JPS6334466A - Condenser - Google Patents

Condenser

Info

Publication number
JPS6334466A
JPS6334466A JP17976386A JP17976386A JPS6334466A JP S6334466 A JPS6334466 A JP S6334466A JP 17976386 A JP17976386 A JP 17976386A JP 17976386 A JP17976386 A JP 17976386A JP S6334466 A JPS6334466 A JP S6334466A
Authority
JP
Japan
Prior art keywords
passage
refrigerant
passage group
tube
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17976386A
Other languages
Japanese (ja)
Other versions
JPH0345300B2 (en
Inventor
広仲 佐々木
良一 星野
隆幸 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP17976386A priority Critical patent/JPS6334466A/en
Priority to EP87306599A priority patent/EP0255313B1/en
Priority to AT87306599T priority patent/ATE58009T1/en
Priority to EP19920200034 priority patent/EP0480914A3/en
Priority to AT92200033T priority patent/ATE197501T1/en
Priority to US07077815 priority patent/US4825941B1/en
Priority to DE8989202415T priority patent/DE3780648T2/en
Priority to DE3752324T priority patent/DE3752324T2/en
Priority to EP92200033A priority patent/EP0479775B1/en
Priority to DE8787306599T priority patent/DE3765875D1/en
Priority to EP89202415A priority patent/EP0360362B1/en
Priority to CA000543185A priority patent/CA1301161C/en
Publication of JPS6334466A publication Critical patent/JPS6334466A/en
Priority to US07/328,896 priority patent/US4936379A/en
Priority to AT89202415T priority patent/ATE78579T1/en
Priority to US07509901 priority patent/US5025855B1/en
Priority to US07671365 priority patent/US5190100B1/en
Publication of JPH0345300B2 publication Critical patent/JPH0345300B2/ja
Priority to CA000616248A priority patent/CA1324602C/en
Priority to CA000616247A priority patent/CA1326481C/en
Priority to US07/967,032 priority patent/US5246064A/en
Priority to US08/339,064 priority patent/US5458190A/en
Priority to US08/341,428 priority patent/US5482112A/en
Priority to US08/505,494 priority patent/USRE35655E/en
Priority to US08/505,568 priority patent/USRE35711E/en
Priority to US08/746,921 priority patent/USRE35742E/en
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 この発明はカークーラー用等に用いられる凝縮器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a condenser used for car coolers and the like.

従来の技術 従来、カークーラー用等の凝縮器としては、一般にサー
ペンタイン型と称される型式のものが使用されている。
2. Description of the Related Art Conventionally, condensers for car coolers and the like have generally been of a type called a serpentine type.

即ち、ハーモニカチューブと称されるような多孔押出偏
平チューブを蛇行状に曲げ、その平行部間にフィンを配
置してコアを構成したものが一般に用いられている。
That is, a core is generally used by bending a multi-hole extruded flat tube called a harmonica tube into a meandering shape and arranging fins between its parallel parts.

ところで凝縮器内の冷媒通路は、冷媒がいまだガス化状
態にある入口側に近い冷媒凝縮部と、冷媒が液化状態と
なっている出口側に近い過冷却部とに大別され、熱交換
効率を大きくするには一般に凝縮部での伝熱面積を大き
く確保する必要があり、過冷却部の伝熱面積は比較的小
さくともかまわない。
By the way, the refrigerant passage inside the condenser is roughly divided into a refrigerant condensing section near the inlet side where the refrigerant is still in a gasified state, and a supercooling section near the exit side where the refrigerant is in a liquefied state. In order to increase , it is generally necessary to ensure a large heat transfer area in the condensing section, and the heat transfer area in the supercooling section may be relatively small.

発明が解決しようとする問題点 しかるに従来のサーペンタイン型の凝縮器では、冷媒通
路が1本の偏平押出チューブにより形成されているため
、伝熱面積を大きく確保すべく凝縮部の通路面積を大き
くすると、必然的に過冷却部の通路面積も大きくなって
、凝縮器全体が大型化する。従って凝縮器の大型化を派
生することなく熱交換効率を向上するには限界があった
。しかも押出チューブを蛇行状に曲成するものであるか
ら、曲げ部の曲率半径を一定以上小さくできないため、
チューブのピッチを狭くできず、このためチューブの平
行部間に介在されるフィン数が少ないものとなってフィ
ン効率が悪く、熱交換効率の向上は愈々困難なものであ
った。
Problems to be Solved by the Invention However, in conventional serpentine condensers, the refrigerant passage is formed by a single flat extruded tube. , the passage area of the supercooling section inevitably becomes larger, and the entire condenser becomes larger. Therefore, there is a limit to how heat exchange efficiency can be improved without increasing the size of the condenser. Moreover, since the extruded tube is bent into a meandering shape, the radius of curvature of the bent part cannot be made smaller than a certain level.
The pitch of the tubes could not be narrowed, and as a result, the number of fins interposed between the parallel portions of the tubes was small, resulting in poor fin efficiency, making it extremely difficult to improve heat exchange efficiency.

この発明はこのような問題に鑑みてなされたものであっ
て、高い熱交換効率を得ることのできる凝縮器の提供を
目的とするものである。
This invention was made in view of such problems, and an object thereof is to provide a condenser that can obtain high heat exchange efficiency.

問題点を解決するための手段 而してこの発明は、所定長のチューブとコルゲートフィ
ンとが交互配置に積層されるとともに、チューブの両端
にヘッダーが連結されてなり、かつヘッダー内部に仕切
板を設けることにより、前記チューブによって構成され
る冷媒通路が入口側通路群と出口側通路群とを含む少な
くとも2以上の通路群に区画されて、冷媒を少なくとも
1回以上蛇行させて流通するように構成されるとともに
、各通路群の通路断面積が入口側から出口側に向って減
少されてなることを特徴とする凝縮器を要旨とするもの
である。
As a means for solving the problems, the present invention consists of tubes of a predetermined length and corrugated fins stacked in an alternating arrangement, headers connected to both ends of the tubes, and a partition plate inside the header. By providing the tube, the refrigerant passage constituted by the tube is divided into at least two passage groups including an inlet side passage group and an outlet side passage group, and the refrigerant is configured to meander at least once or more. The gist of the condenser is that the cross-sectional area of each passage group is reduced from the inlet side to the outlet side.

実施例 次にこの発明の構成を図示実施例に基いて説明する。Example Next, the structure of the present invention will be explained based on illustrated embodiments.

第1図〜第4図において、(1)は水平状態で上下方向
に配置された複数のチューブ、(2)はその隣接するチ
ューブ(1)(1)間に介在されたコルゲートフィンで
ある。チューブ(1)はアルミニウム材による偏平状の
押出型材からなるものである。このチューブ(1)はい
わゆるハモニカチューブと称されるような多孔形のもの
を用いても良い。また押出型材によらず電縫管を用いて
も良い。コルゲートフィン(2)はチューブ(1)とほ
ぼ同じ幅を有し、ろう付によりチューブに接合されてい
る。フルゲートフィン(2)もアルミニウム製であり、
望ましくはルーバーを切り起こしたものを用いるのが良
い。
In FIGS. 1 to 4, (1) is a plurality of tubes arranged vertically in a horizontal state, and (2) is a corrugated fin interposed between the adjacent tubes (1). The tube (1) is made of a flat extruded aluminum material. This tube (1) may be of a porous type, so-called a harmonica tube. Furthermore, an electric resistance welded tube may be used instead of the extruded material. The corrugated fin (2) has approximately the same width as the tube (1) and is joined to the tube by brazing. The full gate fin (2) is also made of aluminum,
It is preferable to use a louver with a cut and raised shape.

(3)(4)は左右のヘッダーである。これらのヘッダ
ー(3)(4)も断面円形のアルミニウム製中空押出型
材をもって形成されている。
(3) and (4) are left and right headers. These headers (3) and (4) are also formed from aluminum hollow extrusions with a circular cross section.

各ヘッダーには長さ方向に沿って間隔的にチューブ挿入
穴(5)が穿設されるとともに、抜穴に各チューブ(1
)の両端が挿入され、かつろう付により強固に接合連結
されている。さらに左ヘッダー(3)の上端には冷媒入
口管(6)が連結されまた同下端には閉塞用蓋片(7)
が取着される一方、右ヘッダー(4)の下端には冷媒出
口管(8)が連結されまた同上端には閉塞用蓋片(9)
が取着されている。なお第1図に示す(13)  (1
4)は最外側のフルゲートフィン(2)(2)の外側に
配置された上下のサイドプレートである。
In each header, tube insertion holes (5) are bored at intervals along the length direction, and each tube (1
) are inserted and firmly connected by brazing. Furthermore, a refrigerant inlet pipe (6) is connected to the upper end of the left header (3), and a closing lid piece (7) is connected to the lower end of the left header (3).
is attached, while a refrigerant outlet pipe (8) is connected to the lower end of the right header (4), and a closing cover piece (9) is connected to the upper end of the right header (4).
is attached. Note that (13) (1
4) are upper and lower side plates arranged outside the outermost full gate fins (2) (2).

ところで、両側のヘッダー(3)(4)内には、各1個
の仕切板(10)  (11)が設けられ、これによっ
て各ヘッダー(3)(4)がそれぞれ上下2室に分けら
れている。しかも左側の仕切板(10)はヘッダー(3
)の中央部やや上の位置に設けられ、右側の仕切板(1
1)は下端から全長の1/3程度の位置に設けられてい
る。
By the way, one partition plate (10) (11) is provided in each of the headers (3) and (4) on both sides, and each header (3) and (4) is divided into two upper and lower chambers by this. There is. Moreover, the left partition plate (10) is the header (3
) is installed slightly above the center of the partition plate (1) on the right side.
1) is provided at a position about 1/3 of the total length from the lower end.

上記のように仕切板(10)  (11)の設置により
、チューブ(1)群によって構成される全冷媒通路(1
2)は、入口側通路群(A)と、出口側通路群(C)と
、それらの中間に位置する中間通路群(B)との3つの
通路群に分けられ、冷媒を順次各通路群をめぐって蛇行
状に流通させるようになされている。かつ中間通路群(
B)は出口側通路群(C)よりも多くのチューブ数すな
わち冷媒通路数を含んで、その通路断面積が出口側通路
群(C)の通路断面積よりも大きいものとなされ、さら
に入口側通路群(A)の通路断面積は中間通路群(B)
の通路断面積よりも大きいものに設定されている。
By installing the partition plates (10) and (11) as described above, the entire refrigerant passage (1) constituted by the tube (1) group
2) is divided into three passage groups: an inlet side passage group (A), an outlet side passage group (C), and an intermediate passage group (B) located between them, and the refrigerant is sequentially passed through each passage group. It is distributed in a meandering manner around the world. and intermediate passage group (
B) includes a larger number of tubes, that is, the number of refrigerant passages, than the outlet side passage group (C), and its passage cross-sectional area is larger than the passage cross-sectional area of the outlet side passage group (C). The passage cross-sectional area of passage group (A) is that of intermediate passage group (B).
is set to be larger than the passage cross-sectional area.

上記構成において、左ヘッダー(3)の上部入口管(6
)から流入した冷媒は、第5図に示すように、入口側通
路群(A)の各チューブ(1)を通過して右ヘッダー(
4)に至ったのち、反転して中間通路群(B)の各通路
を左ヘッダー(3)へと流れ、さらに反転して出口側通
路群(C)の各通路を右へラダーへと流れて出口管(8
)から凝縮器外へと流出する。そして各通路群を流通す
る間に、チューブ(1)(1)間に形成されたコルゲー
トフィン(2)を含む空気流通間隙を矢印(W)で示す
方向に流通する空気と熱交換を行う。而して、入口側通
路群(A)を通過する冷媒はいまだ体積の大きいガス化
状態にあるが、入口側通路群(A)の通路断面積を大き
く設定しであるので、伝熱面積が大きいものとなされて
おり効率良く冷媒の凝縮が行われる。中間通路群(B)
を通過する冷媒は入口側通路群(A)で一部が液化され
るため気液混合状態を呈している。従って伝熱面積は少
なくて良いが、これに応じて中間通路群(B)の通路断
面積は入口側通路群(A)よりも小に設定しであるので
、必要かつ充分な熱交換を行わせつつ冷媒を通過させる
ことができる。出口側通路群(C)を通過する時には冷
媒はすでに液体状態を呈し体積も小さくなっているから
通路断面積も小さくて良いが、これに応じて出口側通路
群(C)の通路断面積は中間通路群(B)よりもさらに
小に設定されているので、冷媒を通過させるのにスペー
スの無駄がなくなる。このように凝縮部に相当する入口
側通路群(A)さらには中間通路群(B)から過冷却部
に相当する出口側通路群(C)へと至るに従って、各通
路群の通路断面積を小さくすることによって、効率の良
い熱交換が行われることとなる。
In the above configuration, the upper inlet pipe (6) of the left header (3)
), the refrigerant passes through each tube (1) of the inlet side passage group (A) and enters the right header (
After reaching 4), it turns around and flows through each passage in the intermediate passage group (B) to the left header (3), and then turns around and flows to the right through each passage in the exit side passage group (C) to the ladder. and outlet pipe (8
) flows out of the condenser. While flowing through each passage group, the air exchanges heat with the air flowing in the direction shown by the arrow (W) through the air circulation gap including the corrugated fins (2) formed between the tubes (1) (1). The refrigerant passing through the inlet side passage group (A) is still in a gasified state with a large volume, but since the passage cross-sectional area of the inlet side passage group (A) is set large, the heat transfer area is increased. It is made large and condenses the refrigerant efficiently. Intermediate passage group (B)
The refrigerant passing through is partially liquefied in the inlet side passage group (A), so it is in a gas-liquid mixed state. Therefore, the heat transfer area may be small, but the passage cross-sectional area of the intermediate passage group (B) is set smaller than that of the inlet side passage group (A) accordingly, so that necessary and sufficient heat exchange can be performed. The refrigerant can be passed through while When passing through the outlet side passage group (C), the refrigerant is already in a liquid state and has a small volume, so the passage cross-sectional area may be small, but accordingly, the passage cross-sectional area of the outlet side passage group (C) is Since it is set to be smaller than the intermediate passage group (B), no space is wasted for passing the refrigerant. In this way, the passage cross-sectional area of each passage group is changed from the inlet side passage group (A) corresponding to the condensing section, and further from the intermediate passage group (B) to the outlet side passage group (C) corresponding to the supercooling section. By making it smaller, efficient heat exchange will be performed.

なお以上の実施例においては、入口側通路群(A)から
出口側通路群(C)にかけて段階的に通路断面積を減少
した場合を示したが、入口側通路群(A)と中間通路群
(B)の通路断面積を同一とし、出口側通路群(C)の
通路断面積のみを減少せしめても良い。また各通路群の
通路断面積を入口側から出口側に向かって減少する手段
として各通路群に含まれるチューブ(1)の本数を変え
る方法を採用したが、チューブ本数を同一として各チュ
ーブ自体の断面積を変える方法を採用しても良い。さら
に上記実施例は3個の通路群を設けて冷媒を2回蛇行さ
せる方式のものを示したが、入口側通路群(A)と出口
側通路群(C)のみからなる1回蛇行式の凝縮器や、中
間通路群を2以上の蛇行通路に形成した3回以上蛇行式
の凝縮器についても適用可能である。さらにはまた、ヘ
ッダー(3)(4)を左右に配置しチューブ(1)を水
平状態に配置した構成の凝縮器について示したが、ヘッ
ダーを上下に配置しチューブを垂直状態に配置した縦式
の凝縮器についてもこの発明を適用できる。
In the above embodiments, the cross-sectional area of the passages was gradually reduced from the inlet passage group (A) to the outlet passage group (C). The passage cross-sectional area of (B) may be the same, and only the passage cross-sectional area of the outlet side passage group (C) may be reduced. In addition, as a means to reduce the passage cross-sectional area of each passage group from the inlet side to the outlet side, we adopted a method of changing the number of tubes (1) included in each passage group, but assuming the number of tubes is the same, each tube itself A method of changing the cross-sectional area may also be adopted. Furthermore, the above embodiment shows a method in which three passage groups are provided and the refrigerant meanderes twice, but a single meandering type consisting of only an inlet side passage group (A) and an outlet side passage group (C) is shown. It is also applicable to condensers and condensers of three or more meandering type in which the intermediate passage group is formed into two or more meandering passages. Furthermore, although a condenser with a configuration in which the headers (3) and (4) are arranged on the left and right and the tubes (1) are arranged horizontally is shown, a vertical type in which the headers are arranged vertically and the tubes are arranged vertically is shown. The present invention can also be applied to a condenser.

発明の効果 この発明に係る凝縮器は上述の次第で、チューブとコル
ゲートフィンとを交互配置に積層するとともに、チュー
ブの両端にヘッダーが連結されてなる構成を採用し、か
つ該ヘッダー内部に仕切板を設けることにより冷媒通路
を入口側通群と出口側通路群とを含む2以上の通路群に
区画して冷媒を少なくとも1回以上蛇行させて流通する
ように構成されたものであるから、従来のサーペンタイ
ン型凝縮器と同様の蛇行通路を形成するものであるのは
もとより、サーペンタイン型凝縮器のように、曲げ部の
曲率半径に制限を受けるためチューブピッチに制限を受
けるというような不都合がなくなり、自由なチューブピ
ッチを選定できる。従って、冷媒通路の蛇行回数、全長
が同じであれば、チューブピッチを小さくすることによ
って各隣接チューブ間に介在されるコルゲートフィンの
数を格段に多くしうるから、フィン効率を向上しえひい
ては熱交換効率を向上しうる。しかも通路断面積も大き
くなるから、圧力損失を低減しうる。さらに、冷媒通路
を構成する通路群の通路断面積を入口側から出口側に向
かって減少せしめたものとすることにより、ガス化状態
の冷媒を凝縮する凝縮部および液体状態の冷媒を冷却す
る過冷却部のそれぞれに応じた必要十分な通路面積を確
保したから、小型でも極めて熱交換効率の良い凝縮器と
なしうる。
Effects of the Invention As described above, the condenser according to the present invention adopts a structure in which tubes and corrugated fins are stacked in an alternating arrangement, and a header is connected to both ends of the tube, and a partition plate is provided inside the header. By providing a refrigerant passage, the refrigerant passage is divided into two or more passage groups including an inlet side passage group and an outlet side passage group, and the refrigerant is configured to meander at least once or more. Not only does it form a meandering passage similar to that of the serpentine condenser, but it also eliminates the inconvenience of a serpentine condenser, such as being limited by the radius of curvature of the bent portion, which limits the tube pitch. , you can freely select the tube pitch. Therefore, if the number of meandering passages and the overall length of the refrigerant passage are the same, the number of corrugated fins interposed between adjacent tubes can be significantly increased by reducing the tube pitch, which improves fin efficiency and improves heat efficiency. Exchange efficiency can be improved. Moreover, since the cross-sectional area of the passage becomes large, pressure loss can be reduced. Furthermore, by reducing the passage cross-sectional area of the passage group constituting the refrigerant passage from the inlet side to the outlet side, a condensing section that condenses the refrigerant in a gasified state and a superconductor section that cools the refrigerant in a liquid state are provided. Since a necessary and sufficient passage area is secured for each cooling section, a condenser with extremely high heat exchange efficiency can be achieved even though it is small.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の一実施例を示すもので、第1図は凝縮
器の正面図、第2図は同じく平面図、第3図は第1図の
■−■線断面図、第4図はヘッダーとチューブとの分離
状態の斜視図、第5図は第1図に示す凝縮器の冷媒流れ
を示す模式%式% 特許出願人  昭和アルミニウム株式会社  、1代理
人 弁理士 清水大義 、’H,’:l’:、:・−1
′【2イ゛ (N          \1 区 寸 派
The drawings show one embodiment of the present invention, and FIG. 1 is a front view of the condenser, FIG. 2 is a plan view, FIG. 3 is a sectional view taken along the line ■-■ in FIG. 1, and FIG. FIG. 5 is a perspective view of the header and tubes separated, and FIG. 5 is a schematic % formula showing the flow of refrigerant in the condenser shown in FIG. ':l':,:・-1
'[2ii゛(N \1 Kusunha

Claims (1)

【特許請求の範囲】[Claims] 所定長のチューブ(1)とコルゲートフィン(2)とが
交互配置に積層されるとともに、チューブの両端にヘッ
ダー(3)(4)が連結されてなり、かつヘッダー内部
に仕切板(10)(11)を設けることにより、前記チ
ューブ(1)によって構成される冷媒通路(12)が入
口側通路群(A)と出口側通路群(C)とを含む少なく
とも2以上の通路群に区画されて、冷媒を少なくとも1
回以上蛇行させて流通するように構成されるとともに、
各通路群の通路断面積が入口側から出口側に向って減少
されてなることを特徴とする凝縮器。
Tubes (1) of a predetermined length and corrugated fins (2) are laminated in an alternating arrangement, and headers (3) and (4) are connected to both ends of the tubes, and partition plates (10) ( 11), the refrigerant passage (12) constituted by the tube (1) is divided into at least two passage groups including an inlet side passage group (A) and an outlet side passage group (C). , refrigerant at least 1
It is configured to be distributed in a meandering manner more than once, and
A condenser characterized in that the passage cross-sectional area of each passage group decreases from the inlet side to the outlet side.
JP17976386A 1986-07-29 1986-07-29 Condenser Granted JPS6334466A (en)

Priority Applications (24)

Application Number Priority Date Filing Date Title
JP17976386A JPS6334466A (en) 1986-07-29 1986-07-29 Condenser
EP89202415A EP0360362B1 (en) 1986-07-29 1987-07-27 Condenser
AT87306599T ATE58009T1 (en) 1986-07-29 1987-07-27 CONDENSER.
EP19920200034 EP0480914A3 (en) 1986-07-29 1987-07-27 Condenser
AT92200033T ATE197501T1 (en) 1986-07-29 1987-07-27 CAPACITOR
EP87306599A EP0255313B1 (en) 1986-07-29 1987-07-27 Condenser
US07077815 US4825941B1 (en) 1986-07-29 1987-07-27 Condenser for use in a car cooling system
DE8989202415T DE3780648T2 (en) 1986-07-29 1987-07-27 CAPACITOR.
DE3752324T DE3752324T2 (en) 1986-07-29 1987-07-27 capacitor
EP92200033A EP0479775B1 (en) 1986-07-29 1987-07-27 Condenser
DE8787306599T DE3765875D1 (en) 1986-07-29 1987-07-27 CONDENSER.
CA000543185A CA1301161C (en) 1986-07-29 1987-07-28 Condenser
US07/328,896 US4936379A (en) 1986-07-29 1989-03-27 Condenser for use in a car cooling system
AT89202415T ATE78579T1 (en) 1986-07-29 1989-09-25 CAPACITOR.
US07509901 US5025855B1 (en) 1986-07-29 1990-04-16 Condenser for use in a car cooling system
US07671365 US5190100B1 (en) 1986-07-29 1991-03-19 Condenser for use in a car cooling system
CA000616248A CA1324602C (en) 1986-07-29 1991-12-06 Condenser
CA000616247A CA1326481C (en) 1986-07-29 1991-12-06 Condenser
US07/967,032 US5246064A (en) 1986-07-29 1992-10-27 Condenser for use in a car cooling system
US08/339,064 US5458190A (en) 1986-07-29 1994-11-14 Condenser
US08/341,428 US5482112A (en) 1986-07-29 1994-11-17 Condenser
US08/505,494 USRE35655E (en) 1986-07-29 1995-07-21 Condenser for use in a car cooling system
US08/505,568 USRE35711E (en) 1986-07-29 1995-07-21 Condenser for use in a car cooling system
US08/746,921 USRE35742E (en) 1986-07-29 1996-11-18 Condenser for use in a car cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17976386A JPS6334466A (en) 1986-07-29 1986-07-29 Condenser

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP24589789A Division JPH02140570A (en) 1989-09-20 1989-09-20 Condenser

Publications (2)

Publication Number Publication Date
JPS6334466A true JPS6334466A (en) 1988-02-15
JPH0345300B2 JPH0345300B2 (en) 1991-07-10

Family

ID=16071459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17976386A Granted JPS6334466A (en) 1986-07-29 1986-07-29 Condenser

Country Status (1)

Country Link
JP (1) JPS6334466A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63112065A (en) * 1986-10-30 1988-05-17 Showa Alum Corp Heat exchanger made of aluminum
JPS63173689U (en) * 1986-12-08 1988-11-10
JPH01291098A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Mounting device for outlet pipe and inlet pipe in heat exchanger
DE4004949A1 (en) * 1989-02-17 1990-08-23 Diesel Kiki Co HEAT EXCHANGER FILLED WITH A TRANSFER MEDIUM OF THE PARALLEL FLOW TYPE
EP0414433A2 (en) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex heat exchanger
JPH0359364A (en) * 1989-07-26 1991-03-14 Nippondenso Co Ltd Refrigerant condensor
JPH0367968A (en) * 1989-06-23 1991-03-22 Hitachi Ltd Heat exchanger for condensing refrigerant
JPH03117887A (en) * 1989-09-29 1991-05-20 Showa Alum Corp Heat exchanger
EP0448183A2 (en) 1988-09-14 1991-09-25 Showa Aluminum Kabushiki Kaisha A condenser
FR2664368A1 (en) * 1990-06-28 1992-01-10 Diesel Kiki Co Heat exchanger, mounted on a vehicle, of the type with parallel flow
JPH072859U (en) * 1993-05-28 1995-01-17 ヤンマーディーゼル株式会社 Heat exchanger
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
JP2004003810A (en) * 2002-04-03 2004-01-08 Denso Corp Heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
JP2020169814A (en) * 2016-04-27 2020-10-15 東芝ライフスタイル株式会社 refrigerator
JP2021025748A (en) * 2019-08-08 2021-02-22 株式会社Uacj Heat exchanger and air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040006025A (en) 2001-06-08 2004-01-16 쇼와 덴코 가부시키가이샤 Metal plate for producing flat tube, flat tube and process for producing the flat tube

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100746A (en) * 1972-04-04 1973-12-19
JPS49114145A (en) * 1973-03-09 1974-10-31
JPS6193387A (en) * 1984-10-12 1986-05-12 Showa Alum Corp Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS48100746A (en) * 1972-04-04 1973-12-19
JPS49114145A (en) * 1973-03-09 1974-10-31
JPS6193387A (en) * 1984-10-12 1986-05-12 Showa Alum Corp Heat exchanger

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
JPH0245945B2 (en) * 1986-10-30 1990-10-12 Showa Aluminium Co Ltd
JPS63112065A (en) * 1986-10-30 1988-05-17 Showa Alum Corp Heat exchanger made of aluminum
JPS63173689U (en) * 1986-12-08 1988-11-10
JPH01291098A (en) * 1988-05-18 1989-11-22 Showa Alum Corp Mounting device for outlet pipe and inlet pipe in heat exchanger
EP0448183A2 (en) 1988-09-14 1991-09-25 Showa Aluminum Kabushiki Kaisha A condenser
DE4004949C2 (en) * 1989-02-17 1992-04-30 Diesel Kiki Co., Ltd., Tokio/Tokyo, Jp
DE4004949A1 (en) * 1989-02-17 1990-08-23 Diesel Kiki Co HEAT EXCHANGER FILLED WITH A TRANSFER MEDIUM OF THE PARALLEL FLOW TYPE
JPH0367968A (en) * 1989-06-23 1991-03-22 Hitachi Ltd Heat exchanger for condensing refrigerant
JPH0359364A (en) * 1989-07-26 1991-03-14 Nippondenso Co Ltd Refrigerant condensor
EP0414433A3 (en) * 1989-08-23 1991-05-08 Showa Aluminum Kabushiki Kaisha Duplex heat exchanger
EP0414433A2 (en) * 1989-08-23 1991-02-27 Showa Aluminum Kabushiki Kaisha Duplex heat exchanger
JPH03117887A (en) * 1989-09-29 1991-05-20 Showa Alum Corp Heat exchanger
FR2664368A1 (en) * 1990-06-28 1992-01-10 Diesel Kiki Co Heat exchanger, mounted on a vehicle, of the type with parallel flow
JPH072859U (en) * 1993-05-28 1995-01-17 ヤンマーディーゼル株式会社 Heat exchanger
JP2004003810A (en) * 2002-04-03 2004-01-08 Denso Corp Heat exchanger
JP2015055415A (en) * 2013-09-11 2015-03-23 ダイキン工業株式会社 Heat exchanger
JP2020169814A (en) * 2016-04-27 2020-10-15 東芝ライフスタイル株式会社 refrigerator
JP2021025748A (en) * 2019-08-08 2021-02-22 株式会社Uacj Heat exchanger and air conditioner

Also Published As

Publication number Publication date
JPH0345300B2 (en) 1991-07-10

Similar Documents

Publication Publication Date Title
JPS6334466A (en) Condenser
JP3273633B2 (en) Heat exchange device for cooling dryer in compressed air equipment and tube / plate heat exchanger intended for use in heat exchange device
JP3043050B2 (en) Heat exchanger
JP2004225961A (en) Multi-flow type heat exchanger
JPH11294973A (en) Heat exchanger of absorption water cooler/heater
JPS63271099A (en) Heat exchanger
JPH0245945B2 (en)
JP2997816B2 (en) Capacitor
JP3063361B2 (en) Refrigeration cycle condenser
JP2891486B2 (en) Heat exchanger
JPS63243688A (en) Condenser
JPH0674609A (en) Heat exchanger
JPS63161393A (en) Condenser
JPH0833287B2 (en) Aluminum condenser for air conditioner
JPH05215482A (en) Heat exchanger
JPH0195288A (en) Heat exchanger
JP3107159B2 (en) cooling tower
JPH0459425A (en) Heat exchanger
JPH0624710Y2 (en) Heat exchanger
JP2001133076A (en) Heat exchanger
JPH03204595A (en) Condenser
JPS63131993A (en) Heat exchanger
JP4328411B2 (en) Heat exchanger
JP2002081797A (en) Condenser
JP2001141382A (en) Air heat exchanger