JPH0345302B2 - - Google Patents

Info

Publication number
JPH0345302B2
JPH0345302B2 JP62277917A JP27791787A JPH0345302B2 JP H0345302 B2 JPH0345302 B2 JP H0345302B2 JP 62277917 A JP62277917 A JP 62277917A JP 27791787 A JP27791787 A JP 27791787A JP H0345302 B2 JPH0345302 B2 JP H0345302B2
Authority
JP
Japan
Prior art keywords
tube
refrigerant
passage
group
heat exchange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62277917A
Other languages
Japanese (ja)
Other versions
JPS63243688A (en
Inventor
Hironaka Sasaki
Ryoichi Hoshino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Publication of JPS63243688A publication Critical patent/JPS63243688A/en
Publication of JPH0345302B2 publication Critical patent/JPH0345302B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • F28F9/182Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding the heat-exchange conduits having ends with a particular shape, e.g. deformed; the heat-exchange conduits or end plates having supplementary joining means, e.g. abutments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • B21C37/22Making finned or ribbed tubes by fixing strip or like material to tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/007Condensers

Description

【発明の詳細な説明】 産業上の利用分野 この発明は凝縮器、とくにカークーラー用のア
ルミニウム製凝縮器に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to condensers, in particular aluminum condensers for car coolers.

なお、この明細書においてアルミニウムの語は
アルミニウム合金を含む意味において用いられ
る。
In this specification, the term aluminum is used to include aluminum alloys.

従来の技術とその問題点 カークーラー用のコンデンサーとして用いられ
るような熱交換器は、冷媒に比較的高圧のガスが
取扱われる関係上、安全性の面から耐圧性に優れ
たものであることが要請される。
Conventional technology and its problems Heat exchangers such as those used as condensers for car coolers use relatively high-pressure gas as a refrigerant, so they must have excellent pressure resistance for safety reasons. requested.

このため、従来では一般的にサーペンタインチ
ユーブ型の熱交換器が用いられている。即ち、ハ
ーモニカチユーブと称されるような多孔押出扁平
チユーブを蛇行状に曲げ、その平行部間にフイン
配置してコアを構成したものが一般に用いられて
いる。
For this reason, conventionally, a serpentine tube type heat exchanger is generally used. That is, a core is generally used by bending a multi-hole extruded flat tube called a harmonica tube into a serpentine shape and arranging fins between its parallel parts.

しかしながら、斯るサーペンタイン型の凝縮器
では、その本質的な問題点の1つとして、冷媒回
路が1本のチユーブ内をその一端から他端に向け
て蛇行状に形成されるものであるため、冷媒の流
通抵抗が比較的大きくなるという問題点がある。
この流通抵抗を小さくするためには、チユーブの
幅を広げ、通路断面積を大きくすることが考慮さ
れるが、凝縮器コアの大きさはその設置スペース
との関係で制約されるため、かかる対応手段は適
用し難い。
However, one of the essential problems with such a serpentine condenser is that the refrigerant circuit is formed in a meandering manner from one end to the other within one tube. There is a problem that the flow resistance of the refrigerant becomes relatively large.
In order to reduce this flow resistance, it is considered to widen the width of the tube and increase the cross-sectional area of the passage, but since the size of the condenser core is limited by its installation space, such measures cannot be taken. The method is difficult to apply.

また、凝縮器の熱交換効率を上げるためには、
上記のようにチユーブの幅を拡げて冷媒の圧力損
失を小さくすることのほかに、隣接チユーブ相互
の間隔、即ちフイン高さを小さくしてチユーブの
平行部間に介在されるフイン数を多くすることも
考慮される。しかしながら、チユーブ材は加工上
その曲げ部の曲率半径を一定値以上に小さくでき
ないことから、チユーブ間隔の狭小化による熱交
換効率の向上にも限界がある。
In addition, to increase the heat exchange efficiency of the condenser,
In addition to increasing the width of the tubes to reduce the pressure loss of the refrigerant as described above, the distance between adjacent tubes, that is, the height of the fins, can be reduced to increase the number of fins interposed between the parallel portions of the tubes. It is also taken into consideration. However, because the radius of curvature of the bent portion of the tube material cannot be made smaller than a certain value due to processing, there is a limit to the improvement in heat exchange efficiency by narrowing the tube spacing.

ところで、凝縮器の場合、その冷媒通路は、冷
媒がいまだガス化状態にある入口側側に近い冷媒
凝縮部と、冷媒が液化状態となつている出口側に
近い過冷却部とに大別される。而して、熱交換効
率を大きく確保するためには、一般に凝縮器での
伝熱面積を大きく確保する必要があり、過冷却部
の伝熱面積は比較的小さくてもかまわない。とこ
ろが、従来のサーペンタインチユーブ型のもので
ある場合、冷媒通路が1本のチユーブで形成され
るため、上記凝縮器と過冷却部とで通路断面積を
変えるようなことは本質的に不可能である。その
結果、冷媒のガスから液体への相変化に応じて冷
媒の入口側から出口側に進むにつれて液化冷媒が
通路を閉塞する所謂液封状態を生じ、これが伝熱
抵抗となつて、熱交換効率が低下することゝな
り、それだけ熱交換チユーブを余分に長く形成す
ることが必要になる。このように、冷媒の相変化
に応じた熱交換ができないため、熱交換効率が悪
く、ひいては凝縮器全体が大型化し、加えてコン
プレツサも大型のものが必要となるというような
問題があつた。
By the way, in the case of a condenser, the refrigerant passage is roughly divided into a refrigerant condensing section near the inlet side where the refrigerant is still in a gasified state, and a supercooling section near the exit side where the refrigerant is in a liquefied state. Ru. In order to ensure high heat exchange efficiency, it is generally necessary to ensure a large heat transfer area in the condenser, and the heat transfer area in the supercooling section may be relatively small. However, in the case of the conventional serpentine tube type, the refrigerant passage is formed by a single tube, so it is essentially impossible to change the passage cross-sectional area between the condenser and the supercooling section. be. As a result, a so-called liquid seal state occurs in which the liquefied refrigerant blocks the passage as it progresses from the inlet side to the outlet side in response to the phase change of the refrigerant from gas to liquid.This creates heat transfer resistance and reduces heat exchange efficiency. As a result, the heat exchange tube must be made extra long. As described above, heat exchange according to the phase change of the refrigerant cannot be carried out, resulting in poor heat exchange efficiency, resulting in an increase in the size of the entire condenser and, in addition, the need for a large compressor.

このように、従来のサーペンタイン型凝縮器
は、その構造上、圧力損失の減少や熱交換効率の
向上のために採りうる設計仕様に限界があつた。
As described above, due to the structure of the conventional serpentine condenser, there are limits to the design specifications that can be adopted in order to reduce pressure loss and improve heat exchange efficiency.

加えて、製作面においても、チユーブの蛇行状
の曲げ加工がいさゝか厄介であるのに加えて、チ
ユーブとフインとの組立も、フインの挿入によつ
てチユーブの蛇行曲げ状態が拡がり傾向を示すた
め、該組立を機械的な自動組立の手段によつて行
うことが困難であり、生産性が低く結果的にコス
ト高につくというような難点があつた。
In addition, in terms of manufacturing, bending the tube into a serpentine shape is somewhat troublesome, and when assembling the tube and fins, the serpentine bending state of the tube tends to expand as the fins are inserted. Therefore, it is difficult to perform the assembly by automatic mechanical assembly means, resulting in low productivity and high costs.

発明が解決しようとする課題 そこで、この発明は、凝縮器コアを大型化する
ことなく、その冷媒通路断面積を大きく確保し
て、圧力損失の少ないものとなし得る耐圧性に優
れた新規な型式の凝縮器を提供することを目的と
する。
Problems to be Solved by the Invention Therefore, the present invention has developed a new model with excellent pressure resistance that can ensure a large cross-sectional area of the refrigerant passage without increasing the size of the condenser core, resulting in less pressure loss. The purpose is to provide a condenser for

また、他の目的として、冷媒ガスを専ら凝縮す
る凝縮器と、液化した冷媒が主に流れる過冷却部
との間で、それぞれの通路断面積を変化させたも
のとなしうると共に、チユーブ幅やチユーブ間隔
すなわちフイン高さ等を種々の値に設定しうる構
造のものとしたうえで、さらに冷媒や流通空気の
圧力損失を減少しかつ熱交換効率を向上するため
の最適条件に設定した凝縮器を提供することであ
る。
In addition, for other purposes, it is possible to change the cross-sectional area of each passage between the condenser that exclusively condenses refrigerant gas and the supercooling section where liquefied refrigerant mainly flows, and the tube width and The condenser has a structure that allows tube spacing, ie fin height, etc. to be set to various values, and is also set to optimal conditions to reduce pressure loss of refrigerant and circulating air and improve heat exchange efficiency. The goal is to provide the following.

更に他の目的は、組立製作に簡易に行い得て、
生産能率が良く、コストの低減をはかりうる凝縮
器を提供することである。
Yet another purpose is to facilitate assembly and production;
It is an object of the present invention to provide a condenser that has good production efficiency and can reduce costs.

課題を解決するための手段 上記の目的において、この発明に係るアルミニ
ウム製凝縮器は、互いに間隔をおいて平行状に配
置された1対のアルミニウム製の筒状ヘツダー
と、 両端をそれぞれ前記ヘツダーに連通接続して平
行状に配置された多数本の熱交換チユーブと、 隣接するチユーブ間の空気流通間隙に配置され
たフインとを備え、 前記チユーブは、断面が扁平状で、内部に上下
壁間にまたがつた補強壁を有する扁平アルミニウ
ム管によつて構成され、 前記チユーブの両端部が前記ヘツダーに穿たれ
たチユーブ挿入孔に差し込まれて液密状態にろう
付けされ、 少なくとも一方のヘツダーの内部が、仕切手段
によつて長さ方向に仕切られることにより、前記
熱交換チユーブ群によつて構成される冷媒通路が
それぞれ複数本のチユーブからなる入口側通路群
と出口側通路群とを含む少なくとも2つ以上の通
路群に区画され、冷媒を順次各通路群をめぐつて
2パス以上の蛇行状に流通させるようになされ、 かつ前記入口側通路群に対し出口側通路群の通
路断面積が相対的に減少されたものとなされると
共に、 前記チユーブが、 チユーブ幅:6〜16mm チユーブ高さ:1.5〜5mm チユーブ内冷媒通路高さ:1.0mm以上 に設定され、また前記コルゲートフインが、 フイン高さ:8〜16mm フインピツチ:1.6〜3.2mm に設定されてなることを特徴とするものである。
Means for Solving the Problems In the above object, an aluminum condenser according to the present invention includes a pair of aluminum cylindrical headers arranged in parallel with a distance from each other, and having both ends connected to the headers, respectively. A plurality of heat exchange tubes are connected in parallel and are arranged in parallel, and fins are arranged in air circulation gaps between adjacent tubes. It is composed of a flat aluminum tube having a reinforcing wall extending over the header, and both ends of the tube are inserted into tube insertion holes drilled in the header and brazed in a liquid-tight state, and the inside of at least one of the headers is is partitioned in the length direction by the partition means, so that the refrigerant passage constituted by the heat exchange tube group includes at least an inlet side passage group and an outlet side passage group each consisting of a plurality of tubes. The refrigerant is divided into two or more passage groups, and the refrigerant is made to flow in a meandering pattern of two or more passes around each passage group, and the passage cross-sectional area of the outlet side passage group is relative to the inlet side passage group. The tube is set to have the following characteristics: tube width: 6 to 16 mm, tube height: 1.5 to 5 mm, and refrigerant passage height within the tube: 1.0 mm or more, and the corrugated fins are set to have a fin height of It is characterized by having a width of 8 to 16 mm and a fin pitch of 1.6 to 3.2 mm.

実施例 次に、この発明の実施例をその作用とゝもに説
明する。
Embodiment Next, an embodiment of the present invention will be described along with its operation.

この発明による凝縮器は、第2図に示すよう
に、水平方向に平行状に配置された多数本のチユ
ーブ1と、隣接するチユーブ1,1間に介在配置
されたコルゲートフイン2と、チユーブ群の両端
に、それと直交して平行状に配置された左右1対
のヘツダー3,4とを具備する。
As shown in FIG. 2, the condenser according to the present invention includes a large number of tubes 1 arranged in parallel in the horizontal direction, corrugated fins 2 interposed between adjacent tubes 1, 1, and a group of tubes. A pair of left and right headers 3 and 4 are provided at both ends of the header 3 and 4, which are arranged in parallel and perpendicular thereto.

チユーブ1はアルミニウム材による扁平状の押
出型材からなるものであつて、内部には第3図に
示すような幅方向の中央部において上下壁間にま
たがつた補強壁1aを有し、負荷される大きな内
圧にも支障なく耐えるものとなされている。この
チユーブ1はいわゆるハモニカチユーブと称され
るような多孔形のものを用いても良い。また押出
型材によらず電縫管を用い、内部に補強壁1aに
相当する補強部材を挿入接合したものとしても良
い。コルゲートフイン2はチユーブ1とほゞ同じ
幅を有し、ろう付けによりチユーブに接合されて
いる。コルゲートフイン2もアルミニウム製であ
り、望ましくはルーパーを切り起こしたものを用
いるのが良い。
The tube 1 is made of a flat extruded aluminum material, and has a reinforcing wall 1a extending between the upper and lower walls at the center in the width direction as shown in FIG. It is designed to withstand large internal pressures without any problems. The tube 1 may be of a porous type, such as a so-called harmonica tube. Alternatively, instead of using an extruded material, an electric resistance welded tube may be used, and a reinforcing member corresponding to the reinforcing wall 1a may be inserted and joined inside. The corrugated fin 2 has approximately the same width as the tube 1, and is joined to the tube by brazing. The corrugated fin 2 is also made of aluminum, and preferably has a looper cut and raised.

ヘツダー3,4は断面円形のアルミニウム製パ
イプ材をもつて形成されている。これらのヘツダ
ー3,4は心材の片面または両面にろう材が被覆
されたアルミニウムプレージングシートからなる
断面円形の電縫管をもつて形成されている。なお
電縫管によらずアルミニウム押出形材をもつて構
成しても良い。また、ブレージングシートのパイ
プ成形体をその衝き合わせ部を電縫溶接すること
なく用い、チユーブとヘツダーとのろう付と同時
に衝き合わせ部をろう付するものとしても良い。
The headers 3 and 4 are made of aluminum pipe material with a circular cross section. These headers 3 and 4 are formed of electric resistance welded tubes having a circular cross section and are made of aluminum plating sheets whose core material is coated with a brazing material on one or both sides. Note that the structure may be made of an extruded aluminum member instead of the electric resistance welded tube. Alternatively, the pipe molded body of the brazing sheet may be used without electrical resistance welding of the abutting portions, and the abutting portions may be brazed at the same time as the tube and header are brazed.

各ヘツダーには長さ方向に沿つて間隔的にチユ
ーブ挿入孔5が穿設されるとゝもに、該孔に各チ
ユーブ1の両端部が挿入され、かつろう付けによ
り強固に接合連結されている。さらに左ヘツダー
3の上端には冷媒入口管6が連結されまた同下端
には閉塞用蓋片7が取着される一方、右ヘツダー
4の下端には冷媒出口管8が連結されまた同上端
には閉塞用蓋片9が取着されている。なお第1図
に示す13,14は最外側のコルゲートフイン
2,2の外側に配置された上下のサイドプレート
である。
Tube insertion holes 5 are bored at intervals along the length of each header, and both ends of each tube 1 are inserted into the holes and firmly connected by brazing. There is. Further, a refrigerant inlet pipe 6 is connected to the upper end of the left header 3, and a closing lid piece 7 is attached to the lower end thereof, while a refrigerant outlet pipe 8 is connected to the lower end of the right header 4, and a refrigerant outlet pipe 8 is connected to the upper end of the left header 3. A closing lid piece 9 is attached. Note that 13 and 14 shown in FIG. 1 are upper and lower side plates arranged outside the outermost corrugated fins 2 and 2.

ところで、両側のヘツダー3,4内には、各1
個の仕切板10,11が設けられ、これによつて
各ヘツダー3,3内が長さ方向に仕切られそれぞ
れ上下2室に分けられている。しかも左側の仕切
板10はヘツダー3の中央部やゝ上の位置に設け
られ、右側の仕切板11は下端から全長の1/3程
度の位置に設けられている。
By the way, in the headers 3 and 4 on both sides, there are 1
Two partition plates 10 and 11 are provided, which partition the inside of each header 3 and 3 in the length direction and divide it into two upper and lower chambers. Furthermore, the left partition plate 10 is provided at the center or above the header 3, and the right partition plate 11 is provided at a position about 1/3 of the total length from the bottom end.

上記のような仕切板10,11の設置により、
チユーブ1群によつて構成される全冷媒通路15
(第11図参照)は、入口側通路群Aと、出口側
通路群Cと、それらの中間に位置する中間通路群
Bとの3つの通路群に分けられ、冷媒を順次各通
路群をめぐつて蛇行状に流通させるようになされ
ている。かつ中間通路群Bは出口側通路群Cより
も多くのチユーブ数すなわち冷媒通路数を含ん
で、その通路断面積が出口側通路群Cの通路断面
積よりも大きいものとなされ、さらに入口側通路
群Aの通路断面積は中間通路群Bの通路断面積よ
りも大きいものに設定されている。
By installing the partition plates 10 and 11 as described above,
All refrigerant passages 15 constituted by one group of tubes
(See Figure 11) is divided into three groups of passages: an inlet side passage group A, an outlet side passage group C, and an intermediate passage group B located between them, and the refrigerant is sequentially circulated through each passage group. It is designed to be distributed in a meandering manner. In addition, the intermediate passage group B includes a larger number of tubes, that is, the number of refrigerant passages, than the outlet side passage group C, and its passage cross-sectional area is larger than the passage cross-sectional area of the outlet side passage group C. The passage cross-sectional area of group A is set to be larger than the passage cross-sectional area of intermediate passage group B.

上記構成において、左ヘツダー3の上部の入口
管6から流入した冷媒は、第6図に示すように、
入口側通路群Aの各チユーブ1を通過して右ヘツ
ダー4に至つたのち、反転して中間通路群Bの各
通路を左ヘツダー3へと流れ、さらに反転して出
口側通路群Cの各通路を右ヘツダーへと流れて出
口管8から凝縮器外へと流出する。そして各通路
群を流通する間に、チユーブ1,1間に形成され
た、コルゲートフイン2を含む空気流通間隙を第
3図に矢印Wで示す方向に流通する空気と熱交換
を行う。而して、入口側通路群Aを通過する冷媒
はいまだ体積の大きいガス化状態にあるが、入口
側通路群Aの通路断面積を大きく設定してあるの
で、伝熱面積が大きいものとなされており効率良
く冷媒の凝縮が行われる。中間通路群Bを通過す
る冷媒は入口側通路群Aで一部が液化されるため
気液混合状態を呈している。従つて伝熱面積は少
なくて良いが、これに応じて中間通路群Bの通路
断面積は入口側通路群Aよりも小に設定してある
ので、必要かつ充分な熱交換を行わせつゝ冷媒を
通過させることができる。出口側通路群Cを通過
する時には冷媒はすでに液体状態を呈し体積も小
さくなつているから通路断面積も小さくて良い
が、これに応じて出口側通路群Cの通路断面積は
中間通路群Bよりもさらに小に設定されているの
で、冷媒を通過させるのにスペースの無駄がなく
なる。このように凝縮部に相当する入口側通路群
Aさらには中間通路群Bから過冷却部に相当する
出口側通路群Cへと至るに従つて、各通路群の通
路断面積を小さくすることによつて、効率の良い
熱交換が行われることゝなる。かつヘツダー3,
4内で冷媒が混合作用を受けるので、液相冷媒の
充満による通路の液封状態を生じるのが効率果的
に防止される。
In the above configuration, the refrigerant flowing from the inlet pipe 6 at the upper part of the left header 3, as shown in FIG.
After passing through each tube 1 of the inlet side passage group A and reaching the right header 4, it turns around and flows through each passage of the intermediate passage group B to the left header 3, and then turns around and flows through each of the outlet side passage group C. It flows through the passage to the right header and flows out of the condenser from the outlet pipe 8. While flowing through each passage group, the air exchanges heat with the air flowing in the direction shown by arrow W in FIG. 3 through the air circulation gap including the corrugated fins 2 formed between the tubes 1 and 1. Although the refrigerant passing through the inlet-side passage group A is still in a gasified state with a large volume, the passage cross-sectional area of the inlet-side passage group A is set to be large, so that the heat transfer area is large. The refrigerant is efficiently condensed. The refrigerant passing through the intermediate passage group B is partially liquefied in the inlet side passage group A, so that it is in a gas-liquid mixed state. Therefore, the heat transfer area may be small, but since the passage cross-sectional area of the intermediate passage group B is set smaller than that of the inlet side passage group A, necessary and sufficient heat exchange can be performed. can be passed. When passing through the outlet side passage group C, the refrigerant is already in a liquid state and the volume is small, so the passage cross-sectional area may be small. Since it is set even smaller than that, there is no wasted space to pass the refrigerant. In this way, the passage cross-sectional area of each passage group is reduced from the inlet side passage group A corresponding to the condensing section and further from the intermediate passage group B to the outlet side passage group C corresponding to the supercooling section. Therefore, efficient heat exchange is performed. and header 3,
Since the refrigerant is subjected to a mixing action in the refrigerant 4, it is effectively prevented that the passage becomes liquid-sealed due to being filled with liquid refrigerant.

なお上記に説明した実施例においては、入口側
通路群Aから出口側通路群Cにかけて段階的に通
路断面積を減少した場合を示したが、入口側通路
群Aと中間通路群Bの通路断面積を同一とし、出
口側通路群Cの通路断面積のみを減少せしめても
良い。また各通路群の通路断面積を入口側から出
口側に向かつて減少する手段として各通路群に含
まれるチユーブ1の本数を変える方法を採用した
が、チユーブ本数を同一として各チユーブ自体の
断面積を変える方法を採用しても良い。さらに上
記実施例は3個の通路群を設けて冷媒を2回Uタ
ーンさせて3回蛇行させる3パス方式のものを示
したが、入口側通路群Aと出口側通路群Cのみか
らなる1回のみUターンする2パス方式の凝縮器
や、中間通路群を2以上の通路に形成した4パス
以上の蛇行式の凝縮器についても適用可能であ
る。
In the embodiment described above, the case where the passage cross-sectional area is gradually reduced from the entrance passage group A to the exit passage group C is shown, but the passage cross-sectional area of the entrance passage group A and the intermediate passage group B is The area may be kept the same, and only the passage cross-sectional area of the outlet side passage group C may be reduced. In addition, as a means to reduce the passage cross-sectional area of each passage group from the inlet side to the outlet side, we adopted a method of changing the number of tubes 1 included in each passage group, but assuming the number of tubes is the same, the cross-sectional area of each tube itself You may also adopt a method that changes the . Furthermore, the above embodiment shows a three-pass system in which three passage groups are provided and the refrigerant is made to make two U-turns and meander three times; It is also applicable to a two-pass type condenser that makes U-turns only once, and a four-pass or more meandering type condenser in which two or more intermediate passages are formed.

ところで上記のようなチユーブ1を流通する冷
媒やチユーブ間隙を流通する空気の圧力損失ひい
ては熱交換効率は、チユーブ1及びコルゲートフ
イン2の設計仕様に大きく支配される。そこでこ
の発明では、前記チユーブ1はその幅Wが6〜16
mmの範囲に、高さHtが1.5〜5mmに、チユーブ内
の冷媒通路12の高さHpが1.0mm以上にそれぞれ
規制され、かつコルゲートフイン2はその高さ
Hfすなわち隣接チユーブ1,1の間隔が8〜16
mmの範囲に、フインピツチFpは1.6〜3.2mmの範囲
にそれぞれ規則されることを条件とする。ここで
それぞれの限定理由について説明すれば、チユー
ブ幅Wが6〜16mmに規制されるのは、第7図に示
した実験結果に基くグラフに示すように、6mm未
満では隣接チユーブ1,1間に介在されるコルゲ
ートフイン2の幅も小さいものとなるとともに、
該フイン2に形成されるルーパー2aの数も減少
し、熱交換性能が劣化するからであり、逆に16mm
を超えて広幅に形成されるとフイン2の幅も大き
くなり流通空気の流通抵抗の増大による圧力損失
の増大、及び凝縮器の重量の増大を招来し実用性
が損われるからである。好ましくは10〜14mmとす
るのが良い。チユーブ高さ(Ht)が1.5〜5mmに
規制されるのは、第8図に示されるように5mmを
超えて高くなると、流通空気の圧力損失が高くな
るからであり、逆に1.5mm未満ではチユーブ内の
冷媒通路高さHpをチユーブ肉厚との関係で1.0mm
以上確保するのが困難となるからである。好まし
くは2.5〜4mmとするのが良い。チユーブ1内の
冷媒通路高さ(Hp)が1.0mm以上に規制されるの
は、1.0mm未満では冷媒の圧力損失が高くなり、
熱交換効率の低下を招来するからである。好まし
くは1.5〜2.0mmとするのが良い。一方、フイン高
さHfが8〜16mmに規制されるのは、第9図に示
されるように8mm未満では流通空気の圧力損失が
増大するからであり、逆に16mm以上では全体のフ
イン数が少なくなりフイン効率が低下し熱交換性
能が悪くなるからである。好ましくは8〜12mmと
するのが良い。またフインピツチFpが1.6〜3.2mm
に規制されるのは、第10図に示されるように
1.6mm未満ではルーバー2aが干渉して性能が低
下するとともに空気の圧力損失が増大するからで
あり、逆に3.2mmを超えると熱交換性能が劣化す
るからである。
By the way, the pressure loss of the refrigerant flowing through the tube 1 and the air flowing through the tube gap as described above, as well as the heat exchange efficiency, are largely controlled by the design specifications of the tube 1 and the corrugated fins 2. Therefore, in this invention, the tube 1 has a width W of 6 to 16
mm, the height Ht is regulated to 1.5 to 5 mm, and the height Hp of the refrigerant passage 12 in the tube is regulated to 1.0 mm or more.
Hf, that is, the distance between adjacent tubes 1, 1 is 8 to 16
The condition is that the fin pitch Fp is set within the range of 1.6 to 3.2 mm. To explain the reasons for each limitation, the tube width W is restricted to 6 to 16 mm because, as shown in the graph based on the experimental results shown in Figure 7, if it is less than 6 mm, the distance between adjacent tubes 1 and 1 is The width of the corrugated fins 2 interposed in the corrugated fins 2 becomes smaller, and
This is because the number of loopers 2a formed on the fins 2 also decreases, deteriorating the heat exchange performance.
This is because if the width of the fins 2 is made wider than this, the width of the fins 2 will also increase, leading to an increase in pressure loss due to an increase in the flow resistance of the circulating air, and an increase in the weight of the condenser, impairing its practicality. Preferably it is 10 to 14 mm. The reason why the tube height (Ht) is regulated to 1.5 to 5 mm is because, as shown in Figure 8, if the tube height exceeds 5 mm, the pressure loss of the circulating air will increase, whereas if it is less than 1.5 mm, The height Hp of the refrigerant passage inside the tube is 1.0 mm in relation to the tube wall thickness.
This is because it will be difficult to secure more than that. The thickness is preferably 2.5 to 4 mm. The reason why the refrigerant passage height (Hp) in tube 1 is restricted to 1.0 mm or more is because if it is less than 1.0 mm, the pressure loss of the refrigerant will be high.
This is because it causes a decrease in heat exchange efficiency. It is preferably 1.5 to 2.0 mm. On the other hand, the fin height Hf is restricted to 8 to 16 mm because, as shown in Figure 9, if it is less than 8 mm, the pressure loss of the circulating air will increase, whereas if it is 16 mm or more, the total number of fins will be reduced. This is because the fin efficiency decreases and the heat exchange performance deteriorates. It is preferably 8 to 12 mm. Also, the fin pitch Fp is 1.6 to 3.2mm.
The regulations are as shown in Figure 10.
This is because if it is less than 1.6 mm, the louvers 2a will interfere, resulting in a decrease in performance and an increase in air pressure loss, while if it exceeds 3.2 mm, heat exchange performance will deteriorate.

発明の効果 この発明は、次のような作用効果を奏する。Effect of the invention This invention has the following effects.

(1) 先ず、冷媒の圧力損失を大幅に減らすことが
できる。
(1) First, the pressure loss of the refrigerant can be significantly reduced.

即ち、この発明に係る凝縮器は、左右に平行
状に配置された1対のヘツダー間に多数本の熱
交換チユーブが連通接続状態に配設され、一方
のヘツダーの冷媒入口から導入されるガス状冷
媒を同時に複数本のチユーブに分配して流通さ
せるいわばマルチフロー型の熱交換器として構
成されたものであるから、殊に限られた器体厚
みの範囲内で冷媒通路断面積を任意に大きく確
保することができ、冷媒流通のための圧力損失
を大幅に減らすことができる。従つて、熱交換
効率の向上と共に、コンプレツサの所要能力を
低減化することが可能となる。
That is, in the condenser according to the present invention, a large number of heat exchange tubes are arranged in communication between a pair of headers arranged in parallel on the left and right, and the gas introduced from the refrigerant inlet of one of the headers is connected. It is constructed as a so-called multi-flow type heat exchanger that distributes and circulates refrigerant into multiple tubes at the same time. The pressure loss due to refrigerant flow can be greatly reduced. Therefore, it is possible to improve the heat exchange efficiency and reduce the required capacity of the compressor.

(2) また耐圧性に優れ、高い安全性を有する。(2) It also has excellent pressure resistance and high safety.

即ち、マルチフロー型の熱交換器としては従
来ラジエータとして一般に知られているものが
ある。しかしながら、この公知の熱交換器で
は、そのタンク部の構造、チユーブとタンク部
の接合構造、チユーブの構造等の多くの面で、
相当大きな内圧が負荷される凝縮器としての用
途においては、その使用に耐えられるだけの充
分な耐圧性の確保が困難である。しかるに、こ
の発明においては、熱交換チユーブとして断面
が扁平状でしかも内部の上下壁間に補強壁が設
けられた管材が用いられ、またチユーブとヘツ
ダーとの連通接続構造として、チユーブの端部
を前記ヘツダーの周壁に穿たれた孔に差込み状
態にしてろう付けされていることにより、十分
に優れた耐圧性を保有し、液もれ等のおそれの
ない十分な安全性、耐久性を有するものとする
ことができる。
That is, as a multi-flow type heat exchanger, there is a type generally known as a conventional radiator. However, this known heat exchanger has many aspects such as the structure of the tank, the joint structure between the tube and the tank, and the structure of the tube.
When used as a condenser that is subjected to a considerable internal pressure, it is difficult to ensure sufficient pressure resistance to withstand the use. However, in this invention, a tube material having a flat cross section and a reinforcing wall between the upper and lower internal walls is used as the heat exchange tube, and the end portion of the tube is used as a communication connection structure between the tube and the header. By being inserted into a hole drilled in the peripheral wall of the header and brazed, it has sufficiently excellent pressure resistance and has sufficient safety and durability without the risk of liquid leakage. It can be done.

(3) 熱交換効率に優れ、顕著な小型化をはかりう
る。
(3) It has excellent heat exchange efficiency and can be significantly downsized.

即ち、この発明の凝縮器においてはまた、1
対のヘツダーが左右に平行状に配置され、それ
らの間に多数本のチユーブが水平状に配置され
た横式のものとして構成され、しかも一方のヘ
ツダーまたは両方のヘツダーの内部に仕切が設
けられ、それによつて前記チユーブによつて構
成される冷媒通路が、入口側通路群と出口側通
路群とを含む少なくとも2つ以上の通路群に区
画され、冷媒をヘツダー内で1回以上Uターン
させて2パス以上の蛇行状に流通せしめるもの
となされると共に、前記入口側通路群に対し出
口側通路群の通路断面積が相対的に減少されて
いる。従つて、これによつて、凝縮部と過冷却
部とのそれぞれに冷媒の相状態の変化、すなわ
ちガスの状態から液体の状態への相変化に合理
的に対応した必要かつ十分な通路断面積を確保
しながら、入口から出口に至るまでの冷媒通路
に所要の十分な長さを確保することができる。
加えて、冷媒は縦向きのヘツダー内でUターン
する際に気液混合作用を受け、然るのち次位の
水平方向の冷媒通路に分配導入されて更に冷却
される。従つて、従来のサーペンタイン型凝縮
器の場合のように、冷媒通路内で凝縮した液相
冷媒がとくに出口側に近づくに従つて冷媒通路
を閉塞したり、あるいはチユーブを垂直状に配
置したタテ型熱交換器の場合のように、凝縮し
た液相冷媒が重力で下部ヘツダー内に滞留して
冷媒通路を閉塞する、所謂液封の状態を生じる
のを効果的に防止することができ、コアの前
面々積を熱交換のための有効面積として最大限
に活用して、熱交換能力の顕著な向上をはかる
ことができる。
That is, in the condenser of this invention, 1
It is constructed as a horizontal type in which a pair of headers are arranged in parallel on the left and right, and a large number of tubes are arranged horizontally between them, and a partition is provided inside one or both headers. , whereby the refrigerant passage constituted by the tube is divided into at least two passage groups including an inlet side passage group and an outlet side passage group, and the refrigerant is made to make one or more U-turns within the header. In addition, the passage cross-sectional area of the outlet side passage group is relatively smaller than that of the inlet side passage group. Therefore, this allows each of the condensing section and the supercooling section to have a necessary and sufficient passage cross-sectional area that reasonably accommodates the change in the phase state of the refrigerant, that is, the phase change from the gas state to the liquid state. While ensuring that the refrigerant passage has a sufficient length from the inlet to the outlet.
In addition, the refrigerant is subjected to a gas-liquid mixing action when making a U-turn in the vertical header, and is then distributed and introduced into the next horizontal refrigerant passage for further cooling. Therefore, as in conventional serpentine condensers, the liquid phase refrigerant condensed in the refrigerant passage blocks the refrigerant passage especially as it approaches the outlet side, or in the case of a vertical type condenser in which the tubes are arranged vertically. As in the case of heat exchangers, it is possible to effectively prevent the condensed liquid phase refrigerant from accumulating in the lower header due to gravity and blocking the refrigerant passage, resulting in a so-called liquid seal condition. By making the most of the front-to-front area as an effective area for heat exchange, the heat exchange capacity can be significantly improved.

加えてまた、複数のチユーブが並列状に配置
されるとゝもに、隣接チユーブ間にコルゲート
フインが配置され、かつ各チユーブの両端が中
空ヘツダーに連通接続された構造のものである
から、チユーブの幅やチユーブ間隔即ちフイン
高さ等の選択に制限がなくなり、任意の設計仕
様が可能となる。かつかゝる構成とした上で、
凝縮器の性能に最も影響を及ぼすチユーブとコ
ルゲートフインに関し、チユーブ幅、チユーブ
高さ、チユーブ内の冷媒通路高さ、フイン高
さ、フインピツチを最も適正な範囲に設定した
ものであるから、重量の増大を招来することな
く、冷媒や流通空気の圧力損失と熱交換性能と
が調和した最も効率の良い最適状態で動作せし
めうる凝縮器の提供が可能となる。従つて熱交
換効率に優れたものであり、ひいては凝縮器の
全体の小型化をはかることができ、殊に狭いス
ペースに適用される車輌用の凝縮器として最適
のものとなしうると共に、近時公害要因の1つ
として社会問題を提起している冷媒フロンの使
用量を従来のサーペンタイン型凝縮器による場
合に較べ30%以上も大幅に減少することができ
る。
In addition, since a plurality of tubes are arranged in parallel, corrugated fins are arranged between adjacent tubes, and both ends of each tube are connected to the hollow header, the tubes are There are no restrictions on the selection of the width, tube spacing, ie, fin height, etc., and any design specification is possible. With this configuration,
Regarding the tubes and corrugated fins that most affect the performance of the condenser, the tube width, tube height, refrigerant passage height in the tube, fin height, and fin pitch are set to the most appropriate ranges, so the weight It is possible to provide a condenser that can be operated in the most efficient and optimal state in which the pressure loss of the refrigerant and circulating air and heat exchange performance are in harmony without causing any increase in heat exchange performance. Therefore, it has excellent heat exchange efficiency, and as a result, the overall size of the condenser can be reduced, making it ideal as a condenser for vehicles, especially in narrow spaces. The amount of CFC refrigerant, which has become a social problem as a pollution factor, can be significantly reduced by more than 30% compared to the conventional serpentine condenser.

(4) 製造が容易で生産性に優れる。(4) Easy to manufacture and has excellent productivity.

即ち、この発明の凝縮器は、その組立製作に
おいても、例えば先ずチユーブの両端部をヘツ
ダーの孔に差し込んで枠状のスケルトンを構成
し、隣接チユーブ間にフインをはめ込んで全体
を仮組状態としたり、あるいはチユーブとフイ
ンとを交互に並べたのちヘツダーと組合わせて
仮組状態としたのち、炉中で一括ろう付けする
ことにより簡単に行うことができ、生産性を向
上して結果的に製造コストの低減化をはかるこ
とができる。
That is, the condenser of the present invention can be assembled and manufactured by, for example, first inserting both ends of the tube into the holes of the header to form a frame-shaped skeleton, and then inserting fins between adjacent tubes to temporarily assemble the whole. Alternatively, it can be easily done by arranging tubes and fins alternately, combining them with headers to form a temporary assembly state, and then brazing them all at once in a furnace, improving productivity and resulting in Manufacturing costs can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の実施例を示すもので、第1図
は凝縮器の全体正面図、第2図は同じく平面図、
第3図は第1図の−線断面図、第4図は構成
部材を分離状態にして示した要部の斜視図、第5
図は第3図と同一方向から見た断面拡大図、第6
図はコルゲートフインとチユーブを示す正面拡大
図、第7図は、第1図から第6図に示した凝縮器
におけるチユーブ幅の変化と熱通過率の変化との
関係を示すグラフ、第8図は同じくチユーブ高さ
の変化と空気側の圧力損失の変化との関係を示す
グラフ、第9図は同じフイン高さの変化に対する
交換熱量及び空気の圧力損失の変化の関係を示す
グラフ、第10図は同じくフインピツチの変化に
対する交換熱量及び空気の圧力損失の変化の関係
を示すグラフ、第11図は第1図に示した凝縮器
の冷媒回路図である。 1……チユーブ、2……コルゲートフイン、
3,4……ヘツダー、15……冷媒通路、A……
入口側通路群、B……中間通路群、C……出口側
通路群、W……チユーブ幅、Ht……チユーブ高
さ、Hp……冷媒通路高さ、Hf……フイン高さ、
Fp……フインピツチ。
The drawings show an embodiment of the invention, and FIG. 1 is an overall front view of the condenser, FIG. 2 is a plan view, and FIG.
Fig. 3 is a sectional view taken along the - line in Fig. 1, Fig. 4 is a perspective view of the main parts with the constituent members separated, and Fig. 5
The figure is an enlarged cross-sectional view seen from the same direction as Figure 3.
The figure is an enlarged front view showing the corrugated fins and tubes, Figure 7 is a graph showing the relationship between changes in tube width and changes in heat transfer rate in the condenser shown in Figures 1 to 6, and Figure 8 9 is a graph showing the relationship between the change in tube height and the change in pressure loss on the air side, FIG. The figure is also a graph showing the relationship between changes in exchange heat amount and air pressure loss with respect to changes in fin pitch, and FIG. 11 is a refrigerant circuit diagram of the condenser shown in FIG. 1. 1...Tube, 2...Colgate Finn,
3, 4... Header, 15... Refrigerant passage, A...
Inlet side passage group, B...middle passage group, C...outlet side passage group, W...tube width, Ht...tube height, Hp...refrigerant passage height, Hf...fin height,
Fp……fin pitch.

Claims (1)

【特許請求の範囲】 1 互いに間隔をおいて左右に平行状に配置され
た1対のアルミニウム製の筒状ヘツダーと、 両端をそれぞれ前記ヘツダーに連通接続して水
平かつ平行状に配置された多数本の熱交換チユー
ブと、 隣接するチユーブ間の空気流通間隙に配置され
たフインとを備え、 前記チユーブは、断面が扁平状で、内部に上下
壁間にまたがつた補強壁を有する扁平アルミニウ
ム管によつて構成され、 前記チユーブの両端部が前記ヘツダーに穿たれ
たチユーブ挿入孔に差し込まれて液密状態にろう
付けされ、 少なくとも一方のヘツダーの内部が、その長さ
方向の所定位置において仕切手段によつて仕切ら
れることにより、前記熱交換チユーブ群によつて
構成される冷媒通路がそれぞれ複数本の熱交換チ
ユーブからなる入口側通路群と出口側通路群とを
含む少なくとも2つ以上の通路群に区画され、冷
媒を順次各通路群をめぐつて2パス以上の蛇行状
に流通させるようになされ、 かつ前記入口側通路群に対し出口側通路群の通
路断面積が相対的に減少されたものとなされると
共に、 前記チユーブが、 チユーブ幅:6〜16mm チユーブ高さ:1.5〜5mm チユーブ内冷媒通路高さ:1.0mm以上 に設定され、また前記コルゲートフインが、 フイン高さ:8〜16mm フインピツチ:1.6〜3.2mm に設定されてなることを特徴とする凝縮器。
[Scope of Claims] 1. A pair of aluminum cylindrical headers arranged parallel to each other on the left and right with an interval between them, and a plurality of aluminum cylindrical headers arranged horizontally and in parallel with both ends connected to the headers, respectively. A flat aluminum tube having a flat heat exchange tube and fins disposed in an air flow gap between adjacent tubes, the tube having a flat cross section and a reinforcing wall extending between the upper and lower walls. Both ends of the tube are inserted into tube insertion holes drilled in the header and brazed in a liquid-tight state, and the inside of at least one of the headers is partitioned at a predetermined position in the length direction. The refrigerant passages constituted by the heat exchange tube group are partitioned by the means, so that the refrigerant passages constituted by the heat exchange tube group are at least two passages each including an inlet side passage group and an outlet side passage group each consisting of a plurality of heat exchange tubes. The refrigerant is divided into groups, and the refrigerant is made to flow in a meandering pattern of two or more passes around each group of passages, and the passage cross-sectional area of the passage group on the outlet side is reduced relative to the group of passages on the inlet side. In addition, the tube is set to have: tube width: 6 to 16 mm, tube height: 1.5 to 5 mm, and refrigerant passage height in the tube: 1.0 mm or more, and the corrugated fins are set to have a fin height of 8 to 16 mm. Fin pitch: A condenser characterized by being set at 1.6 to 3.2 mm.
JP27791787A 1986-11-04 1987-11-02 Condenser Granted JPS63243688A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP61-263138 1986-11-02
JP26313886 1986-11-04

Publications (2)

Publication Number Publication Date
JPS63243688A JPS63243688A (en) 1988-10-11
JPH0345302B2 true JPH0345302B2 (en) 1991-07-10

Family

ID=17385338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27791787A Granted JPS63243688A (en) 1986-11-04 1987-11-02 Condenser

Country Status (1)

Country Link
JP (1) JPS63243688A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133797A (en) * 1988-11-15 1990-05-22 Matsushita Refrig Co Ltd Heat exchanger with fin
JPH02287094A (en) * 1989-04-26 1990-11-27 Zexel Corp Heat exchanger
JPH03204595A (en) * 1989-12-28 1991-09-06 Showa Alum Corp Condenser
JP2001165532A (en) 1999-12-09 2001-06-22 Denso Corp Refrigerant condenser
JP4786234B2 (en) * 2004-07-05 2011-10-05 昭和電工株式会社 Heat exchanger
JP5562769B2 (en) * 2010-09-01 2014-07-30 三菱重工業株式会社 Heat exchanger and vehicle air conditioner equipped with the same
DE102012110701A1 (en) 2012-11-08 2014-05-08 Halla Visteon Climate Control Corporation 95 Heat exchanger for a refrigerant circuit
US10024600B2 (en) * 2016-06-21 2018-07-17 Evapco, Inc. Mini-tube air cooled industrial steam condenser

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS6146756A (en) * 1984-08-11 1986-03-07 日立機電工業株式会社 Conveyor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6324395Y2 (en) * 1980-04-09 1988-07-04

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4849054A (en) * 1971-10-22 1973-07-11
JPS6146756A (en) * 1984-08-11 1986-03-07 日立機電工業株式会社 Conveyor

Also Published As

Publication number Publication date
JPS63243688A (en) 1988-10-11

Similar Documents

Publication Publication Date Title
KR100265657B1 (en) Evaporator or condenser
US6523606B1 (en) Heat exchanger tube block with multichamber flat tubes
US5529116A (en) Duplex heat exchanger
JP3814917B2 (en) Stacked evaporator
JP4734021B2 (en) Heat exchanger
JP2006132920A (en) Heat exchanger
JPH11294984A (en) Juxtaposed integrated heat exchanger
JPH0345300B2 (en)
JP4786234B2 (en) Heat exchanger
JPH0245945B2 (en)
JP4533726B2 (en) Evaporator and manufacturing method thereof
JPH05312492A (en) Heat exchanger
JP2006078163A (en) Flat tube, plate body for manufacturing flat tube, and heat exchanger
JPH0345302B2 (en)
JPS63271099A (en) Heat exchanger
JP2006170601A (en) Evaporator
JPH051865A (en) Aluminum made condenser for air condioner
JP2997816B2 (en) Capacitor
JPH0345301B2 (en)
JP2891486B2 (en) Heat exchanger
JPH0332944Y2 (en)
JPH0833287B2 (en) Aluminum condenser for air conditioner
JPH064218Y2 (en) Integrated heat exchange device with condenser and other heat exchangers
JPH0762596B2 (en) Aluminum condenser for air conditioner
JP4617148B2 (en) Heat exchanger

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 17