JP2677420B2 - Heat exchanger for refrigerant condenser - Google Patents

Heat exchanger for refrigerant condenser

Info

Publication number
JP2677420B2
JP2677420B2 JP1162024A JP16202489A JP2677420B2 JP 2677420 B2 JP2677420 B2 JP 2677420B2 JP 1162024 A JP1162024 A JP 1162024A JP 16202489 A JP16202489 A JP 16202489A JP 2677420 B2 JP2677420 B2 JP 2677420B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
transfer tube
outlet
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1162024A
Other languages
Japanese (ja)
Other versions
JPH0367968A (en
Inventor
光夫 工藤
敏彦 福島
民雄 印南
敬智 澤幡
享利 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1162024A priority Critical patent/JP2677420B2/en
Publication of JPH0367968A publication Critical patent/JPH0367968A/en
Application granted granted Critical
Publication of JP2677420B2 publication Critical patent/JP2677420B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空調機特に好適にはカーエアコンの凝縮器用
の熱交換器に係り、特に、冷凍サイクル内の冷媒封入量
を節約するのに適する凝縮器用熱交換器に関する。
Description: TECHNICAL FIELD The present invention relates to an air conditioner, and more particularly to a heat exchanger for a condenser of a car air conditioner, and is particularly suitable for saving the amount of refrigerant charged in a refrigeration cycle. The present invention relates to a heat exchanger for a condenser.

[従来の技術] 従来のカーエアコン用冷媒凝縮器としての熱交換器
は、波形に折り曲げ成形されたコルゲートフィンと複数
の冷媒通路を持つ伝熱管とを交互に多数積層して熱交換
部コアーを形成し、伝熱管の両端をヘッダパイプに接続
し、管内の冷媒ガスの流れを伝熱管入口及び出口に於い
て案内する構造のものが多い。
[Prior Art] A conventional heat exchanger as a refrigerant condenser for a car air conditioner includes a corrugated fin that is bent in a corrugated shape and a large number of heat transfer tubes having a plurality of refrigerant passages alternately stacked to form a heat exchange core. Many of them have a structure in which both ends of the heat transfer tube are connected to header pipes and the flow of the refrigerant gas in the tube is guided at the heat transfer tube inlet and outlet.

ヘッダパイプ内に設けた仕切り板によってこれら伝熱
管を夫々複数本の伝熱管より構成した二つ以上の管群に
区画し、冷媒を蛇行させてこれら管群に流すように構成
するとともに、各管群の通路断面積を入口側から出口側
に向って減少させる構造のものが特開昭63−3446に開示
されている。また、区画された管群ごとに伝熱管の断面
形状や断面積を変える構成としたものが実開昭63−1736
89に開示されている。ヘッダー内に長手方向に沿う中央
隔壁体を設け、伝熱管内にも内部の通路を前側通路と後
側通路に二分する中央隔壁体を設けることによって、冷
媒通路を前側通路群及び後側通路群に分ける構造のもの
が特開昭63−3191に開示されている。また、長さの異な
る複数のチューブ群を群ごとに一端を揃えて同一のヘッ
ダパイプに接続し、他端はチューブ群ごとに複数個のヘ
ッダパイプに接続し、ヘッダの退入による凹部を形成す
る構造のものが実開昭63−74989に開示されている。な
お、他にこの種の凝縮器として関連するものには、例え
ば、実開昭63−22566、実開昭63−74970、実開昭63−80
492、実開昭64−31369が挙げられる。
These heat transfer tubes are divided into two or more tube groups each composed of a plurality of heat transfer tubes by a partition plate provided in the header pipe, and the refrigerant is made to meander and flow into these tube groups. Japanese Patent Laid-Open No. 63-3446 discloses a structure in which the passage cross-sectional area of a group is reduced from the inlet side toward the outlet side. In addition, a configuration in which the cross-sectional shape and cross-sectional area of the heat transfer tubes are changed for each divided tube group is the actual exploitation Sho 63-1736.
89. By providing a central partition body along the longitudinal direction in the header and also providing a central partition body in the heat transfer tube that divides the internal passage into a front passage and a rear passage, the refrigerant passages are divided into a front passage group and a rear passage group. A structure divided into two is disclosed in JP-A-63-3191. In addition, a plurality of tube groups with different lengths are connected to the same header pipe with one end aligned for each group, and the other end is connected to a plurality of header pipes for each tube group to form a recess due to the withdrawal of the header. The structure described above is disclosed in Japanese Utility Model Laid-Open No. 63-74989. Other related condensers of this type include, for example, SAIKAI Sho 63-22566, SHIKAI Sho 63-74970, and SAIKAI Sho 63-80.
492 and J. Kaikai 64-31369.

また一般に、カーエアコンの様な内外気条件や圧縮機
回転数が広範に変る空調機では、それに対応できるよう
に冷媒封入量を多少過剰にし、過剰分の冷媒をリキッド
タンクに溜めておくのが普通である。
Generally, in an air conditioner such as a car air conditioner where the inside and outside air conditions and the number of revolutions of the compressor vary widely, it is necessary to make the amount of the refrigerant filled a little excessive so as to cope with it, and store the excess amount of the refrigerant in the liquid tank. It is normal.

[発明が解決しようとする課題] 上記タイプの凝縮器用熱交換器においては、複数の伝
熱管より構成された中間部管路群より流出した液とガス
との二相冷媒は、出口管路入口端と中間部管路群出口端
が連通するように接続されている出口管路入口ヘッダ部
に流入する。この流入した冷媒は重力の作用や流れが曲
がる時の遠心力によって、液冷媒は該ヘッダの端部に多
く集まり、液冷媒とガス冷媒は該ヘッダ内で分離する。
[Problems to be Solved by the Invention] In the heat exchanger for a condenser of the type described above, the two-phase refrigerant of the liquid and the gas flowing out from the intermediate pipe line group composed of a plurality of heat transfer pipes is the outlet pipe line inlet. The end flows into the outlet pipe inlet header part connected so that the intermediate pipe line group outlet end communicates with the end. Due to the action of gravity and the centrifugal force when the flow bends, a large amount of the liquid refrigerant gathers at the end of the header, and the liquid refrigerant and the gas refrigerant are separated in the header.

しかるに前記従来技術の凝縮器は、いずれも冷媒出口
側管路群を複数本の伝熱管で構成している。したがっ
て、かかる従来の凝縮器においては、該出口側管路群の
複数本の伝熱管においては、その位置に依ってそのうち
の或る伝熱管には液冷媒が多く流れ或る伝熱管ガスには
冷媒が多く流れるという冷媒分配の不均一が生じ、この
ため、ガス冷媒が多く流れる伝熱管内では冷媒の凝縮が
不充分となり、凝縮できないまま伝熱管出口より流出
し、出口ヘッダ部の液冷媒中に混入して気泡を生じる。
このように冷媒分配の不均一のために凝縮できなかった
ガス冷媒が凝縮器出口から液冷媒に混入して出て来る。
このガス冷媒が混入した液冷媒を膨張弁に通すと、冷媒
質量流量がガス冷媒混入度合に依って大幅に変化し、膨
張弁の作動が不安定になり、冷凍サイクルが不安定にな
る。しかし、従来は、凝縮器出口で液冷媒にガス冷媒が
混入していても、これを一端リキッドタンクに導入し、
リキッドタンクを経由した後の冷媒を膨張弁に通すよう
にしているので、上記の様な膨張弁の作動の不安定の問
題は防止されていた。
However, in each of the above-mentioned conventional condensers, the refrigerant outlet side conduit group is composed of a plurality of heat transfer tubes. Therefore, in such a conventional condenser, in the plurality of heat transfer tubes of the outlet side pipe line group, a large amount of liquid refrigerant flows in a certain heat transfer tube among them, depending on the position, in a certain heat transfer tube gas. Non-uniform distribution of the refrigerant occurs because a large amount of the refrigerant flows.Therefore, the condensation of the refrigerant becomes insufficient in the heat transfer tube where a large amount of the gas refrigerant flows, and the refrigerant flows out of the heat transfer tube outlet without being condensed, and in the liquid refrigerant in the outlet header part. To produce air bubbles.
In this way, the gas refrigerant that could not be condensed due to the non-uniform distribution of the refrigerant comes out of the condenser outlet mixed with the liquid refrigerant.
When the liquid refrigerant mixed with the gas refrigerant is passed through the expansion valve, the mass flow rate of the refrigerant changes greatly depending on the mixing degree of the gas refrigerant, the operation of the expansion valve becomes unstable, and the refrigeration cycle becomes unstable. However, conventionally, even if the gas refrigerant is mixed with the liquid refrigerant at the condenser outlet, this is once introduced into the liquid tank,
Since the refrigerant after passing through the liquid tank is passed through the expansion valve, the problem of unstable operation of the expansion valve as described above has been prevented.

ところで最近、地球保全のため冷凍サイクルの冷媒封
入量を極力減らす努力がなされ、リキッドタンクを省略
することが考えられている。しかしリキッドタンクを省
略すると、従来の凝縮器では、前述の理由から、ガス冷
媒の混入した液冷媒が膨張弁を通ることになり、膨張弁
の作動を不安定にし、冷凍サイクルが不安定になってし
まうという問題が生じる。膨張弁の作動を安定にするた
めには、一般に凝縮器出口のサブクール量を5℃程度取
れば良いが、カーエアコンのように内外気条件や圧縮機
回転数が大きく変化する空調機の場合には、全ての運転
条件でサブクール量を確保するためには冷凍サイクル中
への冷媒封入量を多くせねばならず、冷媒封入量を極力
減らすという要請に応えることができない。
By the way, recently, in order to protect the earth, efforts have been made to reduce the amount of refrigerant filled in the refrigeration cycle as much as possible, and it is considered to omit the liquid tank. However, if the liquid tank is omitted, in the conventional condenser, the liquid refrigerant mixed with the gas refrigerant will pass through the expansion valve for the above-mentioned reason, which makes the operation of the expansion valve unstable and the refrigeration cycle unstable. There is a problem that it will end up. In order to stabilize the operation of the expansion valve, generally, the subcool amount at the condenser outlet should be about 5 ° C, but in the case of an air conditioner such as a car air conditioner where the inside and outside air conditions and the compressor rotation speed change greatly. In order to secure a sub-cooling amount under all operating conditions, the amount of refrigerant to be enclosed in the refrigeration cycle must be increased, and it is not possible to meet the demand for reducing the amount of refrigerant to be enclosed as much as possible.

本発明は、凝縮器出口で液冷媒の中にガス冷媒が混入
するのを極力防ぐことを可能にし、しかも冷凍サイクル
内へ封入する冷媒量を低減するのに好適な冷媒凝縮器用
の熱交換器を提供することを目的とする。
INDUSTRIAL APPLICABILITY The present invention makes it possible to prevent gas refrigerant from being mixed into liquid refrigerant at the condenser outlet as much as possible, and further, is suitable for reducing the amount of refrigerant to be sealed in the refrigeration cycle. The purpose is to provide.

[課題を解決するための手段] 本発明による冷媒凝縮器用熱交換器は特許請求の範囲
の請求項記載の構成を有する。
[Means for Solving the Problems] The heat exchanger for a refrigerant condenser according to the present invention has the configuration described in the claims.

[作用] 本発明による冷媒凝縮器用熱交換器では、出口側管路
を一本の伝熱管で構成しているため、これにガス冷媒と
液冷媒は均一に流入し、従来のような問題は生じない。
すなわち、従来のように出口側管路を複数本の伝熱管で
構成すると、その各伝熱管にて液冷媒とガス冷媒の混在
比が異なって来るが、本発明では出口側管路が一本の伝
熱管で構成されているから、上記の問題は生じない。本
発明では出口側管路が一本であるから、ガス冷媒の混在
割合が増えると、該管路の圧力降下が増え、従って上流
側での圧力が上昇し、従って凝縮温度が上昇し、冷媒と
冷却空気との温度差が大きくなって、放熱量が増え、そ
の結果、液冷媒の割合が増えてガス冷媒の割合が減る、
という自己制御性が生じる。このため、凝縮器出口にお
ける冷媒中の液冷媒の割合を、従来の様な出口側管路を
複数本の伝熱管で構成した凝縮器のそれよりも大にする
ことができる。
[Operation] In the heat exchanger for a refrigerant condenser according to the present invention, the outlet side pipeline is composed of one heat transfer tube, so that the gas refrigerant and the liquid refrigerant uniformly flow into the outlet side conduit, and the conventional problems are Does not happen.
That is, if the outlet side pipeline is composed of a plurality of heat transfer tubes as in the conventional case, the mixing ratio of the liquid refrigerant and the gas refrigerant is different in each heat transfer tube, but in the present invention, the outlet side pipeline is one. The above-mentioned problem does not occur because the heat transfer tubes are used. In the present invention, since the number of outlet side pipelines is one, when the mixing ratio of the gas refrigerant increases, the pressure drop in the pipelines increases, therefore the pressure on the upstream side rises, and therefore the condensation temperature rises, and the refrigerant , The temperature difference between the cooling air and the cooling air increases, the amount of heat radiation increases, and as a result, the proportion of liquid refrigerant increases and the proportion of gas refrigerant decreases.
Self-controllability occurs. Therefore, the proportion of the liquid refrigerant in the refrigerant at the outlet of the condenser can be made larger than that of the condenser in which the outlet side pipeline is composed of a plurality of heat transfer tubes as in the related art.

出口側管路を構成する伝熱管の太さを他の伝熱管より
も太く構成し、管内通路断面積を確保することによって
冷媒通路の圧力損失の増大も防ぐことができる。
An increase in pressure loss in the refrigerant passage can be prevented by making the thickness of the heat transfer pipe forming the outlet side pipe larger than that of the other heat transfer pipes and ensuring a cross-sectional area of the pipe passage.

また、冷媒と空気との温度差が小さく交換熱量も少な
い空気下流側に位置する伝熱管内通路の相当直径を小さ
く構成することにより、そこでは通路抵抗が増え、交換
熱量に見合って冷媒流量が減少するので全体として熱交
換効率を向上させることができる。
Further, by configuring the equivalent diameter of the passage in the heat transfer tube located on the downstream side of the air where the temperature difference between the refrigerant and air is small and the amount of heat exchanged is small, the passage resistance increases there, and the refrigerant flow rate is commensurate with the amount of exchange heat. Since it decreases, the heat exchange efficiency can be improved as a whole.

[実 施 例] 以下、本発明の第一実施例を第1図,第2図により説
明する。複数の伝熱管1と波形に折り曲げ成形されたコ
ルゲートフィン2とを交互に多数積層して熱交換部コア
ーを形成している。伝熱管の両端にはヘッダ3,4が接続
されている。ヘッダ内には仕切り板5,6が設けられ、こ
れにより上記伝熱管1を複数の管群A,Bおよび出口管路
Cに分けている。管群Aを入口側管群、管群Bを中間部
管群と称する。出口管路Cには外側をサイドプレート12
で固定されたサイドフィン2′付の一本の伝熱管1で構
成されている。
[Examples] A first example of the present invention will be described below with reference to FIGS. 1 and 2. A plurality of heat transfer tubes 1 and a plurality of corrugated fins 2 formed into a corrugated shape are alternately laminated to form a heat exchange section core. Headers 3 and 4 are connected to both ends of the heat transfer tube. Partition plates 5 and 6 are provided in the header to divide the heat transfer tube 1 into a plurality of tube groups A and B and an outlet pipe line C. The tube group A is called an inlet side tube group, and the tube group B is called an intermediate tube group. The outside of the outlet conduit C is the side plate 12
It is composed of one heat transfer tube 1 with side fins 2'fixed at.

伝熱管1は、アルミ製の多穴偏平管であり、内部に複
数の矩形流路を持っている。伝熱管としては内部にイン
ナーフィンを挿入した電縫管を用いてもよい。コルゲー
トフィン2は、板厚0.1mm程度のアルミ板材を波形に折
り曲げ成形したもので空気流方向(第1図の紙面と直角
の方向)の幅は伝熱管1とほぼ同じであり、ろう付けに
より伝熱管1と接合されている。
The heat transfer tube 1 is a multi-hole flat tube made of aluminum and has a plurality of rectangular flow paths inside. An electric resistance welded tube having inner fins inserted therein may be used as the heat transfer tube. The corrugated fin 2 is formed by bending an aluminum plate material having a plate thickness of about 0.1 mm into a corrugated shape, and the width in the air flow direction (direction perpendicular to the paper surface of FIG. 1) is almost the same as that of the heat transfer tube 1. It is joined to the heat transfer tube 1.

ヘッダ3,4は、その長手方向に相隔たった偏平穴が多
数穿設されたアルミ製の円管であり、この穴に伝熱管1
が挿入され、ろう付けによって強固に接合されている。
ヘッダ内に設けられた仕切り板5,6によってヘッダ3,4は
それぞれ2室3a,3b及び4a,4bに分けられている。また、
この仕切り板5,6を設けたことによって、伝熱管1から
なる冷媒管路群は、入口側管群A、中間部管群B及び出
口側管路Cに区分され、入口パイプ7から流入した冷媒
は、入口ヘッダ室3a、入口側管群A、ヘッダ室4a、中間
部管群B、ヘッダ室3b、出口側管路C、出口ヘッダ室4b
の順に蛇行して流れ、出口パイプ8から流出するように
なっている。ヘッダパイプ3,4の一端はそれぞれ円板9,1
0によって封止され、他端にはそれぞれ入口パイプ7及
び出口パイプ8が接続されている。
The headers 3 and 4 are circular tubes made of aluminum having a large number of flat holes spaced apart from each other in the longitudinal direction, and the heat transfer tube 1 is inserted into these holes.
Is inserted and firmly joined by brazing.
The partition plates 5 and 6 provided in the header divide the headers 3 and 4 into two chambers 3a and 3b and 4a and 4b, respectively. Also,
By providing the partition plates 5 and 6, the refrigerant pipe line group including the heat transfer pipes 1 is divided into the inlet side pipe line A, the intermediate pipe line group B, and the outlet side pipe line C, and flows from the inlet pipe 7. The refrigerant is the inlet header chamber 3a, the inlet side pipe group A, the header chamber 4a, the intermediate pipe group B, the header chamber 3b, the outlet side pipe line C, the outlet header chamber 4b.
It flows meandering in this order and flows out from the outlet pipe 8. The ends of the header pipes 3 and 4 are discs 9 and 1 respectively.
It is sealed by 0, and an inlet pipe 7 and an outlet pipe 8 are connected to the other ends, respectively.

上記構成に於いて、入口パイプ7より流入した高温の
ガス冷媒は、入口ヘッダ室3aを介して入口側伝熱管群A
に流入し、温度の低い冷却空気と熱交換して温度が下が
り、遂には一部のガス冷媒は凝縮液化し始める。ガス冷
媒の比率を低下させながら次にヘッダ室4aを介して伝熱
管群Bに流入した冷媒は、管群B内でさらに凝縮液化作
用が進み、液冷媒の比較を増してヘッダ室3b内に至り、
ここでガス冷媒と液冷媒は均一に混合して、これに接続
されている出口側管路C内に流入する。出口側管路Cを
構成している伝熱管1内では、冷媒の質量速度が大きい
ので熱伝達率が高く、伝熱管の外側にはサイドフィン
2′が付いているため単位温度差あたりの放熱量も多
い。したがって、ガス冷媒の凝縮液化、過冷却が効率よ
く行われ、出口ヘッダ室4bを経て出口パイプ8から液冷
媒が流出する。出口側管路C内を流れる冷媒は、ガス冷
媒に比べて体積が約1/30と小さい液冷媒の占める割合が
多いので体積が小さくなっているから、通路断面積も管
群A,Bのそれより小さくてよい。本実施例では、これに
応じて出口管路Cの伝熱管1本で構成しているので過冷
却域でのスペースの無駄も省かれる。
In the above structure, the high temperature gas refrigerant flowing in from the inlet pipe 7 passes through the inlet header chamber 3a and the inlet side heat transfer tube group A.
Flowing in, the heat is exchanged with the cooling air having a low temperature, the temperature is lowered, and finally a part of the gas refrigerant starts to be condensed and liquefied. The refrigerant that has flown into the heat transfer tube group B through the header chamber 4a while reducing the ratio of the gas refrigerant is further condensed and liquefied in the tube group B, and the comparison of the liquid refrigerant is increased to the header chamber 3b. Really
Here, the gas refrigerant and the liquid refrigerant are uniformly mixed and flow into the outlet side pipe line C connected thereto. In the heat transfer tube 1 forming the outlet side conduit C, the mass velocity of the refrigerant is large, so that the heat transfer coefficient is high, and since the side fins 2'are attached to the outside of the heat transfer tube, the discharge per unit temperature difference. There is a lot of heat. Therefore, condensation and liquefaction of the gas refrigerant and supercooling are efficiently performed, and the liquid refrigerant flows out of the outlet pipe 8 through the outlet header chamber 4b. Since the refrigerant flowing in the outlet side conduit C has a small volume of about 1/30, which is smaller than that of the gas refrigerant, the volume is small. Therefore, the passage cross-sectional area is also smaller than that of the pipe groups A and B. It can be smaller than that. In this embodiment, accordingly, the heat transfer tube of the outlet pipe C is configured to be one, so that the waste of the space in the supercooling region can be omitted.

本発明による第二の実施例を第3図、第4図により説
明する。第一の実施例と異なるのは、伝熱管としては、
太さ(本実施例ではフィン2と接する方向の太さ)が小
さい第1種類の伝熱管1aと該太さが大きい第2種類の伝
熱管1bの2種類の伝熱管を用いた点である。入口側管群
Aおよび中間部管群Bを構成するのには伝熱管1aを用
い、出口側管路Cを構成するのには伝熱管1aよりも太さ
が太い伝熱管1bを用いている。ここで、伝熱管1a,1bは
アルミ製の多穴偏平管であり、内部に複数の矩形流路を
持っており、管内通路断面積は伝熱管1bの方が大きい。
伝熱管としては内部にインナーフィンを挿入した電縫管
を用いてもよい。
A second embodiment according to the present invention will be described with reference to FIGS. The difference from the first embodiment is that the heat transfer tube is
This is a point that two types of heat transfer tubes are used, a first type heat transfer tube 1a having a small thickness (a thickness in a direction in which the fin 2 is contacted in this embodiment) and a second type heat transfer tube 1b having a large thickness. . The heat transfer tube 1a is used to configure the inlet side tube group A and the intermediate tube group B, and the heat transfer tube 1b having a larger thickness than the heat transfer tube 1a is used to configure the outlet side tube line C. . Here, the heat transfer tubes 1a and 1b are aluminum multi-hole flat tubes, have a plurality of rectangular flow paths inside, and the heat transfer tube 1b has a larger cross-sectional area of the pipe passage.
An electric resistance welded tube having inner fins inserted therein may be used as the heat transfer tube.

なお、第3図、第4図に於いて、第1図と同一符号は
同じものを示しており説明を省略する。
Incidentally, in FIGS. 3 and 4, the same reference numerals as those in FIG.

上記構成によれば、第一実施例に比べて出口管路C内
の通路断面積を大きくできるので圧力損失を更に小さく
出来るという効果がある。その他の作用効果は第一実施
例と同じである。
According to the above configuration, the passage cross-sectional area in the outlet conduit C can be made larger than that in the first embodiment, so that the pressure loss can be further reduced. Other functions and effects are the same as those of the first embodiment.

本発明による第三の実施例を第5図により説明する。
本実施例は中間部管群Bも出口側管路Cと同じく管太さ
が太い第二種類の伝熱管1bで構成されている点が前記第
二の実施例と異なっている。また通路断面積は入口側管
群Aが最も大きく、中間部管群B、出口側管路Cの順に
小さくなっている。上記構成に於いて、入口パイプ7よ
り流入した高温のガス冷媒は入口ヘッダ室3aを介して入
口側管群Aに流入し、温度の低い冷却空気と熱交換して
温度が下がり遂には一部のガス冷媒が凝縮液化し始め
る。ガス冷媒の比率をさらに低下させながら管内を流下
した冷媒はヘッダ室4aを介して複数本の第二種類の伝熱
管1bから構成された中間部管群B内に流入する。管群B
内でさらに凝縮液化作用が進み、液冷媒の比率を増して
ヘッダ室3b内に至り、ここでガス冷媒と液冷媒は均一に
混合して、これに接続されている第二種類の伝熱管1b一
本からなる出口側管路C内に流入する。
A third embodiment according to the present invention will be described with reference to FIG.
This embodiment is different from the second embodiment in that the intermediate tube group B is also composed of a second type heat transfer tube 1b having a large tube thickness like the outlet side conduit C. Further, the passage cross-sectional area is largest in the inlet side pipe group A, and becomes smaller in the order of the intermediate portion pipe group B and the outlet side pipe line C. In the above structure, the high temperature gas refrigerant flowing in from the inlet pipe 7 flows into the inlet side pipe group A through the inlet header chamber 3a, exchanges heat with the cooling air having a low temperature, and eventually the temperature partially decreases. The gas refrigerant starts to condense and liquefy. The refrigerant flowing down the pipe while further reducing the ratio of the gas refrigerant flows into the intermediate tube group B composed of a plurality of second type heat transfer tubes 1b through the header chamber 4a. Tube group B
The condensation and liquefaction further progresses in the inside, and the ratio of the liquid refrigerant is increased to reach the inside of the header chamber 3b, where the gas refrigerant and the liquid refrigerant are uniformly mixed, and the second type heat transfer tube 1b connected to this. It flows into the outlet side pipe line C consisting of one line.

ここで、液冷媒の体積はガス冷媒に比べて約1/30であ
り管内冷媒の体積は管群A,B,Cの順に小さくなる。本実
施例では管内冷媒の体積に見合って通路断面積が管群A,
B、管路Cの順に小さく設定されている。したがって、
管内冷媒の質量速度が適正に保たれ、圧力損失を低く抑
えながら高い熱伝熱率を得ることができるので、ガス冷
媒の凝縮液化、過冷却が効率よく行なわれ、出口ヘッダ
室4bを経て出口パイプ8から液冷媒が流出する。
Here, the volume of the liquid refrigerant is about 1/30 of that of the gas refrigerant, and the volume of the in-tube refrigerant becomes smaller in the order of the tube groups A, B, and C. In this embodiment, the passage cross-sectional area of the pipe group A, which corresponds to the volume of the refrigerant in the pipe,
B and the pipeline C are set to be smaller in this order. Therefore,
Since the mass velocity of the refrigerant in the pipe is appropriately maintained and a high heat transfer coefficient can be obtained while suppressing the pressure loss, the condensation and liquefaction of the gas refrigerant and the supercooling are efficiently performed, and the outlet is passed through the outlet header chamber 4b. The liquid refrigerant flows out from the pipe 8.

本発明による第四の実施例を第6図により説明する。
本実施例は、第1〜第三実施例に於いて伝熱管1の、空
気出口側に位置する管内冷媒通路200内にインナーフィ
ン201を設け、冷媒通路200の相当直径を空気上流側に位
置する冷媒通路100よりも小さく構成したものである。
この様な管内通路構成は、少なくとも出口側管路Cを構
成する伝熱管に適用するものとし、必要に応じ、他の管
群を構成する伝熱管にも適用する。
A fourth embodiment according to the present invention will be described with reference to FIG.
In the present embodiment, inner fins 201 are provided in the pipe refrigerant passage 200 located on the air outlet side of the heat transfer pipe 1 in the first to third embodiments, and the equivalent diameter of the refrigerant passage 200 is located on the air upstream side. The cooling medium passage 100 is smaller than the cooling medium passage 100.
Such an in-pipe passage structure is applied to at least the heat transfer tubes forming the outlet side conduit C, and is also applied to the heat transfer tubes forming other tube groups as necessary.

伝熱管内のガス冷媒は空気によって冷却されて凝縮潜
熱を放出し液化する。このとき、管内の温度は大略一定
であるが、冷却空気の温度は上流側から下流側に向かっ
て上昇するので、空気と管内冷媒との温度差が空気上流
側で大きく、下流側では小さくなる。これに応じて本実
施例では、空気との温度差が小さく交換熱量が少ない空
気下流側に位置する伝熱管内通路の相当直径を小さく構
成している。このために、空気下流側に位置する管内通
路の通路抵抗が増えて冷媒流量が交換熱量に見合って減
少する。したがって、全体として熱交換効率が向上し、
ガス冷媒の凝縮液化、過冷却がさらに効率よく行われ
る。この他の作用効果は、前記第一〜第三実施例と同じ
である。
The gas refrigerant in the heat transfer tube is cooled by air to release latent heat of condensation and liquefy. At this time, the temperature in the pipe is substantially constant, but the temperature of the cooling air rises from the upstream side to the downstream side, so the temperature difference between the air and the refrigerant in the pipe is large on the upstream side of the air and small on the downstream side. . In response to this, in this embodiment, the equivalent diameter of the heat transfer tube internal passage located on the downstream side of the air with a small temperature difference from the air and a small amount of heat exchange is configured. For this reason, the passage resistance of the in-pipe passage located on the downstream side of the air increases, and the refrigerant flow rate decreases in proportion to the heat exchange amount. Therefore, the heat exchange efficiency is improved as a whole,
Condensation and liquefaction and supercooling of the gas refrigerant are performed more efficiently. Other functions and effects are the same as those of the first to third embodiments.

なお以上の実施例に於いては、入口側管群と中間部管
群という2個の通路群の他に出口側管路を設けて冷媒を
2回蛇行させる方式の凝縮器を示したが、入口側管群と
出口側管路だけの1回蛇行式の凝縮器や、中間部管群を
2以上の管群に分けた3回以上蛇行する方式の凝縮器に
ついても適用可能である。また、本実施例では、特にヘ
ッダパイプ内で重力や流体が曲って流れるときの遠心力
等に起因して生じる従来の出口管群での冷媒分配の不都
合は、出口側管路を1本の伝熱管で構成したことにより
防止される。したがって当然ながら、伝熱管を水平ある
いは垂直に配置しても本発明の作用効果は変わらない。
In the above embodiments, the condenser of the type in which the refrigerant is meandered twice by providing the outlet side pipe line in addition to the two passage groups of the inlet side pipe group and the intermediate portion pipe group is shown. The present invention is also applicable to a one-time meandering type condenser having only an inlet-side tube group and an outlet-side tube line, or a meandering-type condenser in which the middle section tube group is divided into two or more tube groups and meandering three or more times. Further, in the present embodiment, inconvenience of the refrigerant distribution in the conventional outlet pipe group caused by gravity or centrifugal force when the fluid bends and flows in the header pipe, the problem of the refrigerant distribution in the conventional outlet pipe group is This is prevented by the heat transfer tube. Therefore, it goes without saying that the effect of the present invention does not change even if the heat transfer tubes are arranged horizontally or vertically.

[発明の効果] 本発明によれは、リキッドタンクを省略して冷凍サイ
クルの冷媒封入量を極力節約することを可能にし、しか
も、従来技術における様な複数の出口側伝熱管の冷媒分
配不均一による問題がなく、凝縮器出口における液冷媒
へのガス冷媒の混入が極力低減され、ガス冷媒の凝縮液
化、過冷却が効率良く行われ、膨張弁の作動の安定化、
冷凍サイクルの安定化を図ることができる。しかも、こ
の様な作用効果は凝縮器の配置角度によって殆んど影響
されない利点がある。
[Advantages of the Invention] According to the present invention, it is possible to omit the liquid tank and save the refrigerant filling amount of the refrigeration cycle as much as possible, and moreover, the refrigerant distribution of the plurality of outlet side heat transfer tubes is uneven as in the prior art. There is no problem due to, the mixture of the gas refrigerant into the liquid refrigerant at the outlet of the condenser is reduced as much as possible, the condensation and liquefaction of the gas refrigerant, supercooling is performed efficiently, the operation of the expansion valve is stabilized,
It is possible to stabilize the refrigeration cycle. Moreover, there is an advantage that such an effect is hardly influenced by the arrangement angle of the condenser.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の第一実施例の正面図、第2図は同実施
例のヘッダと伝熱管との接合を示す斜視図、第3図は本
発明の第二の実施例の正面図、第4図は第3図の要部斜
視図、第5図は本発明の第三の実施例の正面図、第6図
は本発明の第4実施例における伝熱管の断面を示す図で
ある。 1……伝熱管、2……コルゲートフィン 3,4……ヘッダ、A……入口側管群 B……中間部管群、C……出口管路 5,6……仕切り板、7……入口パイプ 8……出口パイプ
FIG. 1 is a front view of a first embodiment of the present invention, FIG. 2 is a perspective view showing a joint between a header and a heat transfer tube of the same embodiment, and FIG. 3 is a front view of a second embodiment of the present invention. FIG. 4 is a perspective view of a main part of FIG. 3, FIG. 5 is a front view of a third embodiment of the present invention, and FIG. 6 is a view showing a cross section of a heat transfer tube in a fourth embodiment of the present invention. is there. 1 ... Heat transfer tube, 2 ... Corrugated fins 3,4 ... Header, A ... Inlet side tube group B ... Middle section tube group, C ... Exit line 5,6 ... Partition plate, 7 ... Inlet pipe 8 ... Outlet pipe

───────────────────────────────────────────────────── フロントページの続き (72)発明者 澤幡 敬智 茨城県勝田市大字高場2520番地 株式会 社日立製作所佐和工場内 (72)発明者 山本 享利 茨城県勝田市大字高場2520番地 株式会 社日立製作所佐和工場内 (56)参考文献 特開 平2−293595(JP,A) 特開 平2−140570(JP,A) 実開 平2−140184(JP,U) 実開 平2−45359(JP,U) ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Takatomo Sawahata 2520 Takaba, Takada, Ibaraki Pref., Sawa Plant, Hitachi, Ltd. (56) References JP-A-2-293595 (JP, A) JP-A-2-140570 (JP, A) Actually open 2-140184 (JP, U) Actually open 2- 45359 (JP, U)

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】少なくとも出口側管路および入口側管路を
構成する伝熱管の両端を夫々区画されたヘッダ室を有す
るヘッダに接続して冷媒流路を形成し、各伝熱管には放
熱用フィンを結合し、冷媒が前記ヘッダ室、入口側管路
および出口側管路を蛇行して流れるように構成した冷媒
凝縮器用熱交換器において、複数の伝熱管の入口端部お
よび出口端部の全てを各別の単一のヘッダ室に接続して
前記入口側管路を構成し、前記出口側管路を1本の伝熱
管で構成したことを特徴とする冷媒凝縮器用熱交換器。
1. A refrigerant passage is formed by connecting at least both ends of a heat transfer tube constituting an outlet side conduit and an inlet side conduit to a header having a divided header chamber, and each heat transfer tube is provided with heat radiation for heat dissipation. In a heat exchanger for a refrigerant condenser, which is configured such that the fins are coupled and the refrigerant meanders through the header chamber, the inlet side conduit and the outlet side conduit, the inlet end and the outlet end of the plurality of heat transfer tubes are A heat exchanger for a refrigerant condenser, characterized in that all are connected to a separate single header chamber to form the inlet side conduit and the outlet side conduit is composed of one heat transfer tube.
【請求項2】入口側管路と出口側管路との間において途
中の冷媒が流れる中間部管路を有し、該中間部管路は、
複数の伝熱管の端部の全てを各単一のヘッダ室に接続し
て構成したことを特徴とする請求項1記載の冷媒凝縮器
用熱交換器。
2. An intermediate-portion conduit through which a refrigerant flows midway between the inlet-side conduit and the outlet-side conduit, the intermediate-portion conduit comprising:
The heat exchanger for a refrigerant condenser according to claim 1, wherein all of the ends of the plurality of heat transfer tubes are connected to each single header chamber.
【請求項3】出口側管路を構成する伝熱管の太さを他の
伝熱管よりも太くしたことを特徴とする請求項1又は2
記載の冷媒凝縮器用熱交換器。
3. The heat transfer tube constituting the outlet side conduit is thicker than other heat transfer tubes.
The heat exchanger for a refrigerant condenser described.
【請求項4】出口側管路を構成する伝熱管の太さ及び中
間部管路を構成する各伝熱管の太さを他の伝熱管の太さ
よりも太くしたことを特徴とする請求項2記載の冷媒凝
縮器用熱交換器。
4. The thickness of the heat transfer tube forming the outlet side pipe and the thickness of each heat transfer tube forming the intermediate pipe are made larger than the thickness of the other heat transfer tubes. The heat exchanger for a refrigerant condenser described.
【請求項5】少なくとも出口側管路を構成する伝熱管は
その内部に複数の冷媒通路を有し、その風下側の冷媒通
路の相当直径が風上側の冷媒通路のそれよりも小である
ことを特徴とする請求項1,2,3又は4記載の冷媒凝縮器
用熱交換器。
5. A heat transfer tube forming at least an outlet side conduit has a plurality of refrigerant passages therein, and the equivalent diameter of the leeward side refrigerant passage is smaller than that of the windward side refrigerant passage. The heat exchanger for a refrigerant condenser according to claim 1, 2, 3, or 4.
【請求項6】上記請求項5記載の伝熱管の内部構成と同
様の内部構成を出口側管路のみならず他の管路を構成す
る伝熱管にも採用したことを特徴とする請求項1ないし
5のいずれかに記載の冷媒凝縮器用熱交換器。
6. An internal structure similar to the internal structure of the heat transfer pipe according to claim 5 is adopted not only for the outlet side pipe line but also for the heat transfer pipes forming other pipe lines. A heat exchanger for a refrigerant condenser according to any one of 1 to 5.
【請求項7】冷媒流路断面積を入口側管路、中間部管
路、出口側管路の順に小さくした請求項1ないし6のい
ずれかに記載の冷媒凝縮器用熱交換器。
7. The heat exchanger for a refrigerant condenser according to claim 1, wherein the cross-sectional area of the refrigerant flow passage is made smaller in the order of the inlet side pipeline, the intermediate section pipeline and the outlet side pipeline.
JP1162024A 1989-06-23 1989-06-23 Heat exchanger for refrigerant condenser Expired - Fee Related JP2677420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1162024A JP2677420B2 (en) 1989-06-23 1989-06-23 Heat exchanger for refrigerant condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1162024A JP2677420B2 (en) 1989-06-23 1989-06-23 Heat exchanger for refrigerant condenser

Publications (2)

Publication Number Publication Date
JPH0367968A JPH0367968A (en) 1991-03-22
JP2677420B2 true JP2677420B2 (en) 1997-11-17

Family

ID=15746621

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1162024A Expired - Fee Related JP2677420B2 (en) 1989-06-23 1989-06-23 Heat exchanger for refrigerant condenser

Country Status (1)

Country Link
JP (1) JP2677420B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0542969U (en) * 1991-09-27 1993-06-11 三菱重工業株式会社 Heat exchanger
JP3466726B2 (en) * 1994-08-02 2003-11-17 頼之 大栗 Cooler operation method and cooler retrofit method
DE10018478A1 (en) * 2000-04-14 2001-10-18 Behr Gmbh & Co Condenser for an air conditioning system, in particular for an air conditioning system of a motor vehicle

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6334466A (en) * 1986-07-29 1988-02-15 昭和アルミニウム株式会社 Condenser
JPH0624677Y2 (en) * 1988-09-05 1994-06-29 株式会社ゼクセル Condenser
JPH083400B2 (en) * 1989-04-21 1996-01-17 日本電装株式会社 Heat exchanger
JPH02293595A (en) * 1989-05-08 1990-12-04 Nippondenso Co Ltd Refrigerant condenser

Also Published As

Publication number Publication date
JPH0367968A (en) 1991-03-22

Similar Documents

Publication Publication Date Title
US5137082A (en) Plate-type refrigerant evaporator
US6209628B1 (en) Heat exchanger having several heat exchanging portions
US5172759A (en) Plate-type refrigerant evaporator
US5099913A (en) Tubular plate pass for heat exchanger with high volume gas expansion side
EP0583851A2 (en) Heat exchanger
JP3627382B2 (en) Refrigerant condensing device and refrigerant condenser
US6431264B2 (en) Heat exchanger with fluid-phase change
US5176200A (en) Method of generating heat exchange
EP1195567A1 (en) Heat exchanger having several heat exchanging portions
JP3661275B2 (en) Stacked evaporator
JPS6214751B2 (en)
US6253840B1 (en) Refrigerant evaporator including refrigerant passage with inner fin
JP2677420B2 (en) Heat exchanger for refrigerant condenser
JPH04189A (en) Counterflow type heat exchanger
EP3619492A1 (en) Heat exchanger for heat pump applications
JPH0833287B2 (en) Aluminum condenser for air conditioner
JPH0762596B2 (en) Aluminum condenser for air conditioner
JP6766980B1 (en) Air conditioner equipped with heat exchanger and heat exchanger
JPH0345302B2 (en)
JP3367235B2 (en) Refrigeration cycle of vehicle air conditioner
JP2857896B2 (en) Heat exchanger manufacturing method
JP3129721B2 (en) Refrigerant condenser and method of setting the number of tubes of refrigerant condenser
JPH07103609A (en) Heat exchanger for freezing cycle
JPH0345301B2 (en)
WO1994027105A1 (en) Mechanically assembled high internal pressure heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees