JP2018013322A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2018013322A
JP2018013322A JP2017081750A JP2017081750A JP2018013322A JP 2018013322 A JP2018013322 A JP 2018013322A JP 2017081750 A JP2017081750 A JP 2017081750A JP 2017081750 A JP2017081750 A JP 2017081750A JP 2018013322 A JP2018013322 A JP 2018013322A
Authority
JP
Japan
Prior art keywords
header
inlet
heat exchange
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081750A
Other languages
Japanese (ja)
Other versions
JP2018013322A5 (en
JP6850058B2 (en
Inventor
康太 有野
Yasuta Arino
康太 有野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to US15/626,178 priority Critical patent/US10094601B2/en
Priority to CN201710541035.XA priority patent/CN107606825B/en
Priority to DE102017211736.2A priority patent/DE102017211736A1/en
Publication of JP2018013322A publication Critical patent/JP2018013322A/en
Publication of JP2018013322A5 publication Critical patent/JP2018013322A5/ja
Application granted granted Critical
Publication of JP6850058B2 publication Critical patent/JP6850058B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a condenser uniformizing a flow rate of a refrigerant flowing in a total heat exchange pipe of a heat exchange path for refrigerant condensation, and achieving downsizing.SOLUTION: An inlet member 16 having a refrigerant inflow passage 17 having opened both ends is connected to a condensation part inlet header 12 of a condenser. One end opening of the refrigerant inflow passage 17 of the inlet member 16 becomes an inflow port 27 from the outside, and the other end opening becomes an outflow port 28 into the condensation part inlet header 12. An opening 23 is formed in a part closer to one end side than a longitudinal direction center part in the peripheral wall of the condensation part inlet header 12, and an insertion part 24 inserted into the condensation part inlet header 12 through the opening 23 is provided in the inlet member 16. A gap 29 exists between the insertion part 24 and part of the peripheral wall of the condensation part inlet header 12. The outflow port 28 of the refrigerant inflow passage 17 is opened to one upward plain face 26 of the insertion part 24, and a refrigerant is made to outflow to the longitudinal direction center part side of the condensation part inlet header 12.SELECTED DRAWING: Figure 4

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に用いられるコンデンサに関する。   The present invention relates to a capacitor suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、上下、左右は図1、図11、図15および図17の上下、左右をいうものとし、図1、図11、図15および図17のの紙面表裏方向を通風方向というものとする。   In this specification and claims, the top, bottom, left and right refer to the top, bottom, left and right of FIGS. 1, 11, 15, and 17, and the front and back directions of FIG. 1, FIG. 11, FIG. Ventilation direction.

たとえばカーエアコンのコンデンサとして、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスと、長手方向を上下方向に向けて配置され、かつ冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダと、長手方向を上下方向に向けて配置され、かつ冷媒流れ方向最下流側の熱交換パスの冷媒流れ方向下流側端部が通じかつ凝縮部の全熱交換パスを流れた冷媒が流入する凝縮部出口ヘッダとを有する凝縮部を備えており、凝縮部入口ヘッダに、両端が開口した冷媒流入路を有しかつ凝縮部入口ヘッダ内に冷媒を流入させる入口部材が接合され、凝縮部出口ヘッダに、両端が開口した冷媒流出路を有しかつ凝縮部出口ヘッダ内から冷媒を流出させる出口部材が接合されているコンデンサが広く知られている(以下、周知コンデンサと称する)。   For example, as a condenser of a car air conditioner, at least one heat exchange path composed of a plurality of heat exchange tubes arranged in parallel in the vertical direction with the longitudinal direction oriented in the left-right direction and the longitudinal direction oriented in the vertical direction And a condenser inlet header that communicates with the upstream end of the refrigerant flow direction of the heat exchange path on the uppermost stream side in the refrigerant flow direction, and the longitudinal direction of the heat exchanger path that extends in the up and down direction. A condenser having a condenser outlet header through which the downstream end in the refrigerant flow direction of the heat exchange path communicates and the refrigerant flowing through the total heat exchange path of the condenser flows in. An inlet member that has an open refrigerant inflow path and that allows the refrigerant to flow into the condenser inlet header is joined, and the condenser outlet header has a refrigerant outlet path that is open at both ends and within the condenser outlet header. A capacitor to the outlet member for discharging the Luo refrigerant is bonded widely known (hereinafter, referred to as well-known capacitor).

上述した周知コンデンサにおいて熱交換効率を向上させるには、凝縮部入口ヘッダに冷媒が流入する流入部分の高さ位置および凝縮部出口ヘッダから冷媒が流出する流出部分の高さ位置を調整することによって、凝縮部入口ヘッダに通じる熱交換パスを構成する全熱交換管を流れる冷媒の流量を均一化することが効果的である。   In order to improve the heat exchange efficiency in the above-mentioned known condenser, the height position of the inflow portion where the refrigerant flows into the condenser inlet header and the height position of the outflow portion where the refrigerant flows out of the condenser outlet header are adjusted. It is effective to make the flow rate of the refrigerant flowing through the total heat exchange pipe constituting the heat exchange path leading to the condenser inlet header uniform.

ところで、自動車に搭載されるカーエアコンの場合、カーエアコンを構成する部品を接続する配管の取り回しを考慮して、コンデンサの凝縮部入口ヘッダへの冷媒流入部分の高さ位置が制限されることがあり、上述した周知コンデンサにおいては、凝縮部入口ヘッダに通じる熱交換パスの全熱交換管を流れる冷媒流量を均一化することが困難な場合がある。   By the way, in the case of a car air conditioner mounted on an automobile, the height position of the refrigerant inflow part to the condenser inlet header of the condenser may be limited in consideration of the piping of the pipe that connects the parts constituting the car air conditioner. In the known condenser described above, it may be difficult to equalize the flow rate of the refrigerant flowing through the total heat exchange pipe of the heat exchange path leading to the condenser inlet header.

冷媒流入部分および冷媒流出部分の高さ位置を調整することなく、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化しうるコンデンサとして、凝縮部入口ヘッダおよび凝縮部出口ヘッダのうちの少なくともいずれか一方の内部に、熱交換管側空間と反熱交換管側空間とに仕切る仕切部材が配置され、仕切部材に前記両空間を通じさせる複数の連通部が上下方向に間隔をおいて設けられ、連通部の大きさが上下方向で調整されているコンデンサが提案されている(特許文献1参照)。   Among the condenser inlet header and the condenser outlet header, a condenser that can equalize the flow rate of refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path without adjusting the height positions of the refrigerant inflow portion and the refrigerant outflow portion. A partition member that partitions the heat exchange tube side space and the counter heat exchange tube side space is disposed inside at least one of the plurality of communication portions that allow the partition member to pass through both the spaces in the vertical direction. There has been proposed a capacitor in which the size of the communication portion is adjusted in the vertical direction (see Patent Document 1).

しかしながら、特許文献1記載のコンデンサにおいては,凝縮部入口ヘッダおよび凝縮部出口ヘッダのうちの少なくともいずれか一方の内部に、熱交換管側空間と反熱交換管側空間とに仕切る仕切部材が配置されているので、部品点数が増加し、部品点数の増加に伴って重量が増加したり、コストが高くなったりするという問題がある。   However, in the capacitor described in Patent Document 1, a partition member that partitions the heat exchange pipe side space and the counter heat exchange pipe side space is disposed in at least one of the condenser inlet header and the condenser outlet header. Therefore, there is a problem that the number of parts increases, the weight increases as the number of parts increases, and the cost increases.

また、部品点数の増加や高コスト化を抑制した上で、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化しうるコンデンサとして、本出願人は、先に、凝縮部と、凝縮部の下方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液部とを備えており、凝縮部が、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された熱交換管からなる少なくとも1つの熱交換パスと、冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダと、冷媒流れ方向最下流側の熱交換パスの冷媒流れ方向下流側端部が通じかつ凝縮部の全熱交換パスを流れた冷媒が流入する凝縮部出口ヘッダとを備え、凝縮部入口ヘッダにおける長手方向中央部よりも一端側に偏った部分に冷媒流入口が形成され、凝縮部入口ヘッダに、両端が開口した冷媒流入路を有しかつ冷媒流入路を通して凝縮部入口ヘッダ内に冷媒を流入させる入口部材が接合され、過冷却部が、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの過冷却用熱交換パスと、長手方向を上下方向に向けて配置され、かつ冷媒流れ方向最上流側の過冷却用熱交換パスの冷媒流れ方向上流側端部が通じる過冷却部入口ヘッダと、長手方向を上下方向に向けて配置され、かつ冷媒流れ方向最下流側の過冷却用熱交換パスの冷媒流れ方向下流側端部が通じる過冷却部出口ヘッダとを備え、過冷却部出口ヘッダに、両端が開口した冷媒流出路を有しかつ冷媒流出路を通して過冷却部出口ヘッダ内から冷媒を流出させる出口部材が接合され、受液部が、凝縮部出口ヘッダと過冷却部入口ヘッダとに通じさせられ、凝縮部出口ヘッダから流出した冷媒が、受液部を経て過冷却部入口ヘッダ内に流入するようになされ、入口部材が、凝縮部入口ヘッダの周壁外周面における冷媒流入口を含む一定範囲に密着する密着部を有し、入口部材の冷媒流入路の全体が凝縮部入口ヘッダの外部に存在し、入口部材の冷媒流入路の一端開口が外部からの流入口となっているとともに他端開口が凝縮部入口ヘッダ内への流出口となり、流出口が、凝縮部入口ヘッダの冷媒流入口に合致するように前記密着部に開口しており、入口部材の冷媒流入路における流出口側の一定長さ部分に、直線部分が設けられており、当該直線部分が、流入口側から流出口側にかけて、凝縮部入口ヘッダの長手方向中央部側でかつ熱交換管側に傾斜しているコンデンサを提案した(特許文献2参照)。   In addition, as a capacitor that can equalize the flow rate of refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path, while suppressing an increase in the number of parts and cost increase, the applicant of the present invention, It has a supercooling part provided below the condensing part, and a liquid receiving part provided between the condensing part and the supercooling part. The condensing part turns the longitudinal direction in the left-right direction and vertically At least one heat exchange path comprising heat exchange tubes arranged in parallel at intervals, a condenser inlet header through which the upstream end of the refrigerant flow direction upstream side of the heat exchange path on the most upstream side in the refrigerant flow direction, and refrigerant A cooling section outlet header through which a refrigerant flow direction downstream end of the heat exchange path on the most downstream side in the flow direction and a refrigerant flowing through the total heat exchange path of the condensing section flows in, and a center in the longitudinal direction of the condensing section inlet header The refrigerant flows in the part that is biased to one end An inlet is formed, and an inlet member that has a refrigerant inflow passage that is open at both ends and that allows the refrigerant to flow into the condenser inlet header through the refrigerant inflow passage is joined to the condenser inlet header. At least one supercooling heat exchange path composed of a plurality of heat exchange tubes arranged in parallel in the left-right direction and at intervals in the up-down direction, and the refrigerant flow arranged in the longitudinal direction up and down A supercooling portion inlet header that communicates with the upstream end of the refrigerant flow direction of the supercooling heat exchange path on the most upstream side of the direction, and a supercooling portion that is disposed with the longitudinal direction directed vertically up and down and that is downstream of the refrigerant flow direction A supercooling section outlet header that communicates with the downstream end of the heat exchange path in the refrigerant flow direction, the supercooling section outlet header having a refrigerant outflow path that is open at both ends, and through the refrigerant outflow path. From refrigerant The outlet member to be discharged is joined, the liquid receiving part is communicated with the condensing part outlet header and the supercooling part inlet header, and the refrigerant flowing out from the condensing part outlet header passes through the liquid receiving part in the supercooling part inlet header. The inlet member has a close contact portion that is in close contact with a predetermined range including the refrigerant inlet on the outer peripheral surface of the peripheral wall of the condenser inlet header, and the entire refrigerant inlet passage of the inlet member is One end opening of the refrigerant inflow path of the inlet member is an external inlet, and the other end opening is an outlet into the condenser inlet header, and the outlet is the refrigerant of the condenser inlet header. An opening is formed in the contact portion so as to match the inflow port, and a straight portion is provided in a fixed length portion on the outflow port side in the refrigerant inflow path of the inlet member, and the straight line portion is provided from the inflow port side. Condensation on the outlet side The condenser which inclines in the longitudinal direction center part side of a part entrance header and the heat exchange pipe | tube side was proposed (refer patent document 2).

しかしながら、特許文献2記載のコンデンサにおいては,入口部材の冷媒流入路の全体が凝縮部入口ヘッダの外部に存在しているので、入口部材が比較的大型化し、その結果コンデンサが大型化してレイアウト性が不十分である。   However, in the capacitor described in Patent Document 2, since the entire refrigerant inflow path of the inlet member exists outside the condenser inlet header, the inlet member becomes relatively large, and as a result, the capacitor increases in size and layout characteristics. Is insufficient.

特開2004−353936号公報JP 2004-353936 A 特開2015−92120号公報JP2015-92120A

この発明の目的は、上記問題を解決し、部品点数が増加することなく、冷媒凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化することができ、しかも小型化を図りうるコンデンサを提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problem and to make the flow rate of the refrigerant flowing through the total heat exchange pipe of the refrigerant condensation heat exchange path uniform without increasing the number of parts, and to reduce the size of the condenser Is to provide.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)長手方向を上下方向に向けて配置された凝縮部入口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の一端が凝縮部入口ヘッダに接続された複数の熱交換管からなる熱交換パスとを備えており、凝縮部入口ヘッダに、両端が開口した冷媒流入路を有しかつ凝縮部入口ヘッダ内における長手方向中央部よりも一端側に偏った部分に冷媒を流入させる入口部材が接合され、入口部材の冷媒流入路の一端開口が外部からの流入口となっているとともに他端開口が凝縮部入口ヘッダ内への流出口となっているコンデンサにおいて、
凝縮部入口ヘッダの周壁における長手方向中央部よりも一端側に偏った部分に開口が形成され、入口部材に、当該開口を通して凝縮部入口ヘッダ内に挿入された挿入部が、当該挿入部と凝縮部入口ヘッダの周壁の一部との間に間隙が存在するように設けられ、冷媒流入路の流出口が前記挿入部に開口しており、冷媒流入路の流出口が、冷媒を凝縮部入口ヘッダの長手方向中央部側に向かって流出するようになされているコンデンサ。
1) Condenser inlet header arranged with the longitudinal direction facing up and down, and arranged in parallel with the longitudinal direction oriented in the left and right direction and spaced in the vertical direction, and one end in the longitudinal direction is arranged at the condenser inlet header A heat exchange path consisting of a plurality of heat exchange tubes connected to the condenser, and the condenser inlet header has a refrigerant inflow passage that is open at both ends, and one end from the longitudinal center in the condenser inlet header. An inlet member for allowing the refrigerant to flow is joined to the portion biased to the side, and one end opening of the refrigerant inflow passage of the inlet member serves as an inflow port from the outside, and the other end opening serves as an outflow port into the condenser inlet header. In the capacitor
An opening is formed in a portion of the peripheral wall of the condensing unit inlet header that is deviated to one end side from the central portion in the longitudinal direction, and the insertion member inserted into the condensing unit inlet header through the opening is condensed with the insertion unit. The inlet of the refrigerant is provided so that a gap exists between a part of the peripheral wall of the header of the part inlet, the outlet of the refrigerant inflow path is open to the insertion part, and the outlet of the refrigerant inflow path is the inlet of the condenser. Capacitor designed to flow out toward the center in the longitudinal direction of the header.

2)入口部材の挿入部の流出口が1つの平面上に位置しており、当該平面に対して垂直な直線が凝縮部入口ヘッダの長手方向にのびている上記1)記載のコンデンサ。   2) The capacitor according to 1) above, wherein the outlet of the insertion part of the inlet member is located on one plane, and a straight line perpendicular to the plane extends in the longitudinal direction of the condenser inlet header.

3)入口部材の挿入部の流出口が1つの平面上に位置しており、前記流出口の中心を通りかつ前記平面に対して垂直である直線が、前記平面から凝縮部入口ヘッダの長手方向中央部側に向かうにつれて、前記流出口の中心を通りかつ凝縮部入口ヘッダの長手方向にのびる直線から離れる方向に傾斜しており、両直線が一定の角度をなしている上記1)記載のコンデンサ。   3) The outlet of the insertion part of the inlet member is located on one plane, and a straight line passing through the center of the outlet and perpendicular to the plane is from the plane in the longitudinal direction of the condenser inlet header Capacitor according to 1), wherein the capacitor is inclined in a direction passing through the center of the outlet and extending away from the straight line extending in the longitudinal direction of the condenser inlet header as it goes toward the center, and both straight lines form a certain angle. .

4)入口部材の挿入部の流出口が位置する1つの平面に対して垂直な直線と、凝縮部入口ヘッダの長手方向にのびる直線とのなす角度が0〜45度(但し、0度を含まない)である上記3)記載のコンデンサ。   4) The angle between the straight line perpendicular to one plane where the outlet of the inlet part of the inlet member is located and the straight line extending in the longitudinal direction of the condenser inlet header is 0 to 45 degrees (including 0 degrees) 3) The capacitor described in 3) above.

5)入口部材の流出口が位置する1つの平面に対して垂直な直線が、通風方向と直交する平面上に位置している上記2)〜4)のうちのいずれかに記載のコンデンサ。   5) The capacitor according to any one of the above 2) to 4), wherein a straight line perpendicular to one plane where the outlet of the inlet member is located is located on a plane perpendicular to the ventilation direction.

6)入口部材の冷媒流入路における流出口側の一定長さ部分に、直線部分が設けられており、当該直線部分が、流入口側から流出口側にかけて、凝縮部入口ヘッダの長手方向中央部側でかつ熱交換管側に傾斜している上記5)記載のコンデンサ。   6) A straight portion is provided at a constant length portion on the outlet side in the refrigerant inlet passage of the inlet member, and the straight portion extends from the inlet side to the outlet side in the longitudinal center of the condenser inlet header. The capacitor as described in 5) above, which is inclined toward the heat exchange tube side.

7)入口部材の挿入部に、一端が冷媒流入路の内面に開口するとともに、他端が挿入部における凝縮部入口ヘッダの長手方向中央部側とは反対側を向いた面に開口した補助冷媒流入路が形成されており、補助冷媒流入路の前記他端開口の大きさが、流出口の大きさよりも小さくなっている上記1)〜6)のうちのいずれかに記載のコンデンサ。   7) Auxiliary refrigerant having one end opened at the inner surface of the refrigerant inflow passage at the insertion portion of the inlet member and the other end opened at a surface facing the opposite side of the central portion in the longitudinal direction of the condenser inlet header at the insertion portion 7. The capacitor according to any one of 1) to 6) above, wherein an inflow path is formed, and the size of the other end opening of the auxiliary refrigerant inflow path is smaller than the size of the outflow port.

8)凝縮部と、凝縮部の下方または上方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液部とを備えており、凝縮部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスと、冷媒流れ方向最下流側の熱交換パスの冷媒流れ方向下流側端部が通じかつ凝縮部の全熱交換パスを流れた冷媒が流入する凝縮部出口ヘッダとを備え、凝縮部入口ヘッダに冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じさせられ、過冷却部が、長手方向を上下方向に向けて配置された過冷却部入口ヘッダと、長手方向を上下方向に向けて配置された過冷却部出口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの過冷却用熱交換パスとを備え、過冷却部入口ヘッダに冷媒流れ方向最上流側の過冷却用熱交換パスの冷媒流れ方向上流側端部が通じさせられ、過冷却部出口ヘッダに冷媒流れ方向最下流側の過冷却用熱交換パスの冷媒流れ方向下流側端部が通じさせられ、受液部が、凝縮部出口ヘッダと過冷却部入口ヘッダとに通じさせられ、凝縮部出口ヘッダから流出した冷媒が、受液部を経て過冷却部入口ヘッダ内に流入するようになされている上記1)〜7)のうちのいずれかに記載のコンデンサ。   8) It is provided with a condensing part, a supercooling part provided below or above the condensing part, and a liquid receiving part provided between the condensing part and the supercooling part. At least one heat exchange path composed of a plurality of heat exchange tubes arranged in parallel at intervals in the vertical direction and the downstream side in the refrigerant flow direction of the heat exchange path on the most downstream side in the refrigerant flow direction A condensing part outlet header through which the refrigerant that has flowed through the total heat exchange path of the condensing part flows in, and an upstream end part in the refrigerant flow direction of the heat exchange path on the most upstream side in the refrigerant flow direction And the supercooling section is arranged with the supercooling section inlet header arranged with the longitudinal direction facing up and down, the supercooling section outlet header arranged with the longitudinal direction oriented up and down, and the longitudinal direction left and right In parallel and spaced in the vertical direction And at least one supercooling heat exchange path composed of a plurality of heat exchange tubes placed on the upstream side end in the refrigerant flow direction of the supercooling heat exchange path on the most upstream side in the refrigerant flow direction on the supercooling section inlet header And the downstream end of the subcooling heat exchange path on the most downstream side in the refrigerant flow direction is communicated to the subcooling section outlet header, and the liquid receiving section is connected to the condensing section outlet header and the supercooling section. The refrigerant which is communicated with the inlet header and flows out of the outlet of the condensing part flows into the supercooling part inlet header through the liquid receiving part, according to any one of the above 1) to 7) Capacitor.

9)凝縮部に1つの熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が凝縮部入口ヘッダおよび凝縮部出口ヘッダに接続されている上記8)記載のコンデンサ。   9) The condenser according to 8) above, wherein one heat exchange path is provided in the condensing unit, and all heat exchange tubes of the heat exchanging path are connected to the condensing unit inlet header and the condensing unit outlet header.

10)熱交換管の一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが第2ヘッダタンクよりも左右方向外側に位置するように設けられ、第1ヘッダタンクに、凝縮部入口ヘッダおよび過冷却部出口ヘッダが前者が上側に位置するように設けられ、第2ヘッダタンクの全体に凝縮部出口ヘッダが設けられるとともに凝縮部出口ヘッダに凝縮部の熱交換パスの全熱交換管が接続され、第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダが設けられ、第2ヘッダタンクの凝縮部出口ヘッダ内と、第3ヘッダタンク内における第2ヘッダタンクの下端よりも上方に位置する部分とが連通部を介して通じさせられている上記9)記載のコンデンサ。   10) A first header tank whose longitudinal direction is directed vertically is arranged on one end side of the heat exchange pipe, and a second header tank and a third header tank whose longitudinal direction is oriented vertically on the other end side, The third header tank is provided so as to be located on the outer side in the left-right direction with respect to the second header tank, and the first header tank is provided with the condenser inlet header and the supercooling outlet outlet header on the upper side, A condensing unit outlet header is provided in the entire second header tank, and a total heat exchange pipe of a heat exchanging path of the condensing unit is connected to the condensing unit outlet header. The lower end of the third header tank is lower than the lower end of the second header tank. A supercooling portion is located at a lower portion of the third header tank, the upper end of the third header tank being located above the lower end of the second header tank. The opening header is provided, and the inside of the condensing part outlet header of the second header tank and the part located above the lower end of the second header tank in the third header tank are communicated via the communication part. 9) Capacitor described.

上記1)〜10)のコンデンサによれば、凝縮部入口ヘッダの周壁における長手方向中央部よりも一端側に偏った部分に開口が形成され、入口部材に、当該開口を通して凝縮部入口ヘッダ内に挿入された挿入部が、当該挿入部と凝縮部入口ヘッダの周壁の一部との間に間隙が存在するように設けられ、冷媒流入路の流出口が前記挿入部に開口しており、冷媒流入路の流出口が、冷媒を凝縮部入口ヘッダの長手方向中央部側に向かって流出するようになされているので、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入する冷媒を、凝縮部入口ヘッダ内の長手方向中央部側に流すとともに、挿入部と凝縮部入口ヘッダの周壁との間の間隙を通って長手方向中央部とは反対側に流すことができる。したがって、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入する冷媒を、凝縮部入口ヘッダ内の長手方向の全体に行き渡らせることが可能になる。その結果、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒を、凝縮部入口ヘッダに接続された全熱交換管に均等に分流することができ、コンデンサの性能低下を防止することが可能になる。しかも、部品点数の増加や、部品点数の増加に伴う重量の増加およびコスト高を防止することができる。   According to the condensers 1) to 10) above, an opening is formed in a portion of the peripheral wall of the condenser inlet header that is biased to one end side relative to the central portion in the longitudinal direction, and the inlet member passes through the opening into the condenser inlet header. The inserted insertion portion is provided such that a gap exists between the insertion portion and a part of the peripheral wall of the condenser inlet header, and the outlet of the refrigerant inflow passage is open to the insertion portion. Since the outlet of the inflow passage flows out the refrigerant toward the central portion in the longitudinal direction of the condenser inlet header, the refrigerant flowing into the condenser inlet header through the refrigerant inlet passage of the inlet member In addition, it can flow to the center side in the longitudinal direction in the condenser inlet header, and can flow to the side opposite to the central part in the longitudinal direction through the gap between the insertion portion and the peripheral wall of the condenser inlet header. Therefore, the refrigerant flowing into the condensing unit inlet header through the refrigerant inflow passage of the inlet member can be spread over the entire length in the condensing unit inlet header. As a result, the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member can be evenly divided into the total heat exchange pipe connected to the condenser inlet header, preventing deterioration of the condenser performance. It becomes possible to do. In addition, it is possible to prevent an increase in the number of parts and an increase in weight and cost associated with an increase in the number of parts.

さらに、入口部材に、当該開口を通して凝縮部入口ヘッダ内に挿入された挿入部が設けられ、冷媒流入路の流出口が前記挿入部に開口しているので、入口部材における凝縮部入口ヘッダの外部に存在する部分を小型化することが可能になり、ひいてはコンデンサの小型化を図ることが可能になって、コンデンサのレイアウト性が向上する。   Further, the inlet member is provided with an insertion portion inserted into the condenser inlet header through the opening, and the outlet of the refrigerant inflow passage is open to the insertion portion. It is possible to reduce the size of the portion existing in the capacitor, and thus to reduce the size of the capacitor, thereby improving the layout of the capacitor.

上記2)〜6)のコンデンサによれば、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入する冷媒を、凝縮部入口ヘッダ内の長手方向中央部側に効率良く流すことが可能になる。したがって、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入する冷媒を、効果的に凝縮部入口ヘッダ内の長手方向の全体に行き渡らせることが可能になる。   According to the capacitors 2) to 6), it is possible to efficiently flow the refrigerant flowing into the condenser inlet header through the refrigerant inlet passage of the inlet member toward the central portion in the longitudinal direction in the condenser inlet header. become. Therefore, the refrigerant flowing into the condensing unit inlet header through the refrigerant inflow path of the inlet member can be effectively spread over the entire length in the condensing unit inlet header.

上記7)のコンデンサによれば、入口部材の冷媒流入路を通る冷媒の一部を、補助冷媒流入路を通って凝縮部入口ヘッダ内の長手方向中央部側とは反対側に流すことができる。したがって、凝縮部入口ヘッダおよび熱交換管の仕様に起因して、入口部材の冷媒流入路を通って流出口から凝縮部入口ヘッダ内に流入した冷媒が、挿入部と凝縮部入口ヘッダの周壁との間の間隙を通って長手方向中央部とは反対側に流れにくくなっている場合であっても、冷媒を、凝縮部入口ヘッダ内の長手方向の全体に行き渡らせることが可能になる。その結果、入口部材の冷媒流入路を通って凝縮部入口ヘッダ内に流入した冷媒を、凝縮部入口ヘッダに接続された全熱交換管に均等に分流することができ、コンデンサの性能低下を防止することが可能になる。   According to the condenser of the above 7), a part of the refrigerant passing through the refrigerant inflow passage of the inlet member can be passed through the auxiliary refrigerant inflow passage to the side opposite to the longitudinal central portion in the condenser inlet header. . Therefore, due to the specifications of the condenser inlet header and the heat exchange pipe, the refrigerant that has flowed into the condenser inlet header from the outlet through the refrigerant inlet passage of the inlet member, and the peripheral wall of the condenser inlet header Even when it is difficult for the refrigerant to flow to the opposite side of the central portion in the longitudinal direction through the gap therebetween, the refrigerant can be spread throughout the longitudinal direction in the condensing unit inlet header. As a result, the refrigerant that has flowed into the condenser inlet header through the refrigerant inlet passage of the inlet member can be evenly divided into the total heat exchange pipe connected to the condenser inlet header, preventing deterioration of the condenser performance. It becomes possible to do.

しかも、補助冷媒流入路における前記他端開口の大きさが、流出口の大きさよりも小さくなっているので、流出口により冷媒を凝縮部入口ヘッダの長手方向中央部側に向かって流出させる効果が妨げられることはない。   In addition, since the size of the other end opening in the auxiliary refrigerant inflow path is smaller than the size of the outlet, the effect of causing the refrigerant to flow out toward the central portion in the longitudinal direction of the condenser inlet header by the outlet. There is no hindrance.

この発明によるコンデンサの第1の実施形態の全体構成を具体的に示す正面図である。1 is a front view specifically showing the overall configuration of a first embodiment of a capacitor according to the present invention; 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1. 図1のA−A線拡大断面図である。It is an AA line expanded sectional view of FIG. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 図1のコンデンサの凝縮部入口ヘッダの一部と入口部材とを示す分解斜視図である。It is a disassembled perspective view which shows a part of condensing part inlet header and inlet member of the capacitor | condenser of FIG. 図1のコンデンサに用いられる入口部材の第1の変形例を示す図4相当の図である。FIG. 5 is a view corresponding to FIG. 4 showing a first modification of the inlet member used in the capacitor of FIG. 1. 図1のコンデンサに用いられる入口部材の第2の変形例を示す図4相当の図である。FIG. 5 is a view corresponding to FIG. 4 showing a second modification of the inlet member used in the capacitor of FIG. 1. 図1のコンデンサに用いられる入口部材の第3の変形例を示す図4相当の図である。FIG. 5 is a view corresponding to FIG. 4 and showing a third modification of the inlet member used in the capacitor of FIG. 1. 図1のコンデンサに用いられる入口部材の第4の変形例を示す図4相当の図である。FIG. 10 is a view corresponding to FIG. 4 and showing a fourth modification of the inlet member used in the capacitor of FIG. 1. 図1のコンデンサに用いられる入口部材の第5の変形例を示す図4相当の図である。FIG. 10 is a view corresponding to FIG. 4 showing a fifth modification of the inlet member used in the capacitor of FIG. 1. この発明によるコンデンサの第2の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 2nd Embodiment of the capacitor | condenser by this invention. 図11のコンデンサを模式的に示す正面図である。FIG. 12 is a front view schematically showing the capacitor of FIG. 11. 図11のコンデンサの要部を示す図4相当の図である。FIG. 12 is a view corresponding to FIG. 4 illustrating a main part of the capacitor of FIG. 11. 図11のコンデンサに用いられる入口部材の変形例を示す図13相当の図である。FIG. 14 is a view corresponding to FIG. 13 showing a modification of the inlet member used in the capacitor of FIG. 11. この発明によるコンデンサの第3の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 3rd Embodiment of the capacitor | condenser by this invention. 図15のコンデンサを模式的に示す正面図である。FIG. 16 is a front view schematically showing the capacitor of FIG. 15. この発明によるコンデンサの第4の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 4th Embodiment of the capacitor | condenser by this invention. 図17のコンデンサを模式的に示す正面図である。FIG. 18 is a front view schematically showing the capacitor of FIG. 17.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

さらに、全図面を通じて同一部分および同一物には同一符号を付す。   Further, the same parts and the same parts are denoted by the same reference symbols throughout the drawings.

図1はこの発明によるコンデンサの第1の実施形態の全体構成を具体的に示し、図2は図1のコンデンサを模式的に示し、図3〜図5は図1のコンデンサの要部の構成を示す。図2においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   FIG. 1 specifically shows the overall configuration of the first embodiment of the capacitor according to the present invention, FIG. 2 schematically shows the capacitor of FIG. 1, and FIGS. 3 to 5 show the configuration of the main part of the capacitor of FIG. Indicates. In FIG. 2, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図1および図2において、コンデンサ(1)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有するアルミニウム製タンク状受液器(4)(受液部)とからなり、幅方向を通風方向に向けるとともに長手方向を左右方向に向けた状態で上下方向に間隔をおいて配置された複数のアルミニウム製扁平状熱交換管(5)と、長手方向を上下方向に向けた状態で左右方向に間隔をおいて配置されるとともに熱交換管(5)の左右両端部が接続された2つのアルミニウム製ヘッダタンク(6)(7)と、隣り合う熱交換管(5)どうしの間および上下両端の熱交換管(5)の外側に配置されて熱交換管(5)にろう材により接合されたアルミニウム製コルゲートフィン(8)と、上下両端のコルゲートフィン(8)の外側に配置されてコルゲートフィン(8)にろう材により接合されたアルミニウム製サイドプレート(9)とを備えている。以下、ろう材による接合をろう付というものとする。   1 and 2, the condenser (1) is condensed with the condenser (2), the supercooling part (3) provided below the condenser (2), and the longitudinal direction thereof being directed vertically. A liquid provided between the section (2) and the supercooling section (3) and storing the liquid phase main refrigerant condensed in the condensing section (2) and supplying the liquid phase main refrigerant to the subcooling section (3). It consists of an aluminum tank receiver (4) (receiver) that has the function of a reservoir, with the width direction oriented in the ventilation direction and the longitudinal direction oriented in the left-right direction, with an interval in the vertical direction. A plurality of flat aluminum heat exchange tubes (5) arranged and spaced from each other in the left-right direction with the longitudinal direction facing up and down, and the left and right ends of the heat exchange tube (5) are connected Between the two aluminum header tanks (6) and (7) and the adjacent heat exchange pipes (5) and outside the heat exchange pipes (5) at both upper and lower ends. The aluminum corrugated fins (8) joined to the heat exchange pipe (5) with the brazing material and the corrugated fins (8) disposed on the upper and lower ends and joined to the corrugated fins (8) with the brazing material And an aluminum side plate (9). Hereinafter, joining with a brazing material is referred to as brazing.

コンデンサ(1)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が冷媒凝縮パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が冷媒過冷却パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パスといい、過冷却部(3)の熱交換パス(P2)を第2熱交換パスというものとする。なお、この実施形態においては、凝縮部(2)に1つの第1熱交換パス(P1)が設けられているので、第1熱交換パス(P1)が、凝縮部(2)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   The condenser (2) and the supercooling section (3) of the condenser (1) are each provided with at least one heat exchange path (here, one heat exchange path ( P1) and (P2) are provided, the heat exchange path (P1) provided in the condensing part (2) serves as a refrigerant condensing path, and the heat exchange path (P2) provided in the supercooling part (3) serves as a refrigerant. It is a supercooling path. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is referred to as a first heat exchange path, and the heat exchange path (P2) of the supercooling part (3) is referred to as a second heat exchange path. In this embodiment, since the condensing part (2) is provided with one first heat exchange path (P1), the first heat exchanging path (P1) is the refrigerant flow direction of the condensing part (2). It is a heat exchange path on the most upstream side and at the same time a heat exchange path on the most downstream side in the refrigerant flow direction.

両ヘッダタンク(6)(7)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間でかつ下側の同一高さ位置に設けられたアルミニウム製仕切部材(11)により上下方向に並んだ2つの区画に仕切られており、コンデンサ(1)における両仕切部材(11)よりも上方に位置する部分が凝縮部(2)となり、両仕切部材(11)よりも下方に位置する部分が過冷却部(3)となっている。凝縮部(2)に1つの第1熱交換パス(P1)が設けられているので、右側ヘッダタンク(6)における仕切部材(11)よりも上方の区画が凝縮部入口ヘッダ(12)となっているとともに、左側ヘッダタンク(7)における仕切部材(11)よりも上方の区画が凝縮部出口ヘッダ(13)となっている。また、過冷却部(3)に1つの第2熱交換パス(P2)が設けられているので、左側ヘッダタンク(7)における仕切部材(11)よりも下方の区画が過冷却部入口ヘッダ(14)となっているとともに、右側ヘッダタンク(6)における仕切部材(11)よりも下方の区画が過冷却部出口ヘッダ(15)となっている。   Both header tanks (6) and (7) have aluminum partition members (at the same height position between the first heat exchange path (P1) and the second heat exchange path (P2)). 11) is divided into two compartments lined up and down, and the part located above the two partition members (11) in the capacitor (1) becomes the condensing part (2), and from the two partition members (11) The lower part is also the supercooling part (3). Since the first heat exchange path (P1) is provided in the condensing part (2), the section above the partition member (11) in the right header tank (6) becomes the condensing part inlet header (12). In addition, a section above the partition member (11) in the left header tank (7) is a condenser outlet header (13). In addition, since one second heat exchange path (P2) is provided in the supercooling section (3), the section below the partition member (11) in the left header tank (7) is the subcooling section inlet header ( 14) and the section below the partition member (11) in the right header tank (6) is the supercooling section outlet header (15).

凝縮部入口ヘッダ(12)の周壁外周面における長手方向中央部(X)よりも一端側に偏った部分、ここでは下端側に偏った部分に、両端が開口した冷媒流入路(17)を有し、かつ冷媒を凝縮部入口ヘッダ(12)内に流入させるアルミニウム製入口部材(16)がろう付されている。また、過冷却部出口ヘッダ(15)の周壁外面における長手方向中央部よりも上端側に偏った部分に、両端が開口した冷媒流出路(19a)を有し、かつ冷媒を過冷却部出口ヘッダ(15)に形成された冷媒出口(18)を通して外部に流出させるアルミニウム製出口部材(19)がろう付されている。   The condenser inlet header (12) has a refrigerant inflow passage (17) open at both ends at a portion of the outer peripheral surface of the peripheral wall that is biased toward one end relative to the longitudinal central portion (X), in this case, that is biased toward the lower end. In addition, an aluminum inlet member (16) for allowing the refrigerant to flow into the condenser inlet header (12) is brazed. The supercooling section outlet header (15) has a refrigerant outflow passage (19a) having both ends open at a portion of the outer peripheral surface of the peripheral wall that is biased toward the upper end side of the longitudinal central portion, and the refrigerant is supplied to the supercooling section outlet header. An aluminum outlet member (19) that flows out through the refrigerant outlet (18) formed in (15) is brazed.

受液器(4)はアルミニウム製であって、長手方向を上下方向に向けるとともに上下両端が閉鎖された円筒状であり、左側ヘッダタンク(7)(凝縮部出口ヘッダ(13)および過冷却部入口ヘッダ(14))と別個に設けられて左側ヘッダタンク(7)に固定されている。図示は省略したが、受液器(4)内には冷媒から異物を除去するフィルタや乾燥材が入れられている。凝縮部出口ヘッダ(13)内の下部と受液器(4)内の下部、および過冷却部入口ヘッダ(14)内の上部と受液器(4)内の下部が、それぞ左側ヘッダタンク(7)および受液器(4)にろう付されたアルミニウム製連通部材(21)(22)により通じさせられており、凝縮部出口ヘッダ(13)から流出した冷媒が、受液器(4)を経て過冷却部入口ヘッダ(14)内に流入するようになされている。   The liquid receiver (4) is made of aluminum and has a cylindrical shape with the longitudinal direction oriented vertically and closed at both upper and lower ends. The left header tank (7) (condenser outlet header (13) and supercooler It is provided separately from the inlet header (14)) and fixed to the left header tank (7). Although not shown, a filter and a desiccant for removing foreign substances from the refrigerant are placed in the liquid receiver (4). The lower part in the condenser outlet header (13) and the lower part in the receiver (4), and the upper part in the supercooler inlet header (14) and the lower part in the receiver (4) are the left header tank. (7) and the aluminum communication member (21) (22) brazed to the liquid receiver (4), and the refrigerant flowing out from the condenser outlet header (13) is passed through the liquid receiver (4 ) Through the supercooling section inlet header (14).

図3〜図5に示すように、右側ヘッダタンク(6)の凝縮部入口ヘッダ(12)の周壁における長手方向中央部(X)よりも下端側に偏った部分、ここでは下端に近くかつ凝縮部出口ヘッダ(13)と受液器(4)とを通じさせる連通部材(21)と近い高さ位置に開口(23)が形成されており、入口部材(16)に、開口(23)を通して凝縮部入口ヘッダ(12)内に挿入された挿入部(24)が、当該挿入部(24)と凝縮部入口ヘッダ(12)の周壁の一部との間に間隙(29)が存在し、かつ第1熱交換パス(P1)の熱交換管(5)とは干渉しないように設けられている。   As shown in FIGS. 3 to 5, a portion of the peripheral wall of the condensing portion inlet header (12) of the right header tank (6) that is biased toward the lower end side from the central portion (X) in the longitudinal direction, here, close to the lower end and condensing An opening (23) is formed at a height close to the communicating member (21) through which the outlet header (13) and the liquid receiver (4) are passed, and the inlet member (16) is condensed through the opening (23). There is a gap (29) between the insertion part (24) inserted into the part inlet header (12) and a part of the peripheral wall of the condenser part inlet header (12), and It is provided so as not to interfere with the heat exchange pipe (5) of the first heat exchange path (P1).

入口部材(16)の凝縮部入口ヘッダ(12)外に存在する部分における挿入部(24)の周りの部分に、凝縮部入口ヘッダ(12)の周壁外周面における開口(23)の周囲の部分に密着する密着部(25)が設けられている。入口部材(16)は、挿入部(24)が開口(23)を通して凝縮部入口ヘッダ(12)内に挿入され、密着部(25)が凝縮部入口ヘッダ(12)の周壁外周面における開口(23)の周囲の部分に密着させられた状態で凝縮部入口ヘッダ(12)の周壁外周面にろう付されている。   The portion around the insertion portion (24) in the portion outside the condensing portion inlet header (12) of the inlet member (16) and the portion around the opening (23) in the outer peripheral surface of the peripheral wall of the condensing portion inlet header (12) A close contact portion (25) that is in close contact with the cover is provided. In the inlet member (16), the insertion portion (24) is inserted into the condensation portion inlet header (12) through the opening (23), and the close contact portion (25) is an opening in the outer peripheral surface of the peripheral wall of the condensation portion inlet header (12) ( 23) is brazed to the outer peripheral surface of the peripheral wall of the condensing unit inlet header (12) in a state of being in close contact with the surrounding portion.

入口部材(16)の冷媒流入路(17)は、一端が凝縮部入口ヘッダ(12)外に存在する部分の右側面に開口するとともに他端が挿入部(24)の1つの平面(26)からなる上面に開口しており、冷媒流入路(17)の一端開口が外部からの流入口(27)となるとともに他端開口が凝縮部入口ヘッダ(12)内への流出口(28)となっている。入口部材(16)の挿入部(24)の流出口(28)が位置する平面(26)は水平面であるとともに、当該平面(26)に対して垂直な第1直線(L1)は通風方向と直交する平面上に位置しており、流出口(28)は、冷媒を凝縮部入口ヘッダ(12)の長手方向中央部(X)側、ここでは上方に向かって流出する。また、入口部材(16)の流出口(28)が位置する平面(26)に対して垂直でかつ流出口(28)の中心を通る第1直線(L1)は凝縮部入口ヘッダ(12)の長手方向にのびており、ここでは第1直線(L1)と、凝縮部入口ヘッダ(12)の左右方向の中心を通りかつ凝縮部入口ヘッダ(12)の長手方向にのびる第2直線(L2)とは平行になっている。入口部材(16)の冷媒流入路(17)は、右側面から左方にのびかつ凝縮部入口ヘッダ(12)内に至る真っ直ぐな水平状第1直線部分(17a)と、第1直線部分(17a)の左端に連なって上方にのびかつ平面(26)に開口した鉛直状第2直線部分(17b)とからなる。入口部材(16)は、アルミニウムベア材に切削加工を施すことによって全体が一体に成形されている。   One end of the refrigerant inflow passage (17) of the inlet member (16) opens on the right side of the portion existing outside the condenser inlet header (12), and the other end is one plane (26) of the insertion portion (24). One end opening of the refrigerant inflow passage (17) serves as an inlet (27) from the outside and the other end opening serves as an outlet (28) into the condenser inlet header (12). It has become. The plane (26) where the outlet (28) of the insertion part (24) of the inlet member (16) is located is a horizontal plane, and the first straight line (L1) perpendicular to the plane (26) is the ventilation direction. The outlet (28) flows out of the refrigerant toward the center (X) in the longitudinal direction of the condenser inlet header (12), here upwards. The first straight line (L1) perpendicular to the plane (26) where the outlet (28) of the inlet member (16) is located and passing through the center of the outlet (28) is the condensing section inlet header (12). In this case, the first straight line (L1) and the second straight line (L2) passing through the center of the condenser inlet header (12) in the horizontal direction and extending in the longitudinal direction of the condenser inlet header (12) Are parallel. The refrigerant inflow passage (17) of the inlet member (16) has a straight horizontal first straight line portion (17a) extending from the right side surface to the left and into the condenser inlet header (12), and a first straight line portion ( It consists of a vertical second straight line portion (17b) that continues to the left end of 17a) and extends upward and opens in a plane (26). The inlet member (16) is integrally formed as a whole by cutting the aluminum bare material.

コンデンサ(1)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (1) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(1)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内の下部に流入する。このとき、冷媒は入口部材(16)の流出口(28)から上方(凝縮部入口ヘッダ(12)の長手方向中央部(X)側)に向かって流出するので、多くの冷媒が凝縮部入口ヘッダ(12)内の上端部まで流れ、残りの冷媒が入口部材(16)の挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間の間隙(29)を通って入口部材(16)よりも下方に流れる。したがって、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内に流入した冷媒は凝縮部入口ヘッダ(12)内の全体に行き渡り、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。第1熱交換パス(P1)の熱交換管(5)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内を左方に流れて凝縮部出口ヘッダ(13)内に流入する。凝縮部出口ヘッダ(13)内に流入した冷媒は、連通部材(21)を通って受液器(4)内に流入する。   In the condenser (1) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inflow passage (17) of the inlet member (16) to the lower part in the condenser inlet header (12). Inflow. At this time, the refrigerant flows out from the outlet (28) of the inlet member (16) toward the upper side (longitudinal center (X) side of the condenser inlet header (12)), so that a large amount of refrigerant flows into the condenser inlet. The refrigerant flows to the upper end in the header (12), and the remaining refrigerant passes through the gap (29) between the insertion part (24) of the inlet member (16) and the peripheral wall of the condenser inlet header (12). It flows below 16). Accordingly, the refrigerant that has flowed into the condenser inlet header (12) through the refrigerant inflow passage (17) of the inlet member (16) is distributed throughout the condenser inlet header (12), and the condenser inlet header (12). Are evenly divided into the total heat exchange pipe (5) of the first heat exchange path (P1) connected to. The refrigerant that has flowed into the heat exchange pipe (5) of the first heat exchange path (P1) flows to the left in the heat exchange pipe (5) of the first heat exchange path (P1) and flows into the condenser outlet header (13 ) Flows in. The refrigerant flowing into the condenser outlet header (13) flows into the liquid receiver (4) through the communication member (21).

受液器(4)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により受液器(4)内の下部に溜まり、連通部材(22)を通って過冷却部入口ヘッダ(14)内に入る。過冷却部入口ヘッダ(14)内に入った冷媒は、第2熱交換パス(P2)の熱交換管(5)内に入り、第2熱交換パス(P2)の熱交換管(5)の流路を右方に流れる間に過冷却された後、過冷却部出口ヘッダ(15)内に入り、冷媒流出口(18)および出口部材(24)の冷媒流出路を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the liquid receiver (4) is a gas-liquid mixed-phase refrigerant, and the liquid-phase main mixed-phase refrigerant of the gas-liquid mixed-phase refrigerant accumulates in the lower part of the liquid receiver (4) due to gravity, and the communication member ( 22) through the supercooling section inlet header (14). The refrigerant that has entered the supercooling section inlet header (14) enters the heat exchange pipe (5) of the second heat exchange path (P2) and enters the heat exchange pipe (5) of the second heat exchange path (P2). After being supercooled while flowing to the right in the flow path, it enters the supercooling section outlet header (15), flows out through the refrigerant outflow path of the refrigerant outlet (18) and outlet member (24), and expands It is sent to the evaporator through a valve.

図6〜図10は図1および図2に示すコンデンサ(1)に用いられる入口部材の変形例を示す。   6 to 10 show modifications of the inlet member used in the capacitor (1) shown in FIGS.

図6に示す入口部材(30)の場合、入口部材(30)の冷媒流入路(17)の流出口(28)は、挿入部(24)における1つの平面(31)からなる傾斜上向き面に開口している。入口部材(30)の挿入部(24)の流出口(28)が位置する平面(31)は斜め上方を向いた傾斜面であるとともに、当該平面(31)に対して垂直な第1直線(L1)は通風方向と直交する平面上に位置している。入口部材(30)の流出口(28)の中心を通りかつ流出口(28)が位置する平面(26)に対して垂直である第1直線(L1)は、平面(31)から凝縮部入口ヘッダ(12)の長手方向中央部側(上側)に向かうにつれて、流出口(28)の中心を通りかつ凝縮部入口ヘッダ(12)の長手方向にのびる第2直線(L2)から離れる方向、ここでは熱交換管(5)側に傾斜しており、凝縮部入口ヘッダ(12)の長手方向にのびる直線(L2)に対して一定の角度をなしている。両直線(L1)(L2)のなす角度αは、0度よりも大きくかつ45度以下であり、たとえば30度となっている。   In the case of the inlet member (30) shown in FIG. 6, the outlet (28) of the refrigerant inflow passage (17) of the inlet member (30) is formed on an inclined upward surface composed of one flat surface (31) in the insertion portion (24). It is open. The plane (31) where the outflow port (28) of the insertion part (24) of the inlet member (30) is located is an inclined surface facing obliquely upward, and a first straight line (vertical to the plane (31) ( L1) is located on a plane perpendicular to the ventilation direction. The first straight line (L1) that passes through the center of the outlet (28) of the inlet member (30) and is perpendicular to the plane (26) where the outlet (28) is located is formed from the plane (31) to the condenser inlet. The direction away from the second straight line (L2) extending through the center of the outlet (28) and extending in the longitudinal direction of the condenser inlet header (12) as it goes toward the longitudinal center (upper side) of the header (12), Is inclined toward the heat exchange pipe (5) and forms a certain angle with respect to a straight line (L2) extending in the longitudinal direction of the condenser inlet header (12). The angle α formed by both straight lines (L1) and (L2) is larger than 0 degree and not larger than 45 degrees, for example, 30 degrees.

入口部材(30)の冷媒流入路(17)は、右側面から左方にのびかつ凝縮部入口ヘッダ(12)内に至る水平状第1直線部分(17a)と、第1直線部分(17a)の左端に連なって斜め上方にのびかつ先端が前記平面(31)に開口した傾斜状の短い第2直線部分(17c)とからなる。入口部材(30)は、アルミニウムア材に切削加工を施すことによって全体が一体に成形されている。   The refrigerant inflow path (17) of the inlet member (30) includes a horizontal first straight line portion (17a) extending from the right side surface to the left and entering the condenser inlet header (12), and a first straight line portion (17a). The second straight portion (17c) having a slanted shape extending obliquely upward and extending to the flat surface (31). The inlet member (30) is integrally formed as a whole by cutting the aluminum core material.

図7に示す入口部材(35)の場合、入口部材(35)の冷媒流入路(17)の流出口(28)は、挿入部(24)における1つの平面(36)からなる上面に開口している。入口部材(35)の流出口(28)が位置する平面(36)は水平面であるとともに、当該平面(36)に対して垂直な第1直線(L1)は通風方向と直交する平面上に位置しており、流出口(28)は、冷媒を凝縮部入口ヘッダ(12)の長手方向中央部側、ここでは上方に向かって流出する。また、入口部材(35)の流出口(28)が位置する平面(36)に対して垂直でかつ流出口(28)の中心を通る第1直線(L1)は凝縮部入口ヘッダ(12)の長手方向にのびており、ここでは第1直線(L1)と、凝縮部入口ヘッダ(12)の左右方向の中心を通りかつ凝縮部入口ヘッダ(12)の長手方向にのびる第2直線(L2)とは平行になっている。入口部材(35)の冷媒流入路(17)は、右側面から左方にのびかつ凝縮部入口ヘッダ(12)内に至る真っ直ぐな水平状第1直線部分(17a)と、第1直線部分(17a)の左端に連なって斜め上方にのびかつ先端が平面(36)に開口した傾斜状の第2直線部分(17d)とからなる。第2直線部分(17d)は、流入口(27)側から流出口(28)側にかけて、凝縮部入口ヘッダ(12)の長手方向中央部(X)側でかつ熱交換管(5)側(左側)に傾斜している。なお、挿入部(24)は第1熱交換パス(P1)の熱交換管(5)とは干渉せず、しかも挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間に間隙(29)が存在している。入口部材(35)は、アルミニウムベア材に切削加工を施すことによって全体が一体に成形されている。   In the case of the inlet member (35) shown in FIG. 7, the outlet (28) of the refrigerant inflow passage (17) of the inlet member (35) opens to the upper surface formed by one plane (36) in the insertion portion (24). ing. The plane (36) where the outlet (28) of the inlet member (35) is located is a horizontal plane, and the first straight line (L1) perpendicular to the plane (36) is located on a plane orthogonal to the ventilation direction. The outflow port (28) allows the refrigerant to flow out toward the center in the longitudinal direction of the condensing unit inlet header (12), here upward. The first straight line (L1) perpendicular to the plane (36) where the outlet (28) of the inlet member (35) is located and passing through the center of the outlet (28) is the condenser inlet header (12). In this case, the first straight line (L1) and the second straight line (L2) passing through the center of the condenser inlet header (12) in the horizontal direction and extending in the longitudinal direction of the condenser inlet header (12) Are parallel. The refrigerant inflow passage (17) of the inlet member (35) has a straight horizontal first straight line portion (17a) extending from the right side surface to the left and entering the condenser inlet header (12), and a first straight line portion ( 17a) is formed of an inclined second straight line portion (17d) that extends obliquely upward and is open to a flat surface (36). The second straight portion (17d) extends from the inlet (27) side to the outlet (28) side, at the center (X) side in the longitudinal direction of the condenser inlet header (12) and on the heat exchange pipe (5) side ( Inclined to the left. The insertion part (24) does not interfere with the heat exchange pipe (5) of the first heat exchange path (P1), and there is a gap between the insertion part (24) and the peripheral wall of the condenser inlet header (12). (29) exists. The entire inlet member (35) is integrally formed by cutting an aluminum bare material.

図8に示す入口部材(70)の場合、挿入部(24)に、一端が冷媒流入路(17)の第2直線部分(17b)の底面に開口するとともに、他端が挿入部(24)における凝縮部入口ヘッダ(12)の長手方向中央部側とは反対側を向いた水平な下面に開口した鉛直状補助冷媒流入路(71)が形成されている。補助冷媒流入路(71)の通路断面積は、全長にわたって同一であるとともに冷媒流入路(17)の第2直線部分(17b)の通路断面積よりも小さくなっており、補助冷媒流入路(71)の下端開口の大きさが、流出口(28)の大きさよりも小さくなっている。入口部材(70)は、アルミニウムベア材に切削加工を施すことによって全体が一体に成形されている。   In the case of the inlet member (70) shown in FIG. 8, one end of the insertion member (24) opens in the bottom surface of the second straight portion (17b) of the refrigerant inflow passage (17), and the other end of the insertion member (24). A vertical auxiliary refrigerant inflow passage (71) is formed in the horizontal lower surface of the condenser inlet header (12) facing the opposite side of the central portion in the longitudinal direction. The cross-sectional area of the auxiliary refrigerant inflow passage (71) is the same over the entire length and is smaller than the cross-sectional area of the second straight portion (17b) of the refrigerant inflow passage (17). ) Is smaller than the outlet (28). The entire inlet member (70) is integrally formed by cutting the aluminum bear material.

その他の構成は図4に示す入口部材(16)と同じである。   The other configuration is the same as that of the inlet member (16) shown in FIG.

入口部材(70)を備えたコンデンサ(1)においては、入口部材(70)の冷媒流入路(17)を通る冷媒が入口部材(70)の流出口(28)から上方に向かって流出するのと同時に、補助冷媒流入路(71)を通って凝縮部入口ヘッダ(12)内の入口部材(70)よりも下方に流出する。したがって、凝縮部入口ヘッダ(12)および熱交換管(5)の仕様に起因して、入口部材(70)の挿入部(24)の流出口(28)から凝縮部入口ヘッダ(12)内に流入した冷媒が、挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間の間隙(29)を通って入口部材(70)よりも下方に流れにくくなっている場合であっても、冷媒を、凝縮部入口ヘッダ(12)内の長手方向の全体に行き渡らせることが可能になり、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。   In the condenser (1) having the inlet member (70), the refrigerant passing through the refrigerant inflow path (17) of the inlet member (70) flows upward from the outlet (28) of the inlet member (70). At the same time, it flows out below the inlet member (70) in the condenser inlet header (12) through the auxiliary refrigerant inflow passage (71). Therefore, due to the specifications of the condenser inlet header (12) and the heat exchange pipe (5), the outlet (28) of the insertion part (24) of the inlet member (70) enters the condenser inlet header (12). Even if the refrigerant that has flowed is less likely to flow downward than the inlet member (70) through the gap (29) between the insertion portion (24) and the peripheral wall of the condenser inlet header (12). , The refrigerant can be spread over the entire length in the condenser inlet header (12), and the total heat exchange pipe of the first heat exchange path (P1) connected to the condenser inlet header (12). Divided equally into (5).

図9に示す入口部材(75)の場合、挿入部(24)に、一端が冷媒流入路(17)における第1直線部分(17a)と第2直線部分(17c)との連接部の底面に開口するとともに、他端が挿入部(24)における凝縮部入口ヘッダ(12)の長手方向中央部側とは反対側を向いた水平な下面に開口した鉛直状補助冷媒流入路(76)が形成されている。補助冷媒流入路(76)の通路断面積は、全長にわたって同一であるとともに冷媒流入路(17)の第2直線部分(17c)の通路断面積よりも小さくなっており、補助冷媒流入路(76)の下端開口の大きさが、流出口(28)の大きさよりも小さくなっている。入口部材(75)は、アルミニウムベア材に切削加工を施すことによって全体が一体に成形されている。   In the case of the inlet member (75) shown in FIG. 9, one end of the inlet member (24) is on the bottom surface of the connecting portion between the first straight portion (17a) and the second straight portion (17c) in the refrigerant inflow passage (17). A vertical auxiliary refrigerant inflow passage (76) is formed which opens and has the other end opened on a horizontal lower surface facing the side opposite to the longitudinal center of the condenser inlet header (12) in the insertion portion (24). Has been. The passage cross-sectional area of the auxiliary refrigerant inflow passage (76) is the same over the entire length and is smaller than the passage cross-sectional area of the second straight portion (17c) of the refrigerant inflow passage (17). ) Is smaller than the outlet (28). The entire inlet member (75) is integrally formed by cutting the aluminum bare material.

その他の構成は図6に示す入口部材(30)と同じである。   Other configurations are the same as those of the inlet member (30) shown in FIG.

図10に示す入口部材(80)の場合、挿入部(24)に、一端が冷媒流入路(17)の第2直線部分(17d)における長手方向中間部の底面に開口するとともに、他端が挿入部(24)における凝縮部入口ヘッダ(12)の長手方向中央部側とは反対側を向いた水平な下面に開口した鉛直状補助冷媒流入路(81)が形成されている。補助冷媒流入路(81)の通路断面積は、全長にわたって同一であるとともに冷媒流入路(17)の第2直線部分(17d)の通路断面積よりも小さくなっており、補助冷媒流入路(81)の下端開口の大きさが、流出口(28)の大きさよりも小さくなっている。入口部材(80)は、アルミニウムベア材に切削加工を施すことによって全体が一体に成形されている。   In the case of the inlet member (80) shown in FIG. 10, one end of the insertion member (24) opens at the bottom surface of the longitudinal intermediate portion of the second straight portion (17d) of the refrigerant inflow passage (17), and the other end A vertical auxiliary refrigerant inflow passage (81) opened in a horizontal lower surface facing the opposite side of the center portion in the longitudinal direction of the condenser inlet header (12) in the insertion portion (24) is formed. The passage cross-sectional area of the auxiliary refrigerant inflow passage (81) is the same over the entire length and is smaller than the passage cross-sectional area of the second straight portion (17d) of the refrigerant inflow passage (17). ) Is smaller than the outlet (28). The entire inlet member (80) is integrally formed by cutting an aluminum bear material.

その他の構成は図7に示す入口部材(35)と同じである。   The other structure is the same as the inlet member (35) shown in FIG.

図9および図10に示す入口部材(75)(80)を備えたコンデンサ(1)においても、入口部材(75)(80)の冷媒流入路(17)を通る冷媒が入口部材(75)(80)の流出口(28)から上方に向かって流出するのと同時に、補助冷媒流入路(76)(81)を通って凝縮部入口ヘッダ(12)内の入口部材(75)(80)よりも下方に流出する。   Also in the condenser (1) having the inlet members (75) and (80) shown in FIGS. 9 and 10, the refrigerant passing through the refrigerant inflow passage (17) of the inlet members (75) and (80) is the inlet member (75) ( At the same time as flowing out upward from the outlet (28) of 80), through the auxiliary refrigerant inflow passage (76) (81) from the inlet member (75) (80) in the condenser inlet header (12) Also flows downward.

図11〜図13はこの発明によるコンデンサの第2の実施形態を示す。図11はこの発明によるコンデンサの第2の実施形態の全体構成を具体的に示し、図12は図11のコンデンサを模式的に示す。図12においては、個々の熱交換管(5)の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。また、図13は図11のコンデンサの要部を示す。   11 to 13 show a second embodiment of the capacitor according to the present invention. FIG. 11 specifically shows the overall configuration of the second embodiment of the capacitor according to the present invention, and FIG. 12 schematically shows the capacitor of FIG. In FIG. 12, the illustration of the individual heat exchange tubes (5) is omitted, and the illustration of the corrugated fins and the side plates is also omitted. FIG. 13 shows the main part of the capacitor of FIG.

図11〜図13において、コンデンサ(40)の右側ヘッダタンク(6)の凝縮部入口ヘッダ(12)における長手方向中央部よりも上端側に偏った部分に、両端が開口した冷媒流入路(17)を有し、かつ冷媒を凝縮部入口ヘッダ(12)内に流入させるアルミニウム製入口部材(41)がろう付されている。入口部材(41)は、上述した第1の実施形態のコンデンサ(1)に用いられている入口部材(16)を上下逆向きにしたものであり、挿入部(24)が、凝縮部入口ヘッダ(12)における長手方向中央部よりも上端側に偏った部分に形成された開口(23)を通して凝縮部入口ヘッダ(12)内に挿入され、密着部(25)が凝縮部入口ヘッダ(12)の周壁外周面における開口(23)の周囲の部分に密着させられた状態で凝縮部入口ヘッダ(12)の周壁外周面にろう付されている。挿入部(24)は第1熱交換パス(P1)の熱交換管(5)とは干渉せず、しかも挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間に間隙(29)が存在している。   11 to 13, a refrigerant inflow passage (17 at both ends) is opened at a portion of the right side header tank (6) of the condenser (40) that is biased toward the upper end side of the central portion in the longitudinal direction of the condenser inlet header (12). ) And an aluminum inlet member (41) through which the refrigerant flows into the condenser inlet header (12) is brazed. The inlet member (41) is obtained by turning the inlet member (16) used in the capacitor (1) of the first embodiment described above upside down, and the insertion portion (24) is a condenser inlet header. (12) is inserted into the condenser inlet header (12) through the opening (23) formed in the portion offset to the upper end side from the longitudinal central portion, and the contact portion (25) is the condenser inlet header (12). The outer peripheral surface of the peripheral wall is brazed to the outer peripheral surface of the peripheral wall of the condenser inlet header (12) in a state of being in close contact with a portion around the opening (23). The insertion part (24) does not interfere with the heat exchange pipe (5) of the first heat exchange path (P1), and a gap (29) is formed between the insertion part (24) and the peripheral wall of the condenser inlet header (12). ) Exists.

また、凝縮部出口ヘッダ(13)内の下部と受液器(4)内の下部、および過冷却部入口ヘッダ(14)内の上部と受液器(4)内の下部が、それぞ左側ヘッダタンク(7)および受液器(4)にろう付されたアルミニウム製連通部材(21)(22)により通じさせられており、凝縮部出口ヘッダ(13)から流出した冷媒が、受液器(4)を経て過冷却部入口ヘッダ(14)内に流入するようになされている。   The lower part in the condenser outlet header (13) and the lower part in the receiver (4), and the upper part in the supercooler inlet header (14) and the lower part in the receiver (4) are on the left side. The refrigerant that has been communicated by the aluminum communication members (21) and (22) brazed to the header tank (7) and the liquid receiver (4), and the refrigerant flowing out from the condenser outlet header (13) It flows into the supercooling section inlet header (14) via (4).

その他の構成は、第1の実施形態のコンデンサと同様である。   Other configurations are the same as those of the capacitor of the first embodiment.

図14は図11および図12に示すコンデンサ(40)に用いられる入口部材の変形例を示す。   FIG. 14 shows a modification of the inlet member used in the capacitor (40) shown in FIGS.

図14に示す入口部材(85)は、図8に示す入口部材(70)を上下逆向きにしたものであり、一端が冷媒流入路(17)の第2直線部分(17b)の頂面に開口するとともに、他端が挿入部(24)における凝縮部入口ヘッダ(12)の長手方向中央部側とは反対側を向いた上面に開口した鉛直状補助冷媒流入路(86)が形成されている。補助冷媒流入路(86)の通路断面積は、全長にわたって同一であるとともに冷媒流入路(17)の第2直線部分(17b)の通路断面積よりも小さくなっており、補助冷媒流入路(86)の上端開口の大きさが、流出口(28)の大きさよりも小さくなっている。   An inlet member (85) shown in FIG. 14 is obtained by turning the inlet member (70) shown in FIG. 8 upside down, and one end thereof is on the top surface of the second straight portion (17b) of the refrigerant inflow passage (17). A vertical auxiliary refrigerant inflow passage (86) is formed that opens at the top and faces the other end of the insertion portion (24) facing away from the center in the longitudinal direction of the condenser inlet header (12). Yes. The passage sectional area of the auxiliary refrigerant inflow passage (86) is the same over the entire length and is smaller than the passage sectional area of the second straight portion (17b) of the refrigerant inflow passage (17). ) Is smaller than the size of the outlet (28).

なお、第2の実施形態のコンデンサ(40)において、図6、図7、図9および図10に示す入口部材(30)(35)(75)(80)を上下逆向きにして用いてもよい。   In the capacitor (40) of the second embodiment, the inlet members (30) (35) (75) (80) shown in FIGS. 6, 7, 9 and 10 may be used upside down. Good.

図15および図16はこの発明によるコンデンサの第3の実施形態を示す。図15はこの発明によるコンデンサの第3の実施形態の全体構成を具体的に示し、図16は図15のコンデンサを模式的に示す。図16においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   15 and 16 show a third embodiment of the capacitor according to the present invention. FIG. 15 specifically shows the overall configuration of the third embodiment of the capacitor according to the present invention, and FIG. 16 schematically shows the capacitor of FIG. In FIG. 16, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図15および図16において、コンデンサ(50)の凝縮部(2)には、上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは3つの熱交換パス(P1)(P2)(P3)が設けられている。また、コンデンサ(50)の過冷却部(3)には、上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P4)が設けられている。そして、各熱交換パス(P1)(P2)(P3)(P4)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の3つの熱交換パス(P1)(P2)(P3)を第1〜第3熱交換パスといい、過冷却部(3)の熱交換パス(P4)を第4熱交換パスというものとする。   15 and 16, in the condenser (2) of the condenser (50), at least one, in this case, three heat exchange paths (P1) composed of a plurality of heat exchange tubes (5) arranged continuously in the vertical direction. ) (P2) (P3). In addition, the supercooling section (3) of the condenser (50) is provided with at least one, in this case, one heat exchange path (P4) composed of a plurality of heat exchange tubes (5) arranged continuously in the vertical direction. ing. In addition, the refrigerant flow directions of all heat exchange pipes (5) constituting each heat exchange path (P1) (P2) (P3) (P4) are the same, and the heat of two adjacent heat exchange paths The refrigerant flow direction of the exchange pipe (5) is different. Here, the three heat exchange paths (P1), (P2), and (P3) of the condensation section (2) are referred to as first to third heat exchange paths, and the heat exchange path (P4) of the supercooling section (3) is the first. It shall be a 4 heat exchange path.

右側ヘッダタンク(6)内は、第3熱交換パス(P3)と第4熱交換パス(P4)との間に設けられたアルミニウム製第1仕切部材(51)と、第1熱交換パス(P1)と第2熱交換パス(P2)との間に設けられたアルミニウム製第2仕切部材(52)とにより上下方向に並んだ3つの区画に仕切られている。左側ヘッダタンク(7)内は、第3熱交換パス(P3)と第4熱交換パス(P4)との間でかつ第1仕切部材(51)と同一高さ位置に設けられたアルミニウム製第3仕切部材(53)と、第2熱交換パス(P2)と第3熱交換パス(P3)との間に設けられたアルミニウム製第4仕切部材(54)とにより上下方向に並んだ3つの区画に仕切られている。コンデンサ(50)における第1および第3仕切部材(51)(53)よりも上方に位置する部分が凝縮部(2)となり、両仕切部材(51)(53)よりも下方に位置する部分が過冷却部(3)となっている。凝縮部(2)に3つの第1熱交換パス(P1)(P1)(P3)が設けられているので、右側ヘッダタンク(6)における第2仕切部材(52)よりも上方の区画が凝縮部入口ヘッダ(12)となり、左側ヘッダタンク(7)における第4仕切部材(54)よりも上方の区画が第1中間ヘッダ(55)となり、右側ヘッダタンク(6)における第1仕切部材(51)と第2仕切部材(52)との間の区画が第2中間ヘッダ(56)となり、左側ヘッダタンク(7)における第3仕切部材(53)と第4仕切部材(54)との間の区画が凝縮部出口ヘッダ(13)となっている。また、過冷却部(3)に1つの第4熱交換パス(P4)が設けられているので、左側ヘッダタンク(7)における第3仕切部材(53)よりも下方の区画が過冷却部入口ヘッダ(14)となり、右側ヘッダタンク(6)における第1仕切部材(51)よりも下方の区画が過冷却部出口ヘッダ(15)となっている。   The right header tank (6) has an aluminum first partition member (51) provided between the third heat exchange path (P3) and the fourth heat exchange path (P4), and a first heat exchange path ( P1) and a second heat exchange path (P2) are partitioned into three compartments arranged in the vertical direction by an aluminum second partition member (52). In the left header tank (7), an aluminum second tank is provided between the third heat exchange path (P3) and the fourth heat exchange path (P4) and at the same height as the first partition member (51). Three partition members arranged in the vertical direction by three partition members (53) and a fourth partition member (54) made of aluminum provided between the second heat exchange path (P2) and the third heat exchange path (P3). It is divided into compartments. The portion located above the first and third partition members (51) and (53) in the capacitor (50) is the condensing part (2), and the portion located below both the partition members (51) and (53) is It is a supercooling section (3). Since the three heat exchange paths (P1), (P1), and (P3) are provided in the condensing part (2), the section above the second partition member (52) in the right header tank (6) is condensed. The first header (55) is a section above the fourth partition member (54) in the left header tank (7), and the first partition member (51 in the right header tank (6)). ) And the second partition member (52) is a second intermediate header (56) between the third partition member (53) and the fourth partition member (54) in the left header tank (7). The compartment is the condenser outlet header (13). In addition, since one fourth heat exchange path (P4) is provided in the supercooling section (3), the section below the third partition member (53) in the left header tank (7) is the inlet of the supercooling section. A section below the first partition member (51) in the right header tank (6) is the supercooling section outlet header (15).

凝縮部入口ヘッダ(12)の周壁外周面における長手方向中央部よりも一端側に偏った部分、ここでは下端側に偏った部分に、第1の実施形態のコンデンサ(1)に用いられているアルミニウム製入口部材(16)がろう付されている。入口部材(16)は、挿入部(24)が、凝縮部入口ヘッダ(12)における長手方向中央部よりも上端側に偏った部分に形成された開口(23)を通して凝縮部入口ヘッダ(12)内に挿入され、密着部(25)が凝縮部入口ヘッダ(12)の周壁外周面における開口(23)の周囲の部分に密着させられた状態で凝縮部入口ヘッダ(12)の周壁外周面にろう付されている。   It is used for the capacitor (1) of the first embodiment in a portion that is biased toward one end of the outer peripheral surface of the peripheral wall of the condensing portion inlet header (12), that is, a portion that is biased toward the lower end here. An aluminum inlet member (16) is brazed. The inlet member (16) has the insertion portion (24) through the opening (23) formed in a portion of the condensation portion inlet header (12) that is biased toward the upper end side with respect to the longitudinal center portion. Inserted into the outer wall of the peripheral wall of the inlet of the condenser (12) in the state where the inner part of the outer wall of the outer wall of the inlet of the condenser (12) is in close contact with the opening (23). It is brazed.

その他の構成は第1の実施形態のコンデンサと同様である。なお、この実施形態において、図6〜図10に示す入口部材(30)(35)(70)(75)(80)が用いられてもよい。   Other configurations are the same as those of the capacitor of the first embodiment. In this embodiment, the inlet members (30) (35) (70) (75) (80) shown in FIGS. 6 to 10 may be used.

コンデンサ(50)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (50) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(50)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内の下部に流入する。このとき、冷媒は入口部材(16)の流出口(28)から上方(凝縮部入口ヘッダ(12)の長手方向中央部側)に向かって流出するので、多くの冷媒が凝縮部入口ヘッダ(12)内の上端部まで流れ、残りの冷媒が入口部材(16)の挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間の間隙(29)を通って入口部材(16)よりも下方に流れる。したがって、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内に流入した冷媒は凝縮部入口ヘッダ(12)内の全体に行き渡り、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。第1熱交換パス(P1)の熱交換管(5)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内を左方に流れて第1中間ヘッダ(55)内に流入し、第2熱交換パス(P2)の熱交換管(5)内を右方に流れて第2中間ヘッダ(56)内に流入し、第3熱交換パス(P3)の熱交換管(5)内を左方に流れて凝縮部出口ヘッダ(13)内に流入する。凝縮部出口ヘッダ(13)内に流入した冷媒は、連通部材(21)を通って受液器(4)内に流入する。   In the condenser (50) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inflow path (17) of the inlet member (16) to the lower part in the condenser inlet header (12). Inflow. At this time, the refrigerant flows out from the outlet (28) of the inlet member (16) upward (in the longitudinal direction central side of the condensing unit inlet header (12)), so that a large amount of refrigerant flows into the condensing unit inlet header (12 ) Flow up to the upper end in the inside, and the remaining refrigerant passes through the gap (29) between the insertion portion (24) of the inlet member (16) and the peripheral wall of the condenser inlet header (12) from the inlet member (16). Also flows downward. Therefore, the refrigerant that has flowed into the condenser inlet header (12) through the refrigerant inflow path (17) of the inlet member (16) is distributed throughout the condenser inlet header (12), and the condenser inlet header (12). Are evenly divided into the total heat exchange pipe (5) of the first heat exchange path (P1) connected to. The refrigerant that has flowed into the heat exchange pipe (5) of the first heat exchange path (P1) flows leftward in the heat exchange pipe (5) of the first heat exchange path (P1), and flows into the first intermediate header (55). ), Flows rightward in the heat exchange pipe (5) of the second heat exchange path (P2), flows into the second intermediate header (56), and heats in the third heat exchange path (P3). It flows in the exchange pipe (5) to the left and flows into the condenser outlet header (13). The refrigerant flowing into the condenser outlet header (13) flows into the liquid receiver (4) through the communication member (21).

受液器(4)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により受液器(4)内の下部に溜まり、連通部材(22)を通って過冷却部入口ヘッダ(14)内に入る。過冷却部入口ヘッダ(14)内に入った冷媒は、第4熱交換パス(P4)の熱交換管(5)内に入り、第4熱交換パス(P4)の熱交換管(5)の流路を右方に流れる間に過冷却された後、過冷却部出口ヘッダ(15)内に入り、冷媒流出口(18)および出口部材(19)の冷媒流出路(19a)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the liquid receiver (4) is a gas-liquid mixed-phase refrigerant, and the liquid-phase main mixed-phase refrigerant of the gas-liquid mixed-phase refrigerant accumulates in the lower part of the liquid receiver (4) due to gravity, and the communication member ( 22) through the supercooling section inlet header (14). The refrigerant that has entered the supercooling section inlet header (14) enters the heat exchange pipe (5) of the fourth heat exchange path (P4) and enters the heat exchange pipe (5) of the fourth heat exchange path (P4). After being supercooled while flowing to the right in the flow path, it enters the supercooling section outlet header (15) and flows out through the refrigerant outlet (18) and the refrigerant outlet path (19a) of the outlet member (19). Then, it is sent to the evaporator through the expansion valve.

上述した第1〜第3の実施形態のコンデンサ(1)(40)(50)においては、凝縮部(2)の下方に過冷却部(3)が設けられているが、これに限定されるものではなく、凝縮部の上方に過冷却部が設けられていてもよい。たとえば、凝縮部と、凝縮部の上方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液器とを備えており、凝縮部から流出した冷媒が、受液器を経て過冷却部に流入するようになっており、受液器に、凝縮部から冷媒が流入する冷媒流入口、および冷媒流入口の上方に位置しかつ過冷却部に冷媒を流出させる冷媒流出口が形成され、受液器内における冷媒流入口と冷媒流出口との間の高さ位置に、受液器内を上下に区画する仕切部材が設けられ、受液器内に、仕切部材よりも下方の冷媒流入口が通じる第1空間と、仕切部材よりも上方の冷媒流出口が通じる第2空間とが設けられ、受液器内に、第1空間と第2空間とを通じさせる吸い上げ管が配置されているコンデンサにも適用可能である。   In the capacitors (1), (40) and (50) of the first to third embodiments described above, the supercooling section (3) is provided below the condensing section (2). A supercooling unit may be provided above the condensing unit. For example, it includes a condensing unit, a supercooling unit provided above the condensing unit, and a liquid receiver provided between the condensing unit and the supercooling unit. The refrigerant flows into the supercooling section through the liquid container, and the refrigerant is introduced into the liquid receiver, and the refrigerant flows into the supercooling section that is located above the refrigerant inlet and located above the refrigerant inlet. A refrigerant outlet is formed, and a partition member for vertically dividing the interior of the liquid receiver is provided at a height position between the refrigerant inlet and the refrigerant outlet in the liquid receiver. A first space through which the refrigerant inlet below the member communicates and a second space through which the refrigerant outlet above the partition member communicates are provided, and the first space and the second space are passed through the receiver. It can also be applied to a capacitor in which a suction pipe is arranged.

図17および図18はこの発明によるコンデンサの第4の実施形態を示す。図17はこの発明によるコンデンサの第4の実施形態の全体構成を具体的に示し、図18は図17のコンデンサを模式的に示す。図18においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   17 and 18 show a fourth embodiment of the capacitor according to the present invention. FIG. 17 specifically shows the overall configuration of the fourth embodiment of the capacitor according to the present invention, and FIG. 18 schematically shows the capacitor of FIG. In FIG. 18, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図17および図18において、コンデンサ(60)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ気液分離機能を有する受液部(61)とを備えている。   17 and 18, the condenser (60) is condensed with the condensing unit (2), the supercooling unit (3) provided below the condensing unit (2), and the longitudinal direction thereof directed vertically. A liquid receiving part (61) provided between the part (2) and the supercooling part (3) and having a gas-liquid separation function.

コンデンサ(60)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が冷媒凝縮パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が冷媒過冷却パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パス(P1)といい、過冷却部(3)の熱交換パス(P2)を第2熱交換パス(P2)というものとする。なお、この実施形態においては、凝縮部(2)に1つの第1熱交換パス(P1)が設けられているので、第1熱交換パス(P1)が、凝縮部(2)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   The condenser section (2) and the supercooling section (3) of the condenser (60) each include at least one heat exchange pipe (here, one heat exchange path) (here, one heat exchange path ( P1) and (P2) are provided, the heat exchange path (P1) provided in the condensing part (2) serves as a refrigerant condensing path, and the heat exchange path (P2) provided in the supercooling part (3) serves as a refrigerant. It is a supercooling path. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is called a first heat exchange path (P1), and the heat exchange path (P2) of the supercooling part (3) is called a second heat exchange path (P2). Shall. In this embodiment, since the condensing part (2) is provided with one first heat exchange path (P1), the first heat exchanging path (P1) is the refrigerant flow direction of the condensing part (2). It is a heat exchange path on the most upstream side and at the same time a heat exchange path on the most downstream side in the refrigerant flow direction.

コンデンサ(60)の右端部側には、第1および第2熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の右端部が接続される第1ヘッダタンク(62)が配置されている。第1ヘッダタンク(62)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間の高さ位置に設けられたアルミニウム製仕切部材(63)により上下2つの区画に分割されている。第1ヘッダタンク(62)の仕切部材(63)よりも上方の区画に、凝縮部(2)の第1熱交換パス(P1)の冷媒流れ方向上流側端部が通じる凝縮部入口ヘッダ(12)が設けられ、同じく下方の区画に、過冷却部(3)の第2熱交換パス(P2)の冷媒流れ方向下流側端部が通じる過冷却部出口ヘッダ(15)が設けられている。   A first header tank (62) to which the right end of all heat exchange pipes (5) constituting the first and second heat exchange paths (P1) (P2) is connected to the right end of the condenser (60). Is arranged. The first header tank (62) is divided into two upper and lower sections by an aluminum partition member (63) provided at a height between the first heat exchange path (P1) and the second heat exchange path (P2). It is divided into A condensing unit inlet header (12) that communicates with an upstream end of the first heat exchange path (P1) of the condensing unit (2) in the refrigerant flow direction upstream of the partition member (63) of the first header tank (62). ), And a subcooling section outlet header (15) that communicates with the downstream end of the second heat exchange path (P2) of the subcooling section (3) in the refrigerant flow direction.

コンデンサ(60)の左端側には、凝縮部(2)に設けられた第1熱交換パス(P1)の全熱交換管(5)の左端部がろう付により接続された第2ヘッダタンク(64)と、過冷却部(3)に設けられた第2熱交換パス(P2)の熱交換管(5)の左端部がろう付により接続された第3ヘッダタンク(65)とが、第3ヘッダタンク(65)が左右方向外側に位置するように別個に設けられている。第3ヘッダタンク(65)の上端は第2ヘッダタンク(64)の下端よりも上方、ここでは第2ヘッダタンク(64)の上端とほぼ同一高さ位置にある。また、第3ヘッダタンク(65)の下端は第2ヘッダタンク(64)の下端よりも下方に位置しており、第3ヘッダタンク(65)における第2ヘッダタンク(64)よりも下方に位置する部分に、第2熱交換パス(P2)を構成する第2熱交換管(5)がろう付により接続されている。第3ヘッダタンク(65)は、凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有する受液部(61)を兼ねている。   On the left end side of the condenser (60) is a second header tank (with the left end of the total heat exchange pipe (5) of the first heat exchange path (P1) provided in the condenser (2) connected by brazing. 64) and a third header tank (65) in which the left end of the heat exchange pipe (5) of the second heat exchange path (P2) provided in the supercooling section (3) is connected by brazing. Three header tanks (65) are provided separately so as to be located on the outer side in the left-right direction. The upper end of the third header tank (65) is located above the lower end of the second header tank (64), and here is substantially at the same height as the upper end of the second header tank (64). The lower end of the third header tank (65) is located below the lower end of the second header tank (64), and is located below the second header tank (64) in the third header tank (65). The second heat exchange pipe (5) constituting the second heat exchange path (P2) is connected to the portion to be brazed by brazing. The third header tank (65) stores the liquid phase main refrigerant condensed in the condensing unit (2) and also has a liquid receiving unit functioning as a liquid storage unit for supplying the liquid phase main refrigerant to the supercooling unit (3). 61).

第2ヘッダタンク(64)の全体に、凝縮部(2)の第1熱交換パス(P1)の冷媒流れ方向下流側端部が通じる凝縮部出口ヘッダ(13)が設けられている。第3ヘッダタンク(65)における第2ヘッダタンク(64)の下端よりも下方に位置する部分に、過冷却部(3)の第2熱交換パス(P2)の冷媒流れ方向上流側端部が通じる過冷却部入口ヘッダ(14)が設けられている。そして、第2ヘッダタンク(64)の凝縮部出口ヘッダ(13)内の下端部と、第3ヘッダタンク(65)内における過冷却部入口ヘッダ(14)よりも上方の部分とが連通部材(66)により通じさせられている。なお、第3ヘッダタンク(65)内における過冷却部入口ヘッダ(14)よりも上方の部分と、過冷却部入口ヘッダ(14)とは、第3ヘッダタンク(65)内で通じている。   The entire second header tank (64) is provided with a condensing unit outlet header (13) that communicates with the downstream end of the first heat exchange path (P1) of the condensing unit (2) in the refrigerant flow direction. In the portion of the third header tank (65) located below the lower end of the second header tank (64), the upstream end in the refrigerant flow direction of the second heat exchange path (P2) of the subcooling section (3) A supercooling section inlet header (14) is provided. And the lower end part in the condensation part exit header (13) of the 2nd header tank (64) and the part above the supercooling part inlet header (14) in the 3rd header tank (65) are communicating members ( 66). The portion above the supercooling section inlet header (14) in the third header tank (65) and the supercooling section inlet header (14) communicate with each other in the third header tank (65).

凝縮部入口ヘッダ(12)の周壁外周面における長手方向中央部よりも一端側に偏った部分、ここでは下端側に偏った部分に、第1の実施形態のコンデンサ(1)に用いられているアルミニウム製入口部材(16)がろう付されている。入口部材(16)は、挿入部(24)が、凝縮部入口ヘッダ(12)における長手方向中央部よりも下端側に偏った部分に形成された開口(23)を通して凝縮部入口ヘッダ(12)内に挿入され、密着部(25)が凝縮部入口ヘッダ(12)の周壁外周面における開口(23)の周囲の部分に密着させられた状態で凝縮部入口ヘッダ(12)の周壁外周面にろう付されている。   It is used for the capacitor (1) of the first embodiment in a portion that is biased toward one end of the outer peripheral surface of the peripheral wall of the condensing portion inlet header (12), that is, a portion that is biased toward the lower end here. An aluminum inlet member (16) is brazed. The inlet member (16) has the insertion portion (24) through the opening (23) formed in a portion of the condensation portion inlet header (12) that is biased to the lower end side with respect to the longitudinal center portion. Inserted into the outer wall of the peripheral wall of the inlet of the condenser (12) in the state where the inner part of the outer wall of the outer wall of the inlet of the condenser (12) is in close contact with the opening (23). It is brazed.

その他の構成は第1の実施形態のコンデンサと同様である。なお、この実施形態において、図6〜図10に示す入口部材(30)(35)(70)(75)(80)が用いられてもよい。   Other configurations are the same as those of the capacitor of the first embodiment. In this embodiment, the inlet members (30) (35) (70) (75) (80) shown in FIGS. 6 to 10 may be used.

コンデンサ(60)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。   The condenser (60) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner.

上述した構成のコンデンサ(60)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内の下部に流入する。このとき、冷媒は入口部材(16)の流出口(28)から上方(凝縮部入口ヘッダ(12)の長手方向中央部側)に向かって流出するので、多くの冷媒が凝縮部入口ヘッダ(12)内の上端部まで流れ、残りの冷媒が入口部材(16)の挿入部(24)と凝縮部入口ヘッダ(12)の周壁との間の間隙(29)を通って入口部材(26)よりも下方に流れる。したがって、入口部材(16)の冷媒流入路(17)を通って凝縮部入口ヘッダ(12)内に流入した冷媒は凝縮部入口ヘッダ(12)内の全体に行き渡り、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。第1熱交換パス(P1)の熱交換管(5)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内を左方に流れて第2ヘッダタンク(64)の凝縮部出口ヘッダ(13)内に流入する。第2ヘッダタンク(64)の凝縮部出口ヘッダ(13)内に流入した冷媒は、連通部材(66)を通って第3ヘッダタンク(65)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入する。   In the condenser (60) having the above-described configuration, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inflow path (17) of the inlet member (16) to the lower part in the condenser inlet header (12). Inflow. At this time, the refrigerant flows out from the outlet (28) of the inlet member (16) upward (in the longitudinal direction central side of the condensing unit inlet header (12)), so that a large amount of refrigerant flows into the condensing unit inlet header (12 ) Flow up to the upper end of the inner part, and the remaining refrigerant passes through the gap (29) between the insertion part (24) of the inlet member (16) and the peripheral wall of the condenser inlet header (12) from the inlet member (26). Also flows downward. Accordingly, the refrigerant that has flowed into the condenser inlet header (12) through the refrigerant inflow passage (17) of the inlet member (16) is distributed throughout the condenser inlet header (12), and the condenser inlet header (12). Are evenly divided into the total heat exchange pipe (5) of the first heat exchange path (P1) connected to. The refrigerant that has flowed into the heat exchange pipe (5) of the first heat exchange path (P1) flows leftward in the heat exchange pipe (5) of the first heat exchange path (P1) and flows into the second header tank (64 ) Flows into the condenser outlet header (13). The refrigerant that has flowed into the condensing unit outlet header (13) of the second header tank (64) passes through the communication member (66) and is higher than the supercooling unit inlet header (14) in the third header tank (65). Flows into the part.

第3ヘッダタンク(65)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により第3ヘッダタンク(65)の過冷却部入口ヘッダ(14)内に溜まり、第2熱交換パス(P2)の熱交換管(5)内に入る。第2熱交換パス(P2)の熱交換管(5)内に入った液相主体混相冷媒は第2熱交換管(5)内を右方に流れる間に過冷却された後、第1ヘッダタンク(62)の過冷却部出口ヘッダ(15)内に入り、冷媒出口(18)および出口部材(19)の冷媒流出路(19a)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the third header tank (65) above the supercooling section inlet header (14) is a gas-liquid mixed phase refrigerant. Among the gas-liquid mixed phase refrigerant, the liquid-phase main mixed phase refrigerant is caused by gravity. It accumulates in the supercooling section inlet header (14) of the third header tank (65) and enters the heat exchange pipe (5) of the second heat exchange path (P2). The liquid phase main mixed refrigerant entering the heat exchange pipe (5) of the second heat exchange path (P2) is supercooled while flowing rightward in the second heat exchange pipe (5), and then the first header. The refrigerant enters the supercooling section outlet header (15) of the tank (62), flows out through the refrigerant outlet (18) and the refrigerant outlet path (19a) of the outlet member (19), and is sent to the evaporator through the expansion valve.

この発明によるコンデンサは、自動車に搭載されるカーエアコンに好適に用いられる。   The capacitor | condenser by this invention is used suitably for the car air conditioner mounted in a motor vehicle.

(1)(40)(50)(60):コンデンサ
(2):凝縮部
(3):過冷却部
(4):受液器(受液部)
(5):熱交換管
(12):凝縮部入口ヘッダ
(13):凝縮部出口ヘッダ
(14):過冷却部入口ヘッダ
(15):過冷却部出口ヘッダ
(16)(30)(35)(41)(70)(75)80)(85):入口部材
(17):冷媒流入路
(17b)(17c)(17d):第2直線部分
(23):開口
(24):挿入部
(26)(31)(36):平面
(27):流入口
(28):流出口
(29):間隙
(61):受液部
(62):第1ヘッダタンク
(64):第2ヘッダタンク
(65):第3ヘッダタンク
(66):連通部材
(71)(76)(81)(86):補助冷媒流入路
(1) (40) (50) (60): Capacitor
(2): Condensing part
(3): Supercooling section
(4): Liquid receiver (liquid receiver)
(5): Heat exchange pipe
(12): Condenser inlet header
(13): Condenser outlet header
(14): Supercooler inlet header
(15): Supercooler outlet header
(16) (30) (35) (41) (70) (75) 80) (85): Entrance member
(17): Refrigerant inflow path
(17b) (17c) (17d): Second straight line part
(23): Opening
(24): Insertion section
(26) (31) (36): Plane
(27): Inlet
(28): Outlet
(29): Gap
(61): Liquid receiver
(62): First header tank
(64): 2nd header tank
(65): Third header tank
(66): Communication member
(71) (76) (81) (86): Auxiliary refrigerant inflow passage

Claims (10)

長手方向を上下方向に向けて配置された凝縮部入口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置され、かつ長手方向の一端が凝縮部入口ヘッダに接続された複数の熱交換管からなる熱交換パスとを備えており、凝縮部入口ヘッダに、両端が開口した冷媒流入路を有しかつ凝縮部入口ヘッダ内における長手方向中央部よりも一端側に偏った部分に冷媒を流入させる入口部材が接合され、入口部材の冷媒流入路の一端開口が外部からの流入口となっているとともに他端開口が凝縮部入口ヘッダ内への流出口となっているコンデンサにおいて、
凝縮部入口ヘッダの周壁における長手方向中央部よりも一端側に偏った部分に開口が形成され、入口部材に、当該開口を通して凝縮部入口ヘッダ内に挿入された挿入部が、当該挿入部と凝縮部入口ヘッダの周壁の一部との間に間隙が存在するように設けられ、冷媒流入路の流出口が前記挿入部に開口しており、冷媒流入路の流出口が、冷媒を凝縮部入口ヘッダの長手方向中央部側に向かって流出するようになされているコンデンサ。
Condenser inlet header arranged with the longitudinal direction facing up and down, and arranged in parallel with the longitudinal direction facing left and right and spaced in the vertical direction, and one end in the longitudinal direction connected to the condenser inlet header A heat exchange path composed of a plurality of heat exchange pipes, the condenser inlet header having a refrigerant inflow passage that is open at both ends, and closer to one end than the longitudinal center in the condenser inlet header. An inlet member for allowing the refrigerant to flow is joined to the biased portion, and one end opening of the refrigerant inflow passage of the inlet member serves as an inflow port from the outside, and the other end opening serves as an outflow port into the condenser inlet header. In the capacitor
An opening is formed in a portion of the peripheral wall of the condensing unit inlet header that is deviated to one end side from the central portion in the longitudinal direction, and the insertion member inserted into the condensing unit inlet header through the opening is condensed with the insertion unit. The inlet of the refrigerant is provided so that a gap exists between a part of the peripheral wall of the header of the part inlet, the outlet of the refrigerant inflow path is open to the insertion part, and the outlet of the refrigerant inflow path is the inlet of the condenser. Capacitor designed to flow out toward the center in the longitudinal direction of the header.
入口部材の挿入部の流出口が1つの平面上に位置しており、当該平面に対して垂直な直線が凝縮部入口ヘッダの長手方向にのびている請求項1記載のコンデンサ。 2. The capacitor according to claim 1, wherein the outlet of the insertion portion of the inlet member is located on one plane, and a straight line perpendicular to the plane extends in the longitudinal direction of the condenser inlet header. 入口部材の挿入部の流出口が1つの平面上に位置しており、前記流出口の中心を通りかつ前記平面に対して垂直である直線が、前記平面から凝縮部入口ヘッダの長手方向中央部側に向かうにつれて、前記流出口の中心を通りかつ凝縮部入口ヘッダの長手方向にのびる直線から離れる方向に傾斜しており、両直線が一定の角度をなしている請求項1記載のコンデンサ。 The outlet of the inlet member insertion portion is located on one plane, and a straight line passing through the center of the outlet and perpendicular to the plane is a central portion in the longitudinal direction of the condenser inlet header from the plane. 2. The capacitor according to claim 1, wherein the capacitor is inclined in a direction away from a straight line passing through a center of the outlet and extending in a longitudinal direction of the condenser inlet header as it goes to the side, and both straight lines form a constant angle. 入口部材の挿入部の流出口が位置する1つの平面に対して垂直な直線と、凝縮部入口ヘッダの長手方向にのびる直線とのなす角度が0〜45度(但し、0度を含まない)である請求項3記載のコンデンサ。 An angle formed by a straight line perpendicular to one plane where the outlet of the insertion portion of the inlet member is positioned and a straight line extending in the longitudinal direction of the condenser inlet header is 0 to 45 degrees (excluding 0 degrees) The capacitor according to claim 3. 入口部材の流出口が位置する1つの平面に対して垂直な直線が、通風方向と直交する平面上に位置している請求項2〜4のうちのいずれかに記載のコンデンサ。 The capacitor according to any one of claims 2 to 4, wherein a straight line perpendicular to one plane on which the outlet of the inlet member is located is located on a plane perpendicular to the ventilation direction. 入口部材の冷媒流入路における流出口側の一定長さ部分に、直線部分が設けられており、当該直線部分が、流入口側から流出口側にかけて、凝縮部入口ヘッダの長手方向中央部側でかつ熱交換管側に傾斜している請求項5記載のコンデンサ。 A straight portion is provided at a constant length portion on the outlet side in the refrigerant inlet passage of the inlet member, and the straight portion extends from the inlet side to the outlet side on the central side in the longitudinal direction of the condenser inlet header. 6. The capacitor according to claim 5, which is inclined toward the heat exchange tube. 入口部材の挿入部に、一端が冷媒流入路の内面に開口するとともに、他端が挿入部における凝縮部入口ヘッダの長手方向中央部側とは反対側を向いた面に開口した補助冷媒流入路が形成されており、補助冷媒流入路の前記他端開口の大きさが、流出口の大きさよりも小さくなっている請求項1〜6のうちのいずれかに記載のコンデンサ。 Auxiliary refrigerant inflow passage having one end opened on the inner surface of the refrigerant inflow passage at the insertion portion of the inlet member and the other end opened on a surface facing the opposite side of the central portion in the longitudinal direction of the condensing portion inlet header in the insertion portion The capacitor according to claim 1, wherein the size of the opening of the other end of the auxiliary refrigerant inflow path is smaller than the size of the outlet. 凝縮部と、凝縮部の下方または上方に設けられた過冷却部と、凝縮部と過冷却部との間に設けられた受液部とを備えており、凝縮部が、長さ方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの熱交換パスと、冷媒流れ方向最下流側の熱交換パスの冷媒流れ方向下流側端部が通じかつ凝縮部の全熱交換パスを流れた冷媒が流入する凝縮部出口ヘッダとを備え、凝縮部入口ヘッダに冷媒流れ方向最上流側の熱交換パスの冷媒流れ方向上流側端部が通じさせられ、過冷却部が、長手方向を上下方向に向けて配置された過冷却部入口ヘッダと、長手方向を上下方向に向けて配置された過冷却部出口ヘッダと、長手方向を左右方向に向けるとともに上下方向に間隔をおいて並列状に配置された複数の熱交換管からなる少なくとも1つの過冷却用熱交換パスとを備え、過冷却部入口ヘッダに冷媒流れ方向最上流側の過冷却用熱交換パスの冷媒流れ方向上流側端部が通じさせられ、過冷却部出口ヘッダに冷媒流れ方向最下流側の過冷却用熱交換パスの冷媒流れ方向下流側端部が通じさせられ、受液部が、凝縮部出口ヘッダと過冷却部入口ヘッダとに通じさせられ、凝縮部出口ヘッダから流出した冷媒が、受液部を経て過冷却部入口ヘッダ内に流入するようになされている請求項1〜7のうちのいずれかに記載のコンデンサ。 A condensing part, a supercooling part provided below or above the condensing part, and a liquid receiving part provided between the condensing part and the supercooling part. At least one heat exchange path composed of a plurality of heat exchange tubes arranged in parallel in the vertical direction and spaced apart in the vertical direction, and the downstream end portion in the refrigerant flow direction of the heat exchange path on the most downstream side in the refrigerant flow direction And a condenser outlet header through which the refrigerant that has flowed through the total heat exchange path of the condenser flows, and the upstream end of the heat exchange path of the heat exchange path on the most upstream side in the refrigerant flow direction communicates with the inlet header of the condenser. The supercooling section is arranged with the supercooling section inlet header arranged with the longitudinal direction oriented in the vertical direction, the supercooling section exit header arranged with the longitudinal direction oriented in the vertical direction, and the longitudinal direction oriented in the horizontal direction. And in parallel with a gap in the vertical direction At least one supercooling heat exchange path composed of a plurality of heat exchange pipes, and an upstream end portion in the refrigerant flow direction of the supercooling heat exchange path on the most upstream side in the refrigerant flow direction is provided on the inlet header of the supercooling section. And the downstream end of the refrigerant cooling direction of the subcooling heat exchange path on the most downstream side in the refrigerant flow direction is communicated to the subcooling unit outlet header, and the liquid receiving unit is connected to the condensing unit outlet header and the supercooling unit inlet. The condenser according to any one of claims 1 to 7, wherein the refrigerant that is communicated with the header and flows out of the condenser outlet header flows into the subcooling inlet header through the liquid receiver. . 凝縮部に1つの熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が凝縮部入口ヘッダおよび凝縮部出口ヘッダに接続されている請求項8記載のコンデンサ。 The condenser according to claim 8, wherein one heat exchange path is provided in the condensing unit, and all heat exchange pipes of the heat exchanging path are connected to the condensing unit inlet header and the condensing unit outlet header. 熱交換管の一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが第2ヘッダタンクよりも左右方向外側に位置するように設けられ、第1ヘッダタンクに、凝縮部入口ヘッダおよび過冷却部出口ヘッダが前者が上側に位置するように設けられ、第2ヘッダタンクの全体に凝縮部出口ヘッダが設けられるとともに凝縮部出口ヘッダに凝縮部の熱交換パスの全熱交換管が接続され、第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダが設けられ、第2ヘッダタンクの凝縮部出口ヘッダ内と、第3ヘッダタンク内における第2ヘッダタンクの下端よりも上方に位置する部分とが連通部を介して通じさせられている請求項9記載のコンデンサ。
A first header tank whose longitudinal direction is directed vertically is disposed on one end side of the heat exchange pipe, and a second header tank and a third header tank whose longitudinal direction is directed vertically on the other end side are third The header tank is provided so as to be located on the outer side in the left-right direction with respect to the second header tank, the condenser header inlet header and the supercooler outlet header are provided on the first header tank so that the former is located on the upper side, A condensing unit outlet header is provided in the entire header tank, and a total heat exchange pipe of a heat exchanging path of the condensing unit is connected to the condensing unit outlet header, so that the lower end of the third header tank is below the lower end of the second header tank. And the upper end of the second header tank is located above the lower end of the second header tank, and the supercooling portion is inserted in a portion of the third header tank located below the lower end of the second header tank. A header is provided, and the inside of the condensing part outlet header of the second header tank and the part located above the lower end of the second header tank in the third header tank are communicated via the communication part. 9. The capacitor according to 9.
JP2017081750A 2016-07-12 2017-04-18 Capacitor Active JP6850058B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/626,178 US10094601B2 (en) 2016-07-12 2017-06-19 Condenser
CN201710541035.XA CN107606825B (en) 2016-07-12 2017-07-05 Condenser
DE102017211736.2A DE102017211736A1 (en) 2016-07-12 2017-07-10 capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016137512 2016-07-12
JP2016137512 2016-07-12

Publications (3)

Publication Number Publication Date
JP2018013322A true JP2018013322A (en) 2018-01-25
JP2018013322A5 JP2018013322A5 (en) 2020-02-06
JP6850058B2 JP6850058B2 (en) 2021-03-31

Family

ID=61019435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081750A Active JP6850058B2 (en) 2016-07-12 2017-04-18 Capacitor

Country Status (2)

Country Link
JP (1) JP6850058B2 (en)
CN (1) CN107606825B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018055826A1 (en) * 2016-09-23 2019-02-14 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle apparatus
JP7457587B2 (en) 2020-06-18 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat exchangers, heat exchanger units, and refrigeration cycle equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097431A2 (en) * 1982-06-19 1984-01-04 Su Industries Limited Improvements relating to heat exchangers
US5524938A (en) * 1994-02-04 1996-06-11 Behr Gmbh & Co. Tube connection for a water box of a motor vehicle heat exchanger
JP2002243390A (en) * 2001-02-21 2002-08-28 Denso Corp Heat exchanger
JP2004211921A (en) * 2002-12-27 2004-07-29 Showa Denko Kk Receiver tank for refrigerating cycle, heat exchanger with receiver tank, and condenser for refrigerating cycle
JP2013544344A (en) * 2010-12-08 2013-12-12 三花控股集▲団▼有限公司 Refrigerant distributor and heat exchanger provided with the refrigerant distributor
JP2015092120A (en) * 2013-11-08 2015-05-14 株式会社ケーヒン・サーマル・テクノロジー Condenser

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634956B2 (en) * 1990-12-28 1997-07-30 昭和アルミニウム株式会社 Batch brazing of connecting pipes for heat exchange medium inlet and outlet in heat exchanger
JP2605214Y2 (en) * 1992-09-10 2000-07-04 昭和アルミニウム株式会社 Heat exchanger
JPH06147703A (en) * 1992-11-02 1994-05-27 Matsushita Refrig Co Ltd Evaporator for refrigerator
JPH0743094A (en) * 1993-07-30 1995-02-10 Showa Alum Corp Pipe connector in heat exchanger
IT1280900B1 (en) * 1995-08-07 1998-02-11 Borletti Climatizzazione PROCEDURE FOR THE PRODUCTION OF A HEAT EXCHANGER, IN PARTICULAR FOR THE PRODUCTION OF A CONDENSER FOR SYSTEMS
CN102245982A (en) * 2008-12-15 2011-11-16 康奈可关精株式会社 Heat exchanger and method for manufacturing same
CN204830591U (en) * 2015-06-17 2015-12-02 广东工业大学 Integral type header divides liquid condenser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0097431A2 (en) * 1982-06-19 1984-01-04 Su Industries Limited Improvements relating to heat exchangers
US5524938A (en) * 1994-02-04 1996-06-11 Behr Gmbh & Co. Tube connection for a water box of a motor vehicle heat exchanger
JP2002243390A (en) * 2001-02-21 2002-08-28 Denso Corp Heat exchanger
JP2004211921A (en) * 2002-12-27 2004-07-29 Showa Denko Kk Receiver tank for refrigerating cycle, heat exchanger with receiver tank, and condenser for refrigerating cycle
JP2013544344A (en) * 2010-12-08 2013-12-12 三花控股集▲団▼有限公司 Refrigerant distributor and heat exchanger provided with the refrigerant distributor
JP2015092120A (en) * 2013-11-08 2015-05-14 株式会社ケーヒン・サーマル・テクノロジー Condenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018055826A1 (en) * 2016-09-23 2019-02-14 東芝キヤリア株式会社 Heat exchanger and refrigeration cycle apparatus
JP7457587B2 (en) 2020-06-18 2024-03-28 三菱重工サーマルシステムズ株式会社 Heat exchangers, heat exchanger units, and refrigeration cycle equipment

Also Published As

Publication number Publication date
CN107606825A (en) 2018-01-19
CN107606825B (en) 2020-10-27
JP6850058B2 (en) 2021-03-31

Similar Documents

Publication Publication Date Title
JP5501242B2 (en) Capacitor
US10094601B2 (en) Condenser
JP6039946B2 (en) Capacitor
JP6259703B2 (en) Capacitor
US10337808B2 (en) Condenser
JP5412195B2 (en) Heat exchanger
JP6572040B2 (en) Capacitor
US10119736B2 (en) Condenser
JP2018013322A (en) Condenser
JP2007078292A (en) Heat exchanger, and dual type heat exchanger
JP2001174103A (en) Refrigerant condenser
JP2018200132A (en) Condenser
JP2010065880A (en) Condenser
JP6572031B2 (en) Capacitor
JP5622411B2 (en) Capacitor
JP2008267753A (en) Heat exchanger
JP2018036041A (en) Condenser
JP2019027685A (en) Condenser
JP2014052163A (en) Heat exchanger
JP2006207995A (en) Heat exchanger
JP2008256234A (en) Evaporator
JP2013029257A (en) Condenser
JP2020101335A (en) Condenser
JP6626693B2 (en) Capacitors
KR100858514B1 (en) Receiver drier - integrated condenser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191220

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210302

R150 Certificate of patent or registration of utility model

Ref document number: 6850058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350