front-side heat exchanger 20 and the rear-side heat exchanger 40 are arranged so as to surround the once-through blower 5 from the windward side.
  • Each of the heat exchangers 20 and 40 is arranged in parallel at a predetermined interval, and has a number of fins 21 and 41 through which air flows.
  • FIG. 2 is a side view of the fin 21 of the heat exchanger 20 on the front side and the fin 41 of the heat exchanger 40 on the rear side of the heat exchanger with fins according to the embodiment
  • FIG. FIG. 3 is an enlarged side view of a main part of a fin 21 of a heat exchanger 20.
  • Fig. 4 shows a state in which the upper ends of the fins 21 of the front-side heat exchanger 20 and the fins 41 of the rear-side heat exchanger 40 of the heat exchanger with fins in Fig. 2 are connected at the boundary.
  • FIG. 5 is a side view showing an image in which two fins formed by continuous press working as one fin 13 are continuously arranged in the press feed direction.
  • the windward leading edge and the leeward trailing edge of the fin 21 of the front-side heat exchanger 20 have an angle 01 and an angle of intersection with each other. 0 Two straight parts with the same obtuse angle
  • the windward front edge and the leeward rear edge of the fin 41 of the rear-side heat exchanger 40 are composed of parallel straight portions 42 and 43.
  • the distance between the leeward leading edge and the leeward trailing edge of the region i.e., the distance B between the leeward leading edge 23 and the leeward trailing edge 33 is greater than the leeward leading edge of the other region farther from the once-through blower 5. It is formed shorter than the distance from the leeward trailing edge, that is, the distance A between the leeward leading edge 22 and the leeward trailing edge 32.
  • one region indicates a portion above the bent portion of the heat exchanger 20 formed in a bent shape, and the other region indicates a heat exchanger 2 formed in a bent shape. The portion below the bent portion of 0 is shown.
  • the distance between the windward leading edge 42 and the leeward trailing edge 43 of the fin 41 of the rear heat exchanger 40 is determined by the bent front heat exchanger.
  • the bent front heat exchanger Of the two areas between the straight leeward leading edge of the fin 21 of the fan 20 and the straight leeward trailing edge of the The distance between the windward leading edge 2 2 and the leeward trailing edge 3 2 of the area is equal to A.
  • These fins 21 of the front heat exchanger 20 and fins 41 of the rear heat exchanger 40 are As shown in FIG. 4, the fin is manufactured by continuously pressing as one fin 13 in which the upper ends are bordered at the boundary.
  • the angle between the fin forward direction and the leeward leading edge 22 or the leeward trailing edge 32 on the side far from the once-through blower 5 of the fin 21 of the front-side heat exchanger 20 is ⁇ .
  • the angle between the straight upwind leading edge 2 3 or the downwind trailing edge 3 3. on the side close to the once-through blower 5 and the feed direction of the fin press is i3, and the feed width of one fin.
  • each fin 13 has a fin collar 12 burred in a round hole shape.
  • the fins 21 of the front heat exchanger 20 and the fins 41 of the rear heat exchanger 40 are connected as a single fin with a continuous press working.
  • the heat transfer tubes 11 are inserted (inserted) through the fin collars 12, and then the heat transfer tubes 11 are brought into close contact with the heat transfer tubes 11.
  • Heat tube 1 1 The fins 13 are cut at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 to form a front heat exchanger 20 and a rear heat exchanger 40. To separate.
  • the so-called stepwise pitch is a direction perpendicular to the main flow direction (flow direction) of the gas (air) in the heat transfer tube 11 as shown in Figs.
  • the number of rows that is, the number of rows along the main flow direction of the gas, that is, the number of rows, is determined by the straight windward leading edge of the fin 21 of the bent front heat exchanger 20 and the straight leeward.
  • the straight windward leading edge 42 of the fin 41 of the rear heat exchanger 40 and the straight leeward It is formed differently from the region sandwiched by the trailing edges 43.
  • the side farther from the once-through blower 5 Area i.e., the area sandwiched between the straight leeward leading edge 22 and the linear leeward trailing edge 32, and the straight leeward leading edge of the fins 41 of the rear heat exchanger 40.
  • the heat transfer tubes 11 inserted into the fins 21 and 41 in the region sandwiched between the fin 42 and the straight leeward trailing edge 43 have an outer diameter in the range of 4 to 6.4 mm. Two types of outer diameter heat transfer tubes are used (configured), the larger heat transfer tube 11a and the smaller heat transfer tube 11b.
  • the pitch D is formed as 14.5 to 16 mm. Of the two regions sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the bent front-side heat exchanger 20, it is closer to the once-through blower 5. Side region, i.e., the straight leeward leading edge 23 and the linear leeward trailing edge 33 Inserted into the fins 21 in the region between the curved frontward edge 24 and the curved rearward edge 34 of the front heat exchanger 20 As the heat pipes 11, two types of heat transfer pipes having an outer diameter of 6.5 to 8.5 mm, that is, a heat transfer pipe 11 c having a smaller outer diameter and a heat transfer pipe 11 d having a larger outer diameter are used. (Constructed), two rows are arranged in the column direction, and the pitch E in the step direction is formed as 16 to 22 mm.
  • the heat transfer tubes inserted into the fins 21 in a region sandwiched between the curved leeward leading edge and the curved leeward trailing edge in the front-side heat exchanger 20.
  • the row pitch E u on the leeward side of the gas flow is equal to or less than the row pitch E d on the leeward side of the gas flow (the same or higher). Smaller).
  • FIG. 1 shows the flow of the refrigerant when the heat exchanger with fins 10 according to the present embodiment is used as an evaporator.
  • the fins of the bent front-side heat exchanger 20 are shown in FIG.
  • the area farther from the once-through blower 5 that is, the straight upwind leading edge 2 2 and the straight Area between the leeward trailing edge 32 of the rear heat exchanger 40 and the linear upwind leading edge 4 2 of the fin 41 of the rear heat exchanger 40 and the linear leeward trailing edge 4 3
  • 1 1 1 a Are placed in the most upwind row of the gas flow, and used (formed) in one pass as a heat transfer tube near the refrigerant inlet when used as an evaporator, and with the smaller
  • Refrigerant is flowed by using (forming) the heat transfer tube on the downstream side in four passes.
  • the refrigerant passes through the throttling means 80 for the dehumidifying operation in the fully open state and is bent Of the two areas sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the fin-shaped front-side heat exchanger 20, that is, the area near the once-through blower 5, that is, The area sandwiched between the straight leeward leading edge 23 and the straight leeward trailing edge 33, and the curved leeward leading edge 24 of the front heat exchanger 20 and the curved leeward rear Of the two types of heat transfer tubes 11 having a diameter in the range of 6.5 to 8.5 mm to be inserted into the fin (fin portion) 21 in a region sandwiched between the edge 34 and the outer diameter,
  • the heat exchanger tubes 1 1 c flow in two passes (two paths), and finally, the refrigerant flows into the
  • the finned heat exchanger 1d flows in two passes and exits the finned heat exchanger. Further, the four heat transfer tubes 11 d having a larger outer diameter near the refrigerant outlet when used as an evaporator are arranged in the most leeward row of the gas flow.
  • the heat transfer tubes 11 have four types of outer diameters.However, in terms of the outer diameter before expansion, the heat transfer tube 11a is approximately 6 mm, the heat transfer tube 11b is approximately 5 mm, It is recommended to use about 7 mm for the heat pipe 11 c and about 8 mm for the heat transfer pipe 11 d.
  • the heat exchanger with fins 10 of the present embodiment is used as an evaporator
  • the heat exchanger with fins of the present embodiment is used as a condenser or gas.
  • the flow direction of the refrigerant is reversed, but the other configuration is the same as when used as an evaporator.
  • the bent front-side heat exchanger 20 is used.
  • the region farther from the once-through blower 5 that is, the straight leeward leading edge 22
  • the area between the straight leeward trailing edge 32 and the rear heat exchanger 40 is used as a reheater, and the bent front heat exchanger 20 has a linear shape of the fin 21.
  • the area closer to the once-through blower 5 namely, the straight leeward leading edge 23 and the linear leeward trailing edge 33
  • the area sandwiched between the curved frontward edge 24 of the front heat exchanger 20 and the curved rearward edge 34 of the heat exchanger 20 are used as evaporators.
  • the refrigerant flows into the evaporator from the reheater through the throttling means 80 having an appropriate throttling amount as shown in FIG.
  • the fins 21 of the front heat exchanger 20 and the fins 41 of the rear heat exchanger 40 were connected at the boundary between their upper ends.
  • the fin collars 12 of the front-side heat exchanger 20 and the rear-side heat exchanger 40 respectively.
  • the pitch of the part adjacent to each other in the column direction is set to a pitch F shorter than the pitch D in the other adjacent column direction.
  • a portion of the fins 13 (21, 41) between the heat transfer tubes 11 adjacent to each other in the step direction has a plurality of openings that open in the main flow direction of the gas.
  • 14 1, 15 1, 16 1, 14 2, 15 2 are provided, and each of these cuts 14 1, 15 1, 16 1, 16 1, 14 2, 15 2 Of the fin collar 1 2 That is, the rising portions 14 1, 15 1, 16 1, 14 2, and 15 2 of the cut-and-raised portions provided near the heat transfer tube 1 1 14 1 a, 15 1 a, 16 1 a, 14 2 a, and 15 2 a are formed in directions substantially along the circumference of the heat transfer tube 11.
  • adjacent cut-outs 14 1, 15 1, 1 1 in the column direction with respect to the width W s 1 of each cut-out 14 1, 15 1, 16 1 in the column direction.
  • the width of the fin between 6 1 (the width of the flat part of the fin 21 adjacent in the column direction)
  • Ratio of W s 2 to the width of the fin between adjacent cut-outs 14 2 and 15 2 in the column direction (the width of the flat plate portion of the fins 21 and 41 adjacent in the column)
  • W b 2 W b 2 / W s 2 is set to be about 2 to about 2.5.
  • the heights of the cut-outs 14 1, 15 1, 16 1, 14 2, 15 2 along the thickness direction of the fins 21, 41 are set to the adjacent fins 13 (21, 21).
  • the pitch is about 1/4 to about 3/4 of each other.
  • the height of the cut-outs 141, 151, and 161 should be increased in areas where the wind speed is high, for example, close to the once-through blower 5 in FIG.
  • the pitch between adjacent fins 13 (21, 41) is about 1 Z2, and in other areas, the adjacent fins 13 (21, 41) are Approximately 3/4 of the pitch.
  • the heat transfer tubes 11a, lib, 11c, 11d and the windward leading edges 22, 23, 24, 42, or 42 of the fins 21, 41 The shortest distance L t to the lower trailing edge 3 2, 3 3, 3 4, 4 3 1 4 1, 1 5 1, 1 6 1, 1 4 2, 1 5 2 and fins 2 1, 4 1 windward leading edge 2 2, 2 3, 2 4, 4 2 or leeward trailing edge 3 2 , 33, 34, and 43, the shortest distance Ls is set to be 1.8 mm or more.
  • the two heat transfer tubes 11 A cut 17 is provided in the fin portion at the center between the rows of the collars 1 2) in a direction generally along the step direction.
  • the front side heat exchanger shown in Fig. 1 is used.
  • the lower part of the fin 21 from the curved parts 24, 34 is used as an evaporator and the other part is used as a reheater.
  • a notch 19 for cutting almost completely, leaving a very small portion 18 not to be cut.
  • any one of HFC refrigerant, HC refrigerant and carbon dioxide is used.
  • the fins 21 and 41 of the front-side heat exchanger 20 and the rear-side heat exchanger 40 are each a single fin 13 whose upper end is connected at the boundary. It is manufactured by continuous press working, and after laminating many fins 13, the heat transfer tube 11 is inserted into the fin collar 12 (through) to expand the tube, and the front heat exchanger 20 and the back side heat exchanger 40 are connected by fins 13 (21, 41) Then, the front-side heat exchanger 20 and the rear-side heat exchanger 40 are cut at the boundary between the fins 21 and 41, and the front-side heat exchanger 20 and Production is performed separately from the rear heat exchanger 40.
  • the windward leading edge and the leeward trailing edge of the fin 21 of the front-side heat exchanger 20 have two straight portions each having the same obtuse angle and the straight portion between these two straight lines.
  • the distance between the windward leading edge 23 and the leeward trailing edge 33 of one of the two areas closer to the once-through blower 5 is set to the upstream of the other area farther from the once-through blower 5.
  • the heat exchanger with a large fin can be accommodated in a limited space, especially in a space with a small depth, and a larger space can be accommodated. It can demonstrate heat exchange capacity. Further, the front-side heat exchanger 20 does not need to be bent later, and of course, does not require a spacer which is required when bending. When this heat exchanger with fins 10 is used as an evaporator, water condensed on the fins 21 and 41 of the front heat exchanger 20 and the rear heat exchanger 40 is continuous. It flows down the fins 21 and 41 smoothly.
  • the upper side of the fin 21 of the front-side heat exchanger 20 is inclined at a constant angle close to the vertical, surrounded by the straight line of the windward leading edge 22 and the straight line of the leeward trailing edge 32. Therefore, water droplets condensing on the surface of the fin during evaporation do not stay.
  • the indoor unit 1 can be reduced in thickness.
  • the fins 13 of the front-side heat exchanger 20 have the same shape for the curved portions 24 and 34 of the windward leading edge and the leeward trailing edge, so that the fins 13 are continuous. In press working, it is possible to efficiently produce fins 13 without wasting too much waste material 51, 52, 53.
  • the curved portions 24 and 25 of the fin 21 and the leeward edge of the fin 21 of the front-side heat exchanger 20 are formed in an arc shape, so that the press metal of the fin 13 is formed. Processing and maintenance of the mold become easier.
  • the fin 13 of the heat exchanger 10 with fins is bent in the distance between the windward leading edge 42 and the leeward trailing edge 43 of the fin 41 of the rear heat exchanger 40. Windward of the area farther from the once-through blower 5 of the two areas sandwiched between the straight windward leading edge and the straight leeward trailing edge of the fin 21 of the front heat exchanger 20 Since the distance between the leading edge 23 and the leeward trailing edge 33 was equal, the upper end of the fin 21 of the front heat exchanger 20 and the upper end of the fin 41 of the rear heat exchanger 41 were Can be connected to one fin, and continuous press working can be performed with high productivity.
  • the area farther from the once-through blower 5 That is, the area between the windward leading edge 22 and the leeward trailing edge 32, and the straight portion of the windward leading edge 42 of the rear heat exchanger 40 and the straight portion of the leeward trailing edge 43.
  • three rows of heat transfer tubes 11a and 11b with an outer diameter in the range of 4 to 6.4 mm were arranged and the step pitch was set to 14.5 to 16 mm.
  • the larger outer diameter of the heat transfer tube 11a is the most upstream of the gas flow in three rows.
  • the refrigerant in this region has a high density, the flow resistance of the refrigerant does not significantly increase, and does not hinder an increase in heat exchange capacity.
  • the heat exchanger with fins 10 when used as a condenser or gas cooler with an outer diameter in the range of 4 to 6.4 mm, the heat transfer tube 11 a near the refrigerant outlet or the evaporator The heat transfer tube 11b with the smaller outer diameter than the heat transfer tube 11a near the refrigerant inlet when used as a heat exchanger, and the heat exchanger 10 with the fin as the condenser or gas cooler If used Heat transfer tube used in one pass near the refrigerant outlet in the 1st pass as a heat transfer tube on the upstream side of the refrigerant or 1 pass near the refrigerant inlet when the heat exchanger with fins 10 is used as an evaporator.
  • the region closer to the once-through blower 5 that is, the wind
  • two rows of heat transfer tubes 11 c and lid with an outer diameter in the range of 6.5 to 8.5 mm were arranged and the stepwise pitch was set to 16 to 22 mm.
  • the airflow resistance is slightly higher, a high air-side heat transfer coefficient can be obtained, and the difference in ventilation resistance of the heat exchanger as a whole can be reduced to improve the wind speed distribution.
  • excellent heat exchange capacity can be exhibited.
  • the heat transfer tube 1 1 inserted in the area of the front heat exchanger 20 between the curved upwind leading edge 24 of the fin 21 and the curved downwind trailing edge 34 The row pitch on the leeward side of the gas flow was set to be equal to or less than the row on the leeward side of the gas flow, so the number of heat transfer tubes 11 in the row direction was As much as possible, the ventilation resistance in this area can be increased, and thus the wind speed distribution of the finned heat exchanger 10 can be made more uniform, so that a larger heat Exchange ability can be demonstrated.
  • the heat transfer tube 11d near the refrigerant inlet or the heat transfer tube lid near the refrigerant outlet when used as an evaporator when used as an evaporator. Outside diameter of 6.5 to 8.5 mm and thicker than any of the other heat transfer tubes 11a, lib, 11c. Since it is arranged and used (formed) in two passes, it is possible to improve the performance due to the countercurrent arrangement with respect to the temperature difference between the air and the refrigerant, and the heat transfer coefficient in the pipe is slightly reduced, but the refrigerant flow The resistance can be greatly reduced, and thus the heat exchange capacity can be greatly increased.
  • the heat transfer tubes 11 d or 1 d near the refrigerant inlet are used.
  • the heat transfer tube 11c with the smaller outer diameter than the heat transfer tube 11d near the refrigerant outlet when used as an evaporator is used, and the heat exchanger 10 with the fin is used as a condenser or gas cooler. If used, use (form) the heat transfer tube 11 1d in the two passes with the largest outer diameter near the refrigerant outlet, or evaporate the heat exchanger 10 with the fin as the heat transfer tube downstream of the refrigerant.
  • the heat transfer tubes 11a, lib, 11c, 11d and the windward leading edges 22, 23, 24, 42 of the fins 21, 41, or the leeward trailing edges 32, 33 , 34, and 43 are at least 1.8 mm, so if the heat exchanger with fins 10 is used as the evaporator, it will adhere to the surfaces of the fins 21 and 41. Condensate flowing down is the heat transfer tube 1 1a, lib, 1 1c, 1 1 In the case of d, the fins 21, 41 jump out from the windward leading edge 22, 23, 24, 42 or the leeward trailing edge 32, 33, 34, 43. Can be suppressed.
  • the fins 21 in the bent front-side heat exchanger 20 are used. Of the two areas sandwiched by the straight leeward leading edge and the straight leeward trailing edge, the area farther from the once-through blower 5 is sandwiched by the windward leading edge 22 and the leeward trailing edge 32.
  • the straight frontward edge of the fin 21 and the straight rearward edge of the fin 21 in the bent front heat exchanger 20 Of the two sandwiched areas the area closer to the once-through blower 5, that is, the area sandwiched by the windward leading edge 23 and the leeward trailing edge 33, and the fin 21 in the front heat exchanger 20
  • the heat load of the reheater and evaporator can be reduced. Can and this performing good dehumidifying operation by balance.
  • the reheater since the reheater is located vertically above the evaporator, condensed water condensing on the fins in the area of the evaporator hits the fin surface of the reheater and re-evaporates. Humidification of the room can be prevented.
  • a plurality of cut-and-raised portions 141, 151, and 161 are provided on the surface of the fins 21 and 41 between the adjacent heat transfer tubes 11 in the stepwise direction and open in the main flow direction of the gas.
  • the leading edge effect of the thermal boundary layer provides a high air-side heat transfer coefficient, and these cuts 141, 151, 161, 1, 42, 15 2 heat transfer tube 1 1 rising part 14 1 a, 15 1 a, 16 1 a, 16 1 a, 14 2 a, 15 2 a formed in a direction roughly along the circumference of heat transfer tube 11 So that the air flow was Therefore, the effective heat transfer area increases, so that the heat exchange performance can be improved.
  • the width W between the cut-and-raised portions 14 1, 15 1, 16 1, 14 2 and 15 2 in the column direction W sl, W s 2 The width W between the cut-and-raised portions in the column direction
  • the ratio of b1, Wb2 Wb1 / Ws1, Wb2 / Ws2 is set to about 2 to about 2.5, which is higher than the conventional ratio of about 3. Heat exchange capacity can be improved.
  • each cutout 14 1, 15 1, 16 1, 14 2, 15 2 is set to about 1 Z 4 of the pitch between adjacent fins 13 (2 1, 4 1). By setting it to about 3 Z4, the air volume at the same noise can be increased, and a greater heat exchange capacity can be exhibited.
  • each of the cut-and-raised parts 14 1, 15 1, 16 1, 14 2, and 15 2 is set for the area G where the heat exchanger 10 with fins approaches the once-through blower 5 where the wind speed is high. Is about 1/2 of the pitch between adjacent fins 13 (2, 4 1) to make the ventilation resistance relatively large, and for other areas, the adjacent fins 13 (2 1, 4 1) By making the airflow resistance smaller as the pitch of about 3 Z4 between the two, the wind speed distribution of the heat exchanger 10 with fins can be made more uniform. Therefore, a greater heat exchange capacity can be exhibited.
  • each cutout 14 1, 15 1, 16 1, 14 2, 15 2 and fins 21, 4 1 Since the distance from the trailing edge 32, 33, 34, 43 was at least 1.8 mm, when the heat exchanger with fins 10 was used as the evaporator, the fins 21, 4 The condensed water adhering to the surface of (1) is cut and raised, and flows down along 4 1, 1 5 1, 1 6 1, 1 4 2 and 1 5 2 while windward of Fin 2 1 It is possible to suppress the phenomenon of jumping out of the leading edge 22, 23, 24, 42 or the leeward trailing edge 32, 33, 34, 43.
  • the fins 21 and 1 at the center between the rows of the two heat transfer tubes 11 By providing the cuts 17 in the direction along the outline, heat exchange loss due to heat conduction through the fins 21 and 41 can be prevented, so that the heat exchange capacity is not reduced.
  • the fins 2 between the reheater region and the evaporator region are used. 1 and 41 have a notch 19 that cuts almost completely, leaving only a small part 18 that does not cut, thereby preventing a significant decrease in capacity due to heat conduction of the fins 21 and 41 be able to.
  • the entire heat exchanger with fins 10 is used as an evaporator, the water condensing on the surfaces of the fins 21 and 41 does not stay in the cuts 19 and the fins 21 , 4 1 can flow down smoothly through a very small but connected part 18.
  • HFC refrigerant, HC refrigerant and carbon dioxide having a low ozone depletion potential can contribute to the protection of the global environment.
  • HC refrigerant and carbon dioxide are refrigerants having a low global warming potential, they can further contribute to the protection of the global environment.
  • the method of manufacturing the heat exchanger with fins 10 includes a front heat exchanger 20 disposed on the front side of the housing 2 and a rear heat exchanger 20 disposed on the rear side of the housing 2.
  • a method for manufacturing a heat exchanger with fins constituted by a heat exchanger and a heat exchanger with fins and a rear heat exchanger in a front heat exchanger.
  • the fins 41 were pressed continuously as a single fin 13 with the upper end of the fin 41 connected at the boundary, and a number of these fins 13 were stacked and the heat transfer tube 11 was inserted. After expansion, the fins 13 are cut at the boundary between the front heat exchanger 20 and the rear heat exchanger 40, and then cut into the front heat exchanger 20 and the rear heat exchanger 40.
  • Heat exchange with fins is more efficient than when the front heat exchanger 20 and the rear heat exchanger 40 are manufactured separately. It is possible to produce a 0.
  • heat transfer tubes 11a, lib, llc, and lid with different diameters, different numbers of rows, different pitches in the row direction, and different pitches in the step direction may be mixed.
  • cut-and-raised parts 14 1, 15 1, 16 1, 16 1, 14 2, and 15 2 formed on one fin 13 those with different shapes and heights should be mixed. Can be.
  • the pitch F of the fin collars 12 adjacent to each other at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 is set to Regarding the method of manufacturing the heat exchanger with fins 10 configured to be shorter than the pitch D, the upper end of the fin 21 in the front heat exchanger 20 and the heat exchanger in the rear heat exchanger 40 are described.
  • the pitch F of the fin collar 12 adjacent to the boundary between the front-side heat exchanger 20 and the rear-side heat exchanger 40 is larger than the pitch D of the other neighboring steps.
  • the fins 13 are formed short, a large number of these fins 13 are stacked, and the heat transfer tubes 11 are inserted and expanded, then the fins 13 are connected to the boundary between the front heat exchanger 20 and the rear heat exchanger 40. So that the front heat exchanger 20 and the rear heat exchanger 40 are separated. Therefore, the stepwise pitch F of the finkers 1 and 2 at an adjacent location at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 is the same as the other stepwise pitches. Waste material 52 of fin material can be reduced as compared to the case where D is equivalent.
  • suction ports 3a and 3b are provided on the front surface, the upper surface, and the like
  • the present invention is not limited to this.
  • the case where the outlet 4 is provided on the lower surface side has been described.
  • the present invention is not limited to this, and the above configuration can be applied to the outlet provided on the front surface or the like.
  • the present invention is not limited to this, and the above configuration can be applied to, for example, a heat exchanger provided in the wind circuit from the once-through blower 5 to the outlet 4. So in addition, the present invention can be applied to a case where three or more heat exchangers are provided in an indoor unit, or a case where only one heat exchanger is provided.
  • the heat exchanger with fins includes the front heat exchanger and the rear heat exchanger mounted on the indoor unit of the air conditioner. And the method of manufacturing the same, the leeward leading edge and the leeward trailing edge of the fin of the front heat exchanger connect two straight portions and the two straight lines, each forming the same obtuse angle.
  • the curved part of the leeward leading edge and the leeward trailing edge of the fin have the same shape.
  • the leeward leading edge and the leeward trailing edge of the fin in the backside heat exchanger consist of parallel straight lines, and the distance between the finward leading edge and the leeward trailing edge of the fin in the rearward heat exchanger is Of the two areas sandwiched between the straight leeward leading edge of the fin and the straight leeward trailing edge of the bent front-side heat exchanger, the windward side of the area farther from the once-through blower
  • the largest heat exchanger with fins can be stored in the limited space of the indoor unit of the air conditioner, especially in the space with a small depth, and the heat exchange capacity
  • the water condensed on the surface of the fin when used as an evaporator can flow down smoothly along the fin, while significantly improving the water content.
  • the fins on the front heat exchanger and the fins on the back heat exchanger are continuously pressed as a single fin with a concave shape.
  • the present invention relates to the improvement of the shape and size of the fins in the heat exchanger, and the improvement of the arrangement of the heat transfer tubes.It can be applied particularly to the indoor unit of an air conditioner and flows through the heat transfer tubes.
  • the present invention can also be applied to a device that performs heat exchange between a refrigerant and air flowing outside.

Abstract

A finned heat exchanger, comprising a front side heat exchanger (20) and a rear side heat exchanger (40). Each of the front side heat exchanger and the rear side heat exchanger further comprises a large number of fins (21, 41) arranged parallel with each other at specified intervals and a large number of heat transfer tubes (11) inserted into the fins generally perpendicular to the fins and allowing refrigerant to flow therein. The fins of the front side heat exchanger are so formed that each of the upstream side leading edge (22, 23) thereof and the downstream side trailing edge (32, 33) thereof is formed in bent shapes by two straight line parts forming a same obtuse angle and a curved part line part (24, 34) connecting these two straight lines to each other, and that a distance (B) between the upstream side leading edge and the downstream side trailing edge in an area near a once-through blower (5) among two areas held by the linear upstream side leading edge and the linear downstream side trailing edge of the fins is made shorter than a distance (A) between the upstream side leading edge and the downstream side trailing edge in an area apart from the once-through blower.

Description

明 細 書 フィ ン付き熱交換器およびその製造方法 技術分野  Description Heat exchanger with fins and method for producing the same
本発明は、 フィ ン付き熱交換器およびその製造方法に関する。 背景技術  The present invention relates to a finned heat exchanger and a method for manufacturing the same. Background art
一般に空気調和機の室内ユニッ トは、 図 5 に示すよう に、 筐体 6 1 に、 前面の吸込み口 6 2 aおよび上面の吸込み口 6 2 bなど一箇 所以上の吸込み口と、 下面の吹出し口 6 3 など一箇所以上の吹出し 口とが設けられ、 この筐体 6 1 内に貫流送風機 6 5 とフィ ン付き熱 交換器 6 4 とが収納されている。  Generally, as shown in Fig. 5, the indoor unit of an air conditioner is provided with one or more suction ports such as a suction port 62a on the front and a suction port 62b on the top, and a bottom At least one outlet such as an outlet 63 is provided, and a once-through blower 65 and a heat exchanger with fins 64 are housed in the housing 61.
この従来のフィ ン付き熱交換器 6 4は、 筐体 6 1 内の前面側に配 置され、 上下方向中央部近辺で折り曲げ加工された主たる前面側熱 交換器 6 4 Aと、 筐体 6 1 内の背面側に配置された背面側熱交換器 6 4 B と、 前面側熱交換器 6 4 Aの前面にそれぞれ補助的に取り付 けられた補助熱交換器 6 4 C 、 6 4 D とから構成されている。 そし て、 前面側熱交換器 6 4 Aおよび背面側熱交換器 6 4 Bによ り貫流 送風機 6 5 を風上側から取り囲むような形態に配置して、 限られた 空間にできるだけ大きいフィ ン付き熱交換器を収納している。 なお 、 補助熱交換器 6 4 C、 6 4 Dは熱交換能力を向上させるために設 けている ものだが、 主たる前面側熱交換器 6 4 Aや背面側熱交換器 6 4 Bとは別の工程で製造した後、 主たる前面側熱交換器 6 4 Aや 背面側熱交換器 6 4 Bに追加接続されて取り付けられるもので、 図 5では、 主たる前面側熱交換器 6 4 Aに追加接続されている場合を 示している。 また、 前面側熱交換器 6 4 Aの折り曲げ部近辺には、 単に前面側熱交換器 6 4 Aを折り 曲げてフィ ンがない空間があいて しまう と、 殆ど熱交換しないで気流がフィ ン付き熱交換器を通過し てしまうおそれがあるため、 このようなことがないよう に、 スぺー サ 6 6 が配設されている。 The conventional heat exchanger with fins 64 is disposed on the front side inside the housing 61, and has a main front-side heat exchanger 64A that is bent near the center in the vertical direction, and the housing 6 The rear heat exchangers 64 B arranged on the rear side of the inside of 1 and the auxiliary heat exchangers 64 C and 64 D attached to the front of the front heat exchanger 64 A, respectively It is composed of The front-side heat exchanger 64A and the rear-side heat exchanger 64B arrange the once-through blower 65 such that it surrounds the windward side from the windward side. Contains a heat exchanger. The auxiliary heat exchangers 64 C and 64 D are provided to improve the heat exchange capacity, but are different from the main front heat exchanger 64 A and the rear heat exchanger 64 B. After being manufactured in the process of, it is additionally connected to the main front heat exchanger 64 A and the rear heat exchanger 64 B, and is attached. Fig. 5 shows a case where an additional connection is made to the main front-side heat exchanger 64A. In addition, near the bent portion of the front-side heat exchanger 64 A, if the front-side heat exchanger 64 A is simply bent and there is a space without fins, almost no heat exchange occurs and the airflow is reduced. A spacer 66 is provided to prevent this from happening because it may pass through the heat exchanger.
これに対して、 前面側熱交換器 6 4 Aの折り曲げ加工を不要にし 、 このスぺーサ 6 6 をなく しながら、 熱交換しないで気流がフィ ン 付き熱交換器を通過してしまうようなことを防止する構造として、 特許第 3 0 9 1 8 3 0号に係る明細書に、 前面側熱交換器を円弧状 に形成した構成が開示されている。  On the other hand, the bending process of the front-side heat exchanger 64 A is unnecessary, and the airflow passes through the heat exchanger with fins without heat exchange while eliminating the spacer 66. As a structure for preventing this, a specification in which a front-side heat exchanger is formed in an arc shape is disclosed in the specification of Japanese Patent No. 3091830.
この特許明細書には、 図 6 A, 図 6 Bおよび図 7 に示すよう に、 前面側熱交換器 7 1 Aのフィ ン 7 2 の形状を貫流送風機 7 3 の周面 の一部を囲むよう に円弧状に形成した空気調和機の室内ュニッ 卜が 開示されている。 この前面側熱交換器 7 1 Aに略直角に挿通された 伝熱管 7 4は、 複数列設けられており、 これらの伝熱管 7 4の風上 側列と風下側列とで互いに二等辺三角形を描く ように配置されてい る。 したがって結果的に、 円弧形状部分の内側に配置されている風 下側の伝熱管 7 4の段ピッチ Aは、 円弧形状部分の外側に配置され ている風上側列の伝熱管 7 4の段ピッチ Bよ り も小さ くなつて形成 されている。  As shown in Fig. 6A, Fig. 6B and Fig. 7, this patent specification encloses a part of the periphery of the once-through blower 73 with the shape of the fin 72 of the front-side heat exchanger 71A. Thus, an indoor unit of an air conditioner formed in an arc shape is disclosed. A plurality of rows of heat transfer tubes 74 inserted through the front-side heat exchanger 71 A at a substantially right angle are provided, and an isosceles triangle is formed between the upwind side row and the downwind side row of these heat transfer tubes 74. It is arranged so as to draw. Consequently, as a result, the step pitch A of the leeward heat transfer tubes 74 arranged inside the arc-shaped portion is equal to the step pitch of the heat transfer tubes 74 arranged in the windward row arranged outside the arc-shaped portion. It is formed smaller than B.
この構成によれば、 スぺーサ 6 6 が不要になるとともに、 製造時 のフィ ン 7 2 の材料においてスぺーサ 6 6 に対応する箇所で廃材を 生じないため、 フィ ン 7 2 の材料の廃材を少なくでき、 また各伝熱 管 7 4同士を連通させるヘアピンやリ ターンベン ドの曲げピッチの 種類が、 A、 B 、 Cの 3種類だけで済む利点がある。 また、 スぺー サ 6 6 を設けていないため、 スぺーサ 6 6 に対応する箇所分だけフ イ ン 7 2 の面積が増加する こ と となり、 熱交換能力が向上する。 According to this configuration, the spacer 66 is not required, and no waste material is generated at a location corresponding to the spacer 66 in the material of the fin 72 at the time of manufacturing. The amount of waste material can be reduced, and the bending pitch of the hairpin and return bend that connects the heat transfer tubes 74 There is an advantage that only three types, A, B and C, are required. Further, since the spacer 66 is not provided, the area of the fins 72 is increased by a portion corresponding to the spacer 66, and the heat exchange capacity is improved.
しかしながら、 上記特許明細書に記載されたフィ ン付き熱交換器 では、 前面側熱交換器 7 1 Aが円弧状であり、 フィ ン 7 2 の上部の 傾斜が緩く なるため、 フィ ン付き熱交換器を蒸発器として用いた場 合に、 フィ ン 7 2 の上部に凝縮する水が滞留したり、 最悪の場合に は、 凝縮水がフィ ン 7 2 に沿って流れずに、 貫流送風機 7 3 に水滴 が落下して、 吹出し口 7 5から水滴が飛散するおそれがある。  However, in the heat exchanger with fins described in the above patent specification, the front heat exchanger 71A has an arc shape, and the upper part of the fins 72 has a gentler slope, so that the heat exchanger with fins is loose. When the condenser is used as an evaporator, the condensed water stays at the top of the fins 72, or in the worst case, the condensed water does not flow along the fins 72 and the once-through blower 73 Water droplets may fall onto the air outlet and scatter from the outlet 75.
本発明はこのような従来の課題を解決するものであり、 フィ ン付 き熱交換器の形態およびその製造方法を改善し、 空気調和機の室内 ユニッ トの限られた空間、 特に奥行きが狭い空間にできるだけ大き なフィ ン付き熱交換器を収納し、 熱交換能力の大幅な向上をはかる とともに、 蒸発器として使用 したときフィ ン表面に凝縮する水をフ ィ ンに沿って円滑に流下させる ことができるフィ ン付き熱交換器を 提供する ことを目的とするものである。  The present invention solves such a conventional problem, and improves the form of the heat exchanger with fins and the method for manufacturing the same, and reduces the space in the indoor unit of the air conditioner, particularly the depth is narrow. A heat exchanger with fins as large as possible is housed in the space to significantly improve the heat exchange capacity and to allow water condensed on the fin surface to flow smoothly down the fins when used as an evaporator. It is an object of the present invention to provide a heat exchanger with a fin that can perform the heat treatment.
また、 フィ ン付き熱交換器を安価に製造する ことができるフィ ン 付き熱交換器の製造方法を得る ことを目的とするものである。 発明の開示  It is another object of the present invention to provide a method for manufacturing a heat exchanger with fins, which can manufacture a heat exchanger with fins at low cost. Disclosure of the invention
上記課題を解決するために、 本発明のフィ ン付き熱交換器は、 前 面側に吸込み口がおよび下面側に吹出し口がそれぞれ設けられた筐 体とこの筐体に収納される貫流送風機とから風回路が構成された空 気調和機の室内ユニッ トに搭載されるものであって、  In order to solve the above-described problems, a heat exchanger with fins of the present invention includes a housing provided with a suction port on the front surface side and a blowout port on the lower surface side, and a once-through blower housed in the housing. Installed in an indoor unit of an air conditioner with a wind circuit
前記吸込み口から貫流送風機までの風回路の途中または貫流送風 機から吹出し口までの風回路の途中に配置される前面側熱交換器と 背面側熱交換器とから構成され、 In the middle of the wind circuit from the suction port to the once-through blower or once-through blower It consists of a front-side heat exchanger and a rear-side heat exchanger that are placed in the wind circuit from the machine to the outlet.
前記前面側熱交換器および前記背面側熱交換器はそれぞれ所定の 間隔で平行に並べられてその間を気体が流動する多数のフィ ンと、 このフィ ンに略直角に挿入されて内部を冷媒が流動する多数の伝熱 管とから構成され、  The front-side heat exchanger and the rear-side heat exchanger are arranged in parallel at predetermined intervals, and a number of fins through which gas flows, and a refrigerant inserted into the fins at a substantially right angle to allow the refrigerant to flow inside. Composed of a number of flowing heat transfer tubes,
前記前面側熱交換器におけるフィ ンは、 その風上前縁および風下 後縁がそれぞれが同じ鈍角をなす 2本の直線部並びにこれら 2本の 直線の間を結ぶ 1 本の曲線部により、 折曲状に形成される とともに 折曲状に形成された前記フィ ンの直線状の風上前縁と直線状の風 下後縁とで挟まれた二つの領域のうち、 貫流送風機に近い側の領域 における風上前縁と風下後縁との距離が、 貫流送風機から遠い側の 領域における風上前縁と風下後縁との距離より も短く されている。  The fin in the front-side heat exchanger is folded by the two straight line portions, the upwind leading edge and the leeward trailing edge each forming the same obtuse angle, and one curved portion connecting these two straight lines. Of the two regions sandwiched between the straight leeward leading edge and the straight leeward trailing edge of the bent fin, The distance between the leeward leading edge and the leeward trailing edge in the region is shorter than the distance between the leeward leading edge and the leeward trailing edge in the region farther from the once-through blower.
この構成によれば、 前面側熱交換器におけるフィ ンの風上前縁お よび風下後縁はそれぞれが、 同じ鈍角をなす 2本の直線部およびこ れら 2本の直線の間を結ぶ 1 本の曲線部からなる折曲状に形成され 、 しかも折曲状の前面側熱交換器におけるフィ ンの直線状の風上前 縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 に近い側の領域における風上前縁と風下後縁との距離が、 貫流送風 機から遠い側の領域における風上前縁と風下後縁との距離よ り も短 く されている ことにより、 限られた空間、 特に奥行きが狭い空間に よ り大きなフィ ン付き熱交換器を収納して、 よ り大きな熱交換能力 が発揮される。 また、 前面側熱交換器は、 後で折り曲げ加工する必 要がなく、 折り曲げたとき必要になるスぺーサも当然要らなく なる 。 また、 このフィ ン付き熱交換器を蒸発器と して使用した場合、 前 面側熱交換器および背面側熱交換器のそれぞれにおけるフィ ンに凝 縮する水滴は連続した両フィ ンを伝い、 滑らかに流下する。 さ らに 、 前面側熱交換器におけるフィ ンの上側は、 風上前縁の直線と風下 後縁の直線とに囲まれた鉛直に近い一定の角度で傾斜しているので 、蒸発時にフィ ンの表面に凝縮する水滴が滞留することがない。 According to this configuration, the leeward leading edge and the leeward trailing edge of the fin in the front-side heat exchanger respectively connect two straight portions forming the same obtuse angle and connect between these two straight lines. The two regions formed between the straight frontward edge of the fin and the straight rearward edge of the fin in the bent front-side heat exchanger The distance between the leeward leading edge and the leeward trailing edge in the area closer to the once-through blower is shorter than the distance between the leeward leading edge and the leeward trailing edge in the area farther from the once-through blower. This allows a larger heat exchanger with fins to be accommodated in a limited space, especially in a space with a small depth, and exhibits a greater heat exchange capacity. In addition, the front side heat exchanger does not need to be bent later, and the spacer required when bent is naturally unnecessary. . When this heat exchanger with fins is used as an evaporator, water droplets condensing on the fins in each of the front-side heat exchanger and the rear-side heat exchanger travel along both continuous fins. Runs down smoothly. In addition, the upper side of the fin in the front heat exchanger is inclined at a constant angle close to the vertical line between the straight line on the windward leading edge and the straight line on the leeward trailing edge. No water droplets condensing on the surface of the glass stay.
また、 上述の熱交換器において、 貫流送風機に近い側の領域にお ける風上前縁と風下後縁との距離が 2 0 〜 2 3 m mにされるととも に、 貫流送風機から遠い側の領域における風上前縁と風下後縁との 距離が 2 4〜 2 7 m mにされている。  In the heat exchanger described above, the distance between the leading edge and the trailing edge on the side close to the once-through blower is set to 20 to 23 mm, and the distance farther from the once-through blower is increased. The distance between the windward leading edge and the leeward trailing edge in the area is set to 24 to 27 mm.
この構成によれば、 折曲状の前面側熱交換器におけるフィ ンの直 線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域のうち 、 貫流送風機から遠い側の領域における風上前縁と風下後縁との距 離が 2 4〜 2 7 m mと薄型であると同時に、 貫流送風機に近い側の 領域における風上前縁と風下後縁との距離がそれよ り さ らに薄く 2 0 〜 2 3 m mにされているので、 熱交換器を含む風回路に必要な奥 行き幅をかなり小さ くする ことができ、 したがって室内ュニッ トを 薄型化する ことができる。  According to this configuration, of the two areas sandwiched between the straight upwind front edge and the straight downwind edge of the fin in the bent front-side heat exchanger, the area farthest from the once-through blower The distance between the leeward leading edge and the leeward trailing edge is as thin as 24 to 27 mm in the area, and the distance between the leeward leading edge and the leeward trailing edge in the area near the once-through blower is Since it is made even thinner to 20 to 23 mm, the depth required for the wind circuit including the heat exchanger can be made considerably smaller, and therefore, the indoor unit can be made thinner. it can.
また、 上述の熱交換器におけるフィ ンの風上前縁側および風下後 縁側の両曲線部を同じ形状にされている。  In the above-mentioned heat exchanger, both the leeward leading edge side and the leeward trailing edge side of the fin have the same shape.
この構成によれば、 前面側熱交換器のフィ ンの風上前縁および風 下後縁のそれぞれの曲線部を同じ形状にしたことによ り、 フィ ンを 連続プレス加工する際に、 フィ ンの廃材をあま り 出すこ とがないた め、 効率的に生産する ことができる。  According to this configuration, since the curved portions of the windward leading edge and the leeward trailing edge of the fin of the front-side heat exchanger have the same shape, when the fin is continuously pressed, the fin is continuously pressed. Since there is no waste of waste materials, efficient production can be achieved.
また、 上述の熱交換器における前面側熱交換器のフィ ンの曲線部 が円弧状にされている。 In addition, the curved part of the fin of the front-side heat exchanger in the above-mentioned heat exchanger Are arc-shaped.
この構成によれば、 前面側熱交換器におけるフィ ンの風上前縁お よび風下後縁のそれぞれの曲線部を円弧状としたことによ り、 フィ ンのプレス金型の加工およびメンテナンスが容易になる。  According to this configuration, the curved portions of the windward leading edge and the leeward trailing edge of the fin in the front-side heat exchanger are formed in an arc shape, thereby facilitating processing and maintenance of the fin press die. It will be easier.
また、 上述の熱交換器において、 背面側熱交換器におけるフィ ン の風上前縁および風下後縁が互いに平行な直線で構成されるととも に、 当該フィ ンの風上前縁と風下後縁との距離が、 前面側熱交換器 におけるフィ ンの直線状の風上前縁と直線状の風下後縁とで挟まれ た二つの領域のうち、 貫流送風機から遠い側の領域における風上前 縁と風下後縁との距離に等しく されている。  In the above-described heat exchanger, the leeward leading edge and the leeward trailing edge of the fin in the rear side heat exchanger are formed of straight lines parallel to each other, and the leeward leading edge and the leeward trailing edge of the fin. The distance to the edge is the windward in the area farther from the once-through blower, of the two areas between the straight windward leading edge and the linear leeward trailing edge of the fin in the front heat exchanger. It is equal to the distance between the leading edge and the leeward trailing edge.
この構成によれば、 背面側熱交換器の風上前縁および風下後縁を 平行な直線で構成する ことにより、 限られた空間に、 よ り大きいフ ィ ン付き熱交換器を収納して、 よ り大きい熱交換能力を発揮する こ とができる。 また、 フィ ンについては、 前面側熱交換器におけるフ イ ンの上端部と背面側熱交換器におけるフィ ンの上端部とが繋がつ た状態の 1 枚のフィ ンとする ことができ、 この場合には、 高い生産 性でもって連続プレス加工することができる。  According to this configuration, the upwind leading edge and the downwind trailing edge of the rear-side heat exchanger are constituted by parallel straight lines, so that a larger heat exchanger with fins can be accommodated in a limited space. A larger heat exchange capacity can be exhibited. In addition, the fin can be a single fin in which the upper end of the fin in the front heat exchanger is connected to the upper end of the fin in the rear heat exchanger. In such a case, continuous press working can be performed with high productivity.
また、 上述の熱交換器において、 前面側熱交換器におけるフィ ン の直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域の うち、 貫流送風機から遠い側の領域のフィ ン部に挿入される伝熱管 および背面側熱交換器におけるフィ ンの風上前縁の直線部と風下後 縁の直線部とで挟まれた部分に挿入される伝熱管の外径が 4〜 6 . 4 m mにされる とともに、 気体の主流方向に沿う列方向に伝熱管が 3列で配置され、 前記気体の主流方向に直角方向である段方向の伝 熱管の配置ピッチが 1 4 . 5 ~ 1 6 m mにされている。 この構成によれば、 前面側熱交換器におけるフィ ンの直線状の風 上前縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送 風機から遠い側の領域および背面側熱交換器の風上側前縁の直線部 と風下側後縁の直線部とで挟まれた領域について、 外径 4〜 6 . 4 m mの伝熱管が 3列で配置されるとともに段方向ピッチが 1 4 . 5 〜 1 6 m mにされる こ とにより、 通風抵抗をあま り上げるこ となく 、 高い空気側熱伝達率を得ることができ、 したがって同一騒音時の 風量を向上させて高い熱交換能力を発揮する こ とができる。 In the above-mentioned heat exchanger, of the two regions sandwiched between the straight leeward leading edge and the linear leeward trailing edge of the fin in the front-side heat exchanger, the region farther from the once-through blower The outer diameter of the heat transfer tube inserted in the fin portion of the heat transfer tube and the heat transfer tube inserted in the portion of the rear heat exchanger sandwiched between the straight portion on the windward front edge and the straight portion on the leeward rear edge is 4 to 6.4 mm, and three rows of heat transfer tubes are arranged in the row direction along the main flow direction of the gas, and the arrangement pitch of the heat transfer tubes in the step direction perpendicular to the main flow direction of the gas is 14 5 to 16 mm. According to this configuration, of the two regions sandwiched between the straight leeward leading edge and the linear leeward trailing edge of the fin in the front-side heat exchanger, the region farthest from the once-through blower and the back surface In the area between the straight part of the windward leading edge and the straight part of the leeward trailing edge of the side heat exchanger, heat transfer tubes with an outer diameter of 4 to 6.4 mm are arranged in three rows and stepwise pitch Is set to 14.5 to 16 mm, it is possible to obtain a high air-side heat transfer coefficient without increasing the ventilation resistance, and thus to improve the air volume at the same The ability to exchange can be demonstrated.
また、 上述の熱交換器において、 前面側熱交換器におけるフィ ン の直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域の うち、 貫流送風機から遠い側の領域のフィ ン部に挿入される伝熱管 および背面側熱交換器におけるフィ ンの風上前縁の直線部と風下後 縁の直線部とで挟まれた部分に挿入される伝熱管が 2種類の外径の 伝熱管で構成され、  In the above-mentioned heat exchanger, of the two regions sandwiched between the straight leeward leading edge and the linear leeward trailing edge of the fin in the front-side heat exchanger, the region farther from the once-through blower There are two types of heat transfer tubes inserted into the fin portion of the fin and the heat transfer tube inserted in the portion of the rear heat exchanger sandwiched between the straight portion on the windward leading edge and the straight portion on the leeward trailing edge. Composed of heat transfer tubes of outer diameter,
且つ大きい方の外径の伝熱管が、 気体の流れの最も風上の列に配 置されるとともに、 当該フィ ン付き熱交換器を凝縮器またはガスク 一ラーとして使用 した場合の冷媒出口寄り の伝熱管として、 または 蒸発器として使用 した場合の冷媒入口寄り の伝熱管として、 1 パス により形成され、  Heat transfer tubes with the larger outer diameter are placed in the most upstream row of the gas flow, and near the refrigerant outlet when the finned heat exchanger is used as a condenser or gas cooler. Formed in one pass as a heat transfer tube or as a heat transfer tube near the refrigerant inlet when used as an evaporator,
小さい方の外径の伝熱管については、 当該フィ ン付き熱交換器を 凝縮器またはガスク一ラーとして使用した場合には、 大きい方の外 径の前記伝熱管よ り冷媒上流側の伝熱管として、 または蒸発器とし て使用した場合には、 大きい方の外径の伝熱管よ り冷媒下流側の伝 熱管として、 4パスによ り形成されて、 それぞれ冷媒が流される。  When the heat exchanger with a fin is used as a condenser or a gas cooler, the heat transfer tube with the smaller outer diameter is used as the heat transfer tube on the upstream side of the refrigerant from the heat transfer tube with the larger outer diameter. When used as an evaporator or as an evaporator, the refrigerant is formed by four passes as a heat transfer tube on the downstream side of the refrigerant from the heat transfer tube with the larger outer diameter, and the refrigerant flows therethrough.
この構成によれば、 当該フィ ン付き熱交換器を凝縮器若しく はガ スクーラ一として使用 した場合の冷媒出口寄りの伝熱管または蒸発 器として使用 した場合の冷媒入口寄り の外径が 4〜 6 . 4 m ΐΉの伝 熱管を、 3列構成の気体の流れの最も風上の列に配置して 1 パスで 形成する ことによ り、 管内の熱伝達率を向上させ得るとともに空気 と冷媒の温度差に関し対向流的な配置となるので、 熱交換能力を増 大させる こ とができる。 また、 この領域の冷媒は密度が大きいので 冷媒流通抵抗をあま り増大させることがなく、 したがって熱交換能 力の増大を妨げる ことはない。 さ らに、 外径が 4〜 6 . 4 m mの範 囲で、 当該フィ ン付き熱交換器を凝縮器若しく はガスクーラ一とし て使用 した場合の冷媒出口寄りの伝熱管または蒸発器として使用し た場合の冷媒入口寄り の伝熱管より、 小さい方の外径の伝熱管を、 当該フィ ン付き熱交換器を凝縮器若しく はガスクーラーとして使用 した場合に冷媒出口寄りの 1パスで形成した伝熱管よ り冷媒上流側 の伝熱管として、 または当該フィ ン付き熱交換器を蒸発器として使 用 した場合に冷媒入口寄りの 1パスで形成した伝熱管よ り冷媒下流 側の伝熱管として 4パスで形成する ことによ り、 高い管内熱伝達率 と低い冷媒流通抵抗を両立させて、 熱交換能力を増大させる ことが できる。 According to this configuration, the heat exchanger with the fin is connected to the condenser or the gas generator. A heat transfer tube near the refrigerant outlet when used as a scooter or a heat transfer tube with an outer diameter of 4 to 6.4 m2 near the refrigerant inlet when used as an evaporator, and the most wind of gas flow in three rows By arranging it in the upper row and forming it in one pass, it is possible to improve the heat transfer coefficient in the pipe and to arrange the airflow and the temperature difference between the air and the refrigerant in countercurrent flow, so that the heat exchange capacity is increased. be able to. In addition, since the refrigerant in this region has a high density, the flow resistance of the refrigerant does not increase so much that the increase of the heat exchange capacity is not prevented. In addition, when the heat exchanger with the fin is used as a condenser or gas cooler with an outer diameter of 4 to 6.4 mm, it is used as a heat transfer tube or evaporator near the refrigerant outlet. When the heat exchanger with fins is used as a condenser or gas cooler, a heat transfer tube with a smaller outer diameter than the heat transfer tube near the refrigerant inlet is formed in one pass near the refrigerant outlet. As a heat transfer tube on the upstream side of the heat transfer tube, or as a heat transfer tube on the downstream side of the heat transfer tube formed in one pass near the refrigerant inlet when the heat exchanger with fins is used as an evaporator. By forming it in four passes, it is possible to achieve both a high heat transfer coefficient in the pipe and a low refrigerant flow resistance, and to increase the heat exchange capacity.
また、 上述の熱交換器において、 前面側熱交換器におけるフィ ン の直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域の うち貫流送風機に近い側の領域のフィ ン部に挿入される伝熱管、 お よび当該フィ ンの曲線状の風上前縁と曲線状の風下後縁とで挟まれ た領域の部分に挿入される伝熱管の外径がそれぞれ 6 . 5 〜 8 . 5 m mの範囲とされ、 気体の主流方向に沿う方向となる列方向に前記 伝熱管が 2列配置され、 前記気体の主流方向に直角方向となる段方 向の前記伝熱管の配置ピッチが 1 6 ~ 2 2 m mの範囲にされている この構成によれば、 前面側熱交換器におけるフィ ンの直線状の風 上前縁と直線状の風下後縁とで挟まれた二つの領域のう ち、 貫流送 風機に近い側の領域および前面側熱交換器の曲線状の風上前緣と曲 線状の風下後縁とで挟まれた領域については、 外径が 6 . 5 〜 8 . 5 m mの伝熱管を 2列配置するとともに段方向ピッチを 1 6 〜 2 2 m mにしたことによ り、 2列構成での通風抵抗としては若干高いが 、 高い空気側熱伝達率を得る ことができ、 また熱交換器全体として の通風抵抗の差異を少なく して風速分布を改善することができるの で、 同一騒音時の風量を向上させて優れた能力を発揮する ことがで きる。 In the above-described heat exchanger, of the two regions between the straight upwind front edge and the straight downwind edge of the fin in the front heat exchanger, The outer diameter of the heat transfer tube inserted into the fin portion and the outer diameter of the heat transfer tube inserted into the region between the curved upwind leading edge and the curved downwind trailing edge of the fin are respectively 6 The heat transfer tubes are arranged in two rows in a row direction which is in a direction along the main flow direction of the gas and has a range of 5 to 8.5 mm, and a step direction which is perpendicular to the main flow direction of the gas. According to this configuration, the arrangement pitch of the heat transfer tubes in the front direction is in the range of 16 to 22 mm, and the linear leeward leading edge and the linear leeward trailing edge of the fin in the front-side heat exchanger. Of the two areas sandwiched between the area near the once-through blower and the area sandwiched between the curved leeward edge of the front heat exchanger and the curved leeward edge, Although the heat transfer tubes with outer diameter of 6.5 to 8.5 mm are arranged in two rows and the stepwise pitch is set to 16 to 22 mm, the ventilation resistance in the two-row configuration is slightly higher. High heat transfer coefficient on the air side can be obtained, and the difference in ventilation resistance of the heat exchanger as a whole can be reduced to improve the wind speed distribution. You can demonstrate your ability.
また、 前記熱交換器において、 前面側熱交換器におけるフィ ンの 曲線状の風上前縁と曲線状の風下側後縁とで挟まれた領域の部分に 挿入される伝熱管の段方向の配置ピッチについては、 気体の流れの 風上側の列のほうが風下側の列に比べて同等以下となるよう されて いる。  Further, in the heat exchanger, a stepwise direction of a heat transfer tube inserted into a portion of an area between a curved upwind front edge and a curved downwind rear edge of the fin in the front heat exchanger is provided. The arrangement pitch is such that the row on the windward side of the gas flow is less than or equal to the row on the leeward side.
この構成によれば、 前面側熱交換器におけるフィ ンの曲線状の風 上前縁と曲線状の風下側後縁とで挟まれた領域の部分に挿入される 伝熱管の段方向の本数を可能な限り多く して、 この領域の通風抵抗 を高くするよう にしたので、 当該フィ ン付き熱交換器の風速分布を より均一化する ことができ、 したがってよ り大きい熱交換能力を発 揮することができる。  According to this configuration, the number of heat transfer tubes inserted in the stepped direction in the region between the curved frontward edge of the fin and the rearward curved edge of the fin in the front-side heat exchanger is reduced. By increasing the ventilation resistance in this area as much as possible, it is possible to make the wind speed distribution of the heat exchanger with fins more uniform and thus to exert a greater heat exchange capacity be able to.
また、 前記熱交換器において、 前面側熱交換器におけるフィ ンの 直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域のう ち貫流送風機に近い側の領域のフィ ン部および当該フィ ンの曲線状 の風上前縁と曲線状の風下後縁とで挟まれた領域の部分にそれぞれ 挿入される伝熱管が 2種類の外径のもので構成され、 In the heat exchanger, two regions sandwiched between a straight upwind front edge and a straight downwind edge of the fin in the front-side heat exchanger. There are two types of heat transfer tubes inserted into the fin part in the area near the once-through blower and the part between the curved upwind leading edge and the curved leeward trailing edge of the fin. It is composed of an outer diameter,
且つ大きい方の外径の前記伝熱管が、 気体の流れの最も風下の列 に配置されるとともに、 当該フィ ン付き熱交換器を凝縮器若しく は ガスクーラーとして使用 した場合の冷媒入口寄り の伝熱管、 または 蒸発器として使用した場合の冷媒出口寄りの伝熱管として用いられ 小さい方の外径の前記伝熱管については、 当該フィ ン付き熱交換 器を凝縮器若しく はガスクーラーとして使用 した場合には、 大きい 方の外径の前記伝熱管よ り冷媒下流側の伝熱管として、 または蒸発 器として使用した場合には、 大きい方の外径の前記伝熱管よ り冷媒 上流側の伝熱管として、 それぞれ 2パスにて形成されて冷媒が流さ れる。  The heat transfer tubes having the larger outer diameter are arranged in the most leeward row of the gas flow, and near the refrigerant inlet when the heat exchanger with fins is used as a condenser or a gas cooler. The heat exchanger with the fin was used as a condenser or gas cooler for the heat exchanger tube used as a heat exchanger tube or as a heat exchanger tube near the refrigerant outlet when used as an evaporator. In this case, when used as a heat transfer tube downstream of the heat transfer tube having a larger outer diameter, or when used as an evaporator, a heat transfer tube upstream of the heat transfer tube having a larger outer diameter. As a result, the refrigerant is formed in two passes and the refrigerant flows therethrough.
この構成によれば、 フィ ン付き熱交換器を凝縮器若しく はガスク 一ラーとして使用した場合の冷媒入口寄り の伝熱管または蒸発器と して使用 した場合の冷媒出口寄り の伝熱管の外径を 6 . 5〜 8 . 5 m mの範囲で且つ他のいずれの伝熱管よ り も太くするとともに 2列 構成の気体の流れの風下側の列に配置して 2パスで形成したので、 空気と冷媒との温度差に関し対向流的な配置による性能向上が得ら れるとともに、管内の熱伝達率は若干低下するが、冷媒流通抵抗を大 幅に低下させる ことができ、 したがつて熱交換能力を大幅に増大さ せる ことができる。 さ らに、 外径が 6 . 5〜 8 . 5 m mの範囲で、 フィ ン付き熱交換器を凝縮器若しく はガスクーラーとして使用した 場合の冷媒入口寄りの伝熱管または蒸発器として使用 した場合の冷 媒出口寄り の伝熱管よ り、 小さい方の外径の伝熱管を、 当該フィ ン 付き熱交換器を凝縮器若しく はガスクーラーとして使用 した場合にAccording to this configuration, the heat exchanger near the refrigerant inlet when the heat exchanger with fins is used as a condenser or a gas cooler or the heat exchanger near the refrigerant outlet when used as an evaporator is used. Since the diameter is in the range of 6.5 to 8.5 mm, it is wider than any other heat transfer tubes, and it is arranged in the leeward row of the gas flow in a two-row configuration, it is formed in two passes. With respect to the temperature difference between the refrigerant and the refrigerant, the performance is improved by the counterflow arrangement, and the heat transfer coefficient in the pipe is slightly reduced, but the refrigerant flow resistance can be significantly reduced, and thus the heat exchange Capability can be greatly increased. In addition, when the heat exchanger with fin was used as a condenser or gas cooler with an outer diameter in the range of 6.5 to 8.5 mm, it was used as a heat transfer tube or evaporator near the refrigerant inlet. When cold When the heat exchanger with the fin is used as a condenser or gas cooler, the heat exchanger with the smaller outer diameter than the heat exchanger near the medium outlet is used.
、 冷媒出口寄りの最も大きい外径の 2 パスで形成した伝熱管よ り冷 媒下流側の伝熱管として、 または当該フィ ン付き熱交換器.を蒸発器 として使用 した場合に、 冷媒出口寄り の最も大きい外径の 2パスで 形成した伝熱管よ り冷媒上流側の伝熱管として、 2パスで形成する ことによ り、 管内熱伝達率を向上させて熱交換能力を増大させる こ とができる。 When the heat exchanger with the fins is used as a heat exchanger tube downstream of the heat exchanger tube formed by the two paths with the largest outer diameter near the refrigerant outlet, or when the heat exchanger with the fin is used as an evaporator, By forming the heat transfer tube on the upstream side of the refrigerant from the heat transfer tube formed with two paths with the largest outer diameter in two passes, it is possible to improve the heat transfer coefficient in the tube and increase the heat exchange capacity .
また、 上述の熱交換器において、 伝熱管とフィ ンの風上前縁また は風下後縁との最短距離が、 1 . 8 m m以上にされている。  In the above-mentioned heat exchanger, the shortest distance between the heat transfer tube and the leading or trailing edge of the fin is set to 1.8 mm or more.
この構成によれば、 伝熱管とフィ ンの風上前縁または風下後縁と の距離を、 最短でも 1 . 8 m mとしたので、 当該フィ ン付き熱交換 器を蒸発器として用いた場合、 フィ ンの表面に付着し流下する凝縮 水が伝熱管に当って、 フィ ンの風上前縁または風下後縁から飛び出 してしまう という現象を抑制する ことができる。  According to this configuration, the distance between the heat transfer tube and the leading edge or the trailing edge of the fin is set to at least 1.8 mm, so that when the heat exchanger with the fin is used as an evaporator, It is possible to suppress the phenomenon that condensed water adhering to the fin surface and flowing down hits the heat transfer tube and jumps out from the windward leading edge or the leeward trailing edge of the fin.
また、 上述の熱交換器において、 段方向において再熱器と蒸発器 とに分けて使用し除湿運転を行う場合、 前面側熱交換器におけるフ イ ンの直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領 域のうち貫流送風機から遠い側の領域および背面側熱交換器が、 再 熱器として用いられ、  In the above-mentioned heat exchanger, when the dehumidifying operation is performed by using the reheater and the evaporator separately in the stage direction, the straight upwind front edge of the fin in the front heat exchanger and the straight Of the two areas sandwiched between the leeward trailing edge and the area away from the once-through blower, the rear heat exchanger is used as a reheater,
前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状の風 下後縁とで挟まれた二つの領域のうち貫流送風機に近い側の領域お よび当該フィ ンの曲線状の風上前縁と曲線状の風下側後縁とで挟ま れた領域が、 蒸発器として用いられる。  Of the two areas between the straight leeward leading edge and the straight leeward trailing edge of the fin in the front-side heat exchanger, the area closer to the once-through blower and the curved fin of the fin The area between the windward leading edge and the curved leeward trailing edge is used as an evaporator.
この構成によれば、 再熱器と蒸発器の熱負荷を適切にバランスさ せて良好な除湿運転ができる。 また、 再熱器は蒸発器の鉛直方向上 側に配置しているので、 蒸発器の領域のフィ ンに結露する凝縮水が 、 再熱器のフィ ンの表面に当って再蒸発して、 部屋を加湿してしま うのを防止することができる。 According to this configuration, the heat loads of the reheater and the evaporator are properly balanced. Good dehumidification operation. In addition, since the reheater is disposed vertically above the evaporator, condensed water condensing on the fins in the area of the evaporator collides with the fin surface of the reheater and re-evaporates. Humidification of the room can be prevented.
また、 上述の熱交換器において、 段方向に隣接する伝熱管の間の フィ ン表面に気体の主流方向に開口する複数の切り起こしが設けら れ、  Further, in the above-described heat exchanger, a plurality of cut-and-raised portions that are opened in the main flow direction of the gas are provided on the fin surface between the heat transfer tubes that are adjacent in the stage direction,
これら各切り起こしの伝熱管寄りの立ち上がり部が伝熱管の円周 に概略沿う方向で形成されるとともに、 前記各切り起こしの列方向 の幅に対する前記列方向に隣接する切り起こし間の幅の比が約 2 〜 約 2 . 5 にされている。  The rising portions of the cut-and-raised portions near the heat transfer tubes are formed in a direction substantially along the circumference of the heat transfer tubes, and the ratio of the width between the cut-and-raised portions in the column direction to the width of the cut-and-raised portions in the column direction. Is from about 2 to about 2.5.
この構成によれば、 段方向に隣接する伝熱管の間のフィ ン表面に 気体の主流方向に開口して複数設けた切り起こしの温度境界層前縁 効果によ り、 高い空気側熱伝達率が得られるとともに、 これら切り 起こしの伝熱管寄りの立ち上がり部を伝熱管の円周に概略沿う方向 で形成したので、 気流を伝熱管の後流部に誘導することができ、 し たがって有効伝熱面積が増加するので、 熱交換性能を向上させるこ とができる。 切り起こしの列方向の幅に対する列方向に隣接する切 り起こし同士間 (フィ ン基板) の幅の比を約 2〜約 2 . 5 にしたこ とによ り、 従来の比が約 3 の場合よ り熱交換能力を向上させる こと ができる。  According to this configuration, a plurality of cut-and-raised temperature boundary layer leading edges that are opened in the main flow direction of the gas on the fin surface between the heat transfer tubes adjacent in the stepwise direction have a high air-side heat transfer coefficient. In addition, the rising portion of the cut-and-raised portion near the heat transfer tube is formed in a direction roughly along the circumference of the heat transfer tube, so that the air flow can be guided to the downstream portion of the heat transfer tube, and therefore the effective transfer can be achieved. Since the heat area increases, heat exchange performance can be improved. By setting the ratio of the width between the cut-and-raised portions (fin substrate) in the column direction to the width in the column direction of the cut-and-raised portions to be about 2 to about 2.5, the conventional ratio is about 3 The heat exchange capacity can be improved as compared with the case.
また、 前記熱交換器において、 切り起こしの高さが、 隣接するフ ィ ン同士のピッチの約 1 / 4〜約 3 / 4 にされている。  In the heat exchanger, the height of the cut-and-raised portion is set to about 1/4 to about 3/4 of the pitch between adjacent fins.
この構成によれば、 切り起こしの高さを隣接するフィ ン同士のピ ツチの約 1 / 4〜約 3 Z 4 にしたことによ り、 同一騒音時の風暈を 増加させることができ、 より大きな熱交換能力を発揮することがで さる。 According to this configuration, the cut-and-raised height is set to about 1/4 to about 3Z4 of the pitch between the adjacent fins, so that the wind halo at the same noise is reduced. It can be increased to achieve greater heat exchange capacity.
前記熱交換器において、 切り起こしの高さが、 当該フィ ン付き熱 交換器が貫流送風機に接近する風速が大きい領域については、 隣接 するフィ ン同士のピッチの約 1 Z 2 にされるとともに、 他方の領域 については、 隣接するフィ ン同士のピッチの約 3 Z 4 にされている この構成によれば、 切り起こしの高さを、 当該フィ ン付き熱交換 器が貫流送風機に接近する風速が大きい領域については、 隣接する フィ ン同士のピッチの約 1 / 2 として通風抵抗を比較的大きくする とともに、 他の領域については隣接するフィ ン同士のピッチの約 3 / 4 と して通風抵抗をそれよ り小さ く したことによ り、 当該フィ ン 付き熱交換器の風速分布をよ り均一化する ことができ、 したがって よ り.大きな熱交換能力を発揮することができる。  In the heat exchanger, the cut-and-raised height is set to about 1 Z2 of the pitch between adjacent fins in a region where the wind speed at which the finned heat exchanger approaches the once-through blower is high. In the other area, the pitch between adjacent fins is set to about 3Z4. According to this configuration, the height of the cut-and-raised portion is reduced by the wind speed at which the heat exchanger with the fin approaches the once-through blower. In a large area, the ventilation resistance is relatively large as about 1/2 of the pitch between adjacent fins, and in other areas, the ventilation resistance is about 3/4 of the pitch between adjacent fins. By making it smaller, the wind speed distribution of the heat exchanger with fins can be made more uniform, and therefore, a greater heat exchange capacity can be exhibited.
前記熱交換器において、 切り起こしと、 フィ ンの風上前縁または 風下後縁との最短距離が、 1 . 8 m m以上にされている。  In the heat exchanger, the shortest distance between the cut-and-raised portion and the windward leading edge or the leeward trailing edge of the fin is set to 1.8 mm or more.
この構成によれば、 切り起こ しとフィ ンの風上前縁または風下後 縁との距離を、 最短でも 1 . 8 m mとしたので、 当該フィ ン付き熱 交換器を蒸発器として用いた場合、 フィ ンの表面に付着した凝縮水 が切り起こしに沿って流下しながら、 フィ ンの風上前縁または風下 後縁から飛び出してしまう という現象を抑制することができる。  According to this configuration, the distance between the cut-and-raised edge and the leeward leading edge or the leeward trailing edge of the fin is at least 1.8 mm, so that the heat exchanger with the fin is used as an evaporator. However, it is possible to suppress the phenomenon that the condensed water attached to the fin surface flows down along the cut and rise, and jumps out from the leeward leading edge or the leeward trailing edge of the fin.
上述の熱交換器において、 列方向に隣接する 2つの伝熱管の間で 内部を流れる冷媒同士に温度差がある場合、 前記 2つの伝熱管の列 間中央部のフィ ンに、 段方向に概略沿う方向で切り込みが設けられ ている。 この構成によれば、 列方向に隣接する 2つの伝熱管の間において 、 内部を流れる流体に温度差がある場合、 2つの伝熱管の列間中央 部のフィ ンに、 段方向に概略沿う方向で切り込みを設けたことによ り、 フィ ンを通した熱伝導による熱交換ロスを防ぐことができるの で、 熱交換能力を低下させることがない。 In the above-described heat exchanger, when there is a temperature difference between the refrigerant flowing inside the two heat transfer tubes adjacent to each other in the column direction, the fin at the center between the rows of the two heat transfer tubes is roughly arranged in a stepwise direction. A notch is provided along the direction. According to this configuration, when there is a temperature difference between the two heat transfer tubes adjacent to each other in the column direction and the temperature of the fluid flowing inside the heat transfer tubes, the fin at the center between the rows of the two heat transfer tubes has a direction substantially along the step direction. By providing the notches, heat exchange loss due to heat conduction through the fins can be prevented, so that the heat exchange capacity does not decrease.
また、 上述の熱交換器において、 段方向に再熱器と蒸発器とに分 けて使用 し除湿運転を行う場合、 再熱器の領域と蒸発器の領域との 間のフィ ン部に、 切断しない部分をごくわずかに残して切断する切 り込みが設けられる。  Further, in the above-described heat exchanger, when the dehumidifying operation is performed using the heat exchanger divided into a reheater and an evaporator in a stepwise direction, a fin portion between the reheater area and the evaporator area is provided. A notch is provided to cut leaving only a small part that is not cut.
この構成によれば、 当該フィ ン付き熱交換器を段方向に再熱器と 蒸発器に分けて使用 し除湿運転を行う場合、再熱器の領域と蒸発器 の領域との間の前記フィ ンに、 切断しない部分をごくわずか残して ほぼ完全に切断する切り込みを設けたことによ り 、 フィ ンの熱伝導 による大幅な熱交換能力の低下を防ぐことができる。 また、 フィ ン 付き熱交換器全体を蒸発器として使用する場合、 フィ ンの表面に凝 縮する水を切り込みに滞留させる こ となく、 フィ ンのごくわずかな 繋がっている部分を通って円滑に流下させる ことができる。  According to this configuration, when the heat exchanger with the fin is used in a stepwise manner by dividing the heat exchanger into a reheater and an evaporator to perform the dehumidification operation, the above-mentioned filter between the reheater area and the evaporator area is used. By providing a notch that cuts almost completely, leaving only a small part that is not cut, it is possible to prevent a significant decrease in heat exchange capacity due to heat conduction of the fin. In addition, when the entire heat exchanger with fins is used as an evaporator, water that condenses on the fin surface does not stay in the cuts, but smoothly passes through the very small connected portions of the fins. Can flow down.
また、 上述の熱交換器において、 伝熱管の内部を流動する冷媒と して、 H F C冷媒、 H C冷媒および二酸化炭素のいずれか一つが用 レ られてレ る。  In the above-described heat exchanger, any one of HFC refrigerant, HC refrigerant and carbon dioxide is used as the refrigerant flowing inside the heat transfer tube.
この構成によれば、 伝熱管の内部を流動する冷媒流体として、 ォ ゾン破壊係数の小さい H F C冷媒、 H C冷媒および二酸化炭素のい ずれか 1 つを用いる ことによ り、 地球環境の保護に貢献する ことが できる。 特に、 H C冷媒ゃ二酸化炭素は地球温暖化係数が小さい冷 媒であるため、 よ り地球環境の保護に貢献する ことができる。 また、 上述の熱交換器において、 前面側熱交換器のフィ ンの上端 部と背面側熱交換器のフィ ンの上端部とが繋がつた状態で製造され るもので、 This configuration contributes to the protection of the global environment by using one of HFC refrigerant, HC refrigerant and carbon dioxide with a low ozone destruction coefficient as the refrigerant fluid flowing inside the heat transfer tubes. can do. In particular, HC refrigerant and carbon dioxide are refrigerants with a low global warming potential, which can further contribute to the protection of the global environment. Further, in the above-described heat exchanger, the heat exchanger is manufactured in a state where the upper end of the fin of the front heat exchanger and the upper end of the fin of the rear heat exchanger are connected.
前記前面側熱交換器におけるフィ ンの上端部と前記背面側熱交換 器におけるフィ ンの上端部とが繋がった状態のフィ ンに形成された 伝熱管を挿入するためのフィ ンカラーの、 気体の主流方向に対して 直角方向となる段方向に対するピッチについては、  A gasket of a fin collar for inserting a heat transfer tube formed in a fin in a state where the upper end of the fin in the front-side heat exchanger and the upper end of the fin in the back-side heat exchanger are connected. For the pitch in the step direction that is perpendicular to the main flow direction,
前記前面側熱交換器と前記背面側熱交換器との境界部で隣接する 箇所のフィ ンカラーの配置ピッチが、 他の段方向での配置ピッチよ り も短くなるよう にされている。  The arrangement pitch of the fin collars at an adjacent location at the boundary between the front-side heat exchanger and the rear-side heat exchanger is set to be shorter than the arrangement pitch in other step directions.
この構成によれば、 前面側熱交換器と背面側熱交換器との境界部 で隣接する箇所のフィ ンカラーの段方向のピッチを、 他の近傍の段 方向のピッチと同等とした場合に比較して、 フィ ン材の廃材を少な くする ことができる。  According to this configuration, the pitch in the step direction of the fin collar at the location adjacent to the boundary between the front heat exchanger and the rear heat exchanger is equal to the pitch in the other adjacent steps. As a result, it is possible to reduce the amount of fin wood waste.
本発明の熱交換器の製造方法は、 前面側熱交換器および背面側熱 交換器を具備した上述の熱交換器の製造方法であって、  The method for manufacturing a heat exchanger according to the present invention is a method for manufacturing a heat exchanger as described above including a front-side heat exchanger and a back-side heat exchanger,
前記前面側熱交換器におけるフィ ンの上端部と前記背面側熱交換 器における前記フィ ンの上端部とが境界部で繋がつた状態の 1枚の フィ ンとして連続的にプレス加工して得られたフィ ンを多数積層 し た後、 伝熱管を揷通し、  The upper end of the fin in the front-side heat exchanger and the upper end of the fin in the back-side heat exchanger are continuously pressed as one fin in a state where they are connected at a boundary. After laminating a large number of fins,
次に前記各フィ ンを前記前面側熱交換器と前記背面側熱交換器と の境界部で切断して、 前記前面側熱交換器と前記背面側熱交換器と に分離する方法である。  Next, a method is provided in which each of the fins is cut at a boundary between the front-side heat exchanger and the rear-side heat exchanger, and separated into the front-side heat exchanger and the rear-side heat exchanger.
この製造方法によれば、 前面側熱交換器と背面側熱交換器とを個 別に製造する場合に比べて、 効率的にフィ ン付き熱交換器を製造す ることができる。 また、 1枚のフィ ンに挿入する伝熱管の直径の異 なるものや列数の異なるものや列ピッチや段ピッチの異なるものを 混在させた り、 1 枚のフィ ンに切り起こしの形状や高さが異なるも のを混在させる ことができる。 According to this manufacturing method, the heat exchanger with fins can be manufactured more efficiently than when the front heat exchanger and the rear heat exchanger are manufactured separately. Can. Also, heat transfer tubes inserted into one fin with different diameters, different numbers of rows, different row pitches or different step pitches may be mixed. Objects with different heights can be mixed.
上述の熱交換器の製造方法において、 前記前面側熱交換器のフィ ンの上端部と前記背面側熱交換器におけるフィ ンの上端部とが境界 部で繋がった状態の 1枚のフィ ンとして連続的にプレス加工する際 に、  In the heat exchanger manufacturing method described above, the upper end of the fin of the front-side heat exchanger and the upper end of the fin of the rear-side heat exchanger are connected as a single fin in a state of being connected at a boundary. When pressing continuously,
伝熱管を挿入するためのフィ ンカラーのピッチが、 前記前面側熱 交換器と前記背面側熱交換器とにそれぞれ形成されたフィ ンカラー の段方向に隣接する部分について、 他の段方向のピッチよ り も短く 形成されたフィ ンを、 多数積層した後、 各フィ ンカラーに伝熱管を 揷通し、  The pitch of the fin collars for inserting the heat transfer tubes is the same as the pitch of the other tiers in the portions adjacent to the fin collars formed on the front heat exchanger and the rear heat exchanger, respectively. After laminating a large number of fins that are formed shorter, heat pipes are passed through each fin collar,
次に前記フィ ンを前記前面側熱交換器と前記背面側熱交換器とに 分離する方法である。  Next, there is a method of separating the fins into the front side heat exchanger and the back side heat exchanger.
この製造方法によれば、 前面側熱交換器と背面側熱交換器との境 界部で隣接する箇所のフィ ンカラーの段方向のピッチを、 他の近傍 の段方向のピッチと同等とした場合に比較して、 フィ ン材の廃材を 少なくする こ とができる。 図面の簡単な説明  According to this manufacturing method, the pitch in the step direction of the fin collar at an adjacent portion at the boundary between the front heat exchanger and the rear heat exchanger is made equal to the pitch in the step direction in the other vicinity. As compared with the above, the waste material of the fin material can be reduced. Brief Description of Drawings
図 1 は本発明の実施の形態に係るフィ ン付き熱交換器を収納した 空気調和機の室内ュニッ 卜の断面図、  FIG. 1 is a cross-sectional view of an indoor unit of an air conditioner containing a finned heat exchanger according to an embodiment of the present invention,
図 2 は同フィ ン付き熱交換器のフィ ンの側面図、  Fig. 2 is a side view of the fin of the heat exchanger with fin,
図 3 は同フィ ン付き熱交換器のフィ ンの要部拡大側面図、 図 4 は同フィ ン付き熱交換器のフィ ンを 2枚プレスの送り方向に 連続して並べたイメージを示す側面図、 Fig. 3 is an enlarged side view of the main part of the fin of the heat exchanger with fin. Figure 4 is a side view showing an image in which the fins of the heat exchanger with fins are continuously arranged in the feed direction of two presses.
図 5 は従来のフィ ン付き熱交換器を収納した空気調和機の室内ュ ニッ ト の断面図、  Fig. 5 is a cross-sectional view of the indoor unit of an air conditioner containing a conventional heat exchanger with fins.
図 6 Aは他の従来のフィ ン付き熱交換器のフィ ンの概略側面図、 図 6 Bは図 6 Aに示すフィ ンを用いたフィ ンつき熱交換器を収納し た空気調和機の室内ュニッ 卜の概略断面図、  Fig. 6A is a schematic side view of the fin of another conventional finned heat exchanger, and Fig. 6B is an air conditioner housing the finned heat exchanger using the fin shown in Fig. 6A. Schematic sectional view of an indoor unit,
図 7 は他の従来のフィ ン付き熱交換器のフィ ンにおける伝熱管の 配置ピッチの関係を示す図である。 発明を実施するための最良の形態  Fig. 7 is a diagram showing the relationship of the arrangement pitch of the heat transfer tubes in the fins of another conventional finned heat exchanger. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態に係るフィ ン付き熱交換器およびその 製造方法について、 図面を参照しながら説明する。  Hereinafter, a heat exchanger with fins and a method for manufacturing the same according to an embodiment of the present invention will be described with reference to the drawings.
まず、 本実施の形態に係るフィ ン付き熱交換器が搭載される空気 調和機の室内ュニッ トについて図 1 に基づき説明する。 図 1 はこの 室内ュニッ 卜の縦断面図である。  First, an indoor unit of an air conditioner on which the heat exchanger with fins according to the present embodiment is mounted will be described with reference to FIG. Figure 1 is a longitudinal sectional view of this indoor unit.
図 1 に示すように、 この空気調和機の室内ュニッ ト 1 の筐体 2 に は、 前面と上面とに吸込み口 3 a 、 3 bが設けられ、 また下面に吹 出し口 4が設けられ、 筐体 2 内には、 貫流送風機 5 とフィ ン付き熱 交換器 1 0 とが収納されている。  As shown in Fig. 1, the casing 2 of the indoor unit 1 of the air conditioner is provided with inlets 3a and 3b on the front and upper surfaces, and is provided with an outlet 4 on the lower surface. The housing 2 houses the once-through blower 5 and the heat exchanger 10 with fins.
このフィ ン付き熱交換器 1 0 は、 筐体 2 内の前面側に配置された 前面側熱交換器 2 0 と、 筐体 2 内の背面側に配置された背面側熱交 換器 4 0 とから構成されてお り、 またこれら前面側熱交換器 2 0お よび背面側熱交換器 4 0 は、 貫流送風機 5 を風上側から取り囲むよ う に配置されている。 前記各熱交換器 2 0 、 4 0 は、 所定の間隔で平行に並べられてそ の間を空気が流動する多数のフィ ン 2 1 、 4 1 と、 これらのフィ ンThe heat exchanger with fins 10 is composed of a front heat exchanger 20 arranged on the front side of the housing 2 and a rear heat exchanger 40 arranged on the rear side of the housing 2. The front-side heat exchanger 20 and the rear-side heat exchanger 40 are arranged so as to surround the once-through blower 5 from the windward side. Each of the heat exchangers 20 and 40 is arranged in parallel at a predetermined interval, and has a number of fins 21 and 41 through which air flows.
2 1 、 4 1 に略直角に挿入されて内部を冷媒 (冷媒流体) が流動す る多数の伝熱管 1 1 とを有し、 また前面側熱交換器 2 0 と背面側熱 交換器 4 0 とは、 そのフィ ン 2 1 、 4 1 同士は分離されているが、 伝熱管 1 1 が連通される ことによ り一つの熱交換器として作用する It has a large number of heat transfer tubes 11 inserted at right angles to 21 and 41 and through which a refrigerant (refrigerant fluid) flows, and has a front-side heat exchanger 20 and a rear-side heat exchanger 40. Means that the fins 21 and 41 are separated from each other, but act as one heat exchanger by connecting the heat transfer tubes 11
'次に、 実施の形態に係るフィ ン付き熱交換器およびその製造方法 について、 図 1および図 2 〜 4 を用いて説明する。 Next, a finned heat exchanger and a method of manufacturing the same according to the embodiment will be described with reference to FIG. 1 and FIGS.
図 2 は実施の形態に係るフィ ン付き熱交換器の前面側熱交換器 2 0 のフィ ン 2 1 と背面側熱交換器 4 0 のフィ ン 4 1 の側面図、 図 3 はその前面側熱交換器 2 0 のフィ ン 2 1 の要部拡大側面図である。 図 4は、 図 2 のフィ ン付き熱交換器の前面側熱交換器 2 0 のフィ ン 2 1 および背面側熱交換器 4 0 のフィ ン 4 1 の上端部同士が境界部 で繋がった状態の 1枚のフィ ン 1 3 として連続的にプレス加工して できるフィ ンを 2枚、 プレスの送り方向に連続して並べたイメージ を示す側面図である。  FIG. 2 is a side view of the fin 21 of the heat exchanger 20 on the front side and the fin 41 of the heat exchanger 40 on the rear side of the heat exchanger with fins according to the embodiment, and FIG. FIG. 3 is an enlarged side view of a main part of a fin 21 of a heat exchanger 20. Fig. 4 shows a state in which the upper ends of the fins 21 of the front-side heat exchanger 20 and the fins 41 of the rear-side heat exchanger 40 of the heat exchanger with fins in Fig. 2 are connected at the boundary. FIG. 5 is a side view showing an image in which two fins formed by continuous press working as one fin 13 are continuously arranged in the press feed direction.
図 2および図 3 に示すよう に、 前面側熱交換器 2 0 のフィ ン 2 1 の風上側前縁部および風下側後縁部のそれぞれは、 互いにその延長 線の交差部分の角度 0 1 および 0 2が同じ鈍角をなす 2本の直線部 As shown in Fig. 2 and Fig. 3, the windward leading edge and the leeward trailing edge of the fin 21 of the front-side heat exchanger 20 have an angle 01 and an angle of intersection with each other. 0 Two straight parts with the same obtuse angle
2 2 、 2 3および 3 2 、 3 3 と、 これら 2本の直線部 2 2 、 2 3 と 3 2 、 3 3 との間をそれぞれ結ぶ各 1 本の曲線部 2 4 、 3 4 とから なる略 「く」 の字形状に、 すなわち折曲状に形成されている。 こ こ で、 直線部 2 2 と 3 2および 2 3 と 3 3 は、 それぞれ平行にされて いる。 また、 曲線部 2 4 、 3 4 としての形状は、 楕円曲線、 双曲線 、 スプライ ンなどがあるが、 風上側縁部の曲線部 2 4 と、 風下側縁 部の曲線部 3 4 とは、 同じ寸法形状にされている。 なお、 本実施の 形態では、 図 1〜図 4 に示すよう に、 風上側縁部の曲線部 2 4 と、 風下側縁部の曲線部 3 4 とが円弧形状にされるとともに、 これらは 同じ曲率半径で形成されている。 また、 背面側熱交換器 4 0 のフィ ン 4 1 の風上側前縁部および風下側後縁部は平行な直線部 4 2 、 4 3 で構成されている。 It consists of 2 2, 2 3 and 3 2, 3 3, and one curved section 2 4, 3 4 connecting these two straight sections 2 2, 2 3 and 3 2, 3 3 respectively. It is formed in a substantially “U” shape, that is, in a bent shape. Here, the straight portions 22 and 32 and 23 and 33 are parallel to each other. The shapes of the curved sections 24 and 34 are elliptic curves and hyperbolas. However, the curved portion 24 at the leeward edge and the curved portion 34 at the leeward edge have the same dimensions and shape. In this embodiment, as shown in FIGS. 1 to 4, the curved portion 24 on the windward side edge and the curved portion 34 on the leeward side edge are formed in an arc shape, and these are the same. It is formed with a radius of curvature. The windward front edge and the leeward rear edge of the fin 41 of the rear-side heat exchanger 40 are composed of parallel straight portions 42 and 43.
折曲状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と 直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 5 に 近い側の一方の領域の風上前縁と風下後縁との距離、 すなわち風上 前縁 2 3 と風下後縁 3 3 との距離 Bは、 貫流送風機 5から遠い側の 他方の領域の風上前縁と風下後縁との距離、 すなわち風上前縁 2 2 と風下後縁 3 2 との距離 Aより短く形成されている。 なお、 一方の 領域とは、 折曲状に形成された熱交換器 2 0 の屈曲部よ り上方部分 を示しており、 また他方の領域とは、 折曲状に形成された熱交換器 2 0 の屈曲部より下方部分を示している。  One of the two areas sandwiched between the straight leeward leading edge of the fin 21 of the bent front heat exchanger 20 and the linear leeward trailing edge, which is closer to the once-through blower 5 The distance between the leeward leading edge and the leeward trailing edge of the region, i.e., the distance B between the leeward leading edge 23 and the leeward trailing edge 33 is greater than the leeward leading edge of the other region farther from the once-through blower 5. It is formed shorter than the distance from the leeward trailing edge, that is, the distance A between the leeward leading edge 22 and the leeward trailing edge 32. Note that one region indicates a portion above the bent portion of the heat exchanger 20 formed in a bent shape, and the other region indicates a heat exchanger 2 formed in a bent shape. The portion below the bent portion of 0 is shown.
本実施の形態に係るフィ ン付き熱交換器において、 伝熱性能およ び通風抵抗の観点から推奨される平行な直線状の風上前縁 2 2 と風 下後縁 3 2 との距離 A (—方の領域) は 2 4〜 2 7 m m、 平行な直 線状の風上前縁 2 3 と風下後縁 3 3 との距離 B (他方の領域) は 2 0 〜 2 3 m mである。  In the heat exchanger with fins according to the present embodiment, the distance A between the parallel straight windward leading edge 22 and the leeward trailing edge 32 recommended from the viewpoints of heat transfer performance and ventilation resistance. (The area) is 24 to 27 mm, and the distance B (the other area) between the parallel straight windward leading edge 23 and the leeward trailing edge 33 is 20 to 23 mm .
また、 図 2および図 4 に示すように、 背面側熱交換器 4 0 のフィ ン 4 1 の風上前縁 4 2 と風下後縁 4 3 との距離は、 折曲状の前面側 熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁 とで挟まれた二つの領域のうち、 貫流送風機 5から遠い側の一方の 領域の風上前縁 2 2 と風下後縁 3 2 との距離 Aに等しく されている これら前面側熱交換器 2 0 のフィ ン 2 1 と背面側熱交換器 4 0 の フィ ン 4 1 とは、 図 4に示すように、 上端部同士が境界部で槃がつ た状態の 1枚のフィ ン 1 3 として連続的にプレス加工して製造され る。 なお、 前面側熱交換器 2 0 のフィ ン 2 1 の貫流送風機 5から遠 い側の直線状の風上前縁 2 2 または風下後縁 3 2 がフィ ンの送り方 向となす角度を α、 貫流送風機 5 に近い側の直線状の風上前縁 2 3 または風下後縁 3 3.がフィ ンプレスの送り方向となす角度を i3、 フ イ ン 1枚のフィ ンプレス時の送り幅を C とすると、 α + |3 := 0 ΐ = Θ 2 、 A / sin a = B / sin /3 = C , の関係式が成り立つので、 既知 の 0 1 = Θ 2 、 A、 B力、ら、 、 β、 Cが一義的に決まる。 As shown in Fig. 2 and Fig. 4, the distance between the windward leading edge 42 and the leeward trailing edge 43 of the fin 41 of the rear heat exchanger 40 is determined by the bent front heat exchanger. Of the two areas between the straight leeward leading edge of the fin 21 of the fan 20 and the straight leeward trailing edge of the The distance between the windward leading edge 2 2 and the leeward trailing edge 3 2 of the area is equal to A. These fins 21 of the front heat exchanger 20 and fins 41 of the rear heat exchanger 40 are As shown in FIG. 4, the fin is manufactured by continuously pressing as one fin 13 in which the upper ends are bordered at the boundary. Note that the angle between the fin forward direction and the leeward leading edge 22 or the leeward trailing edge 32 on the side far from the once-through blower 5 of the fin 21 of the front-side heat exchanger 20 is α. The angle between the straight upwind leading edge 2 3 or the downwind trailing edge 3 3. on the side close to the once-through blower 5 and the feed direction of the fin press is i3, and the feed width of one fin Then, the relational expression of α + | 3: = 0 ΐ = 、 2, A / sin a = B / sin / 3 = C, holds, and the known 0 1 = Θ 2, A, B force, etc. , Β, and C are uniquely determined.
また、 図 4 に示すように、 フィ ン 1 3 ( 2 1 、 4 1 ) が金属板か ら連続プレス加工されて製造される際に、 フィ ン付き熱交換器 1 0 の収納の都合上などから、 その両端部や前面側熱交換器 2 0 と背面 側熱交換器 4 0 との間となる箇所には切断して捨てる部分ができる が、 そのとき生じる廃材 5 1 、 5 2 、 5 3 はわずかだけであり、 他 は無駄なく用いられ連続してフィ ン 1 3が造られる。  Also, as shown in Fig. 4, when fins 13 (21, 41) are manufactured by continuous pressing from a metal plate, the heat exchanger 10 with fins needs to be stored. Therefore, there is a portion that is cut and discarded at both ends and between the front-side heat exchanger 20 and the rear-side heat exchanger 40, but the waste material generated at that time 51, 52, 53 Only a few are used, and others are used without waste to produce fins 13 continuously.
図 3 に示すように、 各フィ ン 1 3 にはフィ ンカラー 1 2が丸孔形 状にバーリ ング加工されている。  As shown in FIG. 3, each fin 13 has a fin collar 12 burred in a round hole shape.
図 4 に示すよう に、 前面側熱交換器 2 0 のフィ ン 2 1 と背面側熱 交換器 4 0 のフィ ン 4 1 とが繋がった状態の 1 枚のフィ ンとして連 続的にプレス加工して製造されたフィ ン 1 3が多数積層され、 フィ ンカラー 1 2 を通して伝熱管 1 1 が挿入 (挿通) され、 その後、 フ イ ンカラー 1 2 と伝熱管 1 1 とを密着させるために、 伝熱管 1 1 を 拡管し、 そしてフィ ン 1 3 を前面側熱交換器 2 0 と背面側熱交換器 4 0 との境界部で切断して、 前面側熱交換器 2 0 と背面側熱交換器 4 0 とに分離する。 As shown in Fig. 4, the fins 21 of the front heat exchanger 20 and the fins 41 of the rear heat exchanger 40 are connected as a single fin with a continuous press working. The heat transfer tubes 11 are inserted (inserted) through the fin collars 12, and then the heat transfer tubes 11 are brought into close contact with the heat transfer tubes 11. Heat tube 1 1 The fins 13 are cut at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 to form a front heat exchanger 20 and a rear heat exchanger 40. To separate.
図 1 および図 2 に示すように、 伝熱管 1 1 の直径、 伝熱管 1 1 に おける気体 (空気である) の主流方向 (流れ方向) に対して直角方 向となる、 いわゆる段方向のピッチ、 および気体の主流方向に沿う 、 いわゆる列方向の数、 すなわち列数については、 折曲状の前面側 熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁 とで挟まれた二つの領域のうち、 貫流送風機 5から遠い側の領域と 、 背面側熱交換器 4 0 のフィ ン 4 1 の直線状の風上前縁 4 2および 直線状の風下後縁 4 3で挟まれた領域とでは、 異なるよう に形成さ れている。  As shown in Figs. 1 and 2, the so-called stepwise pitch is a direction perpendicular to the main flow direction (flow direction) of the gas (air) in the heat transfer tube 11 as shown in Figs. The number of rows, that is, the number of rows along the main flow direction of the gas, that is, the number of rows, is determined by the straight windward leading edge of the fin 21 of the bent front heat exchanger 20 and the straight leeward. Of the two areas sandwiched by the trailing edge and the area farther from the once-through blower 5, the straight windward leading edge 42 of the fin 41 of the rear heat exchanger 40 and the straight leeward It is formed differently from the region sandwiched by the trailing edges 43.
すなわち、 折曲状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の 風上前縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流 送風機 5から遠い側の領域、 すなわち直線状の風上前縁 2 2 と直線 状の風下後縁 3 2 とで挟まれた領域および背面側熱交換器 4 0 のフ ィ ン 4 1 の直線状の風上前縁 4 2 と直線状の風下後縁 4 3 とで挟ま れた領域のフィ ン 2 1 、 4 1 にそれぞれ挿入される伝熱管 1 1 とし ては、 4 〜 6 . 4 m mの範囲の外径の大きい方の伝熱管 1 1 a と小 さい方の伝熱管 1 1 bの 2種類の外径の伝熱管が用いられて (構成 されて)、 列方向には 3列配置され、 また段方向のピッチ Dについて は、 1 4 . 5 〜 1 6 m mとして形成されている。 また、 折曲状の前 面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下 後縁とで挟まれた二つの領域のうち、 貫流送風機 5 に近い側の領域 、 すなわち直線状の風上前縁 2 3 と直線状の風下後縁 3 3 とで挟ま れた領域および前面側熱交換器 2 0 における曲線状の風上前縁 2 4 と曲線状の風下側後縁 3 4 とで挟まれた領域のフィ ン 2 1 にそれぞ れ挿入される伝熱管 1 1 としては、 6 . 5 〜 8 . 5 m mの範囲の外 径の小さい方の伝熱管 1 1 c と大きい方の伝熱管 1 1 dの 2種類の 外径の伝熱管が用いられて (構成されて)、 列方向には 2列配置され 、 また段方向のピッチ Eについては、 1 6 〜 2 2 m mとして形成さ れている。 In other words, of the two areas sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the bent front-side heat exchanger 20, the side farther from the once-through blower 5 Area, i.e., the area sandwiched between the straight leeward leading edge 22 and the linear leeward trailing edge 32, and the straight leeward leading edge of the fins 41 of the rear heat exchanger 40. The heat transfer tubes 11 inserted into the fins 21 and 41 in the region sandwiched between the fin 42 and the straight leeward trailing edge 43 have an outer diameter in the range of 4 to 6.4 mm. Two types of outer diameter heat transfer tubes are used (configured), the larger heat transfer tube 11a and the smaller heat transfer tube 11b. The pitch D is formed as 14.5 to 16 mm. Of the two regions sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the bent front-side heat exchanger 20, it is closer to the once-through blower 5. Side region, i.e., the straight leeward leading edge 23 and the linear leeward trailing edge 33 Inserted into the fins 21 in the region between the curved frontward edge 24 and the curved rearward edge 34 of the front heat exchanger 20 As the heat pipes 11, two types of heat transfer pipes having an outer diameter of 6.5 to 8.5 mm, that is, a heat transfer pipe 11 c having a smaller outer diameter and a heat transfer pipe 11 d having a larger outer diameter are used. (Constructed), two rows are arranged in the column direction, and the pitch E in the step direction is formed as 16 to 22 mm.
また、 図 3 に示すよう に、 前面側熱交換器 2 0 における曲線状の 風上前縁と曲線状の風下側後縁とで挟まれた領域のフィ ン 2 1 に揷 入される伝熱管 1 1 c 、 1 1 dの段方向ピッチ Eについては、 気体 の流れの風上側の列ピッチ E uのほうが、 気体の流れの風下側の列 ピッチ E d に比べて同等以下 (同一またはそれよ り小さい) となる よう形成されている。  In addition, as shown in FIG. 3, the heat transfer tubes inserted into the fins 21 in a region sandwiched between the curved leeward leading edge and the curved leeward trailing edge in the front-side heat exchanger 20. For the stepwise pitch E of 11 c and 11 d, the row pitch E u on the leeward side of the gas flow is equal to or less than the row pitch E d on the leeward side of the gas flow (the same or higher). Smaller).
また、 図 1 に本実施の形態に係るフィ ン付き熱交換器 1 0 を蒸発 器として使用した場合の冷媒の流れを示しているが、 折曲状の前面 側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下後 縁とで挟まれた二つの領域のうち、 貫流送風機 5から遠い側の領域 、 すなわち直線状の風上前縁 2 2 と直線状の風下後縁 3 2 とで挟ま れた領域、 および背面側熱交換器 4 0 のフィ ン 4 1 の直線状の風上 前縁 4 2 と直線状の風下後縁 4 3 とで挟まれた領域のフィ ン 2 1 、 4 1 に揷入される 4 〜 6 . 4 m mの範囲の 2種類の外径の伝熱管 1 1 のうち、 大きい方の外径の 6本の伝熱管 1 1 aを気体の流れの最 も風上の列に配置し、 蒸発器として使用 した場合の冷媒入口寄り の 伝熱管として 1 パスで用いる (形成する) とともに、 小さい方の外 径の前記伝熱管 1 1 bを、 大きい方の外径の伝熱管 1 1 a よ り冷媒 下流側の伝熱管として 4パスで用いて (形成して)、 冷媒が流される この後、 冷媒は除湿運転時以外は、 全開状態にある除湿運転用の 絞り手段 8 0 を通過し、 折曲状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領域の うち、 貫流送風機 5 に近い側の領域、 すなわち直線状の風上前縁 2 3 と直線状の風下後縁 3 3 とで挟まれた領域、 および前面側熱交換 器 2 0 の曲線状の風上前縁 2 4 と曲線状の風下側後縁 3 4 とで挟ま れた領域のフィ ン (フィ ン部) 2 1 に、 挿入される 6 . 5 〜 8 . 5 m mの範囲の 2種類の外径の伝熱管 1 1 のうち、 外径の小さい方の 伝熱管 1 1 c を 2パス ( 2経路) にて流れ、 そして最後に、 冷媒は 蒸発器として使用する際の冷媒出口寄りの外径の大きい方の 4本の 伝熱管 1 1 dを 2パスで流れて、 フィ ン付き熱交換器から流出され る。 また、 蒸発器として使用する際の冷媒出口寄りの外径の大きい 方の 4本の伝熱管 1 1 dは、 気体の流れの最も風下の列に配置され ている。 FIG. 1 shows the flow of the refrigerant when the heat exchanger with fins 10 according to the present embodiment is used as an evaporator. The fins of the bent front-side heat exchanger 20 are shown in FIG. Of the two areas sandwiched between the straight leeward leading edge and the straight leeward trailing edge in 1 1, the area farther from the once-through blower 5, that is, the straight upwind leading edge 2 2 and the straight Area between the leeward trailing edge 32 of the rear heat exchanger 40 and the linear upwind leading edge 4 2 of the fin 41 of the rear heat exchanger 40 and the linear leeward trailing edge 4 3 Of the two types of heat transfer tubes 1 1 with a larger outer diameter among the two types of heat transfer tubes 11 with a diameter of 4 to 6.4 mm to be introduced into the fins 21 and 41 of the area, 1 1 a Are placed in the most upwind row of the gas flow, and used (formed) in one pass as a heat transfer tube near the refrigerant inlet when used as an evaporator, and with the smaller outer diameter Heat transfer tube 1 1b is cooled by heat transfer tube 1 1a with the larger outer diameter. Refrigerant is flowed by using (forming) the heat transfer tube on the downstream side in four passes. After that, except when the dehumidifying operation is performed, the refrigerant passes through the throttling means 80 for the dehumidifying operation in the fully open state and is bent Of the two areas sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the fin-shaped front-side heat exchanger 20, that is, the area near the once-through blower 5, that is, The area sandwiched between the straight leeward leading edge 23 and the straight leeward trailing edge 33, and the curved leeward leading edge 24 of the front heat exchanger 20 and the curved leeward rear Of the two types of heat transfer tubes 11 having a diameter in the range of 6.5 to 8.5 mm to be inserted into the fin (fin portion) 21 in a region sandwiched between the edge 34 and the outer diameter, The heat exchanger tubes 1 1 c flow in two passes (two paths), and finally, the refrigerant flows into the four heat exchanger tubes 1 with the larger outer diameter near the refrigerant outlet when used as an evaporator. 1d flows in two passes and exits the finned heat exchanger. Further, the four heat transfer tubes 11 d having a larger outer diameter near the refrigerant outlet when used as an evaporator are arranged in the most leeward row of the gas flow.
なお、 伝熱管 1 1 は外径が 4種類のものを用いているが、 拡管前 の外径でいえば、 伝熱管 1 1 aは約 6 m m、 伝熱管 1 1 bは約 5 m m、 伝熱管 1 1 c は約 7 m m、 伝熱管 1 1 dは約 8 m mを用いる こ とが推奨される。  The heat transfer tubes 11 have four types of outer diameters.However, in terms of the outer diameter before expansion, the heat transfer tube 11a is approximately 6 mm, the heat transfer tube 11b is approximately 5 mm, It is recommended to use about 7 mm for the heat pipe 11 c and about 8 mm for the heat transfer pipe 11 d.
ところで、 図 1 に基づき、 本実施の形態のフィ ン付き熱交換器 1 0 を蒸発器として使用した場合について説明をしたが、 本実施の形 態のフィ ン付き熱交換器を凝縮器またはガスクーラーとして使用 し た場合には、 冷媒の流れ方向が逆になるが、 他の構成は蒸発器とし て使用 した場合と同じである。 また、 本実施の形態のフィ ン付き熱交換器 1 0 を段方向に再熱器 と蒸発器に分けて使用し除湿運転を行う場合には、 折曲状の前面側 熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁 とで挟まれた二つの領域のうち、 貫流送風機 5から遠い側の領域、 すなわち直線状の風上前縁 2 2 と直線状の風下後縁 3 2 とで挟まれ た領域および背面側熱交換器 4 0 を再熱器として用い、 折曲状の前 面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状の風下 後縁とで挟まれた二つの領域のうち、 貫流送風機 5 に近い側の領域 、 すなわち直線状の風上前縁 2 3 と直線状の風下後縁 3 3 とで挟ま れた領域および前面側熱交換器 2 0 の曲線状の風上前縁 2 4 と曲線 状の風下側後縁 3 4 とで挟まれた領域を蒸発器として用いる。 この 除湿運転のとき、 冷媒は、 図 1 に示すよう に、 再熱器から、 適切な 絞り量が設定された絞り手段 8 0 を経て、 蒸発器に流入する。 By the way, the case where the heat exchanger with fins 10 of the present embodiment is used as an evaporator has been described based on FIG. 1, but the heat exchanger with fins of the present embodiment is used as a condenser or gas. When used as a cooler, the flow direction of the refrigerant is reversed, but the other configuration is the same as when used as an evaporator. Further, when the heat exchanger with fins 10 of the present embodiment is used in a stepwise manner by being divided into a reheater and an evaporator to perform the dehumidifying operation, the bent front-side heat exchanger 20 is used. Of the two regions sandwiched between the straight leeward leading edge of the fin 21 and the linear leeward trailing edge, the region farther from the once-through blower 5, that is, the straight leeward leading edge 22 The area between the straight leeward trailing edge 32 and the rear heat exchanger 40 is used as a reheater, and the bent front heat exchanger 20 has a linear shape of the fin 21. Of the two areas sandwiched between the windward leading edge and the straight leeward trailing edge, the area closer to the once-through blower 5, namely, the straight leeward leading edge 23 and the linear leeward trailing edge 33 And the area sandwiched between the curved frontward edge 24 of the front heat exchanger 20 and the curved rearward edge 34 of the heat exchanger 20 are used as evaporators. During this dehumidifying operation, the refrigerant flows into the evaporator from the reheater through the throttling means 80 having an appropriate throttling amount as shown in FIG.
さ らに、 図 4 に示すように、 前面側熱交換器 2 0 のフィ ン 2 1 と 背面側熱交換器 4 0 のフィ ン 4 1 とを、 これらの上端部同士が境界 部で繋がった状態の 1枚のフィ ン 1 3 と して連続的にプレス加ェし て製造するとき、 前面側熱交換器 2 0 と背面側熱交換器 4 0 とのそ れぞれのフィ ンカラー 1 2が段方向に隣接する部分の配置ピッチに ついては、 その近隣の他の段方向のピッチ Dよ り も短いピッチ F と なるようにされている。  In addition, as shown in Fig. 4, the fins 21 of the front heat exchanger 20 and the fins 41 of the rear heat exchanger 40 were connected at the boundary between their upper ends. When the fins 13 are continuously pressed and manufactured as one fin 13 in the state, the fin collars 12 of the front-side heat exchanger 20 and the rear-side heat exchanger 40, respectively. The pitch of the part adjacent to each other in the column direction is set to a pitch F shorter than the pitch D in the other adjacent column direction.
また、 図 2および図 3 に示すように、 フィ ン 1 3 ( 2 1 、 4 1 ) における段方向に隣接する伝熱管 1 1 同士間の箇所には、 気体の主' 流方向に開口する複数の切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2、 1 5 2が設けられるとともに、 これら各切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2、 1 5 2 のフィ ンカラー 1 2寄り の箇所、 す なわち伝熱管 1 1寄り の箇所に設けられた切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2 、 1 5 2 の立ち上がり部 1 4 1 a、 1 5 1 a、 1 6 1 a , 1 4 2 a , 1 5 2 aは、 伝熱管 1 1 の円周に概略沿う方 向で形成されている。 As shown in FIG. 2 and FIG. 3, a portion of the fins 13 (21, 41) between the heat transfer tubes 11 adjacent to each other in the step direction has a plurality of openings that open in the main flow direction of the gas. 14 1, 15 1, 16 1, 14 2, 15 2 are provided, and each of these cuts 14 1, 15 1, 16 1, 16 1, 14 2, 15 2 Of the fin collar 1 2 That is, the rising portions 14 1, 15 1, 16 1, 14 2, and 15 2 of the cut-and-raised portions provided near the heat transfer tube 1 1 14 1 a, 15 1 a, 16 1 a, 14 2 a, and 15 2 a are formed in directions substantially along the circumference of the heat transfer tube 11.
ここで、 図 3 に示すよう に、 各切り起こし 1 4 1 、 1 5 1 、 1 6 1 の列方向の幅 W s 1 に対する、 列方向に隣接する切り起こし 1 4 1 、 1 5 1 、 1 6 1 間のフィ ン部分における幅 (列方向に隣接する フィ ン 2 1 の平板部分の幅) 13 1 の比^ 13 1 ノ 5 1 および切り 起こし 1 4 2 、 1 5 2 の列方向の幅 W s 2 に対する、 列方向に隣接 する切り起こし 1 4 2 、 1 5 2 間のフィ ン部分の幅 (列方向に隣接 するフィ ン 2 1 、 4 1 の平板部分の幅) W b 2 の比 W b 2 /W s 2 が、 約 2〜約 2 . 5 となるようにされている。  Here, as shown in FIG. 3, adjacent cut-outs 14 1, 15 1, 1 1 in the column direction with respect to the width W s 1 of each cut-out 14 1, 15 1, 16 1 in the column direction. The width of the fin between 6 1 (the width of the flat part of the fin 21 adjacent in the column direction) The ratio of 13 1 ^ 13 1 no 51 and the width of the cut and raised 14 2, 15 2 in the column direction Ratio of W s 2 to the width of the fin between adjacent cut-outs 14 2 and 15 2 in the column direction (the width of the flat plate portion of the fins 21 and 41 adjacent in the column) W b 2 W b 2 / W s 2 is set to be about 2 to about 2.5.
また、 フィ ン 2 1 、 4 1 の厚み方向に沿う切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2 、 1 5 2 の高さは、 隣接するフィ ン 1 3 ( 2 1 、 4 1 ) 同士のピッチの約 1 / 4〜約 3ノ 4 となるよう されてい る。  In addition, the heights of the cut-outs 14 1, 15 1, 16 1, 14 2, 15 2 along the thickness direction of the fins 21, 41 are set to the adjacent fins 13 (21, 21). 4 1) The pitch is about 1/4 to about 3/4 of each other.
さ らに、 高い熱交換性能を得るべく、 切り起こし 1 4 1 、 1 5 1 、 1 6 1 の高さを、 風速が大きい領域、 例えば図 1 において貫流送 風機 5 に接近していて高風速となる領域 Gについては、 隣接するフ イ ン 1 3 ( 2 1 、 4 1 ) 同士のピッチの約 1 Z 2 とし、 他の領域に ついては隣接するフィ ン 1 3 ( 2 1 、 4 1 ) 同士のピッチの約 3 / 4 とされている。  Furthermore, in order to obtain high heat exchange performance, the height of the cut-outs 141, 151, and 161 should be increased in areas where the wind speed is high, for example, close to the once-through blower 5 in FIG. In the area G, the pitch between adjacent fins 13 (21, 41) is about 1 Z2, and in other areas, the adjacent fins 13 (21, 41) are Approximately 3/4 of the pitch.
また、 図 3 に示すよう に、 伝熱管 1 1 a、 l i b , 1 1 c 、 1 1 d とフィ ン 2 1 、 4 1 の風上前縁 2 2 , 2 3 , 2 4、 4 2 または風 下後縁 3 2 、 3 3 、 3 4、 4 3 との最短距離 L t 、 および切り起こ し 1 4 1 、 1 5 1 , 1 6 1 、 1 4 2 、 1 5 2 とフィ ン 2 1 、 4 1 の 風上前縁 2 2 、 2 3 、 2 4、 4 2 または風下後縁 3 2 、 3 3 、 3 4 , 4 3 との最短距離 L s は、 1 . 8 m m以上となるよう にされてい る。 Also, as shown in Fig. 3, the heat transfer tubes 11a, lib, 11c, 11d and the windward leading edges 22, 23, 24, 42, or 42 of the fins 21, 41 The shortest distance L t to the lower trailing edge 3 2, 3 3, 3 4, 4 3 1 4 1, 1 5 1, 1 6 1, 1 4 2, 1 5 2 and fins 2 1, 4 1 windward leading edge 2 2, 2 3, 2 4, 4 2 or leeward trailing edge 3 2 , 33, 34, and 43, the shortest distance Ls is set to be 1.8 mm or more.
また、 図 2および図 3 に示すように、 列方向に隣接する 2つの伝 熱管 1 1 同士間においては、 内部を流れる冷媒同士に温度差がある 場合に、 これら 2 つの伝熱管 1 1 (フィ ンカラ一 1 2 ) の列間中央 部のフィ ン部分に、 概略段方向に沿う方向で切り込み 1 7 が設けら れている。  In addition, as shown in FIGS. 2 and 3, between two adjacent heat transfer tubes 11 in the column direction, when there is a temperature difference between the refrigerant flowing inside, the two heat transfer tubes 11 A cut 17 is provided in the fin portion at the center between the rows of the collars 1 2) in a direction generally along the step direction.
また、 空気調和機を除湿運転し、 室内ユニッ ト 1 のフィ ン付き熱 交換器 1 0 を段方向に再熱器と蒸発器とに分けて使用した場合には 、 図 1 に示す前面側熱交換器 2 0 におけるフィ ン 2 1 の曲線部 2 4 、 3 4から下側部分を蒸発器として用いるとともに他の部分を再熱 器として用いるが、 この場合におけるフィ ン 2 1 における再熱器の 領域と蒸発器の領域との間の箇所に、 切断しない部分 1 8 をごくわ ずか残してほぼ完全に切断する切り込み 1 9が設けられている。  When the air conditioner is operated for dehumidification and the heat exchanger with fins 10 of the indoor unit 1 is divided into a reheater and an evaporator in the stage direction, the front side heat exchanger shown in Fig. 1 is used. In the exchanger 20, the lower part of the fin 21 from the curved parts 24, 34 is used as an evaporator and the other part is used as a reheater. At a point between the region and the region of the evaporator, there is provided a notch 19 for cutting almost completely, leaving a very small portion 18 not to be cut.
さ らに、 フィ ン付き熱交換器 1 0 の伝熱管 1 1 の内部を流れる ( 流動する) 冷媒としては、 H F C冷媒、 H C冷媒および二酸化炭素 のいずれか一つが用いられる。  Further, as the refrigerant flowing (flowing) inside the heat transfer tube 11 of the heat exchanger with fins 10, any one of HFC refrigerant, HC refrigerant and carbon dioxide is used.
これら前面側熱交換器 2 0 および背面側熱交換器 4 0 のフィ ン 2 1 、 4 1 は、 上述したよう に、 それぞれ上端部同士が境界部で繋が つた状態の 1枚のフィ ン 1 3 として連続的にプレス加工して製造さ れ、 そしてこのフィ ン 1 3 を多数積層させた後、 フィ ンカラー 1 2 に伝熱管 1 1 を挿入 (揷通) して拡管し、 前面側熱交換器 2 0 と前 記背面側熱交換器 4 0 とがフィ ン 1 3 ( 2 1 、 4 1 ) で繋がつた状 態で製造し、 次に前面側熱交換器 2 0 と背面側熱交換器 4 0 とをそ のフィ ン 2 1 、 4 1 同士の境界部分で切断して、 前面側熱交換器 2 0 と背面側熱交換器 4 0 とに分離して製造が行われる。 As described above, the fins 21 and 41 of the front-side heat exchanger 20 and the rear-side heat exchanger 40 are each a single fin 13 whose upper end is connected at the boundary. It is manufactured by continuous press working, and after laminating many fins 13, the heat transfer tube 11 is inserted into the fin collar 12 (through) to expand the tube, and the front heat exchanger 20 and the back side heat exchanger 40 are connected by fins 13 (21, 41) Then, the front-side heat exchanger 20 and the rear-side heat exchanger 40 are cut at the boundary between the fins 21 and 41, and the front-side heat exchanger 20 and Production is performed separately from the rear heat exchanger 40.
上述したよう に、 この前面側熱交換器 2 0 のフィ ン 2 1 の風上前 縁および風下後縁は、 それぞれが同じ鈍角をなす 2本の直線部およ びこれら 2本の直線の間を結ぶ 1 本の曲線部からなる折曲状に形成 され、 折曲状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前 縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 5 に近い側の一方の領域の風上前縁 2 3 と風下後縁 3 3 との距離を 、 貫流送風機 5 から遠い側の他方の領域の風上前縁 2 2 と風下後縁 3 2 との距離より短くすることによ り、 限られた空間、 特に奥行き が狭い空間によ り大きなフィ ン付き熱交換器 1 0 を収納して、 よ り 大きな熱交換能力を発揮する こ とができる。 また、 前面側熱交換器 2 0 は後で折り 曲げ加工する必要がなく、 折り曲げたとき必要にな るスぺーサも当然要らない。 また、 このフィ ン付き熱交換器 1 0 を 蒸発器として使用する場合、 前面側熱交換器 2 0および背面側熱交 換器 4 0 のフィ ン 2 1 、 4 1 に凝縮する水滴は連続したそれぞれの フィ ン 2 1 、 4 1 を伝い滑らかに流下する。 さ らに、 前面側熱交換 器 2 0 のフィ ン 2 1 の上側は風上前縁 2 2 の直線と風下後縁 3 2 の 直線とに囲まれた鉛直に近い一定の角度で傾斜しているので、蒸発 時に前記フィ ンの表面に凝縮する水滴が滞留することがない。  As described above, the windward leading edge and the leeward trailing edge of the fin 21 of the front-side heat exchanger 20 have two straight portions each having the same obtuse angle and the straight portion between these two straight lines. Are formed in a bent shape consisting of a single curved part that connects the straight-line windward front edge and the straight-line leeward rear edge of the fin 21 of the bent front-side heat exchanger 20. The distance between the windward leading edge 23 and the leeward trailing edge 33 of one of the two areas closer to the once-through blower 5 is set to the upstream of the other area farther from the once-through blower 5. By making the distance between the edge 22 and the leeward trailing edge 32 smaller, the heat exchanger with a large fin can be accommodated in a limited space, especially in a space with a small depth, and a larger space can be accommodated. It can demonstrate heat exchange capacity. Further, the front-side heat exchanger 20 does not need to be bent later, and of course, does not require a spacer which is required when bending. When this heat exchanger with fins 10 is used as an evaporator, water condensed on the fins 21 and 41 of the front heat exchanger 20 and the rear heat exchanger 40 is continuous. It flows down the fins 21 and 41 smoothly. In addition, the upper side of the fin 21 of the front-side heat exchanger 20 is inclined at a constant angle close to the vertical, surrounded by the straight line of the windward leading edge 22 and the straight line of the leeward trailing edge 32. Therefore, water droplets condensing on the surface of the fin during evaporation do not stay.
また、 折曲状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上 前縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風 機 5から遠い側の領域の風上前緣 2 2 と風下後緣 3 2 との距離が 2 4 〜 2 7 m mと薄型であると同時に、 貫流送風機 5 に近い側の領域 の風上前縁 2 3 と風下後縁 3 3 との距離をそれよ り さ らに薄い 2 0 〜 2 3 m mとしたので、 熱交換器を含む風回路に必要な奥行き幅が かなり小さ くなり、 したがって室内ュニッ ト 1 を薄型化する ことが できる。 Further, of the two regions sandwiched between the straight upwind front edge and the straight downwind rear edge of the fin 21 of the bent front-side heat exchanger 20, it is far from the once-through blower 5. The area on the side close to the once-through blower 5 at the same time as being thin, with the distance between the upstream side 緣 2 2 and the leeward side 2 32 in the side area being 24 to 27 mm The distance between the windward leading edge 23 and the leeward trailing edge 33 is made thinner, 20 to 23 mm, so that the depth required for the wind circuit including the heat exchanger is significantly smaller. Therefore, the indoor unit 1 can be reduced in thickness.
また、 前面側熱交換器 2 0 のフィ ン 2 1 の風上前縁および風下後 縁のそれぞれの曲線部 2 4 、 3 4 を同じ形状としたことによ り、 フ イ ン 1 3 を連続プレス加工する際、 フィ ン 1 3 の無駄な廃材 5 1 、 5 2 、 5 3 をあまりつく ることなく、 効率的に生産する ことができ る。  In addition, the fins 13 of the front-side heat exchanger 20 have the same shape for the curved portions 24 and 34 of the windward leading edge and the leeward trailing edge, so that the fins 13 are continuous. In press working, it is possible to efficiently produce fins 13 without wasting too much waste material 51, 52, 53.
また、 前面側熱交換器 2 0 のフィ ン 2 1 の風上前緣および風下後 縁のそれぞれの曲線部 2 4 、 2 5 を円弧状としたことによ り、 フィ ン 1 3 のプレス金型の加工およびメンテナンスが容易になる。  In addition, the curved portions 24 and 25 of the fin 21 and the leeward edge of the fin 21 of the front-side heat exchanger 20 are formed in an arc shape, so that the press metal of the fin 13 is formed. Processing and maintenance of the mold become easier.
また、 背面側熱交換器 4 0 の風上前縁 4 2および風下後縁 4 3 を 平行な直線にすることによ り、 限られた空間によ り大きなフィ ン付 き熱交換器 1 0 を収納して、よ り大きな熱交換能力を発揮する こと ができる。  In addition, by making the windward leading edge 42 and the leeward trailing edge 43 of the rear side heat exchanger 40 parallel straight lines, the heat exchanger with large fins in a limited space 10 Can be stored to exhibit greater heat exchange capacity.
また、 フィ ン付き熱交換器 1 0 のフィ ン 1 3 は、 背面側熱交換器 4 0 のフィ ン 4 1 の風上前縁 4 2 と風下後縁 4 3 との距離を、 折曲 状の前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直線状 の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 5 から遠い 側の領域の風上前縁 2 3 と風下後縁 3 3 との距離に等しく したので 、 前面側熱交換器 2 0 のフィ ン 2 1 の上端部と背面側熱交換器 4 1 のフィ ン 4 1 の上端部とが繋がった状態の 1 枚のフィ ンとする こと ができ、 したがって高い生産性でもって連続プレス加工を行う こと ができる。 また、 前面側熱交換器 2 0 のフィ ン 2 1 の直線状の風上前縁と直 線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 5 から 遠い側の領域、 すなわち風上前縁 2 2 と風下後縁 3 2 とで挟まれた 領域、 および背面側熱交換器 4 0 の風上側前縁 4 2 の直線部と風下 側後縁 4 3 の直線部とで挟まれた領域については、 外径が 4〜 6 . 4 m mの範囲の伝熱管 1 1 a、 1 1 b を 3列配置するとともに段ピ ツチを 1 4 . 5 〜 1 6 m mとしたこ とによ り、 通風抵抗をあま り大 きくする ことなく高い空気側熱伝達率を得ることができる とともに 、 同一騒音時の風量を多く して、 高い熱交換能力を発揮させる こと ができる。 The fin 13 of the heat exchanger 10 with fins is bent in the distance between the windward leading edge 42 and the leeward trailing edge 43 of the fin 41 of the rear heat exchanger 40. Windward of the area farther from the once-through blower 5 of the two areas sandwiched between the straight windward leading edge and the straight leeward trailing edge of the fin 21 of the front heat exchanger 20 Since the distance between the leading edge 23 and the leeward trailing edge 33 was equal, the upper end of the fin 21 of the front heat exchanger 20 and the upper end of the fin 41 of the rear heat exchanger 41 were Can be connected to one fin, and continuous press working can be performed with high productivity. Also, of the two areas sandwiched between the straight upwind front edge of the fin 21 of the front heat exchanger 20 and the straight downwind trailing edge, the area farther from the once-through blower 5; That is, the area between the windward leading edge 22 and the leeward trailing edge 32, and the straight portion of the windward leading edge 42 of the rear heat exchanger 40 and the straight portion of the leeward trailing edge 43. In the area sandwiched, three rows of heat transfer tubes 11a and 11b with an outer diameter in the range of 4 to 6.4 mm were arranged and the step pitch was set to 14.5 to 16 mm. Thus, a high air-side heat transfer coefficient can be obtained without excessively increasing the ventilation resistance, and a high heat exchange capacity can be exhibited by increasing the air volume at the same noise.
また、 フィ ン付き熱交換器 1 0 を凝縮器若しく はガスクーラーと して使用した場合の冷媒出口寄りの伝熱管 1 1 または蒸発器として 使用 した場合の冷媒入口寄り の伝熱管 1 1 として、 4〜 6 . 4 m m の範囲の外径にされた伝熱管 1 1 a 、 1 1 bのうち、 大きい方の外 径の伝熱管 1 1 a を 3列構成の気体の流れの最も風上の列に配置す るとともに 1 パスで用いる (形成する) ことによ り、 管内の熱伝達 率を向上させ得るとともに空気と冷媒との温度差に関し対向流的な 配置にする ことができるので、 熱交換能力を増大させる ことができ る。 また、 この領域の冷媒は密度が大きいので冷媒流通抵抗はあま り増大させる ことがなく、 熱交換能力の増大を妨げるこ とはない。 さ らに、 外径が 4〜 6 . 4 m mの範囲で、 フィ ン付き熱交換器 1 0 を凝縮器若しく はガスクーラ一として使用した場合の冷媒出口寄り の伝熱管 1 1 aまたは蒸発器として使用する際の冷媒入口寄り の伝 熱管 1 1 aよ り、 小さい方の外径の伝熱管 1 1 b を、 当該フィ ン付 き熱交換器 1 0 を凝縮器若しく はガスク一ラーとして使用 した場合 に冷媒出口寄りの 1パスで用いる伝熱管 1 1 aよ り冷媒上流側の伝 熱管として、 または当該フィ ン付き熱交換器 1 0 を蒸発器として使 用した場合に冷媒入口寄りの 1 パスで用いる伝熱管 1 1 a よ り冷媒 • 下流側の伝熱管として 4パスで用いる (形成する) ことによ り、 .髙 い管内熱伝達率と低い冷媒流通抵抗を両立させて、 熱交換能力を増 大させる こ とができる。 As the heat transfer tube 11 near the refrigerant outlet when the heat exchanger with fins 10 is used as a condenser or gas cooler, or as the heat transfer tube 11 near the refrigerant inlet when used as an evaporator. , 4 to 6.4 mm outside diameter of the heat transfer tubes 11a and 11b, the larger outer diameter of the heat transfer tube 11a is the most upstream of the gas flow in three rows. By arranging them in a row and using (forming) them in one pass, it is possible to improve the heat transfer coefficient in the pipe and to arrange them in a counter-current arrangement with respect to the temperature difference between air and refrigerant. Heat exchange capacity can be increased. In addition, since the refrigerant in this region has a high density, the flow resistance of the refrigerant does not significantly increase, and does not hinder an increase in heat exchange capacity. In addition, when the heat exchanger with fins 10 is used as a condenser or gas cooler with an outer diameter in the range of 4 to 6.4 mm, the heat transfer tube 11 a near the refrigerant outlet or the evaporator The heat transfer tube 11b with the smaller outer diameter than the heat transfer tube 11a near the refrigerant inlet when used as a heat exchanger, and the heat exchanger 10 with the fin as the condenser or gas cooler If used Heat transfer tube used in one pass near the refrigerant outlet in the 1st pass as a heat transfer tube on the upstream side of the refrigerant or 1 pass near the refrigerant inlet when the heat exchanger with fins 10 is used as an evaporator. Heat transfer tube used 1 1a Refrigerant from 1a • By using (forming) the heat transfer tube on the downstream side in 4 passes, the heat transfer capacity can be improved by achieving both low heat transfer coefficient in the tube and low refrigerant flow resistance. Can be increased.
また、 前面側熱交換器 2 0 におけるフィ ン 2 1 の直線状の風上前 縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 5 に近い側の領域すなわち風上前縁 2 3 と風下後縁 3 3 とで挟まれ た領域および前面側熱交換器 2 0 の曲線状の風上前縁 2 4 と曲線状 の風下側後縁 3 4 とで挟まれた領域については、 外径が 6 . 5 〜 8 . 5 m mの範囲の伝熱管 1 1 c 、 l i dを 2列配置するとともに段 方向ピッチを 1 6 〜 2 2 m mとしたことにより、 2列構成での通風 抵抗としては若干高いが、 高い空気側熱伝達率を得るこ とができ、 また熱交換器全体としての通風抵抗の差異を少なく して風速分布を 改善する ことができるので、 同一騒音時の風量を向上させて優れた 熱交換能力を発揮させることができる。  In addition, of the two regions sandwiched between the straight windward leading edge and the straight leeward trailing edge of the fin 21 of the front-side heat exchanger 20, the region closer to the once-through blower 5, that is, the wind The region between the upper front edge 23 and the leeward rear edge 33 and the front heat exchanger 20 between the curved leeward front edge 24 and the curved leeward rear edge 3 4 As for the area, two rows of heat transfer tubes 11 c and lid with an outer diameter in the range of 6.5 to 8.5 mm were arranged and the stepwise pitch was set to 16 to 22 mm. Although the airflow resistance is slightly higher, a high air-side heat transfer coefficient can be obtained, and the difference in ventilation resistance of the heat exchanger as a whole can be reduced to improve the wind speed distribution. By improving the air volume of the air, excellent heat exchange capacity can be exhibited.
また、 前面側熱交換器 2 0 におけるフィ ン 2 1 の曲線状の風上前 縁 2 4 と曲線状の風下側後縁 3 4 とで挟まれた領域の部分に挿入さ れる伝熱管 1 1 の段方向ピッチについては、 気体の流れの風上側の 列の方が、 気体の流れの風下側の列に比べて同等以下となるよう し たので、 伝熱管 1 1 の段方向での本数を可能な限り多く してこの領 域での通風抵抗を高くすることができ、 したがってフィ ン付き熱交 換器 1 0 の風速分布をよ り均一化するこ とができるので、 よ り大き な熱交換能力を発揮する ことができる。 また、 フィ ン付き熱交換器 1 0 を凝縮器若しく はガスクーラーと して使用 した場合の冷媒入口寄り の伝熱管 1 1 d または蒸発器とし て使用 した場合の冷媒出口寄り の伝熱管 l i dの外径を 6 . 5〜 8 . 5 m mの範囲で且つ他のいずれの伝熱管 1 1 a、 l i b , 1 1 c よ り も太くするとともに 2列構成の気体の流れの風下側の列に配置 して 2パスで用いる (形成する) ので、 空気と冷媒との温度差に関 し対向流的な配置による性能向上が得られるとともに、 管内の熱伝 達率は若干低下するが、冷媒流通抵抗を大幅に低下させる ことがで き、 したがって熱交換能力を大幅に増大させる ことができる。 さ ら に、 外径が 6 . 5 ~ 8 . 5 mmの範囲で、 フィ ン付き熱交換器 1 0 を凝縮器若しく はガスクーラーとして使用した場合の冷媒入口寄り の伝熱管 1 1 dまたは蒸発器として使用した場合の冷媒出口寄り の 伝熱管 1 1 dよ り、 小さい方の外径の伝熱管 1 1 c を、 当該フィ ン 付き熱交換器 1 0 を凝縮器若しく はガスクーラーとして使用した場 合に、 冷媒出口寄りの最も大きい外径の 2パスで用いる (形成する ) 伝熱管 1 1 dよ り冷媒下流側の伝熱管として、 または当該フィ ン 付き熱交換器 1 0 を蒸発器として使用した場合に、 冷媒出口寄り の 最も大きい外径の 2パスで用いる (形成する) 伝熱管 1 1 dよ り冷 媒上流側の伝熱管として、 2パスで用いることによ り、 管内熱伝達 率を向上させて熱交換能力を増大させることができる。 In addition, the heat transfer tube 1 1 inserted in the area of the front heat exchanger 20 between the curved upwind leading edge 24 of the fin 21 and the curved downwind trailing edge 34 The row pitch on the leeward side of the gas flow was set to be equal to or less than the row on the leeward side of the gas flow, so the number of heat transfer tubes 11 in the row direction was As much as possible, the ventilation resistance in this area can be increased, and thus the wind speed distribution of the finned heat exchanger 10 can be made more uniform, so that a larger heat Exchange ability can be demonstrated. In addition, when the heat exchanger with fins 10 is used as a condenser or a gas cooler, the heat transfer tube 11d near the refrigerant inlet or the heat transfer tube lid near the refrigerant outlet when used as an evaporator. Outside diameter of 6.5 to 8.5 mm and thicker than any of the other heat transfer tubes 11a, lib, 11c. Since it is arranged and used (formed) in two passes, it is possible to improve the performance due to the countercurrent arrangement with respect to the temperature difference between the air and the refrigerant, and the heat transfer coefficient in the pipe is slightly reduced, but the refrigerant flow The resistance can be greatly reduced, and thus the heat exchange capacity can be greatly increased. Furthermore, when the heat exchanger with fins 10 is used as a condenser or gas cooler with an outer diameter in the range of 6.5 to 8.5 mm, the heat transfer tubes 11 d or 1 d near the refrigerant inlet are used. The heat transfer tube 11c with the smaller outer diameter than the heat transfer tube 11d near the refrigerant outlet when used as an evaporator is used, and the heat exchanger 10 with the fin is used as a condenser or gas cooler. If used, use (form) the heat transfer tube 11 1d in the two passes with the largest outer diameter near the refrigerant outlet, or evaporate the heat exchanger 10 with the fin as the heat transfer tube downstream of the refrigerant. When used as a heat exchanger, it is used (formed) in the two passes with the largest outer diameter near the refrigerant outlet. By using two passes as the heat transfer tube on the upstream side of the coolant from the 1d heat transfer tube, The heat transfer rate can be improved to increase the heat exchange capacity.
また、 伝熱管 1 1 a、 l i b , 1 1 c 、 1 1 d とフィ ン 2 1 、 4 1 の風上前縁 2 2 、 2 3 、 2 4 , 4 2 または風下後縁 3 2、 3 3 、 3 4、 4 3 との距離を、 最短でも 1 . 8 m mとしたので、 フィ ン付 き熱交換器 1 0 を蒸発器として用いた場合、 フィ ン 2 1 、 4 1 の表 面に付着し流下する凝縮水が伝熱管 1 1 a、 l i b , 1 1 c 、 1 1 dに当って、 フィ ン 2 1 , 4 1 の風上前縁 2 2 、 2 3、 2 4, 4 2 または風下後縁 3 2 、 3 3 、 3 4、 4 3から飛び出してしまう とい う現象を抑制することができる。 In addition, the heat transfer tubes 11a, lib, 11c, 11d and the windward leading edges 22, 23, 24, 42 of the fins 21, 41, or the leeward trailing edges 32, 33 , 34, and 43 are at least 1.8 mm, so if the heat exchanger with fins 10 is used as the evaporator, it will adhere to the surfaces of the fins 21 and 41. Condensate flowing down is the heat transfer tube 1 1a, lib, 1 1c, 1 1 In the case of d, the fins 21, 41 jump out from the windward leading edge 22, 23, 24, 42 or the leeward trailing edge 32, 33, 34, 43. Can be suppressed.
また、 フィ ン付き熱交換器 1 0 を段方向で再熱器と蒸発器に分け て使用 して除湿運転を行う場合、 折曲状の前面側熱交換器 2 0 にお けるフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁とで挟まれ た二つの領域のうち貫流送風機 5から遠い側の領域すなわち風上前 縁 2 2 と風下後縁 3 2 とで挟まれた領域および背面側熱交換器 4 0 を再熱器として用い、 折曲状の前面側熱交換器 2 0 におけるフィ ン 2 1 の直線状の風上前縁と直線状の風下後縁とで挟まれた二つの領 域のうち貫流送風機 5 に近い側の領域すなわち風上前縁 2 3 と風下 後縁 3 3 とで挟まれた領域および前面側熱交換器 2 0 におけるフィ ン 2 1 の曲線状の風上前縁 2 4 と曲線状の風下側後縁 3 4 とに挟ま れた領域を蒸発器として用いることによ り、 再熱器と蒸発器の熱負 荷を適切にバランスさせて良好な除湿運転を行う こ とができる。 ま た、 再熱器は蒸発器の鉛直方向上側に配置しているので、 蒸発器の 領域のフィ ンに結露する凝縮水が、 再熱器のフィ ンの表面に当って 再蒸発して、 部屋を加湿してしまうのを防止する こ とができる。  When the dehumidifying operation is performed by using the heat exchanger with fins 10 divided into a reheater and an evaporator in the stage direction, the fins 21 in the bent front-side heat exchanger 20 are used. Of the two areas sandwiched by the straight leeward leading edge and the straight leeward trailing edge, the area farther from the once-through blower 5 is sandwiched by the windward leading edge 22 and the leeward trailing edge 32. Using the heat exchanger 40 as the reheater, the straight frontward edge of the fin 21 and the straight rearward edge of the fin 21 in the bent front heat exchanger 20 Of the two sandwiched areas, the area closer to the once-through blower 5, that is, the area sandwiched by the windward leading edge 23 and the leeward trailing edge 33, and the fin 21 in the front heat exchanger 20 By using the area sandwiched between the curved upwind leading edge 24 and the curved downwind trailing edge 34 as an evaporator, the heat load of the reheater and evaporator can be reduced. Can and this performing good dehumidifying operation by balance. In addition, since the reheater is located vertically above the evaporator, condensed water condensing on the fins in the area of the evaporator hits the fin surface of the reheater and re-evaporates. Humidification of the room can be prevented.
また、 段方向に隣接する伝熱管 1 1 の間のフィ ン 2 1 、 4 1 の表 面に気体の主流方向に開口して複数設けられた切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2、 1 5 2 の温度境界層前縁効果によ り、 高 い空気側熱伝達率が得られるとともに、 これら切り起こし 1 4 1 、 1 5 1 、 1 6 1、 1 4 2 、 1 5 2 の伝熱管 1 1 寄り の立ち上がり部 1 4 1 a、 1 5 1 a、 1 6 1 a、 1 4 2 a、 1 5 2 a を伝熱管 1 1 の円周に概略沿う方向で形成したので、 気流を伝熱管 1 1 の後流部 に誘導する ことができ、 したがつて有効伝熱面積が増加するので、 熱交換性能を向上させる ことができる。 さ らに、 切り起こし 1 4 1 、 1 5 1、 1 6 1、 1 4 2、 1 5 2の列方向の幅 W s l、 W s 2 に 対する列方向に隣接する切り起こし同士間の幅 W b 1、 W b 2 の比 W b 1 / W s 1、 W b 2 / W s 2を、 約 2〜約 2. 5 としたこ とに よ り、 従来の比が約 3の場合よ り熱交換能力を向上させる ことがで きる。 In addition, a plurality of cut-and-raised portions 141, 151, and 161 are provided on the surface of the fins 21 and 41 between the adjacent heat transfer tubes 11 in the stepwise direction and open in the main flow direction of the gas. , 142, 152, the leading edge effect of the thermal boundary layer provides a high air-side heat transfer coefficient, and these cuts 141, 151, 161, 1, 42, 15 2 heat transfer tube 1 1 rising part 14 1 a, 15 1 a, 16 1 a, 16 1 a, 14 2 a, 15 2 a formed in a direction roughly along the circumference of heat transfer tube 11 So that the air flow was Therefore, the effective heat transfer area increases, so that the heat exchange performance can be improved. In addition, the width W between the cut-and-raised portions 14 1, 15 1, 16 1, 14 2 and 15 2 in the column direction W sl, W s 2 The width W between the cut-and-raised portions in the column direction The ratio of b1, Wb2 Wb1 / Ws1, Wb2 / Ws2 is set to about 2 to about 2.5, which is higher than the conventional ratio of about 3. Heat exchange capacity can be improved.
また、 各切り起こし 1 4 1、 1 5 1、 1 6 1、 1 4 2、 1 5 2の 高さを、 隣接するフィ ン 1 3 ( 2 1、 4 1 ) 同士のピッチの約 1 Z 4〜約 3 Z 4にしたことによ り、 同一騒音時の風量を増加させる こ とができ、 よ り大きな熱交換能力を発揮する ことができる。  In addition, the height of each cutout 14 1, 15 1, 16 1, 14 2, 15 2 is set to about 1 Z 4 of the pitch between adjacent fins 13 (2 1, 4 1). By setting it to about 3 Z4, the air volume at the same noise can be increased, and a greater heat exchange capacity can be exhibited.
また、 各切り起こし 1 4 1、 1 5 1、 1 6 1、 1 4 2、 1 5 2の 高さを、 フィ ン付き熱交換器 1 0が貫流送風機 5 に接近する風速が 大きい領域 Gについては、 隣接するフィ ン 1 3 ( 2 1、 4 1 ) 同士 のピッチの約 1 / 2 として通風抵抗を比較的大きくするとともに、 他の領域については隣接するフィ ン 1 3 ( 2 1、 4 1 ) 同士のピッ チの約 3 Z 4として通風抵抗をそれよ り小さ く したことによ り、 フ イ ン付き熱交換器 1 0の風速分布をよ り均一化する ことがで.き、 し たがってよ り大きな熱交換能力を発揮することができる。  In addition, the height of each of the cut-and-raised parts 14 1, 15 1, 16 1, 14 2, and 15 2 is set for the area G where the heat exchanger 10 with fins approaches the once-through blower 5 where the wind speed is high. Is about 1/2 of the pitch between adjacent fins 13 (2, 4 1) to make the ventilation resistance relatively large, and for other areas, the adjacent fins 13 (2 1, 4 1) By making the airflow resistance smaller as the pitch of about 3 Z4 between the two, the wind speed distribution of the heat exchanger 10 with fins can be made more uniform. Therefore, a greater heat exchange capacity can be exhibited.
また、 各切り起こし 1 4 1、 1 5 1、 1 6 1、 1 4 2、 1 5 2 と フィ ン 2 1、 4 1 の風上前縁 2 2、 2 3、 2 4、 4 2または風下後 縁 3 2、 3 3、 3 4、 4 3 との距離を、 最短でも 1. 8 mmとした ので、 フィ ン付き熱交換器 1 0を蒸発器として用いた場合、 フィ ン 2 1、 4 1 の表面に付着した凝縮水が切り起こし 1 4 1、 1 5 1、 1 6 1、 1 4 2、 1 5 2に沿って流下しながら、 フィ ン 2 1 の風上 前縁 2 2 、 2 3 、 2 4 、 4 2 または風下後縁 3 2 、 3 3 、 3 4 、 4 3 から飛び出してしまう という現象を抑制する ことができる。 In addition, the upwind leading edge 2 2, 2, 3, 24, 4 2 or leeward of each cutout 14 1, 15 1, 16 1, 14 2, 15 2 and fins 21, 4 1 Since the distance from the trailing edge 32, 33, 34, 43 was at least 1.8 mm, when the heat exchanger with fins 10 was used as the evaporator, the fins 21, 4 The condensed water adhering to the surface of (1) is cut and raised, and flows down along 4 1, 1 5 1, 1 6 1, 1 4 2 and 1 5 2 while windward of Fin 2 1 It is possible to suppress the phenomenon of jumping out of the leading edge 22, 23, 24, 42 or the leeward trailing edge 32, 33, 34, 43.
また、 列方向に隣接する 2つの伝熱管 1 1 の間において、 内部を 流れる流体に温度差がある場合、 2つの伝熱管 1 1 の列間中央部の フィ ン 2 1 、 1 に段方向に概略沿う方向に切り込み 1 7 を設けた ことによ り、 フィ ン 2 1 、 4 1 を通した熱伝導による熱交換ロスを 防ぐことができるので、 熱交換能力を低下させる ことがない。  Also, if there is a temperature difference in the fluid flowing inside the two heat transfer tubes 11 adjacent in the column direction, the fins 21 and 1 at the center between the rows of the two heat transfer tubes 11 By providing the cuts 17 in the direction along the outline, heat exchange loss due to heat conduction through the fins 21 and 41 can be prevented, so that the heat exchange capacity is not reduced.
また、 フィ ン付き熱交換器 1 0 を段方向で再熱器と蒸発器とに分 けて使用 し除湿運転を行う場合、再熱器の領域と蒸発器の領域との 間のフィ ン 2 1 、 4 1 に、 切断しない部分 1 8 をごくわずか残して ほぼ完全に切断する切り込み 1 9 を設けたことによ り、 フィ ン 2 1 、 4 1 の熱伝導による大幅な能力の低下を防ぐことができる。 さ ら に、 フィ ン付き熱交換器 1 0全体を蒸発器として使用する場合、 フ ィ ン 2 1 、 4 1 の表面に凝縮する水を切り込み 1 9 に滞留させる こ となく、 フィ ン 2 1 、 4 1 のごくわずかだが繋がっている部分 1 8 を通って円滑に流下させる ことができる。  In addition, when the dehumidifying operation is performed using the heat exchanger with fins 10 divided into a reheater and an evaporator in the stage direction, the fins 2 between the reheater region and the evaporator region are used. 1 and 41 have a notch 19 that cuts almost completely, leaving only a small part 18 that does not cut, thereby preventing a significant decrease in capacity due to heat conduction of the fins 21 and 41 be able to. Furthermore, when the entire heat exchanger with fins 10 is used as an evaporator, the water condensing on the surfaces of the fins 21 and 41 does not stay in the cuts 19 and the fins 21 , 4 1 can flow down smoothly through a very small but connected part 18.
また、 伝熱管 1 1 の内部を流動する冷媒流体として、 オゾン破壊 係数の小さい H F C冷媒、 H C冷媒および二酸化炭素のいずれか 1 つを用いることによ り、 地球環境の保護に貢献することができる。 特に、 H C冷媒ゃ二酸化炭素は地球温暖化係数が小さい冷媒である ため、 よ り地球環境の保護に貢献することができる。  In addition, the use of one of HFC refrigerant, HC refrigerant and carbon dioxide having a low ozone depletion potential as the refrigerant fluid flowing inside the heat transfer tube 11 can contribute to the protection of the global environment. . In particular, since HC refrigerant and carbon dioxide are refrigerants having a low global warming potential, they can further contribute to the protection of the global environment.
また、 前面側熱交換器 2 0 におけるフィ ン 2 1 の上端部と背面側 熱交換器 4 0 におけるフィ ン 4 1 の上端部とが繋がつた状態の 1 枚 のフィ ン 1 3 として連続プレス加ェする際、 後で伝熱管 1 1 を挿入 するためのフィ ンカラー 1 2 の、 気体の主流方向に対して直角方向 となる段方向に対するピッチについては、 両フィ ン 2 1 、 4 1 同士 の境界部で隣接する箇所のフィ ンカラーの段方向のピッチ Fを、 他 の段方向のピッチ Dよ り も短くなるよう にしたので、 前面側熱交換 器 2 0 と背面側熱交換器 4 0 との境界部で隣接する箇所のフィ ンカ ラーのピッチ Fを、 他の近傍の段方向のピッチ D と同等とした場合 と比較して、 フィ ン材の廃材 5 2 を少なくする ことができる。 In addition, continuous pressing was performed as a single fin 13 with the upper end of the fin 21 of the front heat exchanger 20 and the upper end of the fin 41 of the rear heat exchanger 40 connected. At the time of cooling, the direction perpendicular to the main gas flow direction of the fin collar 12 for inserting the heat transfer tube 11 later The stepwise pitch F of the fin collar at the adjacent portion at the boundary between the two fins 21 and 41 should be shorter than the pitch D of the other steps. As a result, the pitch F of the adjacent color at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 was equal to the pitch D of the other neighboring steps. In comparison, the waste material 52 of the fin material can be reduced.
また、 フィ ン付き熱交換器 1 0 の製造方法は、 筐体 2 内の前面側 に配置されている前面側熱交換器 2 0 と、 筐体 2 内の背面側に配置 されている背面側熱交換器 4 0 とから構成されたフィ ン付き熱交換 器 1 0 を製造する製造方法であって、 前面側熱交換器 2 0 における フィ ン 2 1 の上端部と背面側熱交換器 4 0 におけるフィ ン 4 1 の上 端部とが境界部で繋がった状態の 1枚のフィ ン 1 3 として連続的に プレス加工し、 そしてこれらフィ ン 1 3 を多数積層して伝熱管 1 1 を挿入、 拡管した後、 フィ ン 1 3 を前面側熱交換器 2 0 と背面側熱 交換器 4 0 との境界部で切断して、 前面側熱交換器 2 0 と背面側熱 交換器 4 0 に分離するもので、 前面側熱交換器 2 0 と背面側熱交換 器 4 0 とを個別に製造する場合に比べて、 効率的にフィ ン付き熱交 換器 1 0 を製造する ことができる。 また、 1 枚のフィ ン 1 3 に挿入 する伝熱管 1 1 a 、 l i b , l l c 、 l i dの直径の異なるものや 列数の異なるものや列方向ピッチや段方向ピッチの異なるものを混 在させたり、 1 枚のフィ ン 1 3 に形成される切り起こし 1 4 1 、 1 5 1 、 1 6 1 、 1 4 2 、 1 5 2 については、 その形状や高さが異な るものを混在させる こ とができる。  The method of manufacturing the heat exchanger with fins 10 includes a front heat exchanger 20 disposed on the front side of the housing 2 and a rear heat exchanger 20 disposed on the rear side of the housing 2. A method for manufacturing a heat exchanger with fins constituted by a heat exchanger and a heat exchanger with fins and a rear heat exchanger in a front heat exchanger. The fins 41 were pressed continuously as a single fin 13 with the upper end of the fin 41 connected at the boundary, and a number of these fins 13 were stacked and the heat transfer tube 11 was inserted. After expansion, the fins 13 are cut at the boundary between the front heat exchanger 20 and the rear heat exchanger 40, and then cut into the front heat exchanger 20 and the rear heat exchanger 40. Heat exchange with fins is more efficient than when the front heat exchanger 20 and the rear heat exchanger 40 are manufactured separately. It is possible to produce a 0. In addition, heat transfer tubes 11a, lib, llc, and lid with different diameters, different numbers of rows, different pitches in the row direction, and different pitches in the step direction may be mixed. For the cut-and-raised parts 14 1, 15 1, 16 1, 16 1, 14 2, and 15 2 formed on one fin 13, those with different shapes and heights should be mixed. Can be.
また、 前面側熱交換器 2 0 と背面側熱交換器 4 0 との境界部で隣 接する箇所のフィ ンカラー 1 2 のピッチ Fを、 他の近隣の段方向の ピッチ Dより も短く なるよう に構成されているフィ ン付き熱交換器 1 0 の製造方法については、 前面側熱交換器 2 0 におけるフィ ン 2 1 の上端部と背面側熱交換器 4 0 におけるフィ ン 4 1 の上端部とが 繋がった状態のフィ ン 1 3 における、 後で伝熱管 1 1 を挿入するた めのフィ ンカラー 1 2 の気体の主流方向に対して直角方向となる段 方向に対する ピッチについては、 前面側熱交換器 2 0 と背面側熱交 換器 4 0 との境界部で隣接する箇所のフィ ンカラー 1 2 のピッチ F を、 他の近隣の段方向のピッチ Dよ り も短く形成し、 そしてこれら フィ ン 1 3 を多数積層して伝熱管 1 1 を挿入、 拡管した後、 フィ ン 1 3 を前面側熱交換器 2 0 と背面側熱交換器 4 0 との境界部で切断 して、 前面側熱交換器 2 0 と背面側熱交換器 4 0 に分離するよう に しているので、 前面側熱交換器 2 0 と背面側熱交換器 4 0 との境界 部で隣接する箇所のフィ ンカラ一 1 2 の段方向のピッチ Fを、 他の 近傍の段方向のピッチ Dと同等とした場合と比較して、 フィ ン材の 廃材 5 2 を少なくする ことができる。 Also, the pitch F of the fin collars 12 adjacent to each other at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 is set to Regarding the method of manufacturing the heat exchanger with fins 10 configured to be shorter than the pitch D, the upper end of the fin 21 in the front heat exchanger 20 and the heat exchanger in the rear heat exchanger 40 are described. In the step of the fin 13 connected to the upper end of the fin 4 1, which is perpendicular to the main flow direction of the gas of the fin collar 12 for inserting the heat transfer tube 11 later. Regarding the pitch, the pitch F of the fin collar 12 adjacent to the boundary between the front-side heat exchanger 20 and the rear-side heat exchanger 40 is larger than the pitch D of the other neighboring steps. After the fins 13 are formed short, a large number of these fins 13 are stacked, and the heat transfer tubes 11 are inserted and expanded, then the fins 13 are connected to the boundary between the front heat exchanger 20 and the rear heat exchanger 40. So that the front heat exchanger 20 and the rear heat exchanger 40 are separated. Therefore, the stepwise pitch F of the finkers 1 and 2 at an adjacent location at the boundary between the front heat exchanger 20 and the rear heat exchanger 40 is the same as the other stepwise pitches. Waste material 52 of fin material can be reduced as compared to the case where D is equivalent.
なお、 上記実施の形態においては、 吸込み口 3 a, 3 bが前面や 上面などに設けている場合について説明したが、 これに限るもので はない。 また、 吹出し口 4 としては下面側に設けられている場合に ついて説明したが、 これに限るものではなく、 前面などに設けられ ているものにも上記構成を適用する ことができる。  In the above embodiment, the case where the suction ports 3a and 3b are provided on the front surface, the upper surface, and the like has been described, but the present invention is not limited to this. Also, the case where the outlet 4 is provided on the lower surface side has been described. However, the present invention is not limited to this, and the above configuration can be applied to the outlet provided on the front surface or the like.
また、 上記実施の形態においては、 前面側熱交換器 2 0および背 面側熱交換器 4 0 が吸込み口 3 a , 3 bから貫流送風機 5 までの風 回路の途中に配設された場合について説明したが、 これに限るもの ではなく、 例えば貫流送風機 5から吹出し口 4 までの風回路の途中 に配設された熱交換器にも上記構成を適用する ことができる。 さ ら に、 熱交換器が室内ユニッ ト内に 3つ以上設けられるものや、 1 つ しか設けられないものにも適用可能である。 Further, in the above embodiment, the case where the front heat exchanger 20 and the rear heat exchanger 40 are arranged in the wind circuit from the suction ports 3a, 3b to the once-through blower 5 is described. Although described above, the present invention is not limited to this, and the above configuration can be applied to, for example, a heat exchanger provided in the wind circuit from the once-through blower 5 to the outlet 4. So In addition, the present invention can be applied to a case where three or more heat exchangers are provided in an indoor unit, or a case where only one heat exchanger is provided.
上述した本実施の形態に係るフィ ン付き熱交換器によると、 空気 調和機の室内ュニッ トに搭載される前面側熱交換器と背面側熱交換 器とから構成されるフィ ン付き熱交換器の形態およびその製造方法 を改善し、 前面側熱交換器のフィ ンの風上前縁および風下後縁は、 それぞれが同じ鈍角をなす 2本の直線部およびこの 2本の直線の間 を結ぶ 1 本の曲線部からなる折曲状に形成され、 この折曲状の前面 側熱交換器におけるフィ ンの直線状の風上前縁と直線状の風下後縁 とで挟まれた二つの領域のうち、 貫流送風機に近い側の領域の風上 前縁と風下後縁との距離を、 貫流送風機から遠い側の領域の風上前 縁と風下後縁との距離よ り短く し、 前面側熱交換器におけるフィ ン の風上前縁および風下後縁のそれぞれの曲線部を同じ形状とし、 背 面側熱交換器におけるフィ ンの風上前縁および風下後縁が平行な直 線で構成され、 背面側熱交換器におけるフィ ンの風上前縁と風下後 縁との距離を、 折曲状の前面側熱交換器におけるフィ ンの直線状の 風上前縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流 送風機から遠い側の領域の風上前縁と風下後縁との距離に等しくす る ことにより、 空気調和機の室内ユニッ トの限られた空間、 特に奥 行きが狭い空間にできるだけ大きなフィ ン付き熱交換器を収納し、 熱交換能力の大幅な向上を図るとともに、 蒸発器として使用した際 に、 フィ ン表面に凝縮する水を当該フィ ンに沿って円滑に流下させ る ことができる。 また、 フィ ン付き熱交換器の製造方法によると、 前面側熱交換器におけるフィ ンと背面側熱交換器におけるフィ ンと が槃がった 1 枚のフィ ンとして連続プレス加工するので、 あま り フ ィ ン材の廃材を出さず、 効率的に安価に製造することができる 産業上の利用可能性 According to the above-described heat exchanger with fins according to the present embodiment, the heat exchanger with fins includes the front heat exchanger and the rear heat exchanger mounted on the indoor unit of the air conditioner. And the method of manufacturing the same, the leeward leading edge and the leeward trailing edge of the fin of the front heat exchanger connect two straight portions and the two straight lines, each forming the same obtuse angle. It is formed in a bent shape consisting of one curved part, and two areas sandwiched between the straight upwind front edge and the straight downwind edge of the fin in this bent front heat exchanger The distance between the leeward leading edge and the leeward trailing edge in the area closer to the once-through fan is shorter than the distance between the leeward leading edge and the leeward trailing edge in the area farther from the once-through fan, and the front side In the heat exchanger, the curved part of the leeward leading edge and the leeward trailing edge of the fin have the same shape. The leeward leading edge and the leeward trailing edge of the fin in the backside heat exchanger consist of parallel straight lines, and the distance between the finward leading edge and the leeward trailing edge of the fin in the rearward heat exchanger is Of the two areas sandwiched between the straight leeward leading edge of the fin and the straight leeward trailing edge of the bent front-side heat exchanger, the windward side of the area farther from the once-through blower By making the distance equal to the distance between the edge and the leeward trailing edge, the largest heat exchanger with fins can be stored in the limited space of the indoor unit of the air conditioner, especially in the space with a small depth, and the heat exchange capacity The water condensed on the surface of the fin when used as an evaporator can flow down smoothly along the fin, while significantly improving the water content. In addition, according to the method for manufacturing a heat exchanger with fins, the fins on the front heat exchanger and the fins on the back heat exchanger are continuously pressed as a single fin with a concave shape. Riff It can be manufactured efficiently and inexpensively without producing waste wood materials Industrial applicability
このよう に、 熱交換器におけるフィ ンの形状、 寸法の改善、 伝熱 管の配置の改善に関するもので、 特に空気調和機の室内ュニッ 卜に 適用する こ とができる他、 伝熱管内を流れる冷媒と外部を流れる空 気との間で熱交換を行う機器にも適用する ことができる。  Thus, it relates to the improvement of the shape and size of the fins in the heat exchanger, and the improvement of the arrangement of the heat transfer tubes.It can be applied particularly to the indoor unit of an air conditioner and flows through the heat transfer tubes. The present invention can also be applied to a device that performs heat exchange between a refrigerant and air flowing outside.

Claims

請 求 の 範 囲 The scope of the claims
1 . 前面側に吸込み口がおよび下面側に吹出し口がそれぞれ設けら れた筐体とこの筐体に収納される貫流送風機とから風回路が構成さ れた空気調和機の室内ュニッ 卜に搭載されるフィ ン付き熱交換器で あって、 1. Installed in the indoor unit of an air conditioner with a wind circuit composed of a housing with an inlet on the front side and an outlet on the lower side, and a once-through blower housed in this housing Heat exchanger with fins
前記吸込み口から貫流送風機までの風回路の途中または貫流送風 機から吹出し口までの風回路の途中に配置される前面側熱交換器と 背面側熱交換器とから構成され、  A front-side heat exchanger and a rear-side heat exchanger arranged in the wind circuit from the suction port to the once-through blower or in the wind circuit from the once-through blower to the outlet.
前記前面側熱交換器および前記背面側熱交換器はそれぞれ所定の 間隔で平行に並べられてその間を気体が流動する多数のフィ ンと、 このフィ ンに略直角に挿入されて内部を冷媒が流動する多数の伝熱 管とから構成され、  The front-side heat exchanger and the rear-side heat exchanger are arranged in parallel at predetermined intervals, and a number of fins through which gas flows, and a refrigerant inserted into the fins at a substantially right angle to allow the refrigerant to flow inside. Composed of a number of flowing heat transfer tubes,
前記前面側熱交換器におけるフィ ンを、 その風上前縁および風下 後縁がそれぞれが同じ鈍角をなす 2本の直線部並びにこれら 2本の 直線の間を結ぶ 1 本の曲線部によ り、 折曲状に形成する とともに、 折曲状に形成された前記フィ ンの直線状の風上前縁と直線状の風 下後縁とで挟まれた二つの領域のうち、 貫流送風機に近い側の領域 における風上前縁と風下後縁との距離を、 貫流送風機から遠い側の 領域における風上前縁と風下後縁との距離よ り も短く したことを特 徴とするフィ ン付き熱交換器。  The fins in the front-side heat exchanger are defined by two straight portions whose upwind leading edge and leeward trailing edge make the same obtuse angle, and one curved portion connecting these two straight lines. Of the two fins formed between the straight leeward leading edge and the linear leeward trailing edge of the bent fin, which are closer to the once-through blower. The distance between the windward leading edge and the leeward trailing edge in the area on the side is shorter than the distance between the windward leading edge and the leeward trailing edge in the area farther from the once-through blower. Heat exchanger.
2 . 貫流送風機に近い側の領域における風上前縁と風下後縁との距 離を 2 0 〜 2 3 m mにするとともに、 貫流送風機から遠い側の領域 における風上前縁と風下後縁との距離を 2 4 〜 2 7 m mにしたこと を特徴とする請求項 1 に記載のフィ ン付き熱交換器。 2.The distance between the leeward leading edge and the leeward trailing edge in the area near the once-through fan is set to 20 to 23 mm, and the leeward leading edge and the leeward trailing edge in the area farther from the once-through fan. The heat exchanger with fins according to claim 1, wherein the distance between the fins is 24 to 27 mm.
3 . 前面側熱交換器におけるフィ ンの風上前縁側および風下後縁側 の両曲線部を同じ形状としたことを特徴とする請求項 1 に記載のフ ィ ン付き熱交換器。 3. The heat exchanger with fins according to claim 1, wherein the fins on the windward leading edge side and the leeward trailing edge side of the front side heat exchanger have the same shape.
4 . 前面側熱交換器におけるフィ ンの曲線部を円弧状と したことを 特徴とする請求項 1 に記載のフィ ン付き熱交換器。 4. The heat exchanger with fins according to claim 1, wherein a curved portion of the fin in the front-side heat exchanger has an arc shape.
5 . 背面側熱交換器におけるフィ ンの風上前縁および風下後縁を互 いに平行な直線で構成するとともに、 当該フィ ンの風上前縁と風下 後縁との距離を、 前面側熱交換器におけるフィ ンの直線状の風上前 縁と直線状の風下後縁とで挟まれた二つの領域のうち、 貫流送風機 から遠い側の領域における風上前縁と風下後縁との距離に等しく し たこ とを特徴とする請求項 1 に記載のフィ ン付き熱交換器。 5. The leeward leading edge and the leeward trailing edge of the fin in the rear side heat exchanger are composed of straight lines that are parallel to each other, and the distance between the leeward leading edge and the leeward trailing edge of the fin is set to the front side. Of the two regions between the straight leeward leading edge of the fin and the straight leeward trailing edge of the heat exchanger, the leeward leading edge and the leeward trailing edge in the region farther from the once-through blower The heat exchanger with fins according to claim 1, wherein the distance is equal to the distance.
6 . 前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状の 風下後縁とで挟まれた二つの領域のうち、 貫流送風機から遠い側の 領域のフィ ン部に挿入される伝熱管および背面側熱交換器における フィ ンの風上前縁の直線部と風下後縁の直線部とで挟まれた部分に 挿入される伝熱管の外径を 4〜 6 . 4 m mにするとともに、 気体の 主流方向に沿う列方向に伝熱管を 3列で配置し、 前記気体の主流方 向に直角方向である段方向の伝熱管の配置ピッチを 1 4 . 5 〜 1 6 m mにしたことを特徴とする請求項 1 に記載のフィ ン付き熱交換器 6. Of the two areas between the straight leeward leading edge and the straight leeward trailing edge of the fin in the front-side heat exchanger, the fin is inserted into the fin in the area farther from the once-through blower. The outer diameter of the heat transfer tube inserted between the straight part of the leeward leading edge and the straight part of the leeward trailing edge of the fin in the heat transfer tube and the rear heat exchanger is 4 to 6.4 mm. In addition, the heat transfer tubes are arranged in three rows in the row direction along the main flow direction of the gas, and the arrangement pitch of the heat transfer tubes in the step direction that is perpendicular to the main flow direction of the gas is set to 14.5 to 16 mm. The heat exchanger with fins according to claim 1, wherein
7 . 前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状の 風下後縁とで挟まれた二つの領域のうち、 貫流送風機から遠い側の 領域のフィ ン部に挿入される伝熱管および背面側熱交換器における フィ ンの風上前縁の直線部と風下後縁の直線部とで挟まれた部分に 挿入される伝熱管を 2種類の外径の伝熱管で構成し、 7. Of the two areas between the straight leeward leading edge of the fin and the straight leeward trailing edge of the fin in the front-side heat exchanger, the fin is inserted into the fin in the area farther from the once-through blower. The heat transfer tube inserted between the straight section of the windward leading edge of the fin and the straight section of the leeward trailing edge of the fin in the rear heat exchanger consists of two types of outer diameter heat transfer tubes. And
且つ大きい方の外径の伝熱管を、 気体の流れの最も風上の列に配 置するとともに、 当該フィ ン付き熱交換器を凝縮器またはガスクー ラーとして使用する際の冷媒出口寄りの伝熱管として、 または蒸発 器として使用する際の冷媒入口寄りの伝熱管として、 1 パスを用い 小さい方の外径の伝熱管については、 当該フィ ン付き熱交換器を 凝縮器またはガスクーラーとして使用する際には、 大きい方の外径 の前記伝熱管よ り冷媒上流側の伝熱管として、 または蒸発器として 使用する際には、 大きい方の外径の伝熱管よ り冷媒下流側の伝熱管 として、 4パスを用いて、 それぞれ冷媒を流すよう にしたことを特 徵とする請求項 6 に記載のフィ ン付き熱交換器。  In addition, heat transfer tubes with the larger outer diameter are placed in the most upstream row of the gas flow, and the heat transfer tubes near the refrigerant outlet when the finned heat exchanger is used as a condenser or gas cooler. When using a heat exchanger with a fin as a condenser or gas cooler, use one pass as the heat transfer tube near the refrigerant inlet when using it as an evaporator. When used as a heat transfer tube upstream of the heat transfer tube having the larger outer diameter, or as a heat transfer tube downstream of the heat transfer tube having the larger outer diameter, 7. The heat exchanger with fins according to claim 6, wherein the refrigerant is flowed using four passes.
8 . 前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状の 風下後縁とで挾まれた二つの領域のうち貫流送風機に近い側の領域 のフィ ン部に挿入される伝熱管、 および当該フィ ンの曲線状の風上 前縁と曲線状の風下後縁とで挟まれた領域の部分に挿入される伝熱 管の外径をそれぞれ 6 . 5 〜 8 . 5 m mとし、 気体の主流方向に沿 う方向となる列方向に前記伝熱管を 2列配置し、 前記気体の主流方 向に直角方向となる段方向の前記伝熱管の配置ピッチを 1 6 〜 2 2 m mとしたことを特徴とする請求項 1 に記載のフィ ン付き熱交換器 8. In the front heat exchanger, the fin is inserted into the fin of the area closer to the once-through blower, between the two areas between the straight upwind front edge and the straight downwind rear edge of the fin. The outer diameter of the heat transfer tube and that of the heat transfer tube inserted in the area between the curved upwind leading edge and the curved downwind trailing edge of the fin are 6.5 to 8.5 mm, respectively. The heat transfer tubes are arranged in two rows in a row direction along the main flow direction of the gas, and an arrangement pitch of the heat transfer tubes in a step direction perpendicular to the main flow direction of the gas is 16 to 22. 2.The heat exchanger with fins according to claim 1, wherein
9 . 前面側熱交換器におけるフィ ンの曲線状の風上前縁と曲線状の 風下側後縁とで挟まれた領域の部分に挿入される伝熱管の段方向の 配置ピッチについては、 気体の流れの風上側の列のほうが風下側の 列に比べて同等以下となるよう したことを特徴とする請求項 8 に記 載のフィ ン付き熱交換器。 9. Regarding the step-wise pitch of the heat transfer tubes inserted in the area between the curved frontward edge of the fin and the rearward curved edge of the fin in the front-side heat exchanger, 9. The heat exchanger with fins according to claim 8, wherein a row on the leeward side of the flow is equal to or less than a row on the leeward side.
1 0 . 前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状 の風下後縁とで挟まれた二つの領域のうち貫流送風機に近い側の領 域のフィ ン部および当該フィ ンの曲線状の風上前縁と曲線状の風下 後縁とで挟まれた領域の部分にそれぞれ挿入される伝熱管を 2種類 の外径の伝熱管で構成し、 10 .In the front heat exchanger, the fin in the area closer to the once-through blower in the two areas between the straight windward leading edge and the straight leeward trailing edge of the fin, The heat transfer tubes inserted into the area between the curved leeward leading edge of the fin and the curved leeward trailing edge consist of two types of outer diameter heat transfer tubes.
且つ大きい方の外径の前記伝熱管を、 気体の流れの最も風下の列 に配置するとともに、 当該フィ ン付き熱交換器を凝縮器若しく はガ スク一ラーとして使用する際の冷媒入口寄りの伝熱管、 または蒸発 器として使用する際の冷媒出口寄りの伝熱管として用い、  The heat transfer tubes having the larger outer diameter are arranged in the most leeward row of the gas flow, and near the refrigerant inlet when the heat exchanger with fins is used as a condenser or a gas cylinder. When used as a heat transfer tube, or as a heat transfer tube near the refrigerant outlet when used as an evaporator,
小さい方の外径の前記伝熱管については、 当該フィ ン付き熱交換 器を凝縮器若しく はガスクーラ一として使用する際には、 大きい方 の外径の前記伝熱管よ り冷媒下流側の伝熱管として、 または蒸発器 として使用する際には、 大きい方の外径の前記伝熱管よ り冷媒上流 側の伝熱管として、 それぞれ 2パスを用いて冷媒を流すよう にした ことを特徴とする請求項 8 または 9 に記載のフィ ン付き熱交換器。  When using the heat exchanger with a fin as a condenser or a gas cooler for the heat transfer tube having a smaller outer diameter, the heat transfer tube downstream of the heat transfer tube having a larger outer diameter is used as the heat exchanger. When used as a heat tube or as an evaporator, the refrigerant flows using two paths as the heat transfer tube upstream of the heat transfer tube having the larger outer diameter, respectively. A heat exchanger with fins according to clause 8 or 9.
1 1 . 伝熱管とフィ ンの風上前縁または風下後縁との最短距離を、 1 1. The shortest distance between the heat transfer tube and the leading or trailing edge of the fin
1 . 8 m m以上としたことを特徴とする請求項 1 に記載のフィ ン付 き熱交換器。 The heat exchanger with a fin according to claim 1, wherein the heat exchanger has a length of 1.8 mm or more.
1 2 . 段方向において再熱器と蒸発器とに分けて使用し除湿運転を 行う場合、 前面側熱交換器におけるフィ ンの直線状の風上前縁と直 線状の風下後縁とで挟まれた二つの領域のうち貫流送風機から遠い 側の領域および背面側熱交換器を、 再熱器として用い、 1 2. When dehumidifying operation is performed by using the reheater and evaporator separately in the stage direction, the straight frontward edge of the fin and the straight rearward edge of the fin of the front heat exchanger Of the two areas sandwiched, the area farther from the once-through blower and the rear heat exchanger are used as reheaters,
前面側熱交換器におけるフィ ンの直線状の風上前縁と直線状の風 下後緣とで挟まれた二つの領域のうち貫流送風機に近い側の領域お よび当該フィ ンの曲線状の風上前縁と曲線状の風下側後縁とで挟ま れた領域を、 蒸発器として用いる ことを特徴とする請求項 1 に記載 のフィ ン付き熱交換器。  Of the two areas between the straight leeward leading edge of the fin and the straight leeward rear of the fin in the front-side heat exchanger, the area closer to the once-through blower and the curved fin of the fin 2. The heat exchanger with fins according to claim 1, wherein an area sandwiched between a windward leading edge and a curved leeward trailing edge is used as an evaporator.
1 3 . 段方向に隣接する伝熱管の間のフィ ン表面に気体の主流方向 に開口する複数の切り起こしを設け、 1 3. A plurality of cut-and-raised portions that open in the main flow direction of gas are provided on the fin surface between the heat transfer tubes that are adjacent in the step direction.
これら各切り起こしの伝熱管寄り の立ち上がり部を伝熱管の円周 に概略沿う方向で形成するとともに、 前記各切り起こしの列方向の 幅に対する前記列方向に隣接する切り起こし間の幅の比を約 2 〜約 2 . 5 としたことを特徴とする請求項 1 に記載のフィ ン付き熱交換 器。  The rising portions of the cut-and-raised portions near the heat transfer tube are formed in a direction substantially along the circumference of the heat transfer tube, and the ratio of the width between the cut-and-raised portions in the column direction to the width of the cut-and-raised portions in the column direction is determined. The heat exchanger with fins according to claim 1, wherein the heat exchanger has a diameter of about 2 to about 2.5.
1 4 . 切り起こしの高さを、 隣接するフィ ン同士のピッチの約 1 / 4〜約 3 Z 4にしたことを特徴とする請求項 1 3 に記載のフィ ン付 き熱交換器。 14. The heat exchanger with fins according to claim 13, wherein the height of the cut-and-raised portion is about / to about 3 Z4 of the pitch between adjacent fins.
1 5 . 切り起こ しの高さを、 当該フィ ン付き熱交換器が貫流送風機 に接近する風速が大きい領域については、 隣接するフィ ン同士のピ ツチの約 1 Z 2 にするとともに、 他方の領域については隣接するフ イ ン同士のピッチの約 3 / 4 としたことを特徴とする請求項 1 3 ま たは 1 4 に記載のフィ ン付き熱交換器。 15 5. In the region where the wind speed is high where the heat exchanger with fins approaches the once-through blower is about 1 Z2 of the pitch between adjacent fins, and The heat exchanger with fins according to claim 13 or 14, wherein the area is set to about / of the pitch between adjacent fins.
1 6 . 切り起こしと、 フィ ンの風上前縁または風下後縁との最短距 離を、 1 . 8 m m以上にしたことを特徴とする請求項 1 3 に記載の フィ ン付き熱交換器。 16. The heat exchanger with fins according to claim 13, wherein the shortest distance between the cut-and-raised edge and the leeward leading edge or the leeward trailing edge of the fin is set to 1.8 mm or more. .
1 7 - 列方向に隣接する 2つの伝熱管の間において、 内部を流れる 冷媒同士に温度差がある場合、 前記 2つの伝熱管の列間中央部のフ イ ンに、 段方向に概略沿う方向で切り込みを設けたことを特徴とす る請求項 1 に記載のフィ ン付き熱交換器。 1 7-If there is a temperature difference between the refrigerant flowing inside between two heat transfer tubes adjacent in the row direction, a direction generally along the step direction is applied to the central fin between the two heat transfer tubes. The heat exchanger with fins according to claim 1, characterized in that a notch is provided.
1 8 . 段方向に再熱器と蒸発器とに分けて使用し除湿運転を行う場 合、 再熱器の領域と蒸発器の領域との間のフィ ン部に、 切断しない 部分をごくわずかに残して切断する切り込みを設けたことを特徴と する請求項 1 に記載のフィ ン付き熱交換器。 1 8. When dehumidifying operation is performed by using the reheater and evaporator separately in the stage direction, only a small part of the fin between the reheater area and the evaporator area is not cut. The heat exchanger with fins according to claim 1, characterized in that a notch for cutting and leaving the heat exchanger is provided.
1 9 . 伝熱管の内部を流動する冷媒として、 H F C冷媒、 H C冷媒 および二酸化炭素のいずれか一つを用いたことを特徴とする請求項 1 に記載のフィ ン付き熱交換器。 2 0 . 前面側熱交換器におけるフィ ンの上端部と背面側熱交換器に おけるフィ ンの上端部とが槃がった状態で製造される請求項 1 に記 載のフィ ン付き熱交換器であって、 19. The heat exchanger with fins according to claim 1, wherein any one of an HFC refrigerant, an HC refrigerant, and carbon dioxide is used as the refrigerant flowing inside the heat transfer tube. 20. At the upper end of the fin and the rear heat exchanger in the front heat exchanger The heat exchanger with fins according to claim 1, wherein the heat exchanger with the fins is manufactured in a state in which the upper end of the fins is bent.
前記前面側熱交換器におけるフィ ンの上端部と前記背面側熱交換 器におけるフィ ンの上端部とが繋がった状態のフィ ンに形成された 伝熱管を挿入するためのフィ ンカラーの、 気体の主流方向に対して 直角方向となる段方向に対するピッチについては、  A gasket of a fin collar for inserting a heat transfer tube formed in a fin in a state where the upper end of the fin in the front heat exchanger and the upper end of the fin in the rear heat exchanger are connected. Regarding the pitch in the step direction that is perpendicular to the main flow direction,
前記前面側熱交換器と前記背面側熱交換器との境界部で隣接する 箇所のフィ ンカラーの配置ピッチが、 他の段方向での配置ピッチよ り も短くなるようにしたことを特徴とするフィ ン付き熱交換器。  The arrangement pitch of the fin collars at a location adjacent to the boundary between the front-side heat exchanger and the rear-side heat exchanger is shorter than the arrangement pitch in other stage directions. Heat exchanger with fins.
2 1 . 前面側熱交換器および背面側熱交換器を具備した請求項 1 に 記載のフィ ン付き熱交換器の製造方法であって、 21. The method for producing a finned heat exchanger according to claim 1, comprising a front heat exchanger and a rear heat exchanger.
前記前面側熱交換器におけるフィ ンの上端部と前記背面側熱交換 器における前記フィ ンの上端部とが境界部で繋がった状態の 1枚の フィ ンとして連続的にプレス加工して得られたフィ ンを多数積層し た後、 伝熱管を揷通し、  The upper end of the fin in the front heat exchanger and the upper end of the fin in the rear heat exchanger are continuously pressed as one fin in a state where the fin is connected at the boundary. After laminating a large number of fins,
次に前記各フィ ンを前記前面側熱交換器と前記背面側熱交換器と の境界部で切断して、 前記前面側熱交換器と前記背面側熱交換器と に分離することを特徴とするフィ ン付き熱交換器の製造方法。  Next, each of the fins is cut at a boundary between the front-side heat exchanger and the rear-side heat exchanger, and separated into the front-side heat exchanger and the rear-side heat exchanger. Of heat exchanger with fins.
2 2 . 前面側熱交換器および背面側熱交換器とを具備した請求項 2 0 に記載のフィ ン付き熱交換器の製造方法であって、 22. The method for manufacturing a finned heat exchanger according to claim 20, comprising a front-side heat exchanger and a rear-side heat exchanger.
前記前面側熱交換器におけるフィ ンの上端部と前記背面側熱交換 器におけるフィ ンの上端部とが境界部で繫がった状態の 1枚のフィ ンとして連続的にプレス加工する際に、 伝熱管を挿入するためのフィ ンカラーのピッチが、 前記前面側熱 交換器と前記背面側熱交換器とにそれぞれ形成されたフィ ンカラー の段方向に隣接する部分について、 他の段方向のピッチより も短く 形成されたフィ ンを、 多数積層した後、 各フィ ンカラ一に伝熱管を 揷通し、 When performing continuous press working as a single fin with the upper end of the fin in the front heat exchanger and the upper end of the fin in the back heat exchanger separated at the boundary. , The pitch of the fin collars for inserting the heat transfer tubes is smaller than the pitches of the other tiers in the portions adjacent to the fin collars formed on the front-side heat exchanger and the rear-side heat exchanger, respectively. After laminating a number of fins that are formed short, heat exchanger tubes are passed through each
次に前記フィ ンを前記前面側熱交換器と前記背面側熱交換器とに 分離することを特徴とするフィ ン付き熱交換器の製造方法。  Next, a method of manufacturing a heat exchanger with fins, comprising separating the fins into the front side heat exchanger and the back side heat exchanger.
PCT/JP2004/012889 2003-09-05 2004-08-30 Finned heat exchanger and method of manufacturing the same WO2005024309A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-313330 2003-09-05
JP2003313330A JP4511143B2 (en) 2003-09-05 2003-09-05 Finned heat exchanger and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2005024309A1 true WO2005024309A1 (en) 2005-03-17

Family

ID=34269767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/012889 WO2005024309A1 (en) 2003-09-05 2004-08-30 Finned heat exchanger and method of manufacturing the same

Country Status (4)

Country Link
JP (1) JP4511143B2 (en)
KR (1) KR100740180B1 (en)
CN (1) CN100398917C (en)
WO (1) WO2005024309A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907374A (en) * 2010-07-23 2010-12-08 广东美的电器股份有限公司 Finned tube type heat exchanger and manufacture method thereof
CN102818401A (en) * 2012-08-06 2012-12-12 海信科龙电器股份有限公司 All-aluminum heat exchanger for air conditioner
CN108443962A (en) * 2018-02-09 2018-08-24 青岛海尔空调器有限总公司 Heat exchanger for annular air conditioner indoor unit and annular air conditioner indoor unit
EP4030132A4 (en) * 2019-10-23 2022-11-02 GD Midea Heating & Ventilating Equipment Co., Ltd. Heat exchanger fin, heat exchanger, indoor unit and air conditioner

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4725277B2 (en) * 2005-10-06 2011-07-13 パナソニック株式会社 Finned heat exchanger
JP4796814B2 (en) * 2005-10-20 2011-10-19 東芝キヤリア株式会社 Heat exchanger and air conditioner indoor unit
JP2007247918A (en) * 2006-03-14 2007-09-27 Matsushita Electric Ind Co Ltd Heat exchanger with fin
JP4876660B2 (en) * 2006-03-24 2012-02-15 パナソニック株式会社 Finned heat exchanger and air conditioner
JP5037400B2 (en) * 2008-03-25 2012-09-26 東芝キヤリア株式会社 Manufacturing method of heat exchanger and indoor unit of air conditioner
JP5371364B2 (en) * 2008-10-20 2013-12-18 東芝キヤリア株式会社 Air conditioner indoor unit
WO2011111602A1 (en) * 2010-03-09 2011-09-15 東芝キヤリア株式会社 Air conditioner
CN103900152B (en) * 2012-12-28 2018-08-03 松下电器产业株式会社 Air regulator
CN103900153B (en) * 2012-12-28 2018-06-15 松下电器产业株式会社 Air regulator
CN105444398A (en) * 2015-11-26 2016-03-30 珠海格力电器股份有限公司 Air conditioner indoor unit and air conditioner
CN108458621B (en) * 2018-04-03 2019-09-20 珠海格力电器股份有限公司 Fin, heat exchanger and air conditioner
JP2021124273A (en) * 2020-02-10 2021-08-30 パナソニックIpマネジメント株式会社 Heat exchanger and air conditioner using the same
CN113758360A (en) * 2020-06-01 2021-12-07 广东美的暖通设备有限公司 Heat exchange fin, heat exchanger and air conditioning device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233956A (en) * 1994-02-21 1995-09-05 Toshiba Corp Air conditioner

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05164348A (en) * 1991-12-16 1993-06-29 Hitachi Ltd Air conditioner
JP3071353B2 (en) * 1994-01-18 2000-07-31 東芝キヤリア株式会社 Indoor unit of air conditioner
CN1143092C (en) * 1999-08-31 2004-03-24 东芝开利株式会社 Indoor unit for air conditioner
JP4495370B2 (en) * 2001-08-28 2010-07-07 東芝キヤリア株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07233956A (en) * 1994-02-21 1995-09-05 Toshiba Corp Air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101907374A (en) * 2010-07-23 2010-12-08 广东美的电器股份有限公司 Finned tube type heat exchanger and manufacture method thereof
CN101907374B (en) * 2010-07-23 2012-07-18 广东美的电器股份有限公司 Finned tube type heat exchanger and manufacture method thereof
CN102818401A (en) * 2012-08-06 2012-12-12 海信科龙电器股份有限公司 All-aluminum heat exchanger for air conditioner
CN108443962A (en) * 2018-02-09 2018-08-24 青岛海尔空调器有限总公司 Heat exchanger for annular air conditioner indoor unit and annular air conditioner indoor unit
CN108443962B (en) * 2018-02-09 2024-02-23 青岛海尔空调器有限总公司 Heat exchanger for annular air conditioner indoor unit and annular air conditioner indoor unit
EP4030132A4 (en) * 2019-10-23 2022-11-02 GD Midea Heating & Ventilating Equipment Co., Ltd. Heat exchanger fin, heat exchanger, indoor unit and air conditioner

Also Published As

Publication number Publication date
JP4511143B2 (en) 2010-07-28
CN1833142A (en) 2006-09-13
CN100398917C (en) 2008-07-02
JP2005083606A (en) 2005-03-31
KR20060056945A (en) 2006-05-25
KR100740180B1 (en) 2007-07-16

Similar Documents

Publication Publication Date Title
WO2005024309A1 (en) Finned heat exchanger and method of manufacturing the same
JP4725277B2 (en) Finned heat exchanger
US7762318B2 (en) Condensing heat-exchange copper tube for an flooded type electrical refrigeration unit
JP5417718B2 (en) Heat exchanger
EP2233874B1 (en) Heat exchanger
JP2004085170A (en) Heat exchanger
KR20110033198A (en) Method for manufacturing tube and fin heat exchanger with reduced tube diameter and optimized fin produced thereby
JP2002062076A (en) Small diametric tube type heat exchanger
JP2008121950A (en) Finned heat exchanger
JP3947158B2 (en) Heat exchanger
JP4876660B2 (en) Finned heat exchanger and air conditioner
JP2004019999A (en) Heat exchanger with fin, and manufacturing method therefor
JP2011043251A (en) Finned heat exchanger
JP2008215694A (en) Heat exchanger with fin
JP2006105415A (en) Heat exchanger
JP2010216718A (en) Heat exchanger with fin
JP2001317890A (en) Heat exchanger with fin
JP2006097953A (en) Heat exchanger with fin
JP2006162183A (en) Heat exchanger with fin
JP4179137B2 (en) Finned heat exchanger
US20110226457A1 (en) Condensation enhancement heat transfer pipe
JP2008121920A (en) Finned heat exchanger
WO2021161729A1 (en) Heat exchanger and air conditioner using same
JPH10197173A (en) Flat tube for heat exchanger and heat exchanger
JP2010139115A (en) Heat exchanger and heat exchanger unit

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200480022471.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020067000976

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020067000976

Country of ref document: KR

122 Ep: pct application non-entry in european phase