JPH0674609A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPH0674609A
JPH0674609A JP23231792A JP23231792A JPH0674609A JP H0674609 A JPH0674609 A JP H0674609A JP 23231792 A JP23231792 A JP 23231792A JP 23231792 A JP23231792 A JP 23231792A JP H0674609 A JPH0674609 A JP H0674609A
Authority
JP
Japan
Prior art keywords
refrigerant
header
chamber
inlet pipe
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23231792A
Other languages
Japanese (ja)
Inventor
Keiji Yamazaki
啓司 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Aluminum Can Corp
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP23231792A priority Critical patent/JPH0674609A/en
Publication of JPH0674609A publication Critical patent/JPH0674609A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To provide a heat exchanger comprising a cylindrical hollow header, a refrigerant inlet pipe communicated with and connected to a refrigerant flowing-in chamber of the header and a plurality of tubes communicated with and connected to the refrigerant flowing-in chamber in which the refrigerant flowed from the refrigerant inlet pipe into the refrigerant flowing-in space of the header can be efficiently divided to flow into the tubes. CONSTITUTION:A refrigerant flowing-in chamber 31 is partitioned into more than two flowing-in partitioned chambers 31a and 31a in a longitudinal direction of a header 3 and concurrently a refrigerant inlet pipe 9 is formed into the corresponding number of branched pipes 9a and each of the branched pipes 9a is connected to each of the flowing-in partitioned chambers 31a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、カーエアコン等の凝
縮器、蒸発器その他の用途に用いられる熱交換器に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used for condensers such as car air conditioners, evaporators and other applications.

【0002】[0002]

【従来の技術】上記のような熱交換器として、例えば、
平行状に配置された1対の筒状中空ヘッダーに、並列状
の複数本のチューブの両端を連通接続し、ヘッダーの所
定位置に冷媒入口管と同出口管を連通接続した、いわゆ
るパラレルフロー型と称されるものが従来より知られて
いる。
2. Description of the Related Art As a heat exchanger as described above, for example,
A so-called parallel flow type in which a pair of cylindrical hollow headers arranged in parallel are connected to both ends of a plurality of parallel tubes, and a refrigerant inlet pipe and an outlet pipe are connected to predetermined positions of the header. What is called is conventionally known.

【0003】かかる熱交換器では、図5に示すように、
冷媒入口管(101 )からヘッダー(100 )の冷媒流入室
(102 )に流入した冷媒は、該冷媒流入室(102 )に連
通した複数本のチューブ(103 )に分流したのち、チュ
ーブ群によって構成される冷媒通路を流通して冷媒出口
管(図示せず)から器外へと流出するものとなされてい
る。なお、図5において、(104 )は隣接チューブ間及
び最外側のチューブの外側に配置されたコルゲートフィ
ン、(105 )は最外側のコルゲートフィンの外側に配置
されたサイドプレート、(106 )はヘッダーを長さ方向
に仕切る仕切板である。
In such a heat exchanger, as shown in FIG.
The refrigerant that has flowed from the refrigerant inlet pipe (101) into the refrigerant inflow chamber (102) of the header (100) is divided into a plurality of tubes (103) communicating with the refrigerant inflow chamber (102), and then composed of a group of tubes. Through a refrigerant outlet pipe (not shown) to flow out of the device. In FIG. 5, (104) is a corrugated fin arranged between adjacent tubes and outside the outermost tube, (105) is a side plate arranged outside the outermost corrugated fin, and (106) is a header. It is a partition plate that separates the lengthwise direction.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような従来の熱交換器では、冷媒入口管(101 )からヘ
ッダー(100 )の冷媒流入室(102 )に流入した冷媒
を、各チューブ(103 )に均等に分流させることは、実
際上困難であった。具体的に述べると、図5のように、
冷媒入口管を冷媒流入室の上部に接続すると、同図に矢
印で示すように、流入室に連通されている下方のチュー
ブへの冷媒の分流が十分ではなく、また冷媒入口管を冷
媒流入室の上部に接続すると、上下のチューブへの冷媒
分流が十分ではなく、また冷媒入口管を冷媒流入室の下
部に接続すると、上方のチューブへの冷媒分流が十分で
はないという欠点があった。特に、ヘッダー内に仕切部
を設けて冷媒流通路を蛇行回路に形成した熱交換器にお
いては、殊に凝縮器として用いられる場合、冷媒の気液
状態に応じた効率的な熱交換を行わせるべく、通路群を
構成するチューブ本数を変えて冷媒入口側の通路断面積
を冷媒出口側のそれよりも大に設定することが行われる
場合がある(例えば特公平3−45300号)。而し
て、この場合には冷媒流入空間に接続されたチューブ本
数も多くなるため、益々分流が悪くなるという欠点があ
り、冷媒を蛇行流通させることの利点を十分に生かすこ
とができないという問題があった。
However, in the conventional heat exchanger as described above, the refrigerant flowing from the refrigerant inlet pipe (101) into the refrigerant inflow chamber (102) of the header (100) is transferred to the tubes (103). It was practically difficult to divide the flow evenly in the above). Specifically, as shown in FIG.
When the refrigerant inlet pipe is connected to the upper part of the refrigerant inflow chamber, as shown by the arrow in the figure, the refrigerant is not sufficiently divided into the lower tube communicating with the inflow chamber, and the refrigerant inlet pipe is connected to the refrigerant inflow chamber. However, if the refrigerant inlet pipe is connected to the lower part of the refrigerant inflow chamber, the refrigerant distribution to the upper and lower tubes is not sufficient, and the refrigerant distribution to the upper tube is not sufficient. Particularly, in a heat exchanger in which a partition is provided in the header and the refrigerant flow passage is formed in a meandering circuit, particularly when used as a condenser, efficient heat exchange according to the gas-liquid state of the refrigerant is performed. Therefore, the number of tubes forming the passage group may be changed to set the passage cross-sectional area on the refrigerant inlet side larger than that on the refrigerant outlet side (for example, Japanese Patent Publication No. 3-45300). Thus, in this case, since the number of tubes connected to the refrigerant inflow space increases, there is a disadvantage that the split flow is further deteriorated, and there is a problem that the advantage of the meandering circulation of the refrigerant cannot be fully utilized. there were.

【0005】この発明は、かかる技術的背景に鑑みてな
されたものであって、冷媒入口管からヘッダーの冷媒流
入空間に流入した冷媒を、効率良くチューブに分流させ
ることのできる熱交換器の提供を目的とする。
The present invention has been made in view of the above technical background, and provides a heat exchanger capable of efficiently dividing the refrigerant flowing from the refrigerant inlet pipe into the refrigerant inflow space of the header into the tubes. With the goal.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、この発明は、図面の符号を参照して示すと、筒状中
空ヘッダー(3)と、該ヘッダーの冷媒流入室(31)に
連通接続された冷媒入口管(9)と、前記冷媒流入室
(31)に連通接続された複数のチューブ(1)とを備え
た熱交換器において、前記冷媒流入室(31)がヘッダー
の長さ方向に2つ以上の流入仕切室(31a )(31a )に
仕切られるとともに、冷媒入口管(9)に対応個数の分
岐管(9a)(9a)が形成され、各分岐管(9a)が各流入
仕切室(31a )に接続されてなることを特徴とする熱交
換器を要旨とする。
In order to achieve the above object, the present invention provides a tubular hollow header (3) and a refrigerant inflow chamber (31) of the header as shown with reference to the drawings. In a heat exchanger including a refrigerant inlet pipe (9) connected in communication and a plurality of tubes (1) connected in communication with the refrigerant inflow chamber (31), the refrigerant inflow chamber (31) has a long header. It is divided into two or more inflow partition chambers (31a) (31a) in the vertical direction, and a corresponding number of branch pipes (9a) (9a) are formed in the refrigerant inlet pipe (9), and each branch pipe (9a) is formed. The gist is a heat exchanger characterized by being connected to each inflow partition chamber (31a).

【0007】[0007]

【作用】冷媒入口管(9)を介して送られてくる冷媒は
分岐管(9a)(9a)を通ってヘッダー(3)の上下流入
仕切室(31a )(31a )に流入したのち、ここから流入
仕切室(31a )に連通接続されたチューブ(1)へと分
流する。このように各流入仕切室(31a )(31a )に分
岐管(9a)(9a)が接続されているから、1の冷媒流入
室に1の冷媒入口管が接続されている場合に較べて、分
岐管(9a)1個当りのチューブ数が減り、各チューブ
(1)に多量の冷媒が均等に分流する。
[Function] The refrigerant sent through the refrigerant inlet pipe (9) flows through the branch pipes (9a) (9a) into the vertical inflow partition chambers (31a) (31a) of the header (3), and then To the tube (1) connected to the inflow partition chamber (31a). Thus, since the branch pipes (9a) (9a) are connected to the respective inflow partition chambers (31a) (31a), as compared with the case where one refrigerant inlet pipe is connected to one refrigerant inflow chamber, The number of tubes per branch pipe (9a) is reduced, and a large amount of refrigerant is evenly distributed to each tube (1).

【0008】[0008]

【実施例】次に、この発明を、カーエアコン用のアルミ
ニウム(その合金を含む)製凝縮器に適用した実施例に
基いて説明する。
Next, the present invention will be described based on an embodiment applied to a condenser made of aluminum (including its alloy) for a car air conditioner.

【0009】図1〜3において、(1)は水平状態で上
下方向に並列配置された複数のアルミニウム製チュー
ブ、(2)はその隣接するチューブ(1)(1)間に介
在されたアルミニウム製のコルゲートフィンである。チ
ューブ(1)はアルミニウム材による偏平状の押出形材
をもって構成されたものである。このチューブ(1)と
してはいわゆるハモニカチューブと称されるような多孔
形のものが用いられている。また押出形材によらず電縫
管を用いても良い。コルゲートフィン(2)はチューブ
(1)とほぼ同じ幅を有し、ろう付によりチューブに接
合されている。コルゲートフィン(2)は、望ましくは
ルーバーを切り起こしたものを用いるのが良い。
In FIGS. 1 to 3, (1) is a plurality of aluminum tubes horizontally arranged in parallel in the vertical direction, and (2) is an aluminum tube interposed between adjacent tubes (1) and (1). It is a corrugated fin. The tube (1) is composed of a flat extruded shape member made of an aluminum material. As the tube (1), a porous tube called a so-called harmonica tube is used. Further, an electric resistance welded tube may be used instead of the extruded shape member. The corrugated fin (2) has almost the same width as the tube (1) and is joined to the tube by brazing. The corrugated fins (2) are preferably cut and raised louvers.

【0010】(3)(4)は左右のヘッダーである。こ
れらのヘッダー(3)(4)は、各1本の断面円形のア
ルミニウム電縫管をもって形成されたものである。各ヘ
ッダーには、長さ方向に沿って間隔的にチューブ挿入孔
が穿設されるとともに、該孔に各チューブ(1)の両端
が挿入され、かつろう付により強固に接合連結されてい
る。さらに左ヘッダー(3)には、長さ方向の中間部よ
りも上側と下側の位置に2個のアルミニウム製仕切板
(5)(6)が設けられ、左ヘッダー(3)内部が上側
の冷媒流入室(31)、中間の冷媒反転室(32)、下側の
冷媒流出室(33)の3室に仕切られている。さらに、前
記冷媒流入室(31)は、図2に詳しく示すように、長さ
方向のほぼ中央に設けられた仕切板(8)により上下の
流入仕切室(31a )(31a )に仕切られるとともに、各
流入仕切室に、先端が二股状に分岐した冷媒入口管
(9)の各分岐管(9a)(9a)が各流入仕切室(31a )
の長さ方向のほぼ中央位置において連通状態に接続され
ている。また、前記冷媒流出室(33)には、冷媒出口管
(10)が連通状態に接続されている。一方、右ヘッダー
(4)には、左ヘッダー(3)の上下仕切板(5)
(6)の中間の高さ位置において、1枚のアルミニウム
製仕切板(7)が設けられている。かかる仕切板(5)
(6)(7)の設置により、チューブ群によって構成さ
れる全冷媒通路は、入口側通路群(A)と、出口側通路
群(D)と、それらの中間に位置する上下の中間通路群
(B)(C)に分けられ、さらに入口側通路群(A)は
前記仕切板(8)により上下2つの通路群(A1 )(A
1 )に分けられている。しかも、この実施例では、各通
路群を構成するチューブ(1)の本数が変えられること
により、各通路群の通路断面積が、入口側から出口側へ
と向かって漸次小さく設定されており、熱交換の進行に
伴いガス化状態から液体へと相変化する冷媒の体積に応
じて無駄のない効率的な熱交換を行い得るものとなされ
ている。なお、図1に示す(11)(12)は左右ヘッダー
の上下蓋体、(13)(14)は最外側のコルゲートフィン
の外側に配置された上下のサイドプレートである。
(3) and (4) are left and right headers. Each of these headers (3) and (4) is formed by one aluminum electric resistance welded tube having a circular cross section. In each header, tube insertion holes are formed at intervals along the length direction, both ends of each tube (1) are inserted in the holes, and firmly joined and connected by brazing. Further, the left header (3) is provided with two aluminum partition plates (5) and (6) at positions above and below the middle portion in the longitudinal direction, and the inside of the left header (3) is at the upper side. It is partitioned into a refrigerant inflow chamber (31), an intermediate refrigerant inversion chamber (32), and a lower refrigerant outflow chamber (33). Further, as shown in detail in FIG. 2, the refrigerant inflow chamber (31) is partitioned into upper and lower inflow partition chambers (31a) (31a) by a partition plate (8) provided at substantially the center of the length direction. The branch pipes (9a) and (9a) of the refrigerant inlet pipe (9) having a bifurcated end are provided in the inflow partition chambers (31a).
Are connected to each other at a substantially central position in the longitudinal direction. A refrigerant outlet pipe (10) is connected to the refrigerant outflow chamber (33) in a communicating state. On the other hand, the right header (4) has the upper and lower partition plates (5) of the left header (3).
An aluminum partition plate (7) is provided at an intermediate height position of (6). Such partition plate (5)
(6) Due to the installation of (7), all the refrigerant passages formed by the tube group are the inlet side passage group (A), the outlet side passage group (D), and the upper and lower intermediate passage groups located in the middle thereof. (B) and (C), and the entrance side passage group (A) is further divided into two passage groups (A1) and (A) by the partition plate (8).
It is divided into 1). Moreover, in this embodiment, by changing the number of tubes (1) forming each passage group, the passage cross-sectional area of each passage group is set to be gradually smaller from the inlet side to the outlet side. It is said that efficient heat exchange can be performed without waste according to the volume of the refrigerant that undergoes a phase change from a gasification state to a liquid as heat exchange progresses. Note that (11) and (12) shown in FIG. 1 are upper and lower lids of the left and right headers, and (13) and (14) are upper and lower side plates arranged outside the outermost corrugated fins.

【0011】図示実施例に係る凝縮器では、冷媒入口管
(9)を介して送られてくる冷媒は分岐管(9a)(9a)
を通って左ヘッダー(3)の上下の流入仕切室(31a )
(31a )に流入したのち、ここから入口側通路群(A)
を構成するチューブ(1)へと分流する。このように各
流入仕切室(31a )(31a )に分岐管(9a)(9a)が接
続されているから、1の冷媒流入室に1の冷媒入口管が
接続されている場合に較べて、分岐管(9a)1個当りの
チューブ数を減らすことができ、従って各チューブ
(1)に多量の冷媒を均等に分流させることができる。
In the condenser according to the illustrated embodiment, the refrigerant sent through the refrigerant inlet pipe (9) has branch pipes (9a) (9a).
Through the inlet and outlet compartments (31a) above and below the left header (3)
After flowing into (31a), from here the entrance side passage group (A)
It divides into the tube (1) which comprises. Thus, since the branch pipes (9a) (9a) are connected to the respective inflow partition chambers (31a) (31a), as compared with the case where one refrigerant inlet pipe is connected to one refrigerant inflow chamber, The number of tubes per branch pipe (9a) can be reduced, so that a large amount of refrigerant can be evenly divided in each tube (1).

【0012】上下の流入仕切室(31a )(31a )から各
チューブ(1)に分流された冷媒は、図4に示すよう
に、上下の入口側通路群(A1)(A1)を通って右ヘッダ
ー(4)へと至り、そこでUターンしてさらに上側中間
通路群(B)、下側中間通路群(C)、出口側通路群
(D)を巡って蛇行状に流通し、冷媒出口管(10)から
器外へと流出する。そして、冷媒が各チューブ(1)を
流通する間に、コルゲートフィン(2)を包含する空気
流通間隙を通過する空気と熱交換を行い、冷媒は徐々に
液化して体積縮小しつつ各通路群を流通する。而して、
この実施例では、各通路群の通路断面積は入口側通路群
(A)から出口側通路群(D)へと向かって漸次小さく
なっているから、冷媒の体積変化に対応して効率的な熱
交換を行うことができ、上記の冷媒流入室(31)からチ
ューブ(1)への分流効率の向上とも相俟って、全体の
熱交換効率を向上することができる。
The refrigerant divided into the tubes (1) from the upper and lower inflow partition chambers (31a) (31a) passes through the upper and lower inlet side passage groups (A1) (A1) to the right as shown in FIG. It reaches the header (4), makes a U-turn there, and further circulates in a serpentine manner around the upper intermediate passage group (B), the lower intermediate passage group (C), and the outlet side passage group (D) to form a refrigerant outlet pipe. (10) flows out of the vessel. Then, while the refrigerant flows through each tube (1), it exchanges heat with the air passing through the air circulation gap that includes the corrugated fins (2), and the refrigerant gradually liquefies to reduce the volume and each passage group. To distribute. Therefore,
In this embodiment, since the passage cross-sectional area of each passage group gradually decreases from the inlet side passage group (A) toward the outlet side passage group (D), it is efficient in response to the volume change of the refrigerant. Heat can be exchanged, and the overall heat exchange efficiency can be improved in combination with the improvement of the efficiency of flow distribution from the refrigerant inflow chamber (31) to the tube (1).

【0013】なお、以上の実施例においては、冷媒流入
室(31)を2つの流入仕切室(31a)(31a )に分割す
る一方、冷媒入口管(9)の分岐管(9a)もこれに応じ
て2個設けたが、1の分岐管(9a)によって分流させる
べきチューブ(1)の本数は、冷媒入口管(9)の容
量、分岐管(9a)の断面積、チューブ(1)の断面積、
流入仕切室(31a )の体積等によって異なるため、当該
分岐管に対して最も分流効率の良いチューブ本数を設定
し、それに応じてヘッダーの流入仕切室及び分岐管の数
を決定すれば良く、流入仕切室、分岐管を3個以上設け
ることを排除するものではない。
In the above embodiment, the refrigerant inflow chamber (31) is divided into two inflow partition chambers (31a) (31a), and the branch pipe (9a) of the refrigerant inlet pipe (9) is also divided into these. The number of tubes (1) to be divided by one branch pipe (9a) depends on the capacity of the refrigerant inlet pipe (9), the cross-sectional area of the branch pipe (9a), and the tube (1). Cross-sectional area,
Since it depends on the volume of the inflow partition chamber (31a), etc., it is sufficient to set the number of tubes with the best flow distribution efficiency for the branch pipe and determine the number of inflow partition chambers and branch pipes in the header accordingly. The provision of three or more partition chambers and branch pipes is not excluded.

【0014】[0014]

【発明の効果】この発明は、上述の次第で、筒状中空ヘ
ッダーと、該ヘッダーの冷媒流入室に連通接続された冷
媒入口管と、前記冷媒流入室に連通接続された複数のチ
ューブとを備えた熱交換器において、前記冷媒流入室が
ヘッダーの長さ方向に2つ以上の流入仕切室に仕切られ
るとともに、冷媒入口管に対応個数の分岐管が形成さ
れ、各分岐管が各流入仕切室に接続されてなることを特
徴とするものであるから、1の冷媒入口管が1の冷媒流
入仕切室に接続されている場合に較べて、1の分岐管が
分流を担うチューブ本数を減少させることができる。そ
の結果、冷媒流入室に連通接続されている各チューブへ
多量の冷媒を均等に分流させることができ、該チューブ
の有する熱交換性能を十分に発揮させることができると
ともに、以後のチューブへも十分な量の冷媒を流通させ
ることができ、ひいては熱交換器の有する性能を最大限
に発揮せしめ得て熱交換器全体の効率向上を図り得る。
As described above, according to the present invention, the tubular hollow header, the refrigerant inlet pipe communicating with the refrigerant inflow chamber of the header, and the plurality of tubes communicating with the refrigerant inflow chamber are provided. In the heat exchanger provided, the refrigerant inflow chamber is partitioned into two or more inflow partition chambers in the length direction of the header, and a corresponding number of branch pipes are formed in the refrigerant inlet pipe, and each branch pipe is provided with each inflow partition. Since it is characterized in that it is connected to the chamber, the number of tubes for which one branch pipe is responsible for diversion is reduced compared to the case where one refrigerant inlet pipe is connected to one refrigerant inflow partition chamber. Can be made. As a result, a large amount of refrigerant can be evenly distributed to each tube that is connected to the refrigerant inflow chamber, and the heat exchange performance of the tube can be sufficiently exerted, and sufficient for subsequent tubes. A large amount of refrigerant can be circulated, and the performance of the heat exchanger can be maximized to improve the efficiency of the entire heat exchanger.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)はこの発明の一実施例に係る熱交換器の
正面図、(ロ)は同じく平面図である。
FIG. 1A is a front view of a heat exchanger according to an embodiment of the present invention, and FIG. 1B is a plan view of the same.

【図2】冷媒入口管の分岐管接続部位周辺を示す拡大正
面断面図である。
FIG. 2 is an enlarged front sectional view showing the vicinity of a branch pipe connection portion of a refrigerant inlet pipe.

【図3】図1のIII −III 線断面図である。3 is a sectional view taken along line III-III in FIG.

【図4】図1の熱交換器の模式的冷媒回路図である。FIG. 4 is a schematic refrigerant circuit diagram of the heat exchanger of FIG. 1.

【図5】従来の熱交換器の冷媒入口管の接続部周辺を示
す拡大正面断面図である。
FIG. 5 is an enlarged front cross-sectional view showing the periphery of a connection portion of a refrigerant inlet pipe of a conventional heat exchanger.

【符号の説明】[Explanation of symbols]

1…チューブ 3、4…ヘッダー 31…冷媒流入室 31a …流入仕切室 9…冷媒入口管 9a…分岐管 1 ... Tubes 3, 4 ... Header 31 ... Refrigerant inflow chamber 31a ... Inflow partitioning chamber 9 ... Refrigerant inlet pipe 9a ... Branch pipe

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 筒状中空ヘッダー(3)と、該ヘッダー
の冷媒流入室(31)に連通接続された冷媒入口管(9)
と、前記冷媒流入室(31)に連通接続された複数のチュ
ーブ(1)とを備えた熱交換器において、 前記冷媒流入室(31)がヘッダーの長さ方向に2つ以上
の流入仕切室(31a )(31a )に仕切られるとともに、
冷媒入口管(9)に対応個数の分岐管(9a)(9a)が形
成され、各分岐管(9a)が各流入仕切室(31a )に接続
されてなることを特徴とする熱交換器。
1. A cylindrical hollow header (3) and a refrigerant inlet pipe (9) connected to the refrigerant inflow chamber (31) of the header for communication.
And a plurality of tubes (1) connected in communication with the refrigerant inflow chamber (31), wherein the refrigerant inflow chamber (31) has two or more inflow partition chambers in the length direction of the header. (31a) and (31a),
A heat exchanger characterized in that a corresponding number of branch pipes (9a) (9a) are formed in the refrigerant inlet pipe (9), and each branch pipe (9a) is connected to each inflow partition chamber (31a).
JP23231792A 1992-08-31 1992-08-31 Heat exchanger Pending JPH0674609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23231792A JPH0674609A (en) 1992-08-31 1992-08-31 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23231792A JPH0674609A (en) 1992-08-31 1992-08-31 Heat exchanger

Publications (1)

Publication Number Publication Date
JPH0674609A true JPH0674609A (en) 1994-03-18

Family

ID=16937311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23231792A Pending JPH0674609A (en) 1992-08-31 1992-08-31 Heat exchanger

Country Status (1)

Country Link
JP (1) JPH0674609A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092541A (en) * 2002-05-30 2003-12-06 위니아만도 주식회사 Condenser for aircon-system
KR100600562B1 (en) * 2004-09-24 2006-07-13 모딘코리아 유한회사 Condenser
CN102997505A (en) * 2012-11-29 2013-03-27 重庆美的通用制冷设备有限公司 Single-flow dry evaporator
WO2013076993A1 (en) 2011-11-22 2013-05-30 ダイキン工業株式会社 Heat exchanger
JP2013137193A (en) * 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger
US20130306285A1 (en) * 2011-01-21 2013-11-21 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN103620336A (en) * 2011-07-05 2014-03-05 夏普株式会社 Heat exchanger and air conditioner equipped with same
DE102014222373A1 (en) 2013-11-08 2015-05-13 Keihin Thermal Technology Corporation capacitor
US9518788B2 (en) 2013-05-22 2016-12-13 Daikin Industries, Ltd. Heat exchanger

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030092541A (en) * 2002-05-30 2003-12-06 위니아만도 주식회사 Condenser for aircon-system
KR100600562B1 (en) * 2004-09-24 2006-07-13 모딘코리아 유한회사 Condenser
US20130306285A1 (en) * 2011-01-21 2013-11-21 Daikin Industries, Ltd. Heat exchanger and air conditioner
US9651317B2 (en) * 2011-01-21 2017-05-16 Daikin Industries, Ltd. Heat exchanger and air conditioner
CN103620336A (en) * 2011-07-05 2014-03-05 夏普株式会社 Heat exchanger and air conditioner equipped with same
AU2012341847A1 (en) * 2011-11-22 2014-07-17 Daikin Industries, Ltd. Heat exchanger
JP2013137193A (en) * 2011-11-22 2013-07-11 Daikin Industries Ltd Heat exchanger
JP2013130386A (en) * 2011-11-22 2013-07-04 Daikin Industries Ltd Heat exchanger
WO2013076993A1 (en) 2011-11-22 2013-05-30 ダイキン工業株式会社 Heat exchanger
KR101432475B1 (en) * 2011-11-22 2014-08-20 다이킨 고교 가부시키가이샤 Heat exchanger
AU2012341847B2 (en) * 2011-11-22 2014-10-02 Daikin Industries, Ltd. Heat exchanger
US9551540B2 (en) 2011-11-22 2017-01-24 Daikin Industries, Ltd. Heat exchanger
CN102997505B (en) * 2012-11-29 2015-06-03 重庆美的通用制冷设备有限公司 Single-flow dry evaporator
CN102997505A (en) * 2012-11-29 2013-03-27 重庆美的通用制冷设备有限公司 Single-flow dry evaporator
US9518788B2 (en) 2013-05-22 2016-12-13 Daikin Industries, Ltd. Heat exchanger
DE102014222373A1 (en) 2013-11-08 2015-05-13 Keihin Thermal Technology Corporation capacitor
CN104634004A (en) * 2013-11-08 2015-05-20 株式会社京滨冷暖科技 Condenser
CN104634004B (en) * 2013-11-08 2018-05-22 株式会社京滨冷暖科技 Condenser

Similar Documents

Publication Publication Date Title
US6523606B1 (en) Heat exchanger tube block with multichamber flat tubes
US7107787B2 (en) Evaporator
JP3983512B2 (en) Meandering heat exchanger
JPH09264693A (en) Heatexchanger provided with distribution device
JPH09166368A (en) Heat exchanger
JPH04254171A (en) Condenser integrally composed of receiver-dryer
JPH04187991A (en) Heat exchanger
KR100497847B1 (en) Evaporator
JPH05312492A (en) Heat exchanger
JPH0674609A (en) Heat exchanger
JPS6334466A (en) Condenser
JP2891486B2 (en) Heat exchanger
JPH051865A (en) Aluminum made condenser for air condioner
CN214469458U (en) Micro-channel parallel flow heat exchanger
JP2001215096A (en) Heat exchanger
JPH0345302B2 (en)
JP2002350002A (en) Condenser
JPH064218Y2 (en) Integrated heat exchange device with condenser and other heat exchangers
JP4547205B2 (en) Evaporator
JPH0195288A (en) Heat exchanger
JP4328411B2 (en) Heat exchanger
JPS6127496A (en) Laminated type heat exchanger
JPS63161393A (en) Condenser
JPS61202085A (en) Heat exchanger
JPH04174296A (en) Condenser