JPH04174296A - Condenser - Google Patents

Condenser

Info

Publication number
JPH04174296A
JPH04174296A JP30050590A JP30050590A JPH04174296A JP H04174296 A JPH04174296 A JP H04174296A JP 30050590 A JP30050590 A JP 30050590A JP 30050590 A JP30050590 A JP 30050590A JP H04174296 A JPH04174296 A JP H04174296A
Authority
JP
Japan
Prior art keywords
chamber
header
refrigerant
tubes
flows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30050590A
Other languages
Japanese (ja)
Other versions
JP3038890B2 (en
Inventor
Ryoichi Sanada
良一 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP2300505A priority Critical patent/JP3038890B2/en
Publication of JPH04174296A publication Critical patent/JPH04174296A/en
Application granted granted Critical
Publication of JP3038890B2 publication Critical patent/JP3038890B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions
    • F28F9/0212Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions the partitions being separate elements attached to header boxes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To permit the separation of gas from liquid without increasing the number of constituting parts by introducing liquid phase refrigerant, reserved in a chamber above a second partitioning plate, into another chamber above a first partitioning plate through at least one piece of tube among a multitude of pieces of tubes. CONSTITUTION:Refrigerant, entered the chamber 10 of a right side header 1 from a refrigerant inlet pipe 4, flows through tubes 8a, 8b in the directions shown by arrows in a diagram to enter the chamber 13 of a left side header 2 and, subsequently, flows through the tubes 8e, 8f into the directions shown by arrows in the diagram to enter the chamber 11 of the right side header 1. Liquid phase refrigerant in the refrigerant entered the chamber 11 is reserved on a first separator 12 as liquid reservation. The liquid phase refrigerant, reserved in the chamber 11, flows through the tubes 8c, 8d and enters freely a left side chamber 14. Accordingly, the liquid phase refrigerant, reserved in the chamber 11, flows into the chamber 14 of the left side header 2 through tubes 8c, 8d, which bypass a tube 8g. Gas phase refrigerant in the chamber 11 flows through the tube 8g in arrow directions and is deprived of heat thereof whereby it becomes liquid phase refrigerant and flows into the chamber 14 of the left side header 2.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷凍サイクル装置に用いられる凝縮器に関す
るもので、特に冷媒の気液分離を行うための凝縮器の構
造に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a condenser used in a refrigeration cycle device, and particularly to a structure of a condenser for separating refrigerant into gas and liquid.

(従来の技術) 冷凍装置に用いられる従来の凝縮器として、特開昭59
−191894号、特開昭59−191895号公報に
開示される水平流型のものが知られている。
(Prior art) As a conventional condenser used in refrigeration equipment,
Horizontal flow type devices disclosed in Japanese Patent Application Laid-Open No. 191894-191894 and Japanese Unexamined Patent Publication No. 191895-1989 are known.

この種の冷媒を水平方向に流す水平流型の凝縮器は、コ
ア部の両側に設けられるヘッダの長手方向の上下に室を
仕切る仕切板を設け、この仕切板に上下の室を連通ずる
穴を形成している。
This type of horizontal flow type condenser, in which refrigerant flows horizontally, is equipped with a partition plate that separates the upper and lower chambers in the longitudinal direction of the header installed on both sides of the core, and a hole in this partition plate that connects the upper and lower chambers. is formed.

(発明が解決しようとする課題) しかしながら、前記特開昭59−191894号、特開
昭59−191895号の各公報に開示される水平流型
の凝縮器は、冷媒入口パイプからチューブに流入した冷
媒を上から下流しして低位置の冷媒出口パイプから排出
する場合、仕切板上部に溜った液冷媒がチューブに流入
したり、一部のチューブにのみ冷媒液面が浸りディスト
リビューションが悪化したり、前記穴に浸る液冷媒が低
位置に落下したときは気相冷媒まで前記穴を流通してし
まうので、放熱性能が著しく低下するという問題がある
(Problem to be Solved by the Invention) However, in the horizontal flow type condenser disclosed in the above-mentioned JP-A-59-191894 and JP-A-59-191895, the refrigerant flows into the tube from the inlet pipe. When refrigerant is discharged from a low-level refrigerant outlet pipe by flowing downstream from the top, the liquid refrigerant that has accumulated at the top of the partition plate may flow into the tubes, or the refrigerant liquid level may only submerge in some tubes, resulting in poor distribution. Or, when the liquid refrigerant immersed in the holes falls to a low position, the vapor phase refrigerant also flows through the holes, resulting in a problem that heat dissipation performance is significantly reduced.

また、前記水平流型の凝縮器は、冷媒入口パイプから高
位置の冷媒出口パイプに冷媒を下から上流しすることは
できない。下から上流しする場合は、仕切板部から液冷
媒を供給するバイパス配管を設ける必要があるため、構
造が複雑になる。
Furthermore, the horizontal flow type condenser cannot flow the refrigerant from below upstream from the refrigerant inlet pipe to the refrigerant outlet pipe located at a high position. When flowing upstream from the bottom, it is necessary to provide bypass piping to supply liquid refrigerant from the partition plate section, which makes the structure complicated.

本発明はこのような問題点を解決するためになされたも
ので、下から上流しする水平流型の凝縮器であって、バ
イパス配管を必要とせずに構成部品点数を増加しないで
気液分離を可能とした熱交換効率の良好な凝縮器を提供
することを目的とする。
The present invention was made to solve these problems, and is a horizontal flow type condenser that flows from the bottom upstream, and is capable of separating gas and liquid without requiring bypass piping or increasing the number of components. The purpose of this invention is to provide a condenser with good heat exchange efficiency.

(課題を解決するための手段) そのために、本発明の凝縮器は、冷媒出口パイプを上部
に有する第1ヘッダと、前記第1ヘッダの左右反対側に
設けられる第2ヘッダと、前記第1ヘッダ内部を上下の
室に仕切る第1仕切板と、前記第2ヘッダ内部を上下の
室に仕切る第2仕切板と、前記第1ヘッダおよび第2ヘ
ッダに両端が挿入され、並列状に配置される多数本のチ
ューブと、隣接する前記チューブ間の空気隙間に配置さ
れ、前記チューブ内を流れる冷媒と熱交換するフィンと
を備え、 前記第1ヘッダまたは第2ヘッダ内部の下側の室に導入
した気相冷媒を前記チューブに流し、熱を奪われて液化
した液相冷媒を前記第1ヘッダ内部の上側の室から排出
する凝縮器であって、前記多数本のチューブのうち少な
くとも一本のチューブは、前記第2仕切板の上側の室に
溜められる液相冷媒を前記第1仕切板の上側の室に導入
することを特徴とする。
(Means for Solving the Problems) For this purpose, the condenser of the present invention includes a first header having a refrigerant outlet pipe at the upper part, a second header provided on the left and right opposite side of the first header, and a second header provided on the left and right opposite sides of the first header. A first partition plate that partitions the inside of the header into upper and lower chambers, a second partition plate that partitions the inside of the second header into upper and lower chambers, both ends of which are inserted into the first header and the second header, and are arranged in parallel. fins arranged in air gaps between the adjacent tubes to exchange heat with the refrigerant flowing in the tubes, and introduced into a lower chamber inside the first header or the second header. The condenser is configured to flow a vapor-phase refrigerant into the tubes, and discharge the liquid-phase refrigerant, which has been liquefied by removing heat, from an upper chamber inside the first header, the condenser having at least one tube out of the plurality of tubes. The tube is characterized in that the liquid phase refrigerant stored in the chamber above the second partition plate is introduced into the chamber above the first partition plate.

(作用) 本発明の凝縮器によれば、冷媒入口パイプから導入され
る気相冷媒がチューブを通り熱を奪われて液相冷媒とな
って上部の冷媒出口パイプから排出される。この場合、
冷媒出口パイプのない第2ヘッダ内部の第2仕切板上側
の室に溜められた液相冷媒は、チューブを通って反対側
の冷媒出口パイプのある第1ヘッダ内部の第1仕切板上
側の室に導入され、冷媒出口パイプから排出される。
(Function) According to the condenser of the present invention, the gas phase refrigerant introduced from the refrigerant inlet pipe passes through the tube, removes heat, becomes liquid phase refrigerant, and is discharged from the upper refrigerant outlet pipe. in this case,
The liquid phase refrigerant accumulated in the chamber above the second partition plate inside the second header without the refrigerant outlet pipe passes through the tube to the chamber above the first partition plate inside the first header where the refrigerant outlet pipe is located on the opposite side. and is discharged from the refrigerant outlet pipe.

(実施例) 以下、本発明の実施例を図面にもとづいて説明する。(Example) Embodiments of the present invention will be described below based on the drawings.

第1図〜第3図は、自動車用空調装置に用いられる凝縮
器の第1の実施例を示す。
1 to 3 show a first embodiment of a condenser used in an automobile air conditioner.

右側ヘッダ1と左側へラダ2の間にコア部3が構成され
る。右側へラダ1の底面に冷媒入口パイプ4が形成され
、左側へラダ2の頂面に冷媒出口パイプ5が形成されて
いる。ここに冷媒出口パイプ5の位置よりも下位置に冷
媒入口パイプ4を設けたのは、冷媒を下から上流しする
場合、上から下流しの場合よりも放熱性能が一般に高く
なることが実験により判明しているからである。実験に
よると、第6図に示すように、冷媒の流れ方向による放
熱性能への影響は、水平流型のものの場合、一般にフィ
ンの間を流通する風速が速いほど放熱性能が高められる
が、上から下流しの場合よりも下から上流しの場合の方
が放熱性が良好である。
A core portion 3 is configured between the right side header 1 and the left side ladder 2. A refrigerant inlet pipe 4 is formed on the bottom surface of the ladder 1 to the right, and a refrigerant outlet pipe 5 is formed on the top surface of the ladder 2 to the left. The reason why the refrigerant inlet pipe 4 is provided below the position of the refrigerant outlet pipe 5 is that experiments have shown that when the refrigerant flows upstream from the bottom, the heat dissipation performance is generally higher than when it flows downstream from the top. This is because it is clear. According to experiments, as shown in Figure 6, the effect of the flow direction of the refrigerant on heat dissipation performance is that in the case of a horizontal flow type, the faster the wind speed flowing between the fins, the higher the heat dissipation performance. Heat dissipation is better in the case of flowing from the bottom upstream than in the case of flowing downstream.

コア部3は、水平方向に偏平状のチューブ8a〜8gが
多数平行に配置されており、各チューブ8a〜8gの一
端は右側へラダ1に連通し、他端は左側へラダ2に連通
している。隣り合うチューブ88〜8gのチューブ間に
は、コルゲートフィン9が右側ヘッダ側面1aから左側
ヘッダ側面2aまで延びて配置されている。
In the core part 3, a large number of flat tubes 8a to 8g are arranged in parallel in the horizontal direction, and one end of each tube 8a to 8g communicates with the ladder 1 to the right, and the other end communicates with the ladder 2 to the left. ing. A corrugated fin 9 is arranged between the adjacent tubes 88 to 8g, extending from the right header side surface 1a to the left header side surface 2a.

右側ヘッダ1の内部には、下側の室10と上側の室11
に仕切る第1セパレータ12が下から二本口のチューブ
8bと下から3本目のチューブ8Cの間の上下位置に設
けられている。第1セパレータ12は、左側の室13、
チューブ8e、8fから右側の室11に流入する液相冷
媒を溜める気液分離機能をもつ。
Inside the right header 1, there are a lower chamber 10 and an upper chamber 11.
A first separator 12 is provided at a vertical position between the two tubes 8b from the bottom and the third tube 8C from the bottom. The first separator 12 includes a left chamber 13,
It has a gas-liquid separation function to store the liquid phase refrigerant flowing into the right chamber 11 from the tubes 8e and 8f.

左側へラダ2の内部は下側の室13と上側の室14とに
第2セパレータ15によって仕切られる。
To the left, the interior of the ladder 2 is partitioned into a lower chamber 13 and an upper chamber 14 by a second separator 15.

第2図および第3図に示すように、左側へラダ2は横断
面U字状のヘッダ本体16と、ヘッダ端部16a、16
bに接合される横断面コ字状のプレート17と、ヘッダ
本体16とプレート17とを下端で固定するエンドキャ
ップ18とから構成される。これらヘッダ本体16とプ
レート17とで囲まれる第1図に示す室13と室14と
を仕切るように第2セパレータ15が取付けられる。
As shown in FIG. 2 and FIG.
It is composed of a plate 17 having a U-shaped cross section that is joined to the header body 16 and an end cap 18 that fixes the header body 16 and the plate 17 at their lower ends. A second separator 15 is attached to partition the chamber 13 and chamber 14 shown in FIG. 1, which are surrounded by the header body 16 and plate 17.

第2セパレータ15は、側面から見ると全体の形状がS
字状であって、U字板状の下板15aと、これよりほぼ
垂直に曲折される中板15bと、その上端で水平方向に
曲折される上板15cとからなる。下板15aの端部1
5eはヘッダ本体16の内周壁16cに液密に接合され
、中板15bにはチューブ8C18dを挿入するための
長円状の挿入穴20.21が形成される。上板15cの
端部15dは、チューブ8fと8gの間の上下位置で室
13と室14とに仕切るように、プレート17に液密に
接合される。
The second separator 15 has an overall shape of S when viewed from the side.
It has a U-shaped lower plate 15a, a middle plate 15b bent almost vertically from the lower plate 15a, and an upper plate 15c bent horizontally at its upper end. End 1 of lower plate 15a
5e is liquid-tightly joined to the inner circumferential wall 16c of the header body 16, and an oval insertion hole 20.21 for inserting the tube 8C18d is formed in the middle plate 15b. The end portion 15d of the upper plate 15c is liquid-tightly joined to the plate 17 so as to partition the chamber 13 and the chamber 14 at a vertical position between the tubes 8f and 8g.

組立時、第2図に示すようにプレート17の穴17c、
17dに挿入したチューブ8C18dの端部を第2セパ
レータ15の挿入用穴20.21に差込み、プレート1
7にヘッダ本体16を嵌合し、このプレート17とヘッ
ダ本体16にエンドキャップ18を嵌込む。この場合、
挿入用穴20.21にチューブ8C18dが位置決めさ
れるため、第2セパレータ15を係止する特別な機構は
不要になるので、第2セパレータ15の組付けが簡単に
なる。
During assembly, the holes 17c in the plate 17, as shown in FIG.
Insert the end of the tube 8C18d inserted into the tube 17d into the insertion hole 20.21 of the second separator 15, and
The header body 16 is fitted to the plate 17 and the end cap 18 is fitted to the plate 17 and the header body 16. in this case,
Since the tube 8C18d is positioned in the insertion hole 20.21, a special mechanism for locking the second separator 15 is not required, so that the second separator 15 can be easily assembled.

次に冷媒の流れについて説明する。第1図において、冷
媒入口パイプ4から右側へラダlの室10に流入した冷
媒は、チューブ8a、8bの矢印方向に流れ、左側ヘッ
ダ2の室13に入り、次いでチューブ8e、8fを矢印
方向に流れて右側へラダ1の室11に流入する。室11
に流入した冷媒のうち液相冷媒は第1セパレータ12の
上に液溜りとなって溜められる。室11に溜められる液
相冷媒は、チューブ8C18dを流通し、左側の室14
に自由に流れる。したがって、室11に溜められる液相
冷媒は、チューブ8gをバイパスするチューブ8C18
dによって左側へラダ2の室14に流入される。室ll
内の気相冷媒は、チューブ8gを矢印方向に流れ、熱を
奪われて左側ヘッダ2の室14に液相冷媒となって流入
する。
Next, the flow of refrigerant will be explained. In FIG. 1, the refrigerant flowing from the refrigerant inlet pipe 4 to the right side into the chamber 10 of the ladder L flows in the direction of the arrow in the tubes 8a and 8b, enters the chamber 13 in the left header 2, and then flows through the tubes 8e and 8f in the direction of the arrow. and flows into the chamber 11 of the ladder 1 to the right. Room 11
Of the refrigerant that has flowed into the first separator 12, the liquid phase refrigerant is collected as a liquid pool on the first separator 12. The liquid phase refrigerant stored in the chamber 11 flows through the tube 8C18d and flows into the left chamber 14.
Flow freely. Therefore, the liquid phase refrigerant stored in the chamber 11 is transferred to the tube 8C18 which bypasses the tube 8g.
d flows into the chamber 14 of the ladder 2 to the left. room ll
The gas phase refrigerant inside flows in the direction of the arrow through the tube 8g, is stripped of heat, and flows into the chamber 14 of the left header 2 as a liquid phase refrigerant.

このため、凝縮器内での気液分離を確実に行える。また
冷媒出口パイプのない側のヘッダ内に溜められる液冷媒
を冷媒出口パイプに流すためのバイパス配管が不要とな
るので、構造上、凝縮器の組付けが簡単になり、省スペ
ース、低コストを図ることができる。さらには、チュー
ブ8c、8d中の冷媒が気液混合相の冷媒であれば、こ
の冷媒をフィン9との熱交換により冷却して液化するた
め、ディストリビューションを向上させる。
Therefore, gas-liquid separation within the condenser can be ensured. Additionally, bypass piping to flow the liquid refrigerant stored in the header on the side without the refrigerant outlet pipe to the refrigerant outlet pipe is no longer required, which simplifies the assembly of the condenser due to its structure, saving space and lowering costs. can be achieved. Furthermore, if the refrigerant in the tubes 8c and 8d is a gas-liquid mixed phase refrigerant, this refrigerant is cooled and liquefied by heat exchange with the fins 9, thereby improving distribution.

第4図は、本発明の第2の実施例による第1仕切板とし
ての第2セパレータ30を示している。
FIG. 4 shows a second separator 30 as a first partition plate according to a second embodiment of the present invention.

下板30a、中板30b、上板30cは、第2図に示す
下板15a、中板15b、上板15cに対応している。
The lower plate 30a, middle plate 30b, and upper plate 30c correspond to the lower plate 15a, middle plate 15b, and upper plate 15c shown in FIG.

中板30bに開口される挿入穴31.32の周囲にはプ
レート17側に突出す環状凸部31a、32aが形成さ
れる。この環状凸部31a、32aにチューブ8C18
dが挿入固定されるため、チューブ8C18dの長さは
、他のチューブ8a、8b、8e、8f、8gと同等の
長さにすることができる。これにより、チューブ8a〜
8gの長さを同等にできるためコスト低減が図れる。
Annular convex portions 31a and 32a protruding toward the plate 17 are formed around insertion holes 31.32 opened in the middle plate 30b. The tube 8C18 is attached to the annular convex portions 31a and 32a.
d is inserted and fixed, the length of the tube 8C18d can be made equal to the length of the other tubes 8a, 8b, 8e, 8f, and 8g. As a result, tubes 8a~
Since the length of 8g can be made the same, cost reduction can be achieved.

第5図は、本発明の第3の実施例による凝縮器を示す。FIG. 5 shows a condenser according to a third embodiment of the invention.

第3の実施例は、右側へラダlに冷媒入口パイプ34お
よび冷媒出口パイプ35を形成した例である。右側へラ
ダ1の内部を第1セパレータ39、第2セパレータ40
により三つの室36.37.38に仕切っている。左側
ヘッダ2は第3セパレータ42によって室43.44に
仕切っている。第2セパレータ40は、第1図に示す第
2セパレーク15とほぼ同等の形状である。
The third embodiment is an example in which a refrigerant inlet pipe 34 and a refrigerant outlet pipe 35 are formed on the ladder l to the right. To the right side, insert the inside of the ladder 1 into the first separator 39 and the second separator 40.
It is divided into three chambers 36, 37, and 38. The left header 2 is partitioned into chambers 43 and 44 by a third separator 42. The second separator 40 has substantially the same shape as the second separator 15 shown in FIG.

第3の実施例では、冷媒入口パイプ14から冷媒出口パ
イプ35に至るまでのチューブ48a〜48iの本数を
前記第1の実施例よりも多くした例である。冷媒人口パ
イプ34から室36、チューブ48a、48bに矢印方
向に流入する冷媒は、室43、チューブ48c、48d
、室37、チューブ48g、48h、室44、チューブ
48i、室38を経て冷媒出口パイプ35に至る。室4
4に溜められる液相冷媒は、チューブ48e、48fに
より室38に流入される。冷媒流路が前記第1の実施例
より長いため、放熱性能が第1の実施例に比べて向上さ
れるという利点がある。なお、第5図において、第1図
と実質的に同一の構成部分については同一符合を付す。
In the third embodiment, the number of tubes 48a to 48i from the refrigerant inlet pipe 14 to the refrigerant outlet pipe 35 is greater than that in the first embodiment. The refrigerant flowing from the refrigerant artificial pipe 34 into the chamber 36 and tubes 48a and 48b in the direction of the arrows flows into the chamber 43 and tubes 48c and 48d.
, chamber 37, tubes 48g and 48h, chamber 44, tube 48i, and chamber 38 to reach the refrigerant outlet pipe 35. room 4
The liquid phase refrigerant stored in the chamber 4 flows into the chamber 38 through tubes 48e and 48f. Since the refrigerant flow path is longer than that of the first embodiment, there is an advantage that the heat dissipation performance is improved compared to the first embodiment. In FIG. 5, components that are substantially the same as those in FIG. 1 are given the same reference numerals.

次に、本発明の実施例と対比される比較例を第7図に示
す。この比較例では、冷媒入口パイプ4から室63に流
入した冷媒は、チューブ58a。
Next, FIG. 7 shows a comparative example to be compared with the example of the present invention. In this comparative example, the refrigerant flowing into the chamber 63 from the refrigerant inlet pipe 4 flows through the tube 58a.

58b、58c、室66、チューブ58d、58e、室
60に流入する。室60に流入した液相冷媒は、外部の
バイパス配管68によって冷媒出口パイプ5に導かれる
。室60の気相冷媒は、チューブ58f、58gを通り
室67から冷媒出口パイプ5に導かれる。この比較例で
は、バイパス配管68を付加する構造であるから、自己
管構成が複・雑となり配管の取付は作業が煩雑となり、
高コストになると共に大スペースを要し、凝縮器車載時
のレイアウトを制限するという不利点がある。
58b, 58c, chamber 66, tubes 58d, 58e, and chamber 60. The liquid phase refrigerant that has flowed into the chamber 60 is guided to the refrigerant outlet pipe 5 by an external bypass pipe 68. The gas phase refrigerant in the chamber 60 is guided from the chamber 67 to the refrigerant outlet pipe 5 through the tubes 58f and 58g. In this comparative example, since the structure is such that a bypass piping 68 is added, the self-tube structure is complicated and the work of installing the piping is complicated.
This method has the disadvantages of high cost, requiring a large space, and limiting the layout of the condenser when mounted on a vehicle.

これに対し、前記第1、第2、第3の実施例では、バイ
パス配管が不要となり、組立が簡単、低コスト、省スペ
ース、熱効率の向上が図れる等の優れた利点がある。し
かも、本発明の実施例は、第6図に示すように冷媒を下
から上流しにする水平流型にしたため、上から下流しの
例に比べて放熱性能が良好になるので、熱交換器の機能
および構造の両面から優れたものといえる。
In contrast, the first, second, and third embodiments do not require bypass piping, and have excellent advantages such as easy assembly, low cost, space saving, and improved thermal efficiency. Moreover, the embodiment of the present invention uses a horizontal flow type in which the refrigerant flows from the bottom upstream, as shown in FIG. It can be said that it is excellent in terms of both function and structure.

(発明の効果) 以上説明したように、本発明の凝縮器によれば、冷媒を
水平方向に下から上流しする水平流型のもので冷媒出口
パイプ側の第1ヘッダに設ける第1仕切板を形状変更す
ることで、第1ヘッダおよび第2ヘッダを結ぶチューブ
のうちの一部のチューブによって液相冷媒を冷媒出口パ
イプ側の第1ヘッダに集中させる構成にしたため、気液
分離された液冷媒を確実に冷媒出口パイプから排出し、
特別なバイパス配管を設けることな(、気液分離機能を
もたせることができるという効果がある。
(Effects of the Invention) As explained above, according to the condenser of the present invention, the condenser is of a horizontal flow type in which the refrigerant flows horizontally from the bottom upstream, and the first partition plate is provided in the first header on the refrigerant outlet pipe side. By changing the shape, some of the tubes connecting the first header and the second header are used to concentrate the liquid phase refrigerant in the first header on the refrigerant outlet pipe side. Ensure that the refrigerant is discharged from the refrigerant outlet pipe.
This has the effect of providing a gas-liquid separation function without the need for special bypass piping.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例による凝縮器を示す概略
構成図、第2図はその要部を表す組立分解構成図、第3
図は本発明の第1の実施例による第1仕切板部分を示す
概略透視図、第4図は本発明の第2の実施例による第1
仕切板を示すもので、(a)は斜視図、(b)は(a)
に示すへ方向矢視図、(C)は(a)に示すB方向矢視
図、第6図は凝縮器を流通する風量と放熱性能との関係
を示す特性図、第7図は従来の比較例を示す概略構成図
である。 1 ・・・ヘッダ(第2ヘッダ)、 2 ・・・ヘッダ(第1へラダ)、 4 ・・・冷媒人口パイプ、 5 ・・・冷媒出口パイプ、 8(88〜8g)・・・チューブ、 9 ・・・フィン、 10.11.13.14・・・室、 12 ・・・第1セパレータ(第2仕切板)、15 ・
・・第2セパレーク(第1仕切板)。
FIG. 1 is a schematic configuration diagram showing a condenser according to a first embodiment of the present invention, FIG. 2 is an assembled and exploded configuration diagram showing the main parts thereof, and FIG.
The figure is a schematic perspective view showing the first partition plate portion according to the first embodiment of the present invention, and FIG.
Showing the partition plate, (a) is a perspective view, (b) is (a)
Figure 6 is a characteristic diagram showing the relationship between the air volume flowing through the condenser and the heat dissipation performance, and Figure 7 is a diagram of the conventional FIG. 2 is a schematic configuration diagram showing a comparative example. 1... Header (second header), 2... Header (first ladder), 4... Refrigerant artificial pipe, 5... Refrigerant outlet pipe, 8 (88 to 8 g)... Tube, 9...fin, 10.11.13.14...chamber, 12...first separator (second partition plate), 15.
...Second separation plate (first partition plate).

Claims (1)

【特許請求の範囲】[Claims] (1) 冷媒出口パイプを上部に有する第1ヘッダと、
前記第1ヘッダの左右反対側に設けられる第2ヘッダと
、 前記第1ヘッダ内部を上下の室に仕切る第1仕切板と、 前記第2ヘッダ内部を上下の室に仕切る第2仕切板と、 前記第1ヘッダおよび第2ヘッダに両端が挿入され、並
列状に配置される多数本のチューブと、隣接する前記チ
ューブ間の空気隙間に配置され、前記チューブ内を流れ
る冷媒と熱交換するフィンとを備え、 前記第1ヘッダまたは第2ヘッダ内部の下側の室に導入
した気相冷媒を前記チューブに流し、熱を奪われて液化
した液相冷媒を前記第1ヘッダ内部の上側の室から排出
する凝縮器であって、前記多数本のチューブのうち少な
くとも一本のチューブは、前記第2仕切板の上側の室に
溜められる液相冷媒を前記第1仕切板の上側の室に導入
することを特徴とする凝縮器。
(1) a first header having a refrigerant outlet pipe at the top;
a second header provided on the left-right opposite side of the first header; a first partition plate that partitions the inside of the first header into upper and lower chambers; a second partition plate that partitions the inside of the second header into upper and lower chambers; A large number of tubes having both ends inserted into the first header and the second header and arranged in parallel, and fins arranged in an air gap between the adjacent tubes and exchanging heat with the refrigerant flowing inside the tubes. The vapor phase refrigerant introduced into the lower chamber inside the first header or the second header is caused to flow through the tube, and the liquid phase refrigerant which has been liquefied by removing heat is discharged from the upper chamber inside the first header. At least one tube of the plurality of tubes in the discharge condenser introduces the liquid phase refrigerant stored in the chamber above the second partition plate into the chamber above the first partition plate. A condenser characterized by:
JP2300505A 1990-11-05 1990-11-05 Condenser Expired - Lifetime JP3038890B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2300505A JP3038890B2 (en) 1990-11-05 1990-11-05 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2300505A JP3038890B2 (en) 1990-11-05 1990-11-05 Condenser

Publications (2)

Publication Number Publication Date
JPH04174296A true JPH04174296A (en) 1992-06-22
JP3038890B2 JP3038890B2 (en) 2000-05-08

Family

ID=17885630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2300505A Expired - Lifetime JP3038890B2 (en) 1990-11-05 1990-11-05 Condenser

Country Status (1)

Country Link
JP (1) JP3038890B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754885A1 (en) * 1996-10-23 1998-04-24 Valeo Thermique Moteur Sa Condenser with integral reservoir for motor vehicle air conditioning
US5752566A (en) * 1997-01-16 1998-05-19 Ford Motor Company High capacity condenser
US5906237A (en) * 1997-05-26 1999-05-25 Denso Corporation Heat exchanger having a plurality of heat-exchanging units
EP0886113A3 (en) * 1997-06-16 1999-10-27 Halla Climate Control Corp Multistage gas and liquid phase separation type condenser
WO2001001051A1 (en) * 1999-06-30 2001-01-04 Zexel Valeo Climate Control Corporation Refrigerant condenser
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1106952A3 (en) * 1995-02-27 2001-07-25 Mitsubishi Denki Kabushiki Kaisha Heat exchanger, refrigeration system, air conditioner, and method and apparatus for fabricating heat exchanger
FR2754885A1 (en) * 1996-10-23 1998-04-24 Valeo Thermique Moteur Sa Condenser with integral reservoir for motor vehicle air conditioning
US5752566A (en) * 1997-01-16 1998-05-19 Ford Motor Company High capacity condenser
EP0854327A1 (en) * 1997-01-16 1998-07-22 Ford Motor Company High capacity condenser
US5906237A (en) * 1997-05-26 1999-05-25 Denso Corporation Heat exchanger having a plurality of heat-exchanging units
EP0886113A3 (en) * 1997-06-16 1999-10-27 Halla Climate Control Corp Multistage gas and liquid phase separation type condenser
WO2001001051A1 (en) * 1999-06-30 2001-01-04 Zexel Valeo Climate Control Corporation Refrigerant condenser

Also Published As

Publication number Publication date
JP3038890B2 (en) 2000-05-08

Similar Documents

Publication Publication Date Title
JP3041603B2 (en) Multistage gas / liquid separation type condenser
JP3044395B2 (en) Receiver dryer integrated condenser
US6536517B2 (en) Evaporator
US5579835A (en) Heat exchanger and arrangement of tubes therefor
US20060179876A1 (en) Evaporator for carbon dioxide air-conditioner
JPH10176874A (en) Heat-exchanger
US6505481B2 (en) Refrigerant condenser
JPH04174296A (en) Condenser
JPH0612228B2 (en) Heat exchanger
JPH0694329A (en) Condenser for vehicle
JPH11304301A (en) Liquid receiver, and liquid receiver integrated condenser
JP3214272B2 (en) Condenser
JPH0674609A (en) Heat exchanger
JPH051865A (en) Aluminum made condenser for air condioner
JPH04139364A (en) Condenser
JP2001304720A (en) Heat exchanger
JPH06241682A (en) Parallel flow type heat exchanger for heat pump
JP2001215096A (en) Heat exchanger
JPH02225999A (en) Heat exchanger
JP2006207995A (en) Heat exchanger
JPH11230693A (en) Heat exchanger
JP3916298B2 (en) accumulator
KR100344993B1 (en) Condenser for heat exchanger
JP4328411B2 (en) Heat exchanger
JPH10206078A (en) Heat-exchanger

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 11