JP2006207995A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006207995A
JP2006207995A JP2005374301A JP2005374301A JP2006207995A JP 2006207995 A JP2006207995 A JP 2006207995A JP 2005374301 A JP2005374301 A JP 2005374301A JP 2005374301 A JP2005374301 A JP 2005374301A JP 2006207995 A JP2006207995 A JP 2006207995A
Authority
JP
Japan
Prior art keywords
gas
heat exchanger
header
refrigerant
headers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005374301A
Other languages
Japanese (ja)
Inventor
Yoshihiko Seno
善彦 瀬野
Osamu Kamoshita
理 鴨志田
Hideo Ohashi
日出雄 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005374301A priority Critical patent/JP2006207995A/en
Publication of JP2006207995A publication Critical patent/JP2006207995A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0446Condensers with an integrated receiver characterised by the refrigerant tubes connecting the header of the condenser to the receiver; Inlet or outlet connections to receiver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger having an enhanced gas-liquid separation effect in a gas-liquid separation part. <P>SOLUTION: A heat exchanger 1 is provided with a condenser part 2, a subcooling zone 3, and a gas-liquid separation part 4 arranged between the condenser part 2 and the subcooling zone 3, and is constituted to make a refrigerant flowing out of the condenser part 2 flow into the subcooling zone 3 through the gas-liquid separation part 4. The gas-liquid separation part 4 comprises a pair of headers 21, 22 and a liquid receiving tube 23 arranged between the both headers 21, 22. A refrigerant inflow port 32 is formed in an upper wall 21a of the one header 21 of the gas-liquid separation part 4 and a refrigerant flow-out port 33 is provided in a lower wall 22b of the other header 22 of the gas-liquid separation part 4. The gas-liquid separation part is provided with a flow velocity lowering means comprising a mesh 34 provided in the refrigerant inflow port 32, and comprising a flow passage length extending member 35 provided in the other header 22 to surround the refrigerant outflow port 33 and to extend a length of the flow passage for the refrigerant flowing in from the refrigerant flow-in port 32 up to the refrigerant outflow port 33. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、たとえばカーエアコンを構成する冷凍サイクルに使用される熱交換器に関する。   The present invention relates to a heat exchanger used in, for example, a refrigeration cycle constituting a car air conditioner.

この明細書および特許請求の範囲において、図1および図8の上下を上下というものとする。   In this specification and claims, the top and bottom of FIGS. 1 and 8 are the top and bottom.

近年、車体への組み付け性の向上を図ることを目的とし、カーエアコンを構成する冷凍サイクルの熱交換器として、互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる凝縮部と、互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる過冷却部と、凝縮部の一方のヘッダと過冷却部の一方のヘッダとに跨って固定された垂直状受液器とを備えており、互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部および過冷却部の両ヘッダが形成され、受液器が、凝縮部の一方のヘッダに通じる冷媒流入通路および過冷却部の一方のヘッダに通じる冷媒流出通路を有し、かつ両ヘッダに跨って一方のタンクに固定されたブロックと、下端部がブロックに着脱自在に固定された垂直円筒状受液器本体とよりなるものが知られている。この熱交換器においては、冷凍サイクルの冷凍能力の向上を図るために、凝縮部で凝縮された液状冷媒を、過冷却部においてさらに凝縮温度よりも5〜15℃程度低い温度まで過冷却するようになっている。   2. Description of the Related Art Recently, a heat exchanger for a refrigeration cycle constituting a car air conditioner is intended to improve the ease of assembling to a vehicle body. A pair of headers arranged at intervals from each other, both ends arranged between both headers. A plurality of heat exchange pipes connected to both headers, and a condensing part composed of corrugated fins arranged between adjacent heat exchange pipes and joined to the heat exchange pipes, spaced apart from each other From a pair of headers, a plurality of heat exchange tubes arranged between both headers and having both ends connected to both headers, and corrugated fins arranged between adjacent heat exchange tubes and joined to the heat exchange tubes And a pair of tanks arranged at a distance from each other, and a vertical liquid receiver fixed across one header of the condensing unit and one header of the subcooling unit The inside By being partitioned by the members, both headers of the condensing unit and the supercooling unit are formed, and the liquid receiver has a refrigerant inflow passage leading to one header of the condensing unit and a refrigerant outflow passage leading to one header of the supercooling unit. It has a block that is fixed to one tank across both headers, and a vertical cylindrical liquid receiver body whose lower end is detachably fixed to the block. In this heat exchanger, in order to improve the refrigeration capacity of the refrigeration cycle, the liquid refrigerant condensed in the condensing unit is further cooled in the subcooling unit to a temperature lower by about 5 to 15 ° C. than the condensation temperature. It has become.

しかしながら、上述した熱交換器においては、受液器本体の直径が凝縮部および過冷却部の通風方向の幅よりも大きくなるので、この熱交換器をエンジンルーム内に配置した場合、無駄なスペースが生じるという問題がある。また、受液器本体とブロックとの間のシール部材や、受熱器本体をブロックに固定するための固定部材などが必要となり、部品点数が多くなるという問題がある。   However, in the heat exchanger described above, the diameter of the liquid receiver body is larger than the width in the ventilation direction of the condensing unit and the supercooling unit. Therefore, when this heat exchanger is arranged in the engine room, useless space is required. There is a problem that occurs. Further, a seal member between the liquid receiver main body and the block, a fixing member for fixing the heat receiver main body to the block, and the like are required, and there is a problem that the number of parts increases.

そこで、このような問題を解決した熱交換器として、互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる凝縮部と、凝縮部の上方に配置され、かつ互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる過冷却部と、凝縮部と過冷却部との間に配置された気液分離部とを備えており、気液分離部が、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続されかつ凝縮部および過冷却部の熱交換管よりも通路断面積の大きい1本の直管からなり、互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部、過冷却部および気液分離部の両ヘッダが形成され、凝縮部から流出した冷媒が気液分離部を通過して過冷却部に流入するようになっている熱交換器が知られている(特許文献1参照)。   Therefore, as a heat exchanger that solves such a problem, a pair of headers arranged at a distance from each other, a plurality of heat exchange tubes that are arranged between both headers and both end portions are connected to both headers, and A condensing unit composed of corrugated fins arranged between adjacent heat exchanging pipes and joined to the heat exchanging pipes, and a pair of headers arranged above the condensing part and spaced apart from each other, A plurality of heat exchange pipes arranged between the headers and having both end portions connected to both headers, and a supercooling part composed of corrugated fins arranged between adjacent heat exchange pipes and joined to the heat exchange pipes; A gas-liquid separation unit disposed between the condensing unit and the supercooling unit, wherein the gas-liquid separation unit is disposed between a pair of headers spaced apart from each other and the headers. Both ends are connected to both headers and The condensing unit is formed by a pair of tanks each having a passage cross-sectional area larger than that of the heat exchange pipes of the cooling section and the supercooling section and partitioned by a partition member. There is known a heat exchanger in which both headers of a supercooling part and a gas-liquid separation part are formed, and the refrigerant flowing out from the condensation part passes through the gas-liquid separation part and flows into the supercooling part (See Patent Document 1).

しかしながら、特許文献1記載の熱交換器においては、気液分離部が、1対のヘッダと、凝縮部および過冷却部の熱交換管よりも通路断面積の大きい1本の直管とからなるので、冷媒は、凝縮部から気液分離部の直管内に比較的高速で流入し、直管を短時間で通過して過冷却部内に流入する。したがって、気液分離部での気液分離効果が十分ではなく、その結果比較多くの気相冷媒が過冷却部内に流入することになり、過冷却部での過冷却効果が不十分となって冷凍サイクル全体の冷却効果が低下する。
特許第3158509号公報
However, in the heat exchanger described in Patent Document 1, the gas-liquid separation unit includes a pair of headers and a single straight pipe having a larger passage cross-sectional area than the heat exchange pipes of the condensing unit and the supercooling unit. Therefore, the refrigerant flows from the condensing part into the straight pipe of the gas-liquid separation part at a relatively high speed, passes through the straight pipe in a short time, and flows into the supercooling part. Therefore, the gas-liquid separation effect in the gas-liquid separation part is not sufficient, and as a result, a large amount of gas-phase refrigerant flows into the supercooling part, resulting in insufficient supercooling effect in the supercooling part. The cooling effect of the entire refrigeration cycle is reduced.
Japanese Patent No. 3158509

この発明の目的は、上記問題を解決し、気液分離部における気液分離効果が向上した熱交換器を提供することにある。   An object of the present invention is to provide a heat exchanger that solves the above problems and has an improved gas-liquid separation effect in the gas-liquid separation unit.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管からなる凝縮部と、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管からなる過冷却部と、凝縮部と過冷却部との間に配置された気液分離部とを備えており、凝縮部から流出した冷媒が気液分離部を通過して過冷却部に流入するようになっている熱交換器であって、
気液分離部が、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された受液管からなり、気液分離部に、気液分離部内に流入する冷媒の流速を低下させる流速低下手段が設けられている熱交換器。
1) A pair of headers arranged at a distance from each other, and a condensing part composed of a plurality of heat exchange tubes arranged between both headers and connected at both ends to both headers, and arranged at a distance from each other A pair of headers, and a supercooling part that is arranged between the headers and has a plurality of heat exchange pipes having both ends connected to both headers, and a gas-liquid arranged between the condensing part and the supercooling part A heat exchanger in which the refrigerant flowing out from the condensing unit passes through the gas-liquid separating unit and flows into the supercooling unit,
The gas-liquid separator is composed of a pair of headers arranged at intervals from each other, and a liquid receiving pipe arranged between both headers and having both ends connected to both headers. A heat exchanger provided with a flow rate reduction means for reducing the flow rate of the refrigerant flowing into the separation unit.

2)気液分離部が、間隔をおいて配置された複数の受液管を備えている上記1)記載の熱交換器。   2) The heat exchanger according to 1) above, wherein the gas-liquid separation unit includes a plurality of liquid receiving pipes arranged at intervals.

3)受液管内に乾燥剤が配置されている上記1)または2)記載の熱交換器。   3) The heat exchanger according to 1) or 2) above, wherein a desiccant is disposed in the liquid receiving pipe.

4)流速低下手段が、気液分離部のいずれか一方のヘッダに形成されている冷媒流入口に設けられた多孔質部材を備えている上記1)〜3)のうちのいずれかに記載の熱交換器。   4) The flow rate lowering means is provided with a porous member provided at a refrigerant inlet formed in one of the headers of the gas-liquid separation unit. Heat exchanger.

5)多孔質部材がメッシュからなる上記4)記載の熱交換器。   5) The heat exchanger according to 4) above, wherein the porous member is a mesh.

6)流速低下手段が、気液分離部のいずれか一方のヘッダに形成された絞り穴状冷媒流出口を備えている上記1)〜5)のうちのいずれかに記載の熱交換器。   6) The heat exchanger according to any one of 1) to 5) above, wherein the flow velocity lowering means includes a throttle hole-shaped refrigerant outlet formed in one of the headers of the gas-liquid separator.

7)互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部、過冷却部および気液分離部の両ヘッダが形成されている上記1)〜6)のうちのいずれかに記載の熱交換器。   7) The above-mentioned 1) to 6) in which a pair of tanks arranged at a distance from each other are partitioned by partition members to form both headers of a condensing unit, a supercooling unit, and a gas-liquid separating unit. ).

8)気液分離部の受液管の通風方向の幅が、タンクの通風方向の幅以下となされている上記7)記載の熱交換器。   8) The heat exchanger as described in 7) above, wherein the width of the gas-liquid separation part in the air receiving tube is equal to or smaller than the width of the tank in the air flowing direction.

9)気液分離部の上側に凝縮部が配置されるとともに下側に過冷却部が配置されている上記1)〜3)のうちのいずれかに記載の熱交換器。   9) The heat exchanger according to any one of 1) to 3) above, wherein a condensing unit is disposed on the upper side of the gas-liquid separation unit and a supercooling unit is disposed on the lower side.

10)流速低下手段が、気液分離部のいずれか一方のヘッダの上壁に形成されている冷媒流入口に設けられた多孔質部材を備えている上記9)記載の熱交換器。   10) The heat exchanger according to 9) above, wherein the flow velocity lowering means includes a porous member provided at a refrigerant inlet formed on the upper wall of one of the headers of the gas-liquid separator.

11)多孔質部材がメッシュからなる上記10)記載の熱交換器。   11) The heat exchanger according to 10) above, wherein the porous member is a mesh.

12)流速低下手段が、気液分離部のいずれか一方のヘッダの下壁に形成された絞り穴状冷媒流出口を備えている上記9)〜11)のうちのいずれかに記載の熱交換器。   12) The heat exchange according to any one of the above 9) to 11), wherein the flow velocity reduction means includes a throttle hole-like refrigerant outlet formed in the lower wall of one of the headers of the gas-liquid separator. vessel.

13)気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、同じくいずれか一方のヘッダの下壁に冷媒流出口が形成されており、流速低下手段が、冷媒流入口に設けられた多孔質部材と、冷媒流出口を囲むように設けられ、かつ冷媒流入口から流入した冷媒の冷媒流出口までの流路長を延長する流路長延長部材とを備えている上記9)記載の熱交換器。   13) A refrigerant inlet is formed on the upper wall of one of the gas-liquid separators, and a refrigerant outlet is also formed on the lower wall of one of the headers. A porous member provided at the inlet, and a channel length extending member that is provided so as to surround the refrigerant outlet and extends the channel length from the refrigerant inlet to the refrigerant outlet. The heat exchanger as described in 9) above.

14)冷媒流入口が、ヘッダの上壁の全体にわたって形成されている上記13)記載の熱交換器。   14) The heat exchanger according to 13) above, wherein the refrigerant inlet is formed over the entire upper wall of the header.

15)冷媒流入口が、ヘッダの上壁の一部に形成されている上記13)記載の熱交換器。   15) The heat exchanger according to 13) above, wherein the refrigerant inlet is formed in a part of the upper wall of the header.

16)多孔質部材がメッシュからなる上記13)〜15)のうちのいずれかに記載の熱交換器。   16) The heat exchanger according to any one of 13) to 15) above, wherein the porous member is made of a mesh.

17)流路長延長部材が、冷媒流出口の周囲に上方突出状に設けられた管状内側部材と、冷媒流出口が形成されたヘッダの下壁に内側部材を囲繞するように上方突出状に設けられ、かつ上端が閉鎖されるとともに周壁下端部に貫通穴が形成された中空状外側部材とからなる上記13)〜16)のうちのいずれかに記載の熱交換器。   17) The flow path length extending member protrudes upward so as to surround the inner member on the tubular inner member provided so as to protrude upward around the refrigerant outlet and the lower wall of the header on which the refrigerant outlet is formed. The heat exchanger according to any one of the above 13) to 16), comprising a hollow outer member that is provided and has an upper end closed and a through hole formed in the lower end of the peripheral wall.

18)外側部材の上端が、冷媒流出口が形成されたヘッダの上壁よりも下方の高さ位置にある上記17)記載の熱交換器。   18) The heat exchanger according to 17) above, wherein the upper end of the outer member is at a lower position than the upper wall of the header on which the refrigerant outlet is formed.

19)外側部材の上端が、冷媒流出口が形成されたヘッダの上壁と同一高さ位置にある上記17)記載の熱交換器。   19) The heat exchanger according to 17) above, wherein the upper end of the outer member is at the same height as the upper wall of the header on which the refrigerant outlet is formed.

20)気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、他方のヘッダの下壁に冷媒流出口が形成されている上記13)〜19)のうちのいずれかに記載の熱交換器。   20) Any one of the above 13) to 19) in which a refrigerant inflow port is formed in the upper wall of one of the gas-liquid separators and a refrigerant outflow port is formed in the lower wall of the other header The heat exchanger according to crab.

21)気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、これと同じヘッダの下壁に冷媒流出口が形成されている上記13)〜19)のうちのいずれかに記載の熱交換器。   21) Among the above 13) to 19), a refrigerant inlet is formed on the upper wall of one of the headers of the gas-liquid separator, and a refrigerant outlet is formed on the lower wall of the same header. The heat exchanger in any one.

22)気液分離部の受液管内に、抵抗付与手段が設けられている上記21)記載の熱交換器。   22) The heat exchanger according to 21) above, wherein resistance imparting means is provided in the liquid receiving pipe of the gas-liquid separation unit.

23)抵抗付与手段が、メッシュおよび/またはフィルタからなる上記22)記載の熱交換器。   23) The heat exchanger according to 22) above, wherein the resistance applying means comprises a mesh and / or a filter.

24)気液分離部の他方のヘッダの下壁に、過冷却部の一方のヘッダ内に通じる圧力低減用穴が形成されている上記21)〜23)のうちのいずれかに記載の熱交換器。   24) The heat exchange according to any one of 21) to 23) above, wherein a pressure reducing hole is formed in the lower wall of the other header of the gas-liquid separation unit and communicates with the one header of the supercooling unit. vessel.

25)互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部、過冷却部および気液分離部の両ヘッダが形成されており、気液分離部と凝縮部との間の仕切部材が気液分離部のヘッダの上壁となり、気液分離部と過冷却部との間の仕切部材が気液分離部のヘッダの下壁となっている上記9)〜24)のうちのいずれかに記載の熱交換器。   25) A pair of tanks arranged at a distance from each other are partitioned by partition members to form both headers of a condensing unit, a supercooling unit, and a gas-liquid separating unit. The partition member between the gas-liquid separator and the condenser is the upper wall of the gas-liquid separator, and the partition member between the gas-liquid separator and the supercooler is the lower wall of the gas-liquid separator. The heat exchanger according to any one of 9) to 24).

26)気液分離部の受液管の通風方向の幅が、タンクの通風方向の幅以下となされている上記25)記載の熱交換器。   26) The heat exchanger according to 25) above, wherein the width of the gas-liquid separation part in the air receiving tube is equal to or smaller than the width of the tank in the air flowing direction.

27)圧縮機、上記1)〜26)のうちのいずれかに記載の熱交換器、減圧器、およびエバポレータを備えている冷凍サイクル。   27) A refrigeration cycle comprising a compressor, the heat exchanger according to any one of 1) to 26), a decompressor, and an evaporator.

28)上記27)記載の冷凍サイクルを備えている車両。   28) A vehicle equipped with the refrigeration cycle described in 27) above.

上記1)および2)の熱交換器によれば、気液分離部が、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された受液管からなり、気液分離部に、気液分離部内に流入する冷媒の流速を低下させる流速低下手段が設けられているので、凝縮部から気液分離部内に流入した冷媒の流速が低下させられ、気液分離部を通過する時間が比較的長くなって、気液分離部での気液分離効果が向上する。したがって、過冷却部内に流入する気相冷媒の量が少なくなり、その結果過冷却部での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。   According to the heat exchangers of 1) and 2) above, the gas-liquid separator is disposed between the pair of headers spaced apart from each other and between the headers, and both ends are connected to the headers. Since the gas-liquid separation unit is provided with a flow rate reduction means for reducing the flow rate of the refrigerant flowing into the gas-liquid separation unit, the flow rate of the refrigerant flowing from the condensation unit into the gas-liquid separation unit is reduced. Thus, the time for passing through the gas-liquid separation unit becomes relatively long, and the gas-liquid separation effect in the gas-liquid separation unit is improved. Therefore, the amount of the gas-phase refrigerant flowing into the supercooling portion is reduced, and as a result, the supercooling effect in the supercooling portion is sufficient and the cooling effect of the entire refrigeration cycle is improved.

上記3)の熱交換器によれば、冷媒中の水分を除去することができる。   According to the heat exchanger of 3) above, moisture in the refrigerant can be removed.

上記4)〜6)の熱交換器によれば、流速低下手段の構成が比較的簡単になる。   According to the heat exchangers of the above 4) to 6), the configuration of the flow velocity lowering means becomes relatively simple.

上記7)の熱交換器によれば、全体の部品点数を少なくすることができる。   According to the heat exchanger of the above 7), the total number of parts can be reduced.

上記8)の熱交換器によれば、受液管がタンクよりも通風方向に突出しないので、この熱交換器をエンジンルーム内に配置した場合、無駄なスペースが生じることを防止することが可能になる。   According to the heat exchanger of 8) above, since the liquid receiving pipe does not protrude in the ventilation direction from the tank, when this heat exchanger is arranged in the engine room, it is possible to prevent a useless space from being generated. become.

上記9)の熱交換器によれば、気液分離部が、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された受液管からなり、気液分離部に、気液分離部内に流入する冷媒の流速を低下させる流速低下手段が設けられているので、凝縮部から気液分離部内に流入した冷媒の流速が低下させられ、気液分離部を通過する時間が比較的長くなって、気液分離部での気液分離効果が向上する。したがって、過冷却部内に流入する気相冷媒の量が少なくなり、その結果過冷却部での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する
上記10)〜12)の熱交換器によれば、流速低下手段の構成が比較的簡単になる。
According to the heat exchanger of 9) above, the gas-liquid separator is a pair of headers spaced apart from each other, and a liquid receiving pipe in which both end portions are connected to both headers. The gas-liquid separation unit is provided with a flow rate reduction means for reducing the flow rate of the refrigerant flowing into the gas-liquid separation unit, so that the flow rate of the refrigerant flowing into the gas-liquid separation unit from the condensation unit is reduced, The time for passing through the gas-liquid separation unit becomes relatively long, and the gas-liquid separation effect in the gas-liquid separation unit is improved. Accordingly, the amount of gas-phase refrigerant flowing into the supercooling section is reduced, and as a result, the supercooling effect in the supercooling section is sufficient and the cooling effect of the entire refrigeration cycle is improved. According to the vessel, the configuration of the flow velocity lowering means becomes relatively simple.

上記13)〜15)の熱交換器によれば、気液分離部での気液分離効果が一層優れたものになる。   According to the heat exchangers of the above 13) to 15), the gas-liquid separation effect in the gas-liquid separation part is further improved.

上記16)の熱交換器によれば、多孔質部材のコストが安くなる。   According to the heat exchanger of 16) above, the cost of the porous member is reduced.

上記17)〜19)の熱交換器によれば、流路長延長部材の構成が比較的簡単になる。   According to the heat exchangers of the above 17) to 19), the configuration of the flow path length extending member becomes relatively simple.

上記22)の熱交換器によれば、この熱交換器を備えた冷凍サイクルへの冷媒の封入量を比較的少なくすることができる。   According to the heat exchanger of 22) above, the amount of refrigerant enclosed in the refrigeration cycle provided with this heat exchanger can be relatively reduced.

すなわち、上記21)のように、気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、これと同じヘッダの下壁に冷媒流出口が形成されている熱交換器の場合、気液分離部の受液管内に、抵抗付与手段が設けられていないと、冷媒が冷媒流入口を通って上記一方のヘッダ内に流入した直後に受液管内に流入して、他方のヘッダ側に流れるので、受液管内および他方のヘッダ内の冷媒量が多くなった後でないと、冷媒流出口を通って過冷却部に流入しにくくなる。したがって、過冷度が一定になる定常域になるまでの冷凍サイクルへの冷媒の封入量を多くする必要がある。これに対し、気液分離部の受液管内に抵抗付与手段が設けられていると、抵抗付与手段の働きにより、冷媒流入口を通って上記一方のヘッダ内に流入した直後の冷媒は、受液管内に流入しにくくなるとともに受液管を通って他方のヘッダ内に流入しにくくなるので、冷媒流入口を通って上記一方のヘッダ内に流入した直後の冷媒が、冷媒流出口を通って過冷却部に流入しやすくなる。したがって、過冷度が一定になる定常域になるまでの冷凍サイクルへの冷媒の封入量が比較的少なくなる。   That is, as in 21) above, the heat exchange in which the refrigerant inlet is formed in the upper wall of one of the headers of the gas-liquid separator and the refrigerant outlet is formed in the lower wall of the same header In the case of a container, if no resistance imparting means is provided in the liquid receiving pipe of the gas-liquid separation part, the refrigerant flows into the liquid receiving pipe immediately after flowing into the one header through the refrigerant inlet, Since it flows to the other header side, it is difficult to flow into the supercooling section through the refrigerant outlet unless the refrigerant amount in the liquid receiving pipe and the other header is increased. Therefore, it is necessary to increase the amount of refrigerant enclosed in the refrigeration cycle until the steady state where the degree of supercooling is constant. On the other hand, when the resistance applying means is provided in the liquid receiving pipe of the gas-liquid separator, the refrigerant immediately after flowing into the one header through the refrigerant inlet is received by the action of the resistance applying means. Since it becomes difficult to flow into the liquid pipe and through the liquid receiving pipe into the other header, the refrigerant immediately after flowing into the one header through the refrigerant inlet passes through the refrigerant outlet. It becomes easy to flow into the supercooling part. Therefore, the amount of refrigerant enclosed in the refrigeration cycle until the steady state where the degree of supercooling is constant becomes relatively small.

上記23)の熱交換器によれば、抵抗付与手段のコストが安くなる。   According to the heat exchanger of 23) above, the cost of the resistance applying means is reduced.

上記24)の熱交換器によれば、圧力低減用穴の働きにより、冷媒流入口および冷媒流出口が形成されていない他方のヘッダ内の圧力が低減されるので、受液管内に液相冷媒が溜まりやすくなって、気液分離部での気液分離効果が優れたものになる。   According to the heat exchanger of the above 24), the pressure in the other header where the refrigerant inlet and the refrigerant outlet are not formed is reduced by the action of the pressure reducing hole, so that the liquid-phase refrigerant in the liquid receiving pipe The gas-liquid separation effect at the gas-liquid separation part is excellent.

上記25)の熱交換器によれば、全体の部品点数を少なくすることができる。   According to the heat exchanger of 25) above, the total number of parts can be reduced.

上記26)の熱交換器によれば、受液管がタンクよりも通風方向に突出しないので、この熱交換器をエンジンルーム内に配置した場合、無駄なスペースが生じることを防止することが可能になる。   According to the heat exchanger of the above 26), since the liquid receiving pipe does not protrude in the ventilation direction from the tank, when this heat exchanger is arranged in the engine room, it is possible to prevent generation of useless space. become.

以下、この発明の実施形態を、図面を参照して説明する。なお、全図面を通じて同一部分および同一物には同一符号を付して重複する説明を省略する。   Embodiments of the present invention will be described below with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same part and the same thing through all drawings, and the overlapping description is abbreviate | omitted.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。また、以下の説明において、図1および図8の左右を左右といい、図1および図8の紙面裏側(通風方向下流側)を前、これと反対側を後というものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum. In the following description, the left and right sides in FIGS. 1 and 8 are referred to as the left and right sides, the back side (downstream side in the ventilation direction) in FIGS. 1 and 8 is the front side, and the opposite side is the back side.

実施形態1
この実施形態は図1〜図3に示すものである。
Embodiment 1
This embodiment is shown in FIGS.

図1はこの実施形態の全体構成を示し、図2および図3はその要部の構成を示す。   FIG. 1 shows the overall configuration of this embodiment, and FIGS. 2 and 3 show the configuration of the main part thereof.

図1および図2において、熱交換器(1)は、凝縮部(2)および過冷却部(3)が、同一垂直面内において、前者が上方に位置するように上下方向に間隔をおいて設けられ、凝縮部(2)と過冷却部(3)との間に気液分離部(4)が設けられたものであり、凝縮部(2)から流出した冷媒が気液分離部(4)に流入し、気液分離部(4)を通過して過冷却部(3)に流入するようになっている。   1 and 2, the heat exchanger (1) has a condensing part (2) and a supercooling part (3) spaced vertically in the same vertical plane so that the former is located above. The gas-liquid separation unit (4) is provided between the condensation unit (2) and the supercooling unit (3), and the refrigerant flowing out of the condensation unit (2) is removed from the gas-liquid separation unit (4 ), Passes through the gas-liquid separation part (4), and flows into the supercooling part (3).

凝縮部(2)は、左右方向に互いに間隔をおいて並列状に配置されかつ上下方向にのびるアルミニウム製第1および第2ヘッダ(5)(6)と、両ヘッダ(5)(6)間に、幅方向を前後方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ(5)(6)にそれぞれ接続された複数のアルミニウム製偏平状熱交換管(7)と、隣接する熱交換管(7)間に配置されて熱交換管(7)にろう付されたアルミニウム製コルゲートフィン(8)とを備えている。上端の熱交換管(7)の上方にはこの熱交換管(7)と間隔をおいてアルミニウム製サイドプレート(9)が配置され、サイドプレート(9)と熱交換管(7)との間にもアルミニウム製コルゲートフィン(8)が配置されてサイドプレート(9)および熱交換管(7)にろう付されている。   The condensing part (2) is arranged between the first and second aluminum headers (5) (6), which are arranged in parallel in the left-right direction and extend in the vertical direction, and between the headers (5) (6). In addition, a plurality of aluminum flat heat exchange tubes (7) with the width direction directed in the front-rear direction and spaced apart in the vertical direction and both ends connected to the headers (5) (6), respectively. And an aluminum corrugated fin (8) disposed between adjacent heat exchange tubes (7) and brazed to the heat exchange tubes (7). An aluminum side plate (9) is disposed above the heat exchange pipe (7) at the upper end with a space from the heat exchange pipe (7), and is located between the side plate (9) and the heat exchange pipe (7). Further, an aluminum corrugated fin (8) is disposed and brazed to the side plate (9) and the heat exchange pipe (7).

第1ヘッダ(5)は、上下方向の中程よりも若干下方の高さ位置に設けられた板状仕切部材(11)により上ヘッダ部(5a)と下ヘッダ部(5b)とに区画されており、上ヘッダ部(5a)の上端部に冷媒入口(12)が設けられている。そして、凝縮部(2)には、仕切部材(11)よりも上方の部分、および仕切部材(11)よりも下方の部分において、それぞれ上下に連続して並んだ複数の熱交換管(7)からなる通路群(13)(14)が設けられている。上側通路群(13)を構成する熱交換管(7)の本数は、下側通路群(14)を構成する熱交換管(7)の本数よりも多くなっている。また、各通路群(13)(14)を構成する全ての熱交換管(7)における冷媒の流れ方向が同一となっているとともに、両通路群(13)(14)における冷媒の流れ方向が異なっている。   The first header (5) is divided into an upper header portion (5a) and a lower header portion (5b) by a plate-like partition member (11) provided at a height slightly below the middle in the vertical direction. A refrigerant inlet (12) is provided at the upper end of the upper header (5a). The condensing unit (2) includes a plurality of heat exchange tubes (7) arranged continuously in the vertical direction in a portion above the partition member (11) and a portion below the partition member (11). A passage group (13) (14) is provided. The number of heat exchange tubes (7) constituting the upper passage group (13) is larger than the number of heat exchange tubes (7) constituting the lower passage group (14). In addition, the flow direction of the refrigerant in all the heat exchange tubes (7) constituting each passage group (13) (14) is the same, and the flow direction of the refrigerant in both passage groups (13) (14) Is different.

過冷却部(3)は、左右方向に互いに間隔をおいて配置されかつ上下方向にのびるアルミニウム製第1および第2ヘッダ(15)(16)と、両ヘッダ(15)(16)間に、幅方向を前後方向に向けるとともに上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ(15)(16)にそれぞれ接続された複数のアルミニウム製偏平状熱交換管(17)と、隣接する熱交換管(17)間に配置されて熱交換管(17)にろう付されたアルミニウム製コルゲートフィン(18)とを備えている。第1ヘッダ(15)に冷媒出口(20)が設けられている。熱交換管(17)は凝縮部(2)の熱交換管(7)と同一のものであり、下端の熱交換管(17)の下方にはこの熱交換管(17)と間隔をおいてアルミニウム製サイドプレート(19)が配置され、サイドプレート(19)と熱交換管(17)との間にもアルミニウム製コルゲートフィン(18)が配置されてサイドプレート(19)および熱交換管(17)にろう付されている。   The supercooling section (3) is disposed between the first and second aluminum headers (15) (16) and the headers (15) (16), which are spaced apart from each other in the left-right direction and extend vertically. Adjacent to a plurality of flat aluminum heat exchange tubes (17) made of aluminum, with the width direction facing in the front-rear direction and spaced apart in the vertical direction, and both ends connected to both headers (15) and (16), respectively And an aluminum corrugated fin (18) disposed between the heat exchange tubes (17) and brazed to the heat exchange tubes (17). A refrigerant outlet (20) is provided in the first header (15). The heat exchange pipe (17) is the same as the heat exchange pipe (7) of the condensing part (2), and below the heat exchange pipe (17) at the lower end is spaced from the heat exchange pipe (17). An aluminum side plate (19) is arranged, and an aluminum corrugated fin (18) is also arranged between the side plate (19) and the heat exchange pipe (17), and the side plate (19) and the heat exchange pipe (17 ) Is brazed.

気液分離部(4)は、左右方向に互いに間隔をおいて並列状に配置されかつ上下方向にのびるアルミニウム製第1および第2ヘッダ(21)(22)と、両ヘッダ(21)(22)間に上下方向に間隔をおいて配置され、かつ両端部が両ヘッダ(21)(22)にそれぞれ接続された複数、ここでは2つのアルミニウム製受液管(23)とを備えている。受液管(23)は、外径がヘッダ(21)(22)の前後方向の幅と等しいか、またはこれよりも小さい円管からなる。なお、受液管(23)としては、前後方向の幅がヘッダ(21)(22)の前後方向の幅と等しいか、またはこれよりも小さいものであれば、円管に限らず、その横断面形状は変更可能であり、角管等を用いることができる。各受液管(23)の通路断面積は、各熱交換管(7)(17)の通路断面積よりも大きくなっている。また、下側の受液管(23)内には乾燥剤(24)が配置されている。なお、上側の受液管(23)と凝縮部(2)の下端の熱交換管(7)との間、および下側の受液管(23)と過冷却部(3)の上端の熱交換管(17)との間にもそれぞれコルゲートフィン(8)(18)が配置され、受液管(23)および熱交換管(7)(17)にろう付されている。   The gas-liquid separator (4) includes aluminum first and second headers (21) (22) arranged in parallel in the left-right direction and extending in the vertical direction, and both headers (21) (22). ) Between the two headers (21) and (22), and two aluminum receiving pipes (23) in this case are provided. The liquid receiving pipe (23) is a circular pipe having an outer diameter equal to or smaller than the width in the front-rear direction of the headers (21) and (22). Note that the liquid receiving pipe (23) is not limited to a circular pipe as long as the width in the front-rear direction is equal to or smaller than the width in the front-rear direction of the header (21) (22). The surface shape can be changed, and a square tube or the like can be used. The passage sectional area of each liquid receiving pipe (23) is larger than the passage sectional area of each heat exchange pipe (7) (17). A desiccant (24) is disposed in the lower liquid receiving pipe (23). It should be noted that heat between the upper liquid receiving pipe (23) and the heat exchange pipe (7) at the lower end of the condensing part (2) and at the upper end of the lower liquid receiving pipe (23) and the supercooling part (3). Corrugated fins (8) and (18) are respectively arranged between the exchange pipe (17) and brazed to the liquid receiving pipe (23) and the heat exchange pipes (7) and (17).

凝縮部(2)の両ヘッダ(5)(6)、気液分離部(4)の両ヘッダ(21)(22)および過冷却部(3)の両ヘッダ(15)(16)は、左右方向に間隔をおいて配置されかつ上下方向に伸びる1対のアルミニウム製タンク(25)(26)内が、それぞれ仕切部材(27)(28)(29)(30)により仕切られることによって形成されており、凝縮部(2)と気液分離部(4)との間の仕切部材(27)(29)が気液分離部(4)の両ヘッダ(21)(22)の上壁(21a)(22a)となり、気液分離部(4)と過冷却部(3)との間の仕切部材(28)(30)が気液分離部(4)の両ヘッダ(21)(22)の下壁(21b)(22b)となっている。気液分離部(4)の第1ヘッダ(21)の上壁(21a)には、その周縁部を除いて全体にわたる冷媒流入口(32)が形成され、同じく第2ヘッダ(22)の下壁(22b)には、その外側寄りの部分に、冷媒流入口(32)に比較してかなり小さい冷媒流出口(33)が形成されている。   Both headers (5) and (6) of the condenser section (2), both headers (21) and (22) of the gas-liquid separator (4), and both headers (15) and (16) of the supercooling section (3) are A pair of aluminum tanks (25), (26), which are spaced apart in the direction and extend in the vertical direction, are formed by being partitioned by partition members (27) (28) (29) (30), respectively. The partition member (27) (29) between the condensing part (2) and the gas-liquid separation part (4) is the upper wall (21a) of both headers (21) (22) of the gas-liquid separation part (4) ) (22a), and the partition members (28) and (30) between the gas-liquid separator (4) and the supercooler (3) are connected to both headers (21) and (22) of the gas-liquid separator (4). It is the lower wall (21b) (22b). The upper wall (21a) of the first header (21) of the gas-liquid separation part (4) is formed with a refrigerant inlet (32) over the whole area except for its peripheral edge, and is also below the second header (22). The wall (22b) is formed with a refrigerant outlet (33) that is considerably smaller than the refrigerant inlet (32) at a portion closer to the outer side.

そして、冷媒入口(12)から凝縮部(2)の第1ヘッダ(5)の上ヘッダ部(5a)内に流入した冷媒は、上側通路群(13)を通って第2ヘッダ(6)内に流入し、さらに下側通路群(14)を通って第1ヘッダ(5)の下ヘッダ部(5b)内に流入する。下ヘッダ部(5b)内に流入した冷媒は、冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入し、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第2ヘッダ(16)内に流入する。第2ヘッダ(16)内に流入した冷媒は、熱交換管(17)を通って第1ヘッダ(15)内に流入し、冷媒出口(20)から流出する。   The refrigerant flowing from the refrigerant inlet (12) into the upper header (5a) of the first header (5) of the condensing unit (2) passes through the upper passage group (13) and enters the second header (6). And then flows into the lower header portion (5b) of the first header (5) through the lower passage group (14). The refrigerant flowing into the lower header portion (5b) flows into the first header (21) of the gas-liquid separator (4) through the refrigerant inlet (32), and into the gas-liquid separator (4), That is, it accumulates in both headers (21) and (22) and in the liquid receiving pipe (23), and flows into the second header (16) of the supercooling section (3) through the refrigerant outlet (33). The refrigerant flowing into the second header (16) flows into the first header (15) through the heat exchange pipe (17) and flows out from the refrigerant outlet (20).

気液分離部(4)に、凝縮部(2)から気液分離部(4)内に流入する冷媒の流速を低下させる流速低下手段が設けられている。流速低下手段は、第1ヘッダ(21)の上壁(21a)の冷媒流入口(32)内に張設された多孔質部材としてのメッシュ(34)と、第2ヘッダ(22)内において冷媒流出口(33)を囲むように設けられ、かつ冷媒流入口(32)から流入した冷媒の冷媒流出口(33)までの流路長を延長する流路長延長部材(35)とを備えている。   The gas-liquid separation unit (4) is provided with a flow rate reduction means for reducing the flow rate of the refrigerant flowing from the condensation unit (2) into the gas-liquid separation unit (4). The flow velocity reducing means includes a mesh (34) as a porous member stretched in the refrigerant inlet (32) of the upper wall (21a) of the first header (21), and a refrigerant in the second header (22). A flow path length extending member (35) provided to surround the outflow port (33) and extending a flow path length from the refrigerant inflow port (32) to the refrigerant outflow port (33). Yes.

流路長延長部材(35)は、冷媒流出口(33)に通じるように下壁(22b)に上方突出状に設けられたアルミニウム製管状内側部材(36)と、下壁(22b)に内側部材(36)を囲繞するように上方突出状に設けられ、かつ上端が閉鎖されるとともに周壁下端部に貫通穴(38)が形成されたアルミニウム製中空状外側部材(37)とからなる。内側部材(36)は、その下端部が冷媒流出口(33)内に挿入されて下壁(22b)に固定されている。図3に示すように、外側部材(37)は、下壁(22b)、すなわち仕切部材(30)と一体に形成されて上方に突出した横断面略半円形の周壁(37a)と、周壁(37a)の上端に一体に形成されかつ周壁(37a)の上端開口を閉鎖する頂壁(37b)とを備えており、周壁(37a)の平坦壁部の下端部に貫通穴(38)が形成されている。外側部材(37)の上端は、第2ヘッダ(22)の上壁(21a)よりも下方の高さ位置にある。流路長延長部材(35)は、仕切部材(30)とともに右タンク(26)の周壁に形成された貫通穴(39)を通して右タンク(26)内に嵌め入れられ、右タンク(26)にろう付されている。   The flow path length extension member (35) includes an aluminum tubular inner member (36) provided on the lower wall (22b) so as to communicate with the refrigerant outlet (33), and an inner side on the lower wall (22b). An aluminum hollow outer member (37) is provided so as to project upward so as to surround the member (36), and has an upper end closed and a through hole (38) formed in the lower end portion of the peripheral wall. The inner member (36) has a lower end inserted into the refrigerant outlet (33) and fixed to the lower wall (22b). As shown in FIG. 3, the outer member (37) includes a lower wall (22 b), that is, a peripheral wall (37 a) that is formed integrally with the partition member (30) and protrudes upward, and a peripheral wall (37 a). 37a) and a top wall (37b) which is integrally formed at the upper end of the peripheral wall (37a) and closes the upper end opening of the peripheral wall (37a), and a through hole (38) is formed at the lower end of the flat wall portion of the peripheral wall (37a). Has been. The upper end of the outer member (37) is at a lower position than the upper wall (21a) of the second header (22). The channel length extending member (35) is fitted into the right tank (26) through the through hole (39) formed in the peripheral wall of the right tank (26) together with the partition member (30), and is inserted into the right tank (26). It is brazed.

上述した熱交換器(1)は、圧縮機、減圧器(膨張弁)および蒸発器とともに冷凍サイクルを構成するようになっている。このような冷凍サイクルは、たとえば自動車のような車両のエアコンとして用いられる。   The heat exchanger (1) described above constitutes a refrigeration cycle together with a compressor, a decompressor (expansion valve) and an evaporator. Such a refrigeration cycle is used as an air conditioner for vehicles such as automobiles.

上述した熱交換器(1)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、受液管(23)を通って第2ヘッダ(22)内に流入した後、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、さらに冷媒流出口(33)を通って過冷却部(3)の第2ヘッダ(16)内に流出する際に、流路長延長部材(35)の貫通穴(38)を通って外側部材(37)内に入り、外側部材(37)内を上方に流れた後、上端開口から内側部材(36)内に入り、冷媒流出口(33)を通って過冷却部(3)の第2ヘッダ(16)に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。その結果、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。   In the heat exchanger (1) described above, during the operation of the refrigeration cycle, the refrigerant passes through the refrigerant inlet (32) from the lower header part (5b) of the first header (5) of the condensing part (2). When flowing into the first header (21) of the separation section (4), the flow velocity is reduced by the action of the mesh (34). In addition, the refrigerant flows into the second header (22) through the liquid receiving pipe (23) and then into the gas-liquid separator (4), that is, in both the headers (21) (22) and the liquid receiving pipe ( 23) When passing through the refrigerant outlet (33) and flowing out into the second header (16) of the supercooling section (3), the through-hole (38) of the channel length extension member (35) After passing through the outer member (37) and flowing upward in the outer member (37), it enters the inner member (36) from the upper end opening, and passes through the refrigerant outlet (33) to the supercooling section ( Since it flows out to the second header (16) of 3), the flow velocity is reduced again here. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. As a result, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved.

次に、上述した構成の熱交換器(1)(本発明品Aという)を用いて行った実験例を参考例とともに説明する。   Next, an experimental example using the heat exchanger (1) having the above-described configuration (referred to as product A of the present invention) will be described with reference examples.

本発明品Aの凝縮部(2)のサイズは、高さ290mm、左右方向の幅570mm、前後方向の奥行き16mmであり、凝縮部(2)の熱交換管(7)の本数は28本、全熱交換管(7)の通路断面積の合計は367mmである。また、過冷却部(3)のサイズは、高さ60mm、左右方向の幅570mm、前後方向の奥行き16mmであり、過冷却部(3)の熱交換管(17)の本数は5本、全熱交換管(17)の通路断面積の合計は65mmである。さらに、受液管(23)の内径13.5mm、外径15.9mmである。 The size of the condensing part (2) of the product A of the present invention is 290 mm in height, 570 mm in width in the left-right direction and 16 mm in depth in the front-rear direction. The number of heat exchange tubes (7) in the condensing part (2) is 28, The total passage cross-sectional area of the total heat exchange pipe (7) is 367 mm 2 . The size of the supercooling section (3) is 60mm in height, 570mm in width in the left-right direction, and 16mm in depth in the front-rear direction. The number of heat exchange tubes (17) in the supercooling section (3) is 5, The total cross-sectional area of the heat exchange pipe (17) is 65 mm 2 . Furthermore, the inner diameter of the liquid receiving pipe (23) is 13.5 mm, and the outer diameter is 15.9 mm.

なお、参考品である熱交換器として、互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる凝縮部と、互いに間隔をおいて配置された1対のヘッダ、両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管、および隣り合う熱交換管どうしの間に配置されて熱交換管に接合されたコルゲートフィンからなる過冷却部と、凝縮部の一方のヘッダと過冷却部の一方のヘッダとに跨って固定された垂直状受液器とを備えており、互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部および過冷却部の両ヘッダが形成され、受液器が、凝縮部の一方のヘッダに通じる冷媒流入通路および過冷却部の一方のヘッダに通じる冷媒流出通路を有し、かつ両ヘッダに跨って固定されたブロックと、下端部がブロックに着脱自在に固定された垂直円筒状受液器本体とよりなる熱交換器を用意した。参考品の熱交換器の凝縮部および過冷却部の熱交換管としては本発明品Aの熱交換管と同一のものを使用し、参考品の熱交換器の凝縮部のサイズ、凝縮部の熱交換管の本数および全熱交換管の流路断面積の合計、過冷却部のサイズ、ならびに過冷却部の熱交換管の本数および全熱交換管の流路断面積の合計は本発明品Aの熱交換器と同一とした。   In addition, as a heat exchanger which is a reference product, a pair of headers arranged at intervals from each other, a plurality of heat exchange tubes arranged between both headers and having both end portions connected to both headers, and adjacent heat A condensing part consisting of corrugated fins arranged between the exchange pipes and joined to the heat exchange pipes, a pair of headers arranged at a distance from each other, and arranged between both headers, both end parts being both headers A plurality of connected heat exchange pipes, a supercooling part comprising corrugated fins arranged between adjacent heat exchange pipes and joined to the heat exchange pipes, one header of the condensing part and one of the supercooling parts And a vertical liquid receiver fixed across the header, and a pair of tanks arranged at a distance from each other are partitioned by a partition member, thereby condensing part and subcooling part Both headers are shaped The receiver has a refrigerant inflow passage that leads to one header of the condensing part and a refrigerant outflow passage that leads to one header of the supercooling part and is fixed across both headers, and a lower end part A heat exchanger comprising a vertical cylindrical liquid receiver main body fixed detachably to the block was prepared. Use the same heat exchange pipe as the heat exchange pipe of the product A of the present invention as the heat exchange pipe of the heat exchanger of the reference product, and the size of the condenser of the heat exchanger of the reference product. The total number of heat exchange tubes and the total cross-sectional area of the total heat exchange pipe, the size of the supercooling section, and the total number of heat exchange pipes of the supercooling section and the total cross-sectional area of the total heat exchange pipe are products of the present invention. Same as A heat exchanger.

評価試験1
本発明品Aおよび参考品と、圧縮機、膨張弁および蒸発器とを用いて、それぞれ冷凍サイクルを組み立てた。そして、最初に所定量の850gの冷媒を冷凍サイクル内に入れて冷凍サイクルの運転を開始し、冷媒を継ぎ足しつつ種々の冷媒封入量における過冷度を調べてチャージグラフを作成した。その結果を図4に示す。図4に示すチャージグラフにおいて、A点が本発明品Aおよび参考品の熱交換器から流出してきた冷媒の過冷却が開始された点であり、B点が本発明品Aの気液分離部内および参考品の受液器内に液相冷媒が溜まりだした点であり、C点が本発明品Aの気液分離部内および参考品の受液器内が液冷媒で満たされた点である。そして、本発明品Aの場合、過冷度が一定になる定常域の幅が、参考品の同等であり、この種の熱交換器としては十分な性能を有していることがわかる。
Evaluation test 1
A refrigeration cycle was assembled using the product A of the present invention and the reference product, a compressor, an expansion valve and an evaporator, respectively. First, a predetermined amount of 850 g of refrigerant was put into the refrigeration cycle to start the operation of the refrigeration cycle, and charge graphs were created by examining the degree of subcooling at various refrigerant charging amounts while adding refrigerant. The result is shown in FIG. In the charge graph shown in FIG. 4, point A is the point where supercooling of the refrigerant flowing out from the heat exchangers of the product A and the reference product is started, and point B is the inside of the gas-liquid separation part of the product A of the invention. In addition, the liquid phase refrigerant starts to accumulate in the receiver of the reference product, and the point C is a point where the gas-liquid separation part of the product A of the present invention and the receiver of the reference product are filled with the liquid refrigerant. . In the case of the product A of the present invention, the width of the steady region where the degree of supercooling is constant is the same as that of the reference product, and it can be seen that this product has sufficient performance as this type of heat exchanger.

実施形態2
この実施形態は図5に示すものである。
Embodiment 2
This embodiment is shown in FIG.

この実施形態の熱交換器(40)の場合、気液分離部(4)に設けられ、かつ凝縮部(2)から気液分離部(4)内に流入する冷媒の流速を低下させる流速低下手段は、第1ヘッダ(21)の上壁(21a)の冷媒流入口(32)内に張設された多孔質部材としてのメッシュ(34)と、第2ヘッダ(22)の下壁(22b)の中央部に形成された絞り穴状冷媒流出口(41)とよりなる。絞り穴状冷媒流出口(41)の大きさは、実施形態1の熱交換器(1)の冷媒流出口(33)の大きさよりも小さくなっている。   In the case of the heat exchanger (40) of this embodiment, a flow rate reduction that reduces the flow rate of the refrigerant that is provided in the gas-liquid separation unit (4) and flows into the gas-liquid separation unit (4) from the condensation unit (2) The means includes a mesh (34) as a porous member stretched in the refrigerant inlet (32) of the upper wall (21a) of the first header (21), and the lower wall (22b) of the second header (22). ) And a throttle hole-like refrigerant outlet (41) formed in the central portion of. The size of the throttle hole-shaped refrigerant outlet (41) is smaller than the size of the refrigerant outlet (33) of the heat exchanger (1) of the first embodiment.

その他の構成は実施形態1の熱交換器と同じである。   Other configurations are the same as those of the heat exchanger according to the first embodiment.

実施形態2の熱交換器(40)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、受液管(23)を通って第2ヘッダ(22)内に流入した後、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、過冷却部(3)の第2ヘッダ(16)内に流出する際に、絞り穴状冷媒流出口(41)を通って過冷却部(3)の第2ヘッダ(16)に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。その結果、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。
実施形態3
この実施形態は図6および図7に示すものである。
In the heat exchanger (40) of the second embodiment, during the operation of the refrigeration cycle, the refrigerant passes through the refrigerant inlet (32) from the lower header part (5b) of the first header (5) of the condensing part (2). When flowing into the first header (21) of the gas-liquid separator (4), the flow velocity is reduced by the action of the mesh (34). In addition, the refrigerant flows into the second header (22) through the liquid receiving pipe (23) and then into the gas-liquid separator (4), that is, in both the headers (21) (22) and the liquid receiving pipe ( 23) When accumulated in the second header (16) of the supercooling section (3) and flowing out into the second header (16) of the supercooling section (3), the second header (16) of the supercooling section (3) passes through the throttle hole-like refrigerant outlet (41). ), The flow rate is reduced here as well. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. As a result, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved.
Embodiment 3
This embodiment is shown in FIG. 6 and FIG.

この実施形態の熱交換器(45)の場合、気液分離部(4)の第1ヘッダ(21)における上壁(21a)の内側略半分に冷媒流入口(32)が形成されている。また、気液分離部(4)に設けられ、かつ凝縮部(2)から気液分離部(4)内に流入する冷媒の流速を低下させる流速低下手段は、第1ヘッダ(21)の上壁(21a)の冷媒流入口(32)内に張設された多孔質部材としてのメッシュ(34)と、第2ヘッダ(22)内において冷媒流出口(33)を囲むように設けられ、かつ冷媒流入口(32)から流入した冷媒の冷媒流出口(33)までの流路長を延長する流路長延長部材(46)とを備えている。   In the case of the heat exchanger (45) of this embodiment, the refrigerant inlet (32) is formed in the inner half of the upper wall (21a) of the first header (21) of the gas-liquid separator (4). The flow rate lowering means provided in the gas / liquid separator (4) and for reducing the flow rate of the refrigerant flowing into the gas / liquid separator (4) from the condenser (2) is provided on the first header (21). A mesh (34) as a porous member stretched in the refrigerant inlet (32) of the wall (21a) and a refrigerant outlet (33) in the second header (22), A flow path length extending member (46) that extends a flow path length from the refrigerant inlet (32) to the refrigerant outlet (33) of the refrigerant flowing in.

流路長延長部材(46)は、冷媒流出口(33)に通じるように下壁(22b)に上方突出状に設けられたアルミニウム製管状内側部材(47)と、下壁(22b)に内側部材(47)を囲繞するように上方突出状に設けられ、かつ上端が閉鎖されるとともに周壁下端部に貫通穴(49)が形成されたアルミニウム製中空状外側部材(48)とからなる。内側部材(47)は、その下端部が冷媒流出口(33)内に挿入されて固定されている。図7に示すように、外側部材(48)は、実施形態1の熱交換器(1)の外側部材(37)を上方に延長して第2ヘッダ(22)の上壁(22a)、すなわち仕切部材(29)と一体化したものである。上壁(22a)が外側部材(48)における周壁(48a)の上端開口を閉鎖する頂壁(48b)を兼ねている。したがって、外側部材(48)の上端は、第2ヘッダの上壁(22a)と同一高さ位置にある。流路長延長部材(46)は、上下の仕切部材(29)(30)とともに右タンク(26)の周壁に形成された貫通穴(39)を通して右タンク(26)内に嵌め入れられ、右タンク(26)にろう付されている。   The channel length extending member (46) is formed of an aluminum tubular inner member (47) provided in an upward projecting manner on the lower wall (22b) so as to communicate with the refrigerant outlet (33), and an inner side on the lower wall (22b). It comprises an aluminum hollow outer member (48) provided in an upward projecting manner so as to surround the member (47) and having an upper end closed and a through hole (49) formed in the lower end portion of the peripheral wall. The inner member (47) has its lower end inserted into the refrigerant outlet (33) and fixed. As shown in FIG. 7, the outer member (48) extends upward from the outer member (37) of the heat exchanger (1) of the first embodiment, that is, the upper wall (22a) of the second header (22), that is, It is integrated with the partition member (29). The upper wall (22a) also serves as a top wall (48b) for closing the upper end opening of the peripheral wall (48a) in the outer member (48). Accordingly, the upper end of the outer member (48) is at the same height as the upper wall (22a) of the second header. The channel length extending member (46) is fitted into the right tank (26) through the through hole (39) formed in the peripheral wall of the right tank (26) together with the upper and lower partition members (29) and (30). It is brazed to the tank (26).

その他の構成は実施形態1の熱交換器と同じである。   Other configurations are the same as those of the heat exchanger according to the first embodiment.

実施形態3の熱交換器(45)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、受液管(23)を通って第2ヘッダ(22)内に流入した後、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第2ヘッダ(16)内に流出する際に、流路長延長部材(46)の貫通穴(49)を通って外側部材(48)内に入り、外側部材(48)内を上方に流れた後、上端開口から内側部材(47)内に入り、冷媒流出口(33)を通って過冷却部(3)の第2ヘッダ(16)に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。その結果、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。   In the heat exchanger (45) of the third embodiment, during the operation of the refrigeration cycle, the refrigerant passes through the refrigerant inlet (32) from the lower header portion (5b) of the first header (5) of the condensing unit (2). When flowing into the first header (21) of the gas-liquid separator (4), the flow velocity is reduced by the action of the mesh (34). In addition, the refrigerant flows into the second header (22) through the liquid receiving pipe (23) and then into the gas-liquid separator (4), that is, in both the headers (21) (22) and the liquid receiving pipe ( 23) When passing through the refrigerant outlet (33) and outflowing into the second header (16) of the supercooling section (3), the through hole (49) of the channel length extension member (46) After passing through the outer member (48) and flowing upward in the outer member (48), it enters the inner member (47) from the upper end opening, passes through the refrigerant outlet (33), and passes through the supercooling section (3 ) Flows out to the second header (16), so that the flow velocity is also reduced here. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. As a result, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved.

実施形態4
この実施形態は図8および図9に示すものである。
Embodiment 4
This embodiment is shown in FIG. 8 and FIG.

この実施形態の熱交換器(50)の場合、過冷却部(3)の第1ヘッダ(15)は、上下方向の中程の高さ位置に設けられた板状仕切部材(51)により上ヘッダ部(15a)と下ヘッダ部(15b)とに区画されており、下ヘッダ部(15b)に冷媒出口(20)が設けられている。そして、過冷却部(3)には、仕切部材(51)よりも上方の部分、および仕切部材(51)よりも下方の部分において、それぞれ上下に連続して並んだ複数の熱交換管(17)からなる通路群(52)(53)が設けられている。各通路群(52)(53)を構成する全ての熱交換管(17)における冷媒の流れ方向が同一となっているとともに、両通路群(52)(53)における冷媒の流れ方向が異なっている。   In the case of the heat exchanger (50) of this embodiment, the first header (15) of the supercooling section (3) is moved upward by a plate-like partition member (51) provided at a middle height position in the vertical direction. It is divided into a header part (15a) and a lower header part (15b), and a refrigerant outlet (20) is provided in the lower header part (15b). The supercooling section (3) includes a plurality of heat exchange tubes (17) arranged continuously in the vertical direction at a portion above the partition member (51) and a portion below the partition member (51). ) Group of passages (52) and (53) are provided. The flow direction of the refrigerant in all the heat exchange pipes (17) constituting each passage group (52) (53) is the same, and the flow direction of the refrigerant in both passage groups (52) (53) is different. Yes.

気液分離部(4)の第1ヘッダ(21)における下壁(21b)の外側部分に冷媒流出口(33)が形成されている。   A refrigerant outlet (33) is formed in an outer portion of the lower wall (21b) in the first header (21) of the gas-liquid separator (4).

そして、冷媒入口(12)から凝縮部(2)の第1ヘッダ(5)の上ヘッダ部(5a)内に流入した冷媒は、上側通路群(13)を通って第2ヘッダ(6)内に流入し、さらに下側通路群(14)を通って第1ヘッダ(5)の下ヘッダ部(5b)内に流入する。下ヘッダ部(5b)内に流入した冷媒は、冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入し、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流入する。第1ヘッダ(15)の上ヘッダ部(15a)内に流入した冷媒は、上側通路群(52)を通って第2ヘッダ(16)内に流入し、さらに下側通路群(53)を通って第1ヘッダ(5)の下ヘッダ部(15b)内に流入する。下ヘッダ部(15b)内に流入した冷媒は、冷媒出口(20)から流出する。   The refrigerant flowing from the refrigerant inlet (12) into the upper header (5a) of the first header (5) of the condensing unit (2) passes through the upper passage group (13) and enters the second header (6). And then flows into the lower header portion (5b) of the first header (5) through the lower passage group (14). The refrigerant flowing into the lower header portion (5b) flows into the first header (21) of the gas-liquid separator (4) through the refrigerant inlet (32), and into the gas-liquid separator (4), That is, the upper header portion (15a) of the first header (15) of the supercooling portion (3) is accumulated in both headers (21) and (22) and in the liquid receiving pipe (23), passes through the refrigerant outlet (33). Flows in. The refrigerant flowing into the upper header portion (15a) of the first header (15) flows into the second header (16) through the upper passage group (52) and further passes through the lower passage group (53). Into the lower header portion (15b) of the first header (5). The refrigerant flowing into the lower header part (15b) flows out from the refrigerant outlet (20).

気液分離部(4)に設けられ、かつ凝縮部(2)から気液分離部(4)内に流入する冷媒の流速を低下させる流速低下手段は、第1ヘッダ(21)の上壁(21a)の冷媒流入口(32)内に張設された多孔質部材としてのメッシュ(34)と、第1ヘッダ(21)内において冷媒流出口(33)を囲むように設けられ、かつ冷媒流入口(32)から流入した冷媒の冷媒流出口(33)までの流路長を延長する流路長延長部材(35)と、第2ヘッダ(22)の下壁(22b)の中央部に形成されかつ過冷却部(3)の第2ヘッダ(16)内に通じる圧力低減用穴(54)とを備えている。   The flow rate lowering means that is provided in the gas-liquid separation unit (4) and reduces the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensation unit (2) is an upper wall of the first header (21) ( 21a) a mesh (34) as a porous member stretched in the refrigerant inlet (32) and a refrigerant outlet (33) provided in the first header (21) so as to surround the refrigerant outlet (33). Formed at the center of the lower wall (22b) of the lower wall (22b) of the second header (22), and the flow path length extending member (35) extending the flow path from the inlet (32) to the refrigerant outlet (33) And a pressure reducing hole (54) communicating with the second header (16) of the supercooling section (3).

流路長延長部材(35)は、実施形態1の流路長延長部材(35)と同様なものを左右逆向きにしたものであり、外側部材(37)が、仕切部材(30)の代わりに、仕切部材(28)に一体に形成されている。そして、内側部材(36)の下端部が冷媒流出口(33)内に挿入されて下壁(21b)、すなわち仕切部材(28)に形成された冷媒流出口(33)内に挿入されて下壁(21b)に固定されている。外側部材(37)の上端は、第1ヘッダ(21)の上壁(21a)よりも下方の高さ位置にある。流路長延長部材(35)は、仕切部材(28)とともに左タンク(25)の周壁に形成された貫通穴(55)を通して左タンク(25)内に嵌め入れ、左タンク(25)にろう付されている。   The channel length extending member (35) is the same as the channel length extending member (35) of the first embodiment, but reversed in the left-right direction, and the outer member (37) is used instead of the partition member (30). Further, it is formed integrally with the partition member (28). The lower end portion of the inner member (36) is inserted into the refrigerant outlet (33) to be inserted into the lower wall (21b), that is, the refrigerant outlet (33) formed in the partition member (28). It is fixed to the wall (21b). The upper end of the outer member (37) is at a height position below the upper wall (21a) of the first header (21). The flow path length extension member (35) is fitted into the left tank (25) through the through hole (55) formed in the peripheral wall of the left tank (25) together with the partition member (28), and is inserted into the left tank (25). It is attached.

その他の構成は実施形態1の熱交換器(1)と同じである。   Other configurations are the same as those of the heat exchanger (1) of the first embodiment.

実施形態4の熱交換器(50)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流入する際に、流路長延長部材(35)の貫通穴(38)を通って外側部材(37)内に入り、外側部材(37)内を上方に流れた後、上端開口から内側部材(36)内に入り、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。ここで、気液分離部(4)に流入する冷媒の量が増加するにつれて、気液分離部(4)の第2ヘッダ(22)内の圧力が高くなることにより、第1ヘッダ(21)内に流入した冷媒が、第2ヘッダ(22)内に流入することなく直接流路長延長部材(35)を通って冷媒流出口(33)から過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するおそれがあるが、第2ヘッダ(22)内の冷媒が圧力低減用穴(54)を通って過冷却部(3)の第2ヘッダ(16)内に流出するので、第2ヘッダ(22)内の圧力が低減され、冷媒は確実に第2ヘッダ(22)内に流入する。その結果、気液分離部(4)内での滞留時間が短くなることが防止され、気液分離部(4)での気液分離効果が向上する。したがって、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。なお、圧力低減用穴(54)を通って気液分離部(4)の第2ヘッダ(22)から過冷却部(3)の第2ヘッダ(16)に流入する冷媒には少量の気相冷媒が混入するが、その量が少ないため、過冷却部(3)で確実に液化させられるとともに過冷却される。   In the heat exchanger (50) of the fourth embodiment, during the operation of the refrigeration cycle, the refrigerant passes from the lower header part (5b) of the first header (5) of the condensing part (2) through the refrigerant inlet (32). When flowing into the first header (21) of the gas-liquid separator (4), the flow velocity is reduced by the action of the mesh (34). Further, the refrigerant accumulates in the gas-liquid separator (4), that is, in both headers (21) and (22) and in the liquid receiving pipe (23), and passes through the refrigerant outlet (33) to the supercooling section (3). When flowing into the upper header portion (15a) of the first header (15) of the first header (15), it enters the outer member (37) through the through hole (38) of the flow path length extending member (35), and enters the outer member (37). 37) After flowing upwards, the upper member (15a) enters the inner member (36) from the upper end opening, passes through the refrigerant outlet (33), and the upper header portion (15a) of the first header (15) of the supercooling portion (3). ), The flow velocity is reduced again. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. Here, as the amount of the refrigerant flowing into the gas-liquid separator (4) increases, the pressure in the second header (22) of the gas-liquid separator (4) increases, so that the first header (21). The refrigerant flowing into the first header (15) of the supercooling section (3) from the refrigerant outlet (33) directly through the flow path extension member (35) without flowing into the second header (22). ) May flow out into the upper header portion (15a), but the refrigerant in the second header (22) passes through the pressure reducing hole (54) and the second header (16) of the supercooling portion (3). As a result, the pressure in the second header (22) is reduced, and the refrigerant surely flows into the second header (22). As a result, the residence time in the gas-liquid separation unit (4) is prevented from being shortened, and the gas-liquid separation effect in the gas-liquid separation unit (4) is improved. Therefore, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved. The refrigerant flowing from the second header (22) of the gas-liquid separator (4) through the pressure reducing hole (54) into the second header (16) of the supercooling unit (3) contains a small amount of gas phase. Although the refrigerant is mixed in, the amount thereof is small, so that it is reliably liquefied and supercooled by the supercooling section (3).

実施形態5
この実施形態は図10および図11に示すものである。
Embodiment 5
This embodiment is shown in FIG. 10 and FIG.

この実施形態の熱交換器(60)の場合、気液分離部(4)の第1ヘッダ(21)における上壁(21a)、すなわち仕切部材(27)の内側略半分に冷媒流入口(32)が形成されている。また、気液分離部(4)に設けられ、かつ凝縮部(2)から気液分離部(4)内に流入する冷媒の流速を低下させる流速低下手段は、第1ヘッダ(21)の上壁(21a)の冷媒流入口(32)内に張設された多孔質部材としてのメッシュ(34)と、第1ヘッダ(21)内において冷媒流出口(33)を囲むように設けられ、かつ冷媒流入口(32)から流入した冷媒の冷媒流出口(33)までの流路長を延長する流路長延長部材(46)とを備えている。   In the case of the heat exchanger (60) of this embodiment, the refrigerant inlet (32) is provided in the upper wall (21a) of the first header (21) of the gas-liquid separator (4), that is, the inner half of the partition member (27). ) Is formed. The flow rate lowering means provided in the gas / liquid separator (4) and for reducing the flow rate of the refrigerant flowing into the gas / liquid separator (4) from the condenser (2) is provided on the first header (21). A mesh (34) as a porous member stretched in the refrigerant inlet (32) of the wall (21a) and a refrigerant outlet (33) in the first header (21), and A flow path length extending member (46) that extends a flow path length from the refrigerant inlet (32) to the refrigerant outlet (33) of the refrigerant flowing in.

流路長延長部材(46)は、図11に示すように、実施形態3の流路長延長部材(46)と同様なものを左右逆向きにしたものであり、外側部材(48)が、仕切部材(29)(30)の代わりに、仕切部材(27)(28)と一体に形成されている。そして、内側部材(47)の下端部が冷媒流出口(33)内に挿入されて下壁(21b)、すなわち仕切部材(28)に形成された冷媒流出口(33)内に挿入されて下壁(21b)に固定されている。また、仕切部材(27)、すなわち上壁(21a)の外側部分が、外側部材(48)における周壁(48a)の上端開口を閉鎖する頂壁(48b)を兼ねている。さらに、仕切部材(27)、すなわち上壁(21a)における周壁(48a)の平坦壁部から内側に突出した部分に冷媒流入口(32)が形成されている。したがって、外側部材(48)の上端は、第1ヘッダ(21)の上壁(21a)と同一高さ位置にある。流路長延長部材(46)は、上下の仕切部材(27)(18)とともに左タンク(25)の周壁に形成された貫通穴(55)を通して左タンク(25)内に嵌め入れられ、左タンク(25)にろう付されている。   As shown in FIG. 11, the channel length extending member (46) is the same as the channel length extending member (46) of the third embodiment, but reversed in the left-right direction, and the outer member (48) Instead of the partition members (29) and (30), they are formed integrally with the partition members (27) and (28). Then, the lower end of the inner member (47) is inserted into the refrigerant outlet (33) to be inserted into the lower wall (21b), that is, the refrigerant outlet (33) formed in the partition member (28). It is fixed to the wall (21b). The partition member (27), that is, the outer portion of the upper wall (21a) also serves as a top wall (48b) that closes the upper end opening of the peripheral wall (48a) of the outer member (48). Furthermore, the refrigerant inlet (32) is formed in the partition member (27), that is, the portion protruding inward from the flat wall portion of the peripheral wall (48a) in the upper wall (21a). Accordingly, the upper end of the outer member (48) is at the same height as the upper wall (21a) of the first header (21). The channel length extending member (46) is fitted into the left tank (25) through the through hole (55) formed in the peripheral wall of the left tank (25) together with the upper and lower partition members (27) and (18). It is brazed to the tank (25).

その他の構成は実施形態4の熱交換器(50)と同じである。   Other configurations are the same as those of the heat exchanger (50) of the fourth embodiment.

実施形態5の熱交換器(60)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流入する際に、流路長延長部材(46)の貫通穴(49)を通って外側部材(48)内に入り、外側部材(48)内を上方に流れた後、上端開口から内側部材(47)内に入り、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。ここで、気液分離部(4)に流入する冷媒の量が増加するにつれて、気液分離部(4)の第2ヘッダ(22)内の圧力が高くなることにより、第1ヘッダ(21)内に流入した冷媒が、第2ヘッダ(22)内に流入することなく直接流路長延長部材(46)を通って冷媒流出口(33)から過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するおそれがあるが、第2ヘッダ(22)内の冷媒が圧力低減用穴(54)を通って過冷却部(3)の第2ヘッダ(16)内に流出するので、第2ヘッダ(22)内の圧力が低減され、冷媒は確実に第2ヘッダ(22)内に流入する。その結果、気液分離部(4)内での滞留時間が短くなることが防止され、気液分離部(4)での気液分離効果が向上する。したがって、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。なお、圧力低減用穴(54)を通って気液分離部(4)の第2ヘッダ(22)から過冷却部(3)の第2ヘッダ(16)に流入する冷媒には少量の気相冷媒が混入するが、その量が少ないため、過冷却部(3)で確実に液化させられるとともに過冷却される。   In the heat exchanger (60) of the fifth embodiment, during the operation of the refrigeration cycle, the refrigerant passes through the refrigerant inlet (32) from the lower header portion (5b) of the first header (5) of the condensing portion (2). When flowing into the first header (21) of the gas-liquid separator (4), the flow velocity is reduced by the action of the mesh (34). Further, the refrigerant accumulates in the gas-liquid separator (4), that is, in both headers (21) and (22) and in the liquid receiving pipe (23), and passes through the refrigerant outlet (33) to the supercooling section (3). When flowing into the upper header portion (15a) of the first header (15) of the first header (15), it enters the outer member (48) through the through hole (49) of the flow path length extension member (46), and enters the outer member (48). 48) After flowing upward in the upper member, it enters the inner member (47) from the upper end opening, passes through the refrigerant outlet (33), and the upper header portion (15a) of the first header (15) of the supercooling portion (3). ), The flow velocity is reduced again. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. Here, as the amount of the refrigerant flowing into the gas-liquid separator (4) increases, the pressure in the second header (22) of the gas-liquid separator (4) increases, so that the first header (21). The refrigerant that has flowed into the first header (15) of the supercooling section (3) passes directly from the refrigerant outlet (33) through the flow path length extending member (46) without flowing into the second header (22). ) May flow out into the upper header portion (15a), but the refrigerant in the second header (22) passes through the pressure reducing hole (54) and the second header (16) of the supercooling portion (3). As a result, the pressure in the second header (22) is reduced, and the refrigerant surely flows into the second header (22). As a result, the residence time in the gas-liquid separation unit (4) is prevented from being shortened, and the gas-liquid separation effect in the gas-liquid separation unit (4) is improved. Therefore, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved. The refrigerant flowing from the second header (22) of the gas-liquid separator (4) through the pressure reducing hole (54) into the second header (16) of the supercooling unit (3) contains a small amount of gas phase. Although the refrigerant is mixed in, the amount thereof is small, so that it is reliably liquefied and supercooled by the supercooling section (3).

実施形態6
この実施形態は図12に示すものである。
Embodiment 6
This embodiment is shown in FIG.

この実施形態の熱交換器(65)の場合、気液分離部(4)の第2ヘッダ(22)の下壁(22b)には圧力低減用穴は形成されていない。   In the case of the heat exchanger (65) of this embodiment, no pressure reducing hole is formed in the lower wall (22b) of the second header (22) of the gas-liquid separator (4).

その他の構成は実施形態5の熱交換器と同じである。   Other configurations are the same as those of the heat exchanger according to the fifth embodiment.

実施形態6の熱交換器において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流入する際に、流路長延長部材(46)の貫通穴(49)を通って外側部材(48)内に入り、外側部材(48)内を上方に流れた後、上端開口から内側部材(47)内に入り、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。したがって、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。   In the heat exchanger of the sixth embodiment, during the operation of the refrigeration cycle, the refrigerant is separated from the lower header (5b) of the first header (5) of the condensing unit (2) through the refrigerant inlet (32). When flowing into the first header (21) of the section (4), the flow velocity is reduced by the action of the mesh (34). Further, the refrigerant accumulates in the gas-liquid separator (4), that is, in both headers (21) and (22) and in the liquid receiving pipe (23), and passes through the refrigerant outlet (33) to the supercooling section (3). When flowing into the upper header portion (15a) of the first header (15) of the first header (15), it enters the outer member (48) through the through hole (49) of the flow path length extension member (46), and enters the outer member (48). 48) After flowing upward in the upper member, it enters the inner member (47) from the upper end opening, passes through the refrigerant outlet (33), and the upper header portion (15a) of the first header (15) of the supercooling portion (3). ), The flow velocity is reduced again. Accordingly, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. Therefore, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved.

実施形態7
この実施形態は図13に示すものである。
Embodiment 7
This embodiment is shown in FIG.

この実施形態の熱交換器(70)の場合、気液分離部(4)の上側の受液管(23)内に乾燥剤(24)が配置されている。上側の受液管(23)内における乾燥剤(24)の左右両側部分に、不織布などからなるフィルタ(72)と、フィルタ(72)の片側に重ね合わされたメッシュ(73)とよりなる第1抵抗付与手段(71A)が配置されている。また、下側の受液管(23)内の左右両端部に、不織布などからなるフィルタ(72)と、フィルタ(72)の左右両側に重ね合わされたメッシュ(73)とよりなる第2抵抗付与手段(71B)が配置されている。   In the case of the heat exchanger (70) of this embodiment, the desiccant (24) is disposed in the liquid receiving pipe (23) on the upper side of the gas-liquid separator (4). A first filter consisting of a filter (72) made of non-woven fabric and a mesh (73) superimposed on one side of the filter (72) on the left and right sides of the desiccant (24) in the upper liquid receiving pipe (23). Resistance applying means (71A) is arranged. In addition, a second resistance application comprising a filter (72) made of non-woven fabric, etc., and a mesh (73) superimposed on the left and right sides of the filter (72) is provided at both left and right ends of the lower liquid receiving pipe (23). Means (71B) are arranged.

抵抗付与手段(71A)(71B)に用いられるメッシュ(73)としては、その目の大きさが120メッシュ以下のものを用いることが好ましい。   As the mesh (73) used for the resistance applying means (71A) (71B), it is preferable to use a mesh having a mesh size of 120 mesh or less.

ここで、上側の受液管(23)内に配置された2つの第1抵抗付与手段(71A)のうち少なくともいずれか一方に代えて、第2抵抗付与手段(71B)が配置されていてもよい。また、第1抵抗付与手段(71A)または第2抵抗付与手段(71B)は、上側の受液管(23)内における乾燥剤(24)の片側のみに配置されていてもよい。   Here, instead of at least one of the two first resistance applying means (71A) arranged in the upper liquid receiving pipe (23), the second resistance applying means (71B) may be arranged. Good. The first resistance applying means (71A) or the second resistance applying means (71B) may be disposed only on one side of the desiccant (24) in the upper liquid receiving pipe (23).

また、下側の受液管(23)内に配置された2つの第2抵抗付与手段(71B)のうち少なくともいずれか一方に代えて、第1抵抗付与手段(71A)が配置されていてもよい。さらに、第1抵抗付与手段(71A)または第2抵抗付与手段(71B)は、下側の受液管(23)内におけるいずれか一方の端部のみに配置されていてもよい。   Further, instead of at least one of the two second resistance applying means (71B) arranged in the lower liquid receiving pipe (23), the first resistance applying means (71A) may be arranged. Good. Furthermore, the first resistance applying means (71A) or the second resistance applying means (71B) may be arranged only at one end in the lower liquid receiving pipe (23).

なお、上記においては、抵抗付与手段(71A)(71B)として、フィルタ(72)とメッシュ(73)とが重ね合わされたものが用いられているが、これに限定されるものではなく、フィルタ(72)およびメッシュ(73)のうちのいずれか一方からなるものが用いられることもある。   In the above, as the resistance applying means (71A) (71B), a filter (72) and a mesh (73) are used in an overlapped manner, but the present invention is not limited to this. 72) and a mesh (73) may be used.

その他の構成は実施形態5の熱交換器と同じである。   Other configurations are the same as those of the heat exchanger according to the fifth embodiment.

実施形態7の熱交換器(70)のように、気液分離部(4)の第1ヘッダ(21)の上壁(21a)に冷媒流入口(32)が形成されるとともに、第1ヘッダ(21)の下壁(21b)に冷媒流出口(33)が形成されている場合、気液分離部(4)の受液管(23)内に抵抗付与手段(71A)(71B)が設けられていると、冷凍サイクルへの冷媒封入時に、抵抗付与手段(71A)(71B)の働きにより、冷媒流入口(32)を通って第1ヘッダ(21)内に流入した直後の冷媒は、受液管(23)内に流入しにくくなるとともに受液管(23)を通って第2ヘッダ(22)内に流入しにくくなり、その結果冷媒流入口(32)を通って第1ヘッダ(21)内に流入した直後の冷媒は、冷媒流出口(33)を通って過冷却部(3)の上ヘッダ部(15a)に流入しやすくなる。したがって、過冷度が一定になる定常域になるまでの冷凍サイクルへの冷媒の封入量が比較的少なくなる。   Like the heat exchanger (70) of Embodiment 7, the refrigerant inlet (32) is formed in the upper wall (21a) of the first header (21) of the gas-liquid separator (4), and the first header When the refrigerant outlet (33) is formed in the lower wall (21b) of (21), resistance applying means (71A) (71B) are provided in the liquid receiving pipe (23) of the gas-liquid separator (4). When the refrigerant is enclosed in the refrigeration cycle, the refrigerant immediately after flowing into the first header (21) through the refrigerant inlet (32) by the action of the resistance applying means (71A) (71B) It becomes difficult to flow into the liquid receiving pipe (23) and also through the liquid receiving pipe (23) and into the second header (22), and as a result, the first header ( The refrigerant immediately after flowing into 21) easily flows into the upper header part (15a) of the supercooling part (3) through the refrigerant outlet (33). Therefore, the amount of refrigerant enclosed in the refrigeration cycle until the steady state where the degree of supercooling is constant becomes relatively small.

しかも、実施形態7の熱交換器(70)において、冷凍サイクルの運転時には、冷媒が、凝縮部(2)の第1ヘッダ(5)の下ヘッダ部(5b)から冷媒流入口(32)を通って気液分離部(4)の第1ヘッダ(21)内に流入する際に、メッシュ(34)の働きによりその流速が低下させられる。また、冷媒は、気液分離部(4)内、すなわち両ヘッダ(21)(22)内および受液管(23)内に溜まり、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流入する際に、流路長延長部材(46)の貫通穴(49)を通って外側部材(48)内に入り、外側部材(48)内を上方に流れた後、上端開口から内側部材(47)内に入り、冷媒流出口(33)を通って過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するので、ここでも流速が低下させられる。したがって、凝縮部(2)から気液分離部(4)内に流入した冷媒の流速が低下させられ、気液分離部(4)内に滞留している時間が比較的長くなって、気液分離部(4)での気液分離効果が向上する。ここで、気液分離部(4)に流入する冷媒の量が増加するにつれて、気液分離部(4)の第2ヘッダ(22)内の圧力が高くなることにより、第1ヘッダ(21)内に流入した冷媒が、第2ヘッダ(22)内に流入することなく直接流路長延長部材(46)を通って冷媒流出口(33)から過冷却部(3)の第1ヘッダ(15)の上ヘッダ部(15a)内に流出するおそれがあるが、第2ヘッダ(22)内の冷媒が圧力低減用穴(54)を通って過冷却部(3)の第2ヘッダ(16)内に流出するので、第2ヘッダ(22)内の圧力が低減され、冷媒は確実に第2ヘッダ(22)内に流入する。その結果、気液分離部(4)内での滞留時間が短くなることが防止され、気液分離部(4)での気液分離効果が向上する。したがって、過冷却部(3)内に流入する気相冷媒の量が少なくなり、過冷却部(3)での過冷却効果が十分となって冷凍サイクル全体の冷却効果が向上する。なお、圧力低減用穴(54)を通って気液分離部(4)の第2ヘッダ(22)から過冷却部(3)の第2ヘッダ(16)に流入する冷媒には少量の気相冷媒が混入するが、その量が少ないため、過冷却部(3)で確実に液化させられるとともに過冷却される。   Moreover, in the heat exchanger (70) of the seventh embodiment, during the operation of the refrigeration cycle, the refrigerant passes through the refrigerant inlet (32) from the lower header part (5b) of the first header (5) of the condensing part (2). When flowing through and flowing into the first header (21) of the gas-liquid separator (4), the flow velocity is reduced by the action of the mesh (34). Further, the refrigerant accumulates in the gas-liquid separator (4), that is, in both headers (21) and (22) and in the liquid receiving pipe (23), and passes through the refrigerant outlet (33) to the supercooling section (3). When flowing into the upper header portion (15a) of the first header (15) of the first header (15), it enters the outer member (48) through the through hole (49) of the flow path length extension member (46), and enters the outer member (48). 48) After flowing upward in the upper member, it enters the inner member (47) from the upper end opening, passes through the refrigerant outlet (33), and the upper header portion (15a) of the first header (15) of the supercooling portion (3) ), The flow velocity is reduced again. Therefore, the flow rate of the refrigerant flowing into the gas-liquid separation unit (4) from the condensing unit (2) is reduced, and the residence time in the gas-liquid separation unit (4) becomes relatively long. The gas-liquid separation effect in the separation part (4) is improved. Here, as the amount of the refrigerant flowing into the gas-liquid separator (4) increases, the pressure in the second header (22) of the gas-liquid separator (4) increases, so that the first header (21). The refrigerant that has flowed into the first header (15) of the supercooling section (3) directly passes through the channel length extending member (46) from the refrigerant outlet (33) without flowing into the second header (22). ) May flow out into the upper header portion (15a), but the refrigerant in the second header (22) passes through the pressure reducing hole (54) and the second header (16) of the supercooling portion (3). As a result, the pressure in the second header (22) is reduced, and the refrigerant surely flows into the second header (22). As a result, the residence time in the gas-liquid separation part (4) is prevented from being shortened, and the gas-liquid separation effect in the gas-liquid separation part (4) is improved. Therefore, the amount of gas-phase refrigerant flowing into the supercooling section (3) is reduced, the supercooling effect in the supercooling section (3) is sufficient, and the cooling effect of the entire refrigeration cycle is improved. The refrigerant flowing from the second header (22) of the gas-liquid separator (4) through the pressure reducing hole (54) into the second header (16) of the supercooling unit (3) contains a small amount of gas phase. Although the refrigerant is mixed in, the amount thereof is small, so that it is surely liquefied and supercooled by the supercooling section (3).

次に、上述した構成の熱交換器(70)(本発明品Bという)を用いて行った実験例を参考例とともに説明する。   Next, an experimental example using the heat exchanger (70) having the above-described configuration (referred to as product B of the present invention) will be described with reference examples.

本発明品Bの凝縮部(2)のサイズ、熱交換管(7)の本数および全熱交換管(7)の通路断面積の合計、過冷却部(3)のサイズ、熱交換管(17)の本数はおよび全熱交換管(17)の通路断面積の合計、ならびに気液分離部(4)の受液管(23)の内径および外径は、上述した本発明品Aと同じである。   The size of the condensing part (2) of the product B of the present invention, the total number of heat exchange pipes (7) and the cross-sectional area of the total heat exchange pipe (7), the size of the supercooling part (3), the heat exchange pipe (17 ) And the total passage cross-sectional area of the total heat exchange pipe (17), and the inner and outer diameters of the liquid receiving pipe (23) of the gas-liquid separator (4) are the same as those of the product A of the present invention described above. is there.

なお、参考品は、上述した評価試験1に用いた参考品と同一のものであり、参考品の熱交換器の凝縮部および過冷却部の熱交換管としては本発明品Bの熱交換管と同一のものを使用し、参考品の熱交換器の凝縮部のサイズ、凝縮部の熱交換管の本数および全熱交換管の流路断面積の合計、過冷却部のサイズ、ならびに過冷却部の熱交換管の本数および全熱交換管の流路断面積の合計は本発明品Bの熱交換器と同一とした。   The reference product is the same as the reference product used in the evaluation test 1 described above, and the heat exchange tube of the product B of the present invention is used as the heat exchange tube of the condenser and subcooling unit of the heat exchanger of the reference product. The size of the condenser of the reference heat exchanger, the number of heat exchanger tubes in the condenser and the total cross-sectional area of all the heat exchanger tubes, the size of the supercooling unit, and the supercooling The total number of heat exchange tubes and the total cross-sectional area of all the heat exchange tubes were the same as those of the heat exchanger of the product B of the present invention.

評価試験2
本発明品Bおよび参考品を使用し、上記評価試験1と同様にして、チャージグラフを作成した。その結果を図14に示す。図14に示すチャージグラフにおいて、A点が本発明品Bおよび参考品の熱交換器から流出してきた冷媒の過冷却が開始された点であり、B点が本発明品Bの気液分離部内および参考品の受液器内に液相冷媒が溜まりだした点であり、C点が本発明品Bの気液分離部内および参考品の受液器内が液冷媒で満たされた点である。そして、本発明品Bの場合、過冷度が一定になる定常域の幅が、参考品の同等であり、この種の熱交換器としては十分な性能を有していることがわかる。
Evaluation test 2
Using the product B of the present invention and the reference product, a charge graph was prepared in the same manner as in the evaluation test 1. The result is shown in FIG. In the charge graph shown in FIG. 14, point A is the point where supercooling of the refrigerant flowing out from the heat exchangers of the product B and the reference product is started, and point B is in the gas-liquid separation part of the product B of the invention. In addition, the liquid phase refrigerant starts to accumulate in the receiver of the reference product, and the point C is a point where the gas-liquid separation part of the product B of the present invention and the receiver of the reference product are filled with the liquid refrigerant. . In the case of the product B of the present invention, the width of the steady region where the degree of supercooling is constant is equivalent to that of the reference product, and it can be seen that this product has sufficient performance as this type of heat exchanger.

この発明の実施形態1の熱交換器の全体構成を示す正面図である。It is a front view which shows the whole structure of the heat exchanger of Embodiment 1 of this invention. 図1に示す熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger shown in FIG. 図1に示す熱交換器の気液分離部の第2ヘッダ部分を拡大して示す分解斜視図である。It is a disassembled perspective view which expands and shows the 2nd header part of the gas-liquid separation part of the heat exchanger shown in FIG. 図1に示す本発明品Aおよび参考品の熱交換器を用いて行った実験結果を示すグラフである。It is a graph which shows the experimental result conducted using the heat exchanger of this invention product A shown in FIG. 1, and a reference product. この発明の実施形態2の熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger of Embodiment 2 of this invention. この発明の実施形態3の熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger of Embodiment 3 of this invention. 図6に示す熱交換器に用いられる流路長延長部材を示す斜視図である。It is a perspective view which shows the flow-path length extension member used for the heat exchanger shown in FIG. この発明の実施形態4の熱交換器の全体構成を示す正面図である。It is a front view which shows the whole structure of the heat exchanger of Embodiment 4 of this invention. 図8に示す熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger shown in FIG. この発明の実施形態5の熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger of Embodiment 5 of this invention. 図10に示す熱交換器に用いられる流路長延長部材を示す斜視図である。It is a perspective view which shows the flow-path length extension member used for the heat exchanger shown in FIG. この発明の実施形態6の熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger of Embodiment 6 of this invention. この発明の実施形態7の熱交換器の一部分を示す部分拡大垂直断面図である。It is a partial expanded vertical sectional view which shows a part of heat exchanger of Embodiment 7 of this invention. 図13に示す本発明品Bおよび参考品の熱交換器を用いて行った実験結果を示すグラフである。It is a graph which shows the experimental result performed using the heat exchanger of this invention B shown in FIG. 13, and a reference product.

符号の説明Explanation of symbols

(1)(40)(45)(50)(60)(65)(70):熱交換器
(2):凝縮部
(3):過冷却部
(4):気液分離部
(5)(6):ヘッダ
(7):熱交換管
(15)(16):ヘッダ
(17):熱交換管
(21)(22):ヘッダ
(21a)(22a):上壁
(21b)(22b):下壁
(23):受液管
(25)(26):タンク
(27)(28)(29)(30):仕切部材
(32):冷媒流入口
(33):冷媒流出口
(34):メッシュ
(35)(46):流路長延長部材
(36)(47):内側部材
(37)(48):外側部材
(37a)(48a):周壁
(38)(49):貫通穴
(41):絞り穴状冷媒流出口
(54):圧力低減用穴
(71A)(71B):抵抗付与手段
(72):フィルタ
(73):メッシュ
(1) (40) (45) (50) (60) (65) (70): Heat exchanger
(2): Condensing part
(3): Supercooling section
(4): Gas-liquid separation part
(5) (6): Header
(7): Heat exchange pipe
(15) (16): Header
(17): Heat exchange pipe
(21) (22): Header
(21a) (22a): Upper wall
(21b) (22b): Lower wall
(23): Receiver tube
(25) (26): Tank
(27) (28) (29) (30): Partition member
(32): Refrigerant inlet
(33): Refrigerant outlet
(34): Mesh
(35) (46): Channel length extension member
(36) (47): Inside member
(37) (48): Outer member
(37a) (48a): Perimeter wall
(38) (49): Through hole
(41): Restricted hole refrigerant outlet
(54): Pressure reduction hole
(71A) (71B): Resistance imparting means
(72): Filter
(73): Mesh

Claims (28)

互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管からなる凝縮部と、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された複数の熱交換管からなる過冷却部と、凝縮部と過冷却部との間に配置された気液分離部とを備えており、凝縮部から流出した冷媒が気液分離部を通過して過冷却部に流入するようになっている熱交換器であって、
気液分離部が、互いに間隔をおいて配置された1対のヘッダ、および両ヘッダ間に配置されて両端部が両ヘッダに接続された受液管からなり、気液分離部に、気液分離部内に流入する冷媒の流速を低下させる流速低下手段が設けられている熱交換器。
A pair of headers arranged at a distance from each other, and a condensing part consisting of a plurality of heat exchange tubes arranged between both headers and connected at both ends to both headers, and 1 arranged at a distance from each other A pair of headers, a supercooling unit composed of a plurality of heat exchange pipes arranged between the headers and having both ends connected to both headers, and a gas-liquid separation unit arranged between the condensing unit and the supercooling unit A refrigerant that flows out of the condensing part passes through the gas-liquid separation part and flows into the supercooling part,
The gas-liquid separator is composed of a pair of headers arranged at intervals from each other, and a liquid receiving pipe arranged between both headers and having both ends connected to both headers. A heat exchanger provided with a flow rate reduction means for reducing the flow rate of the refrigerant flowing into the separation unit.
気液分離部が、間隔をおいて配置された複数の受液管を備えている請求項1記載の熱交換器。 The heat exchanger according to claim 1, wherein the gas-liquid separation unit includes a plurality of liquid receiving pipes arranged at intervals. 受液管内に乾燥剤が配置されている請求項1または2記載の熱交換器。 The heat exchanger according to claim 1 or 2, wherein a desiccant is disposed in the liquid receiving pipe. 流速低下手段が、気液分離部のいずれか一方のヘッダに形成されている冷媒流入口に設けられた多孔質部材を備えている請求項1〜3のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein the flow velocity lowering means includes a porous member provided at a refrigerant inlet formed in one of the headers of the gas-liquid separator. . 多孔質部材がメッシュからなる請求項4記載の熱交換器。 The heat exchanger according to claim 4, wherein the porous member is made of a mesh. 流速低下手段が、気液分離部のいずれか一方のヘッダに形成された絞り穴状冷媒流出口を備えている請求項1〜5のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 5, wherein the flow velocity lowering means includes a throttle hole-shaped refrigerant outlet formed in one of the headers of the gas-liquid separator. 互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部、過冷却部および気液分離部の両ヘッダが形成されている請求項1〜6のうちのいずれかに記載の熱交換器。 The inside of a pair of tank arrange | positioned mutually spaced apart by a partition member, respectively, The header of both a condensation part, a supercooling part, and a gas-liquid separation part is formed among Claims 1-6 The heat exchanger in any one of. 気液分離部の受液管の通風方向の幅が、タンクの通風方向の幅以下となされている請求項7記載の熱交換器。 The heat exchanger according to claim 7, wherein a width of the liquid receiving pipe of the gas-liquid separation unit is equal to or smaller than a width of the tank in the ventilation direction. 気液分離部の上側に凝縮部が配置されるとともに下側に過冷却部が配置されている請求項1〜3のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 1 to 3, wherein a condensing unit is disposed on the upper side of the gas-liquid separation unit and a supercooling unit is disposed on the lower side. 流速低下手段が、気液分離部のいずれか一方のヘッダの上壁に形成されている冷媒流入口に設けられた多孔質部材を備えている請求項9記載の熱交換器。 The heat exchanger according to claim 9, wherein the flow velocity lowering means includes a porous member provided at a refrigerant inlet formed on the upper wall of one of the headers of the gas-liquid separator. 多孔質部材がメッシュからなる請求項10記載の熱交換器。 The heat exchanger according to claim 10, wherein the porous member is made of a mesh. 流速低下手段が、気液分離部のいずれか一方のヘッダの下壁に形成された絞り穴状冷媒流出口を備えている請求項9〜11のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 9 to 11, wherein the flow velocity lowering means includes a throttle hole-like refrigerant outlet formed in the lower wall of one of the headers of the gas-liquid separator. 気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、同じくいずれか一方のヘッダの下壁に冷媒流出口が形成されており、流速低下手段が、冷媒流入口に設けられた多孔質部材と、冷媒流出口を囲むように設けられ、かつ冷媒流入口から流入した冷媒の冷媒流出口までの流路長を延長する流路長延長部材とを備えている請求項9記載の熱交換器。 A refrigerant inlet is formed in the upper wall of one of the headers of the gas-liquid separator, and a refrigerant outlet is also formed in the lower wall of either one of the headers. And a flow path length extending member that is provided so as to surround the refrigerant outlet and extends a flow path length from the refrigerant inlet to the refrigerant outlet. Item 11. The heat exchanger according to Item 9. 冷媒流入口が、ヘッダの上壁の全体にわたって形成されている請求項13記載の熱交換器。 The heat exchanger according to claim 13, wherein the refrigerant inlet is formed over the entire upper wall of the header. 冷媒流入口が、ヘッダの上壁の一部に形成されている請求項13記載の熱交換器。 The heat exchanger according to claim 13, wherein the refrigerant inlet is formed in a part of the upper wall of the header. 多孔質部材がメッシュからなる請求項13〜15のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 13 to 15, wherein the porous member is made of a mesh. 流路長延長部材が、冷媒流出口の周囲に上方突出状に設けられた管状内側部材と、冷媒流出口が形成されたヘッダの下壁に内側部材を囲繞するように上方突出状に設けられ、かつ上端が閉鎖されるとともに周壁下端部に貫通穴が形成された中空状外側部材とからなる請求項13〜16のうちのいずれかに記載の熱交換器。 A flow path length extending member is provided in an upward projecting manner so as to surround the inner member on a tubular inner member provided in an upward projecting shape around the refrigerant outlet and a header lower wall in which the refrigerant outlet is formed. And the heat exchanger in any one of Claims 13-16 which consists of a hollow outer member by which the upper end was closed and the through-hole was formed in the peripheral wall lower end part. 外側部材の上端が、冷媒流出口が形成されたヘッダの上壁よりも下方の高さ位置にある請求項17記載の熱交換器。 The heat exchanger according to claim 17, wherein the upper end of the outer member is at a height position below the upper wall of the header in which the refrigerant outlet is formed. 外側部材の上端が、冷媒流出口が形成されたヘッダの上壁と同一高さ位置にある請求項17記載の熱交換器。 The heat exchanger according to claim 17, wherein the upper end of the outer member is at the same height as the upper wall of the header in which the refrigerant outlet is formed. 気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、他方のヘッダの下壁に冷媒流出口が形成されている請求項13〜19のうちのいずれかに記載の熱交換器。 The refrigerant inflow port is formed in the upper wall of any one header of a gas-liquid separation part, and the refrigerant outflow port is formed in the lower wall of the other header. Heat exchanger. 気液分離部のいずれか一方のヘッダの上壁に冷媒流入口が形成されるとともに、これと同じヘッダの下壁に冷媒流出口が形成されている請求項13〜19のうちのいずれかに記載の熱交換器。 The refrigerant inflow port is formed in the upper wall of one of the headers of the gas-liquid separator, and the refrigerant outflow port is formed in the lower wall of the same header. The described heat exchanger. 気液分離部の受液管内に、抵抗付与手段が設けられている請求項21記載の熱交換器。 The heat exchanger according to claim 21, wherein a resistance applying means is provided in a liquid receiving pipe of the gas-liquid separation unit. 抵抗付与手段が、メッシュおよび/またはフィルタからなる請求項22記載の熱交換器。 The heat exchanger according to claim 22, wherein the resistance applying means comprises a mesh and / or a filter. 気液分離部の他方のヘッダの下壁に、過冷却部の一方のヘッダ内に通じる圧力低減用穴が形成されている請求項21〜23のうちのいずれかに記載の熱交換器。 The heat exchanger according to any one of claims 21 to 23, wherein a pressure reducing hole communicating with one header of the supercooling unit is formed in a lower wall of the other header of the gas-liquid separation unit. 互いに間隔をおいて配置された1対のタンク内が、それぞれ仕切部材により仕切られることによって、凝縮部、過冷却部および気液分離部の両ヘッダが形成されており、気液分離部と凝縮部との間の仕切部材が気液分離部のヘッダの上壁となり、気液分離部と過冷却部との間の仕切部材が気液分離部のヘッダの下壁となっている請求項9〜24のうちのいずれかに記載の熱交換器。 A pair of tanks arranged at a distance from each other is partitioned by a partition member to form both headers of a condensing unit, a supercooling unit, and a gas-liquid separating unit. The partition member between the gas-liquid separation unit and the sub-cooling unit is a partition wall between the gas-liquid separation unit and the partition wall between the gas-liquid separation unit and the supercooling unit. The heat exchanger in any one of -24. 気液分離部の受液管の通風方向の幅が、タンクの通風方向の幅以下となされている請求項25記載の熱交換器。 26. The heat exchanger according to claim 25, wherein the width of the liquid receiving pipe of the gas-liquid separation unit in the ventilation direction is equal to or less than the width of the tank in the ventilation direction. 圧縮機、請求項1〜26のうちのいずれかに記載の熱交換器、減圧器、およびエバポレータを備えている冷凍サイクル。 A refrigeration cycle comprising a compressor, the heat exchanger according to any one of claims 1 to 26, a decompressor, and an evaporator. 請求項27記載の冷凍サイクルを備えている車両。 A vehicle comprising the refrigeration cycle according to claim 27.
JP2005374301A 2004-12-28 2005-12-27 Heat exchanger Withdrawn JP2006207995A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005374301A JP2006207995A (en) 2004-12-28 2005-12-27 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004379158 2004-12-28
JP2005374301A JP2006207995A (en) 2004-12-28 2005-12-27 Heat exchanger

Publications (1)

Publication Number Publication Date
JP2006207995A true JP2006207995A (en) 2006-08-10

Family

ID=36965052

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005374301A Withdrawn JP2006207995A (en) 2004-12-28 2005-12-27 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2006207995A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196625A (en) * 2010-03-19 2011-10-06 Showa Denko Kk Condenser
CN104515329A (en) * 2013-09-26 2015-04-15 海尔集团公司 Air conditioner, supercooling device for air conditioner and control method for supercooling device
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196625A (en) * 2010-03-19 2011-10-06 Showa Denko Kk Condenser
CN104515329A (en) * 2013-09-26 2015-04-15 海尔集团公司 Air conditioner, supercooling device for air conditioner and control method for supercooling device
JP2016133268A (en) * 2015-01-20 2016-07-25 株式会社デンソー Condenser

Similar Documents

Publication Publication Date Title
JP5501242B2 (en) Capacitor
JPH11142023A (en) Multi-stage vapor-liquid separation type condenser
JP6905895B2 (en) Capacitor
JP2012247148A (en) Condenser
JP5412195B2 (en) Heat exchanger
US20180017297A1 (en) Condenser
JP5593084B2 (en) Heat exchanger
JP2012154604A (en) Condenser
JP2000227265A (en) Refrigerant condenser integrated with liquid receiver
US10094602B2 (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2006207995A (en) Heat exchanger
JP2009019781A (en) Heat exchanger
JP2008267753A (en) Heat exchanger
JP2010065880A (en) Condenser
JP5622411B2 (en) Capacitor
JP6572031B2 (en) Capacitor
JP2018013322A (en) Condenser
JP2007071433A (en) Desiccant unit and heat exchanger using the same
JP2008267752A (en) Heat exchanger
JP2009119950A (en) Heat exchanger
JP2006258415A (en) Heat exchanger
JP6776949B2 (en) Condenser
JP2019027685A (en) Condenser
JP2008256234A (en) Evaporator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090303