JP2018200132A - Condenser - Google Patents

Condenser Download PDF

Info

Publication number
JP2018200132A
JP2018200132A JP2017104182A JP2017104182A JP2018200132A JP 2018200132 A JP2018200132 A JP 2018200132A JP 2017104182 A JP2017104182 A JP 2017104182A JP 2017104182 A JP2017104182 A JP 2017104182A JP 2018200132 A JP2018200132 A JP 2018200132A
Authority
JP
Japan
Prior art keywords
header
heat exchange
refrigerant
inlet
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017104182A
Other languages
Japanese (ja)
Inventor
大衛 中根
Daiei Nakane
大衛 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr Thermal Systems Japan Ltd
Original Assignee
Keihin Thermal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keihin Thermal Technology Corp filed Critical Keihin Thermal Technology Corp
Priority to JP2017104182A priority Critical patent/JP2018200132A/en
Publication of JP2018200132A publication Critical patent/JP2018200132A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a condenser capable of equalizing a flow rate of refrigerant that flows in a total heat exchange pipe leading to a condensation part outlet header, and suppressing an increase in weight.SOLUTION: A condenser 1 has a condensation part 2, a supercooling part 3, and a liquid receiver 4. The condensation part 2 has one condensation heat exchange path P1, a condensation part inlet header 12 formed with a refrigerant inlet 16, and a condensation part outlet header 13. The supercooling part 3 has a supercooling heat exchange path P2, a supercooling part inlet header 14, and a supercooling part outlet header 15. The liquid receiver 4 is formed separately from the supercooling part outlet header 13. The condensation part outlet header 13 and the liquid receiver 4 are brought into communication with each other through two communication parts 21A, 21B that are provided at an interval in a vertical direction. One communication part 21A and the refrigerant inlet 16 of the condensation part inlet header 12 are provided lower than the center X in the vertical direction of the condensation part, and the other communication part 21B is provided at an opposite side to the one communication part 21A and the refrigerant inlet 16 with the center X in the vertical direction of the condensation part 2 interposed therebetween.SELECTED DRAWING: Figure 2

Description

この発明は、たとえば自動車に搭載されるカーエアコンに好適に用いられるコンデンサに関する。   The present invention relates to a capacitor suitably used for, for example, a car air conditioner mounted on an automobile.

この明細書および特許請求の範囲において、各図面の上下、左右を上下、左右といい、各図面の紙面表裏方向を通風方向というものとする。   In this specification and claims, the top and bottom, left and right of each drawing are referred to as top and bottom and left and right, respectively, and the front and back direction of each drawing is the ventilation direction.

たとえばカーエアコンのコンデンサとして、凝縮部、凝縮部の下方に設けられた過冷却部、および凝縮部と過冷却部との間に設けられ、かつ凝縮部から流入した気液混相冷媒を気相冷媒と液相冷媒とに分離するとともに液相冷媒を過冷却部に送り出す受液部とを備えており、凝縮部が、上下方向に間隔をおいて配置された複数の熱交換管からなる1つの凝縮用熱交換パスと、長手方向を上下方向に向けて配置され、かつ冷媒入口が形成されるとともに凝縮用熱交換パスの熱交換管が通じる凝縮部入口ヘッダと、長手方向を上下方向に向けて配置されかつ凝縮用熱交換パスの熱交換管が通じる凝縮部出口ヘッダとを有し、過冷却部が、上下方向に間隔をおいて配置された複数の熱交換管からなる1つの過冷却用熱交換パスと、長手方向を上下方向に向けて配置されかつ冷媒流れ方向上流端の過冷却用熱交換パスの熱交換管が通じる過冷却部入口ヘッダと、長手方向を上下方向に向けて配置され、かつ冷媒出口が形成されるとともに冷媒流れ方向下流端の過冷却用熱交換パスの熱交換管が通じる過冷却部出口ヘッダとを有し、受液部が、凝縮部出口ヘッダとは別個に形成されるとともに長手方向を上下方向に向けて配置され、かつ凝縮部出口ヘッダおよび過冷却部入口ヘッダに通じており、凝縮部出口ヘッダと受液部とが1つの連通部により通じさせられているコンデンサが広く知られている(以下、周知コンデンサと称する)。   For example, as a condenser of a car air conditioner, a condensing unit, a supercooling unit provided below the condensing unit, and a gas-liquid mixed phase refrigerant provided between the condensing unit and the supercooling unit and flowing in from the condensing unit are used as gas phase refrigerants. And a liquid receiving part that separates the liquid phase refrigerant into the supercooling part, and the condensing part is a single heat exchange tube that is arranged at intervals in the vertical direction. Condensation heat exchange path, condensing section inlet header that is arranged with the longitudinal direction oriented vertically and that forms a refrigerant inlet and leads to the heat exchange pipe of the condensation heat exchange path, and the longitudinal direction faces up and down And a condenser outlet header through which the heat exchange pipe of the heat exchange path for condensation communicates, and the supercooling part is composed of a plurality of heat exchange pipes arranged at intervals in the vertical direction. Heat exchange path and longitudinal direction up and down And a supercooling section inlet header that is connected to the heat exchange pipe of the supercooling heat exchange path at the upstream end in the refrigerant flow direction, the longitudinal direction is arranged in the vertical direction, and a refrigerant outlet is formed. A subcooling section outlet header through which a heat exchange pipe of a heat exchange path for supercooling at the downstream end in the refrigerant flow direction communicates, and a liquid receiving section is formed separately from the condensing section outlet header, and the longitudinal direction is vertically And a condenser in which the condenser outlet header and the liquid receiver are communicated by a single communicating portion are widely known. Hereinafter referred to as a well-known capacitor).

上述した周知コンデンサにおいて熱交換効率を向上させるには、冷媒が凝縮部入口ヘッダ内に流入する冷媒入口の高さ位置、および冷媒が凝縮部出口ヘッダ内から受液部内に流出する連通部の高さ位置を調整することによって、凝縮部入口ヘッダに通じる熱交換パスを構成する全熱交換管を流れる冷媒の流量を均一化することが効果的である。   In order to improve the heat exchange efficiency in the known condenser described above, the height of the refrigerant inlet where the refrigerant flows into the condenser inlet header and the height of the communication part where the refrigerant flows out of the condenser outlet header into the liquid receiver. By adjusting the position, it is effective to equalize the flow rate of the refrigerant flowing through the total heat exchange pipe constituting the heat exchange path leading to the condenser inlet header.

ところで、自動車に搭載されるカーエアコンの場合、カーエアコンを構成する部品を接続する配管の取り回しを考慮して、コンデンサの凝縮部入口ヘッダへの冷媒入口の高さ位置が制限されることがあり、上述した周知コンデンサにおいては、凝縮部入口ヘッダに通じる熱交換パスの全熱交換管を流れる冷媒流量を均一化することが困難な場合がある。   By the way, in the case of a car air conditioner mounted in an automobile, the height position of the refrigerant inlet to the condenser condensing part inlet header may be limited in consideration of the piping of the pipes connecting the parts constituting the car air conditioner. In the known condenser described above, it may be difficult to equalize the flow rate of the refrigerant flowing through the total heat exchange pipe of the heat exchange path leading to the condenser inlet header.

冷媒入口および連通部の高さ位置を調整することなく、凝縮用熱交換パスの全熱交換管を流れる冷媒流量を均一化しうるコンデンサとして、本出願人は、先に、基本的構成は上述した周知コンデンサと同様であり、凝縮部入口ヘッダに、2つの冷媒入口が、上下方向に間隔をおき、かつ少なくとも1つの冷媒入口が凝縮部の高さ方向の中央部よりも下方に位置するとともに残りの冷媒入口が凝縮部の高さ方向の中央部よりも上方に位置するように形成されており、冷媒入口を通して凝縮部入口ヘッダ内に冷媒を送り込む冷媒流入路を有する入口部材が、凝縮部の高さ方向の中央部よりも下方に形成された1つの冷媒入口と対応する高さ位置において凝縮部入口ヘッダに接合されるとともに、入口部材の冷媒流入路の冷媒流れ方向下流側端部が当該冷媒入口と直接通じさせられ、入口部材に、冷媒流入路の冷媒流れ方向中間部を外部に通じさせる1つの分岐部が設けられ、一端部が入口部材に接続されるとともに他端部が凝縮部入口ヘッダに接続された冷媒分岐管によって、入口部材の分岐部と、凝縮部入口ヘッダにおける冷媒流入路と直接通じている冷媒入口を除いた他の冷媒入口とが連通させられているコンデンサを提案した(特許文献1参照)。   As a capacitor capable of equalizing the flow rate of the refrigerant flowing through the total heat exchange pipe of the heat exchange path for condensation without adjusting the height position of the refrigerant inlet and the communication portion, the present applicant has previously described the basic configuration described above. It is the same as a known condenser, and two refrigerant inlets are spaced apart in the vertical direction in the condenser inlet header, and at least one refrigerant inlet is located below the central part in the height direction of the condenser and remains. The refrigerant inlet is formed so as to be positioned above the central portion in the height direction of the condensing unit, and an inlet member having a refrigerant inflow passage for feeding the refrigerant into the condensing unit inlet header through the refrigerant inlet is provided in the condensing unit. While being joined to the condenser inlet header at a height corresponding to one refrigerant inlet formed below the central portion in the height direction, the downstream end of the refrigerant inlet direction of the refrigerant inlet passage of the inlet member is One branch portion is provided which is directly communicated with the refrigerant inlet and allows the inlet member to communicate the refrigerant flow direction intermediate portion of the refrigerant inflow passage to the outside. One end portion is connected to the inlet member and the other end portion is condensed. A condenser in which the branch portion of the inlet member is connected to the other refrigerant inlet except for the refrigerant inlet directly connected to the refrigerant inlet passage in the condenser inlet header by the refrigerant branch pipe connected to the inlet header. Proposed (see Patent Document 1).

しかしながら、特許文献1記載のコンデンサにおいては、入口部材に、冷媒流入路の冷媒流れ方向中間部を外部に通じさせる1つの分岐部が設けられているので、構造が複雑になり、製造が面倒である。また、冷媒分岐管を必要とするので、重量が大きくなるとともにレイアウト性が不十分である。   However, in the capacitor described in Patent Document 1, the inlet member is provided with one branch portion that communicates the intermediate portion in the refrigerant flow direction of the refrigerant inflow passage to the outside, which makes the structure complicated and cumbersome to manufacture. is there. Further, since a refrigerant branch pipe is required, the weight increases and the layout is insufficient.

特開2015−200478号公報Japanese Patent Laid-Open No. 2015-200478

この発明の目的は、上記問題を解決し、入口部材の構造を複雑にすることなく、凝縮部出口ヘッダに通じる全熱交換管を流れる冷媒流量を均一化することができ、しかも重量化を抑制しうるコンデンサを提供することにある。   The object of the present invention is to solve the above-mentioned problems, and to make the flow rate of the refrigerant flowing through the total heat exchange pipe leading to the condenser outlet header uniform, without complicating the structure of the inlet member, and to suppress the weight increase. It is to provide a capacitor that can.

本発明は、上記目的を達成するために以下の態様からなる。   In order to achieve the above object, the present invention comprises the following aspects.

1)凝縮部、凝縮部の下方に設けられた過冷却部、および凝縮部と過冷却部との間に設けられ、かつ凝縮部から流入した気液混相冷媒を気相冷媒と液相冷媒とに分離するとともに液相冷媒を過冷却部に送り出す受液部とを備えており、凝縮部が、上下方向に間隔をおいて配置された複数の熱交換管からなる1つの凝縮用熱交換パスと、長手方向を上下方向に向けて配置され、かつ冷媒入口が形成されるとともに凝縮用熱交換パスの熱交換管が通じる凝縮部入口ヘッダと、長手方向を上下方向に向けて配置されかつ凝縮用熱交換パスの熱交換管が通じる凝縮部出口ヘッダとを有し、過冷却部が、上下方向に間隔をおいて配置された複数の熱交換管からなる少なくとも1つの過冷却用熱交換パスと、長手方向を上下方向に向けて配置されかつ冷媒流れ方向上流端の過冷却用熱交換パスの熱交換管が通じる過冷却部入口ヘッダと、長手方向を上下方向に向けて配置され、かつ冷媒出口が形成されるとともに冷媒流れ方向下流端の過冷却用熱交換パスの熱交換管が通じる過冷却部出口ヘッダとを有し、受液部が、凝縮部出口ヘッダとは別個に形成されるとともに長手方向を上下方向に向けて配置され、かつ凝縮部出口ヘッダおよび過冷却部入口ヘッダに通じているコンデンサであって、
凝縮部出口ヘッダと受液部とが、上下方向に間隔をおいて設けられた複数の連通部により通じさせられており、全連通部中の2つの連通部のうち一方の連通部と凝縮部入口ヘッダの冷媒入口とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、前記2つの連通部のうち他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部および冷媒入口とは反対側に設けられているコンデンサ。
1) A condensing unit, a supercooling unit provided below the condensing unit, and a gas-liquid mixed phase refrigerant that is provided between the condensing unit and the supercooling unit and that flows from the condensing unit are converted into a gas phase refrigerant and a liquid phase refrigerant. And a liquid receiving part for sending the liquid-phase refrigerant to the supercooling part, and the condensing part is one heat exchange path for condensation consisting of a plurality of heat exchange tubes arranged at intervals in the vertical direction And a condenser inlet header that is arranged with the longitudinal direction facing up and down and that forms a refrigerant inlet and leads to the heat exchange pipe of the heat exchange path for condensation, and is arranged and condensed with the longitudinal direction facing up and down. At least one supercooling heat exchange path comprising a plurality of heat exchange pipes having a supercooling section arranged at intervals in the vertical direction. And the longitudinal direction of the refrigerant is Supercooling section inlet header through which the heat exchange pipe of the supercooling heat exchange path at the upstream end in the direction leads, and the supercooling at the downstream end in the refrigerant flow direction, with the longitudinal direction being arranged vertically and the refrigerant outlet being formed A subcooling section outlet header through which the heat exchange pipe of the heat exchange path for communication is connected, and the liquid receiving section is formed separately from the condensing section outlet header, and is arranged with the longitudinal direction thereof directed vertically, and is condensed. A condenser leading to the outlet header and the subcooling inlet header,
The condensing unit outlet header and the liquid receiving unit are communicated with each other by a plurality of communicating units provided at intervals in the vertical direction, and one of the two communicating units in all communicating units and the condensing unit The refrigerant inlet of the inlet header is provided on the same side of either the upper side or the lower side of the center of the condensing part in the vertical direction, and the other communication part of the two communication parts is in the vertical direction of the condensing part. A capacitor provided on the opposite side of the one communicating portion and the refrigerant inlet across the center.

2)受液部が凝縮部出口ヘッダの外側方に配置され、受液部の下端が凝縮部出口ヘッダの下端よりも下方に位置するとともに、受液部の上端が凝縮部出口ヘッダの下端よりも上方に位置しており、凝縮部出口ヘッダと、受液部における凝縮部出口ヘッダの下端よりも上方に位置する部分とが、上下方向に間隔をおいて設けられた複数の連通部により通じさせられている上記1)記載のコンデンサ。   2) The liquid receiver is disposed outside the condenser outlet header, the lower end of the liquid receiver is located below the lower end of the condenser outlet header, and the upper end of the liquid receiver is lower than the condenser outlet header. Are also located above, and the condensing unit outlet header and a portion located above the lower end of the condensing unit outlet header in the liquid receiving unit communicate with each other through a plurality of communicating portions spaced in the vertical direction. The capacitor described in 1) above.

3)連通部が、凝縮部出口ヘッダと受液部との間に配置され、かつ凝縮部出口ヘッダ内と受液部内とを通じさせる通路を有する連通部材からなり、全連通部材の形状が通路を含んで同一である上記1)または2)記載のコンデンサ。   3) The communication part is composed of a communication member that is disposed between the condenser outlet header and the liquid receiver, and has a passage through the condenser outlet header and the liquid receiver. The capacitor as described in 1) or 2) above, which is the same.

4)前記連通部が上下方向に間隔をおいて2つ設けられ、凝縮部入口ヘッダの冷媒入口といずれか一方の連通部とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、同他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部とは反対側に設けられている上記1)〜3)のうちのいずれかに記載のコンデンサ。   4) Two communicating parts are provided at intervals in the vertical direction, and the refrigerant inlet of the condensing part inlet header and one of the communicating parts are above and below the center of the condensing part in the vertical direction. Any one of the above 1) to 3) is provided on the same side, and the other communication part is provided on the opposite side of the one communication part across the center in the vertical direction of the condensation part. Capacitor described in.

5)凝縮部入口ヘッダの冷媒入口といずれか一方の連通部とが、凝縮部の上下方向の中心よりも下側に設けられている上記4)記載のコンデンサ。   5) The capacitor described in 4) above, wherein the refrigerant inlet of the condenser inlet header and one of the communication parts are provided below the center of the condenser in the vertical direction.

6)過冷却部に1つの過冷却用熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が過冷却部入口ヘッダおよび過冷却部出口ヘッダに通じさせられている上記1)〜5)のうちのいずれかに記載のコンデンサ。   6) The above-mentioned 1) to 1) in which one supercooling heat exchange path is provided in the supercooling section, and the total heat exchange pipe of the heat exchange path is connected to the supercooling section inlet header and the supercooling section outlet header. The capacitor according to any one of 5).

7)左右いずれか一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第2ヘッダタンクとは別個に形成された受液部が、受液部が左右方向外側に位置するように配置され、第1および第2ヘッダタンク内が仕切部材により上下2つの区画に分割され、第1および第2ヘッダタンクの上区画に凝縮用熱交換パスの全熱交換管が接続され、同じく下区画に過冷却部の過冷却用熱交換パスの全熱交換管が接続され、第1ヘッダタンクの上区画に凝縮部入口ヘッダが設けられ、第1ヘッダタンクの下区画に過冷却部出口ヘッダが設けられ、第2ヘッダタンクの上区画に凝縮部出口ヘッダが設けられ、第2ヘッダタンクの下区画に過冷却部入口ヘッダが設けられている上記6)記載のコンデンサ。   7) A first header tank whose longitudinal direction is directed vertically is disposed on either one of the left and right sides, and is separate from the second header tank and the second header tank whose longitudinal direction is directed vertically on the other end. The first and second headers are divided into two upper and lower compartments by a partition member in the first and second header tanks. The total heat exchange pipe of the heat exchange path for condensation is connected to the upper section of the tank, and the total heat exchange pipe of the subcooling heat exchange path of the supercooling section is connected to the lower section, and the upper section of the first header tank A condenser inlet header is provided, a supercooler outlet header is provided in the lower section of the first header tank, a condenser outlet header is provided in the upper section of the second header tank, and an excess header is provided in the lower section of the second header tank. Cooling unit inlet header is provided Capacitor of the above 6), wherein that.

8)左右いずれか一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが左右方向外側に位置するように配置され、第1ヘッダタンクおよび第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第1ヘッダタンク内が仕切部材により上下2つの区画に分割され、第1ヘッダタンクの上区画に凝縮用熱交換パスの全熱交換管が接続され、同じく下区画に過冷却用熱交換パスの全熱交換管が接続され、第2ヘッダタンクに凝縮用熱交換パスの全熱交換管が接続され、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却用熱交換パスの全熱交換管が接続され、第1ヘッダタンクの上区画に凝縮部入口ヘッダが設けられ、第1ヘッダタンクの下区画に過冷却部出口ヘッダが設けられ、第2ヘッダタンクに凝縮部出口ヘッダが設けられ、第3ヘッダタンクが受液部を兼ねているとともに、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダが設けられている上記6)記載のコンデンサ。   8) A first header tank whose longitudinal direction is directed vertically is arranged on either the left or right end side, and a second header tank or a third header tank whose longitudinal direction is directed vertically on the other end side is The three header tanks are arranged so as to be located on the outer side in the left-right direction, the lower ends of the first header tank and the third header tank are located below the lower end of the second header tank, and the upper end thereof is lower than the lower end of the second header tank. Is located above, the inside of the first header tank is divided into two upper and lower sections by a partition member, and the total heat exchange pipe of the heat exchange path for condensation is connected to the upper section of the first header tank. Is connected to the total heat exchange pipe of the subcooling heat exchange path, is connected to the total heat exchange pipe of the heat exchange path for condensation is connected to the second header tank, and is lower than the lower end of the second header tank in the third header tank The total heat exchange pipe of the heat exchange path for supercooling is connected to the located part, the condenser inlet header is provided in the upper section of the first header tank, and the supercooler outlet header is provided in the lower section of the first header tank. The second header tank is provided with a condensing part outlet header, and the third header tank also serves as a liquid receiving part, and is supercooled at a portion located below the lower end of the second header tank in the third header tank. The capacitor as described in 6) above, wherein a part inlet header is provided.

上記1)〜8)のコンデンサは、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載されるが、当該冷凍サイクルにおいては、冷媒は圧縮機に吸引されて循環するようになっている。そして、上記1)〜8)のコンデンサによれば、凝縮部出口ヘッダと受液部とが、上下方向に間隔をおいて設けられた複数の連通部により通じさせられており、全連通部中の2つの連通部のうち一方の連通部と凝縮部入口ヘッダの冷媒入口とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、前記2つの連通部のうち他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部および冷媒入口とは反対側に設けられているので、凝縮部が、上下方向に間隔をおいて配置された複数の熱交換管からなる1つの凝縮用熱交換パスを有し、当該熱交換パスの全熱交換管が凝縮部入口ヘッダおよび凝縮部出口ヘッダに接続されている場合であっても、凝縮部入口ヘッダ内に流入した冷媒を凝縮用熱交換パスの全熱交換管に均等に分流することができ、コンデンサの性能低下を防止することが可能になる。すなわち、全連通部中の2つの連通部のうち一方の連通部と凝縮部入口ヘッダの冷媒入口とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、前記2つの連通部のうち他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部および冷媒入口とは反対側に設けられていると、前記一方の連通部を除いた連通部においても、凝縮部出口ヘッダから受液部へ冷媒を吸い込む吸い込み圧が発生し、その結果凝縮用熱交換パスの全熱交換管から凝縮部出口ヘッダへ冷媒を吸い込む吸い込み圧が発生する。したがって、凝縮部入口ヘッダから凝縮用熱交換パスの全熱交換管への冷媒の流れが促進され、凝縮部入口ヘッダ内に流入した冷媒を凝縮用熱交換パスの全熱交換管に均等に分流することができる。しかも、入口部材には、冷媒流れ方向下流側端部が冷媒入口と直接通じている冷媒流入路だけを形成すればよいので、入口部材の構造が簡単になって、製造が容易になる。また、冷媒分岐管を必要としないので、コンデンサ全体の大型化を抑制することができ、レイアウト性が向上する。   The capacitors 1) to 8) above constitute a refrigeration cycle together with a compressor, an expansion valve (decompressor), and an evaporator, and are mounted on a vehicle as a car air conditioner. In the refrigeration cycle, refrigerant is sucked into the compressor. Has been circulating. According to the capacitors 1) to 8) above, the condenser outlet header and the liquid receiver are communicated by a plurality of communicating portions provided at intervals in the vertical direction. One of the two communicating portions and the refrigerant inlet of the condensing portion inlet header are provided on either the upper side or the lower side of the center in the vertical direction of the condensing portion, and the two communicating portions The other communication part is provided on the opposite side of the one communication part and the refrigerant inlet across the center in the vertical direction of the condensing part, so that the condensing part is arranged at intervals in the vertical direction. Even if it has one heat exchange path for condensation consisting of a plurality of heat exchange pipes, and all the heat exchange pipes of the heat exchange path are connected to the condenser inlet header and condenser outlet header, Total heat of the heat exchange path for condensing the refrigerant flowing into the header The flow can be evenly divided into the exchange pipe, and the performance degradation of the capacitor can be prevented. That is, one of the two communicating parts in all communicating parts and the refrigerant inlet of the condensing part inlet header are provided on either the upper side or the lower side of the condensing part in the vertical direction. If the other communication part of the two communication parts is provided on the opposite side of the one communication part and the refrigerant inlet across the center in the vertical direction of the condensing part, the one communication part is excluded. Also in the communication part, a suction pressure for sucking refrigerant from the condenser outlet header to the liquid receiver is generated, and as a result, a suction pressure for sucking refrigerant from the total heat exchange pipe of the heat exchange path for condensation to the condenser outlet header is generated. . Therefore, the flow of the refrigerant from the condenser inlet header to the total heat exchange pipe of the condenser heat exchange path is promoted, and the refrigerant flowing into the condenser inlet header is equally divided into the total heat exchange pipe of the condenser heat exchange path. can do. In addition, since only the refrigerant inflow path whose downstream end in the refrigerant flow direction communicates directly with the refrigerant inlet needs to be formed in the inlet member, the structure of the inlet member is simplified and manufacture is facilitated. Moreover, since the refrigerant branch pipe is not required, the overall size of the capacitor can be suppressed and the layout can be improved.

上記4)および5)のコンデンサによれば、次の効果を奏する。すなわち、上述した周知コンデンサにおいて、1つの冷媒入口および1つの連通部が、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側の部分に設けられている場合には、凝縮用熱交換パスの全熱交換管のうち冷媒入口および連通部が設けられた側に配置された熱交換管に流入する冷媒量が、同他側に配置された熱交換管に流入する冷媒量よりも著しく多くなり、凝縮用熱交換パスの全熱交換管を流れる冷媒流量が不均一になる。しかしながら、この場合であっても、上記4)および5)のコンデンサのように、前記連通部が上下方向に間隔をおいて2つ設けられ、凝縮部入口ヘッダの冷媒入口といずれか一方の連通部とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、同他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部とは反対側に設けられていると、凝縮部入口ヘッダ内に流入した冷媒を、凝縮部入口ヘッダおよび凝縮部出口ヘッダに接続された凝縮用熱交換パスの全熱交換管に均等に分流する効果が向上する。   The capacitors 4) and 5) have the following effects. That is, in the above-described well-known capacitor, when one refrigerant inlet and one communication portion are provided on either the upper side or the lower side of the center of the condensing unit in the same direction, Refrigerant in which the amount of refrigerant flowing into the heat exchange pipe disposed on the side where the refrigerant inlet and the communication portion are provided in the total heat exchange pipe of the heat exchange path for condensation flows into the heat exchange pipe disposed on the other side The amount of the refrigerant flowing through the entire heat exchange pipe of the heat exchange path for condensation becomes non-uniform. However, even in this case, like the condensers 4) and 5), two communication parts are provided at intervals in the vertical direction, and either one of the refrigerant inlets of the condenser inlet header and one of the communication parts is connected. Is provided on either the upper side or the lower side of the center in the vertical direction of the condensing part, and the other communication part is connected to the one communication part across the center in the vertical direction of the condensing part. Is provided on the opposite side, the refrigerant flowing into the condenser inlet header is evenly divided into all the heat exchange pipes of the heat exchange path for condensation connected to the condenser inlet header and the condenser outlet header. Will improve.

この発明によるコンデンサの第1の実施形態の全体構成を具体的に示す正面図である。1 is a front view specifically showing the overall configuration of a first embodiment of a capacitor according to the present invention; 図1のコンデンサを模式的に示す正面図である。FIG. 2 is a front view schematically showing the capacitor of FIG. 1. この発明によるコンデンサの第2の実施形態の全体構成を具体的に示す正面図である。It is a front view which shows concretely the whole structure of 2nd Embodiment of the capacitor | condenser by this invention. 図3のコンデンサを模式的に示す正面図である。FIG. 4 is a front view schematically showing the capacitor of FIG. 3.

以下、この発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

以下の説明において、「アルミニウム」という用語には、純アルミニウムの他にアルミニウム合金を含むものとする。   In the following description, the term “aluminum” includes aluminum alloys in addition to pure aluminum.

さらに、全図面を通じて同一部分および同一物には同一符号を付す。   Further, the same parts and the same parts are denoted by the same reference symbols throughout the drawings.

図1はこの発明によるコンデンサの第1の実施形態の全体構成を具体的に示し、図2は図1のコンデンサを模式的に示す。図2においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   FIG. 1 specifically shows the overall configuration of the first embodiment of the capacitor according to the present invention, and FIG. 2 schematically shows the capacitor of FIG. In FIG. 2, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図1および図2において、コンデンサ(1)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有するアルミニウム製タンク状受液器(4)(受液部)とからなり、幅方向を通風方向に向けるとともに長手方向を左右方向に向けた状態で上下方向に間隔をおいて配置された複数のアルミニウム製扁平状熱交換管(5)と、右端側に長手方向を上下方向に向けて配置されるとともに熱交換管(5)の右端部が接続されたアルミニウム製第1ヘッダタンク(6)と、左端側に長手方向を上下方向に向けて配置されるとともに熱交換管(5)の左端部が接続されたアルミニウム製第2ヘッダタンク(7)と、隣り合う熱交換管(5)どうしの間および上下両端の熱交換管(5)の外側に配置されて熱交換管(5)にろう材により接合されたアルミニウム製コルゲートフィン(8)と、上下両端のコルゲートフィン(8)の外側に配置されてコルゲートフィン(8)にろう材により接合されたアルミニウム製サイドプレート(9)とを備えている。以下、ろう材による接合をろう付というものとする。   1 and 2, the condenser (1) is condensed with the condenser (2), the supercooling part (3) provided below the condenser (2), and the longitudinal direction thereof being directed vertically. A liquid provided between the section (2) and the supercooling section (3) and storing the liquid phase main refrigerant condensed in the condensing section (2) and supplying the liquid phase main refrigerant to the subcooling section (3). It consists of an aluminum tank receiver (4) (receiver) that has the function of a reservoir, with the width direction oriented in the ventilation direction and the longitudinal direction oriented in the left-right direction, with an interval in the vertical direction. A plurality of flat aluminum heat exchange pipes (5) arranged, and an aluminum first header arranged on the right end side with the longitudinal direction facing the vertical direction and connected to the right end of the heat exchange pipe (5) A tank (6) and an aluminum tube that is arranged on the left end side with its longitudinal direction facing up and down and to which the left end of the heat exchange pipe (5) is connected The second header tank (7) made between the adjacent heat exchange pipes (5) and outside the heat exchange pipes (5) at both upper and lower ends and joined to the heat exchange pipe (5) by brazing material An aluminum corrugated fin (8) and an aluminum side plate (9) disposed outside the corrugated fins (8) at both upper and lower ends and joined to the corrugated fin (8) by a brazing material are provided. Hereinafter, joining with a brazing material is referred to as brazing.

コンデンサ(1)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が凝縮用熱交換パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が過冷却用熱交換パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パスといい、過冷却部(3)の熱交換パス(P2)を第2熱交換パスというものとする。なお、この実施形態においては、過冷却部(3)に1つの第2熱交換パス(P2)が設けられているので、第2熱交換パス(P2)が、過冷却部(3)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   The condenser (2) and the supercooling section (3) of the condenser (1) are each provided with at least one heat exchange path (here, one heat exchange path ( P1) (P2) is provided, the heat exchange path (P1) provided in the condensing part (2) becomes a heat exchange path for condensation, and the heat exchange path (P2) provided in the supercooling part (3) Is a heat exchange path for supercooling. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is referred to as a first heat exchange path, and the heat exchange path (P2) of the supercooling part (3) is referred to as a second heat exchange path. In this embodiment, since one second heat exchange path (P2) is provided in the supercooling section (3), the second heat exchange path (P2) serves as a refrigerant for the supercooling section (3). It is a heat exchange path on the most upstream side in the flow direction and at the same time a heat exchange path on the most downstream side in the refrigerant flow direction.

第1および第2ヘッダタンク(6)(7)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間でかつ下側の同一高さ位置に設けられたアルミニウム製仕切部材(11)により上下方向に並んだ2つの区画に分割されており、コンデンサ(1)における両仕切部材(11)よりも上方に位置する部分が凝縮部(2)となり、両仕切部材(11)よりも下方に位置する部分が過冷却部(3)となっている。両ヘッダタンク(6)(7)における仕切部材(11)よりも上方の区画に第1熱交換パス(P1)の全熱交換管(5)がろう付により接続され、同じく仕切部材(11)よりも下方の区画に第2熱交換パス(P2)の全熱交換管(5)がろう付により接続されている。第1ヘッダタンク(6)における仕切部材(11)よりも上方の区画の全体に凝縮部入口ヘッダ(12)が設けられるとともに、第2ヘッダタンク(7)における仕切部材(11)よりも上方の区画の全体に凝縮部出口ヘッダ(13)が設けられている。また、第2ヘッダタンク(7)における仕切部材(11)よりも下方の区画の全体に過冷却部入口ヘッダ(14)が設けられているとともに、第1ヘッダタンク(6)における仕切部材(11)よりも下方の区画の全体に過冷却部出口ヘッダ(15)が設けられている。   Inside the first and second header tanks (6) and (7) is aluminum provided between the first heat exchange path (P1) and the second heat exchange path (P2) and at the same height on the lower side. It is divided into two compartments arranged in the vertical direction by the partition member (11), and the portion located above the partition members (11) in the capacitor (1) becomes the condensing part (2), and both partition members The part located below (11) is the supercooling part (3). The total heat exchange pipe (5) of the first heat exchange path (P1) is connected to a section above the partition member (11) in both header tanks (6) and (7) by brazing, and the partition member (11) The total heat exchange pipe (5) of the second heat exchange path (P2) is connected to the lower section by brazing. A condensing section inlet header (12) is provided in the entire section above the partition member (11) in the first header tank (6), and is located above the partition member (11) in the second header tank (7). A condensing section outlet header (13) is provided throughout the compartment. In addition, a supercooling section inlet header (14) is provided in the entire section below the partition member (11) in the second header tank (7), and the partition member (11 in the first header tank (6)). The subcooling section outlet header (15) is provided in the whole of the section below.

凝縮部(2)の上下方向の中心(X)(凝縮部入口ヘッダ(12)の長手方向の中心)よりも一端側に偏った部分、ここでは下端側に偏った部分に1つの冷媒入口(16)が形成されており、凝縮部入口ヘッダ(12)の周壁外面における凝縮部(2)の上下方向の中心(X)よりも下端側に偏った部分に、両端が開口した冷媒流入路(17a)を有し、かつ冷媒を冷媒入口(16)を通して内部に流入させるアルミニウム製入口部材(17)がろう付されている。また、過冷却部出口ヘッダ(15)における過冷却部(3)の上下方向の中心よりも上端側に偏った部分に冷媒出口(18)が形成されており、過冷却部出口ヘッダ(15)の周壁外面における長手方向中央部よりも上端側に偏った部分に、両端が開口した冷媒流出路(19a)を有し、かつ冷媒を過冷却部出口ヘッダ(15)から外部に流出させるアルミニウム製出口部材(19)がろう付されている。   One refrigerant inlet (in this case, a portion deviated toward one end from the center (X) in the vertical direction of the condensing portion (2) (the center in the longitudinal direction of the condensing portion inlet header (12)). 16) is formed, and the refrigerant inflow passage (both ends are open to the lower end side of the center (X) of the condensing part (2) in the vertical direction of the condensing part (2) on the outer peripheral surface of the condensing part inlet header (12) An aluminum inlet member (17) having 17a) and allowing the refrigerant to flow into the interior through the refrigerant inlet (16) is brazed. Further, a refrigerant outlet (18) is formed in a portion of the supercooling section outlet header (15) that is biased to the upper end side from the vertical center of the supercooling section (3), and the supercooling section outlet header (15) The outer wall of the peripheral wall has a refrigerant outflow passage (19a) that is open at both ends in a portion that is biased to the upper end side from the longitudinal center portion, and is made of aluminum that allows the refrigerant to flow out from the supercooling section outlet header (15). An outlet member (19) is brazed.

受液器(4)はアルミニウム製であって、長手方向を上下方向に向けるとともに上下両端が閉鎖された円筒状であり、第2ヘッダタンク(7)(凝縮部出口ヘッダ(13)および過冷却部入口ヘッダ(14))と別個に形成され、かつ第2ヘッダタンク(7)の左右方向外側(左側)に配置されて第2ヘッダタンク(7)に固定されている。受液器(4)の下端は凝縮部出口ヘッダ(13)の下端よりも下方に位置しているとともに、受液器(4)の上端は凝縮部出口ヘッダ(13)の下端よりも上方に位置している。ここでは、受液器(4)の上端は凝縮部出口ヘッダ(13)の上端と同一高さ位置にあり、受液器(4)の下端は過冷却部入口ヘッダ(14)の下端と同一高さ位置にある。図示は省略したが、受液器(4)内には冷媒から異物を除去するフィルタや乾燥材が入れられている。   The liquid receiver (4) is made of aluminum and has a cylindrical shape with the longitudinal direction directed vertically and closed at both the upper and lower ends. The second header tank (7) (condenser outlet header (13) and supercooling) Part header (14)) and is arranged on the outer side (left side) in the left-right direction of the second header tank (7) and fixed to the second header tank (7). The lower end of the receiver (4) is located below the lower end of the condenser outlet header (13), and the upper end of the receiver (4) is higher than the lower end of the condenser outlet header (13). positioned. Here, the upper end of the receiver (4) is at the same height as the upper end of the condenser outlet header (13), and the lower end of the receiver (4) is the same as the lower end of the supercooler inlet header (14). In the height position. Although not shown, a filter and a desiccant for removing foreign substances from the refrigerant are placed in the liquid receiver (4).

上述したコンデンサ(1)において、凝縮部出口ヘッダ(13)と受液器(4)における凝縮部出口ヘッダ(13)の下端よりも上方に位置する部分とは、上下方向に間隔をおいて設けられた複数、ここでは2つの連通部(21A)(21B)により通じさせられている。一方の連通部(21A)は凝縮部出口ヘッダ(13)の下端寄りの高さ位置にあり、当該連通部(21A)と凝縮部入口ヘッダ(12)の冷媒入口(16)とは、凝縮部(2)の上下方向の中心(X)よりも上側および同下側のうちいずれか同じ側、ここでは下側に設けられている。連通部(21A)の高さ位置は冷媒入口(16)の高さ位置の近傍である。また、他方の連通部(21B)は凝縮部出口ヘッダ(13)の上端寄りの高さ位置にある。すなわち、凝縮部入口ヘッダ(12)の冷媒入口(16)と下側連通部(21A)とが、凝縮部(2)の上下方向の中心(X)よりも上側および同下側のうち下側に設けられ、同他方の連通部(21B)が凝縮部(2)の上下方向の中心(X)を挟んで前記一方の連通部(21A)とは反対側に設けられている。連通部(21A)(21B)は、凝縮部出口ヘッダ(13)と受液器(4)との間に配置されて第2ヘッダタンク(7)および受液器(4)にろう付され、かつ凝縮部出口ヘッダ(13)内と受液器(4)内とを通じさせる通路を有するアルミニウム製連通部材(22)からなる。   In the condenser (1) described above, the condenser outlet header (13) and the portion located above the lower end of the condenser outlet header (13) in the receiver (4) are spaced apart in the vertical direction. The plurality of, in this case, two communication portions (21A) and (21B) communicate with each other. One communication part (21A) is at a height position near the lower end of the condenser outlet header (13), and the communication part (21A) and the refrigerant inlet (16) of the condenser inlet header (12) It is provided on either the upper side or the lower side of the center (X) in the vertical direction of (2), that is, the lower side here. The height position of the communication part (21A) is in the vicinity of the height position of the refrigerant inlet (16). The other communication part (21B) is at a height position near the upper end of the condenser outlet header (13). That is, the refrigerant inlet (16) of the condensing unit inlet header (12) and the lower communication unit (21A) are below the center (X) in the vertical direction of the condensing unit (2) and on the lower side The other communication part (21B) is provided on the opposite side of the one communication part (21A) across the center (X) in the vertical direction of the condensing part (2). The communication portions (21A) and (21B) are disposed between the condenser outlet header (13) and the receiver (4) and brazed to the second header tank (7) and the receiver (4). And it consists of the aluminum communication member (22) which has the channel | path which lets the inside of a condensation part exit header (13) and the inside of a liquid receiver (4) pass.

また、過冷却部入口ヘッダ(14)と受液器(4)における凝縮部出口ヘッダ(13)の下端よりも下方に位置する部分とは、1つの連通部(23)により通じさせられている。当該連通部(23)も、凝縮部出口ヘッダ(13)と受液器(4)との間に配置されて第2ヘッダタンク(7)および受液器(4)にろう付され、かつ凝縮部出口ヘッダ(13)内と受液器(4)内とを通じさせる通路を有するアルミニウム製連通部材(22)からなる。   Further, the supercooling section inlet header (14) and the portion located below the lower end of the condensing section outlet header (13) in the liquid receiver (4) are communicated with each other by one communication section (23). . The communication portion (23) is also disposed between the condenser outlet header (13) and the receiver (4), brazed to the second header tank (7) and the receiver (4), and condensed. It consists of an aluminum communication member (22) having a passage through which the inside of the partial outlet header (13) and the liquid receiver (4) pass.

したがって、受液器(4)内は凝縮部出口ヘッダ(13)内および過冷却部入口ヘッダ(14)内に通じており、凝縮部出口ヘッダ(13)から流出した冷媒が、受液器(4)を経て過冷却部入口ヘッダ(14)内に流入するようになされている。   Therefore, the receiver (4) communicates with the condenser outlet header (13) and the supercooler inlet header (14), and the refrigerant flowing out of the condenser outlet header (13) After passing through 4), it flows into the supercooling section inlet header (14).

コンデンサ(1)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。当該冷凍サイクルにおいては、冷媒は圧縮機に吸引されて循環するようになっている。   The condenser (1) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on a vehicle as a car air conditioner. In the refrigeration cycle, the refrigerant is sucked into the compressor and circulated.

上述した構成のコンデンサ(1)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(17)の冷媒流入路(17a)を通って冷媒入口(16)から凝縮部入口ヘッダ(12)内の下部に流入する。凝縮部入口ヘッダ(12)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内に入り、第1熱交換パス(P1)の熱交換管(5)の流路を左方に流れて凝縮部出口ヘッダ(13)内に流入する。凝縮部出口ヘッダ(13)内に流入した冷媒は、上下2つの連通部(21A)(21B)を通って受液器(4)内に流入する。   In the condenser (1) configured as described above, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inflow passage (17a) of the inlet member (17) from the refrigerant inlet (16) to the condenser inlet header ( 12) It flows into the lower part of the inside. The refrigerant flowing into the condenser inlet header (12) enters the heat exchange pipe (5) of the first heat exchange path (P1) and flows through the heat exchange pipe (5) of the first heat exchange path (P1). The road flows to the left and flows into the condenser outlet header (13). The refrigerant that has flowed into the condenser outlet header (13) flows into the liquid receiver (4) through the two upper and lower communicating portions (21A) and (21B).

このとき、冷媒は圧縮機に吸引されて循環するようになっており、一方の連通部(21A)と冷媒入口(16)とは、凝縮部(2)の上下方向の中心よりも下側に設けられるとともに、他方の連通部(21B)が凝縮部(2)の上下方向の中心を挟んで前記一方の連通部(21A)とは反対側(上側)に設けられているので、連通部(21B)においても、凝縮部出口ヘッダ(13)から受液器(4)へ冷媒を吸い込む吸い込み圧が発生し、第1熱交換パス(P1)の全熱交換管(5)から凝縮部出口ヘッダ(13)へ冷媒を吸い込む吸い込み圧が発生する。したがって、凝縮部入口ヘッダ(12)から第1熱交換パス(P1)の全熱交換管(5)への冷媒の流れが促進され、冷媒は、第1熱交換パス(P1)の下側に位置する熱交換管(5)だけではなく、上側に位置する熱交換管(5)にも流入しやすくなる。その結果、凝縮部入口ヘッダ(12)内に流入した冷媒は凝縮部入口ヘッダ(12)内の全体に行き渡り、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。   At this time, the refrigerant is sucked and circulated by the compressor, and the one communication part (21A) and the refrigerant inlet (16) are located below the center in the vertical direction of the condensing part (2). Since the other communication part (21B) is provided on the opposite side (upper side) of the one communication part (21A) across the center in the vertical direction of the condensing part (2), the communication part ( 21B), a suction pressure for sucking the refrigerant from the condenser outlet header (13) to the receiver (4) is generated, and the condenser outlet outlet header from the total heat exchange pipe (5) of the first heat exchange path (P1). Suction pressure for sucking refrigerant into (13) is generated. Therefore, the flow of the refrigerant from the condenser inlet header (12) to the total heat exchange pipe (5) of the first heat exchange path (P1) is promoted, and the refrigerant flows below the first heat exchange path (P1). It becomes easy to flow into not only the heat exchange pipe (5) positioned but also the heat exchange pipe (5) located on the upper side. As a result, the refrigerant flowing into the condenser inlet header (12) reaches the entire condenser inlet header (12), and all of the first heat exchange path (P1) connected to the condenser inlet header (12). It is evenly divided into the heat exchange pipe (5).

受液器(4)内に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により受液器(4)内の下部に溜まり、連通部(23)を通って過冷却部入口ヘッダ(14)内に入る。過冷却部入口ヘッダ(14)内に入った冷媒は、第2熱交換パス(P2)の熱交換管(5)内に入り、第2熱交換パス(P2)の熱交換管(5)の流路を右方に流れる間に過冷却された後、過冷却部出口ヘッダ(15)内に入り、冷媒出口(18)および出口部材(19)の冷媒流出路(19a)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the liquid receiver (4) is a gas-liquid mixed phase refrigerant, and among the gas-liquid mixed phase refrigerant, the liquid-phase main mixed refrigerant accumulates in the lower part of the liquid receiver (4) due to gravity, and the communication portion ( 23) through the supercooler inlet header (14). The refrigerant that has entered the supercooling section inlet header (14) enters the heat exchange pipe (5) of the second heat exchange path (P2) and enters the heat exchange pipe (5) of the second heat exchange path (P2). After being supercooled while flowing rightward through the flow path, it enters the supercooling section outlet header (15) and flows out through the refrigerant outlet (18) and the refrigerant outlet passage (19a) of the outlet member (19). And sent to the evaporator through the expansion valve.

図3および図4はこの発明によるコンデンサの第2の実施形態を示す。図3はこの発明によるコンデンサの第2の実施形態の全体構成を具体的に示し、図4は図3のコンデンサを模式的に示す。図4においては、個々の熱交換管の図示は省略されるとともに、コルゲートフィンおよびサイドプレートの図示も省略されている。   3 and 4 show a second embodiment of the capacitor according to the present invention. FIG. 3 specifically shows the overall configuration of the second embodiment of the capacitor according to the present invention, and FIG. 4 schematically shows the capacitor of FIG. In FIG. 4, illustration of individual heat exchange tubes is omitted, and illustration of corrugated fins and side plates is also omitted.

図3および図4において、コンデンサ(30)は、凝縮部(2)と、凝縮部(2)の下方に設けられた過冷却部(3)と、長手方向を上下方向に向けた状態で凝縮部(2)と過冷却部(3)との間に設けられ、かつ気液分離機能を有する受液部(31)とを備えている。   3 and 4, the condenser (30) is condensed with the condensing part (2), the supercooling part (3) provided below the condensing part (2), and the longitudinal direction thereof being directed vertically. A liquid receiving part (31) provided between the part (2) and the supercooling part (3) and having a gas-liquid separation function.

コンデンサ(30)の凝縮部(2)および過冷却部(3)には、それぞれ上下に連続して並んだ複数の熱交換管(5)からなる少なくとも1つ、ここでは1つの熱交換パス(P1)(P2)が設けられており、凝縮部(2)に設けられた熱交換パス(P1)が凝縮用熱交換パスとなり、過冷却部(3)に設けられた熱交換パス(P2)が過冷却用熱交換パスとなっている。そして、各熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の冷媒流れ方向が同一となっているとともに、隣り合う2つの熱交換パスの熱交換管(5)の冷媒流れ方向が異なっている。ここで、凝縮部(2)の熱交換パス(P1)を第1熱交換パスといい、過冷却部(3)の熱交換パス(P2)を第2熱交換パスというものとする。なお、この実施形態においては、過冷却部(3)に1つの第2熱交換パス(P2)が設けられているので、第2熱交換パス(P2)が、過冷却部(3)の冷媒流れ方向最上流側の熱交換パスであると同時に、冷媒流れ方向最下流側の熱交換パスとなっている。   The condenser (2) and the supercooling section (3) of the condenser (30) are each provided with at least one heat exchange path (here, one heat exchange path ( P1) (P2) is provided, the heat exchange path (P1) provided in the condensing part (2) becomes a heat exchange path for condensation, and the heat exchange path (P2) provided in the supercooling part (3) Is a heat exchange path for supercooling. And the refrigerant | coolant flow direction of all the heat exchange pipe | tubes (5) which comprise each heat exchange path | pass (P1) (P2) is the same, and the heat exchange pipe | tube (5) of two adjacent heat exchange paths | paths The refrigerant flow direction is different. Here, the heat exchange path (P1) of the condensing part (2) is referred to as a first heat exchange path, and the heat exchange path (P2) of the supercooling part (3) is referred to as a second heat exchange path. In this embodiment, since one second heat exchange path (P2) is provided in the supercooling section (3), the second heat exchange path (P2) serves as a refrigerant for the supercooling section (3). It is a heat exchange path on the most upstream side in the flow direction and at the same time a heat exchange path on the most downstream side in the refrigerant flow direction.

コンデンサ(30)の右端部側には、第1および第2熱交換パス(P1)(P2)を構成する全ての熱交換管(5)の右端部が接続される第1ヘッダタンク(32)が長手方向を上下方向に向けて配置されている。第1ヘッダタンク(32)内は、第1熱交換パス(P1)と第2熱交換パス(P2)との間の高さ位置に設けられたアルミニウム製仕切部材(33)により上下2つの区画に分割されており、コンデンサ(30)における仕切部材(33)よりも上方に位置する部分が凝縮部(2)となり、仕切部材(33)よりも下方に位置する部分が過冷却部(3)となっている。第1ヘッダタンク(32)の仕切部材(33)よりも上方の区画に第1熱交換パス(P1)の全熱交換管(5)がろう付により接続され、同じく仕切部材(33)よりも下方の区画に第2熱交換パス(P2)の全熱交換管(5)がろう付により接続されている。第1ヘッダタンク(32)における仕切部材(33)よりも上方の区画の全体に凝縮部入口ヘッダ(12)が設けられるとともに、同下方の区画の全体に過冷却部出口ヘッダ(15)が設けられている。   A first header tank (32) connected to the right end of the condenser (30) is connected to the right end of all heat exchange pipes (5) constituting the first and second heat exchange paths (P1) and (P2). Are arranged with the longitudinal direction directed in the vertical direction. The first header tank (32) is divided into two upper and lower sections by an aluminum partition member (33) provided at a height between the first heat exchange path (P1) and the second heat exchange path (P2). In the condenser (30), the part located above the partition member (33) is the condensing part (2), and the part located below the partition member (33) is the supercooling part (3). It has become. The total heat exchange pipe (5) of the first heat exchange path (P1) is connected to the section above the partition member (33) of the first header tank (32) by brazing, and is also more than the partition member (33). The total heat exchange pipe (5) of the second heat exchange path (P2) is connected to the lower section by brazing. In the first header tank (32), the condenser section inlet header (12) is provided in the entire section above the partition member (33), and the subcooling section outlet header (15) is provided in the entire section below the first header tank (32). It has been.

コンデンサ(30)の左端側には、凝縮部(2)に設けられた第1熱交換パス(P1)の全熱交換管(5)の左端部が接続される第2ヘッダタンク(34)と、第2ヘッダタンク(34)と別個に形成され、かつ過冷却部(3)に設けられた第2熱交換パス(P2)の熱交換管(5)が接続される第3ヘッダタンク(35)とが、長手方向を上下方向に向けた状態で第3ヘッダタンク(35)が左右方向外側(左側)に位置するように配置されている。第2ヘッダタンク(34)の下端は仕切部材(33)とほぼ同じ高さ位置にある。第3ヘッダタンク(35)の上端は第2ヘッダタンク(34)の下端よりも上方、ここでは第2ヘッダタンク(34)の上端とほぼ同一高さ位置にあり、第3ヘッダタンク(35)の下端は第2ヘッダタンク(34)の下端よりも下方に位置している。第2ヘッダタンク(34)に第1熱交換パス(P1)の全熱交換管(5)がろう付により接続され、第3ヘッダタンク(35)における第2ヘッダタンク(34)の下端よりも下方に位置する部分に、第2熱交換パス(P2)の全熱交換管(5)がろう付により接続されている。第2ヘッダタンク(34)の全体に凝縮部出口ヘッダ(13)が設けられ、第3ヘッダタンク(35)における第2ヘッダタンク(34)の下端よりも下方に位置する部分に過冷却部入口ヘッダ(14)が設けられている。第3ヘッダタンク(35)は、凝縮部(2)で凝縮した液相主体冷媒を貯留するとともに液相主体冷媒を過冷却部(3)に供給する液溜部の機能を有する受液部(31)を兼ねている。   On the left end side of the condenser (30), there is a second header tank (34) to which the left end portion of the total heat exchange pipe (5) of the first heat exchange path (P1) provided in the condenser section (2) is connected. The third header tank (35) formed separately from the second header tank (34) and connected to the heat exchange pipe (5) of the second heat exchange path (P2) provided in the supercooling section (3). ) Is arranged such that the third header tank (35) is positioned on the outer side (left side) in the left-right direction with the longitudinal direction thereof directed in the up-down direction. The lower end of the second header tank (34) is substantially at the same height as the partition member (33). The upper end of the third header tank (35) is above the lower end of the second header tank (34), here, at the same height as the upper end of the second header tank (34), and the third header tank (35) Is located below the lower end of the second header tank (34). The total heat exchange pipe (5) of the first heat exchange path (P1) is connected to the second header tank (34) by brazing, and is lower than the lower end of the second header tank (34) in the third header tank (35). The total heat exchange pipe (5) of the second heat exchange path (P2) is connected to the lower part by brazing. The second header tank (34) is provided with a condensing unit outlet header (13), and the third header tank (35) is located below the lower end of the second header tank (34) at the subcooling unit inlet. A header (14) is provided. The third header tank (35) stores a liquid phase main refrigerant condensed in the condensing unit (2) and has a liquid receiving unit functioning as a liquid storage unit for supplying the liquid phase main refrigerant to the supercooling unit (3). 31).

すなわち、受液部(31)の下端は凝縮部出口ヘッダ(13)の下端よりも下方でかつ過冷却部入口ヘッダ(14)の下端と同一高さ部分に位置しているとともに、受液部(31)の上端は凝縮部出口ヘッダ(13)の下端よりも上方でかつ凝縮部出口ヘッダ(13)の上端と同一高さ部分に位置している。   That is, the lower end of the liquid receiver (31) is positioned below the lower end of the condenser outlet header (13) and at the same height as the lower end of the subcooler inlet header (14), and the liquid receiver The upper end of (31) is located above the lower end of the condenser outlet header (13) and at the same height as the upper end of the condenser outlet header (13).

上述したコンデンサ(30)において、凝縮部出口ヘッダ(13)と受液部(31)における凝縮部出口ヘッダ(13)の下端よりも上方に位置する部分とは、上下方向に間隔をおいて設けられた複数、ここでは2つの連通部(21A)(21B)により通じさせられている。一方の連通部(21A)は凝縮部出口ヘッダ(13)の下端寄りの高さ位置にあり、当該連通部(21A)と凝縮部入口ヘッダ(12)の冷媒入口(16)とは、凝縮部(2)の上下方向の中心(X)よりも上側および同下側のうちいずれか同じ側、ここでは下側に設けられている。連通部(21A)の高さ位置は冷媒入口(16)の高さ位置の近傍である。また、他方の連通部(21B)は凝縮部出口ヘッダ(13)の上端寄りの高さ位置にある。すなわち、凝縮部入口ヘッダ(12)の冷媒入口(16)と下側連通部(21A)とが、凝縮部(2)の上下方向の中心(X)よりも上側および同下側のうち下側に設けられ、同他方の連通部(21B)が凝縮部(2)の上下方向の中心(X)を挟んで前記一方の連通部(21A)とは反対側に設けられている。連通部(21A)(21B)は、凝縮部出口ヘッダ(13)と受液部(31)との間に配置されて第2ヘッダタンク(34)および受液部(31)にろう付され、かつ凝縮部出口ヘッダ(13)内と受液部(31)内とを通じさせる通路を有するアルミニウム製連通部材(22)からなる。第3ヘッダタンク(35)内における過冷却部入口ヘッダ(14)よりも上方の部分と、過冷却部入口ヘッダ(14)とは、第3ヘッダタンク(35)内で通じている。   In the condenser (30) described above, the condenser outlet header (13) and the portion located above the lower end of the condenser outlet header (13) in the liquid receiver (31) are spaced apart in the vertical direction. The plurality of, in this case, two communication portions (21A) and (21B) communicate with each other. One communication part (21A) is at a height position near the lower end of the condenser outlet header (13), and the communication part (21A) and the refrigerant inlet (16) of the condenser inlet header (12) It is provided on either the upper side or the lower side of the center (X) in the vertical direction of (2), that is, the lower side here. The height position of the communication part (21A) is in the vicinity of the height position of the refrigerant inlet (16). The other communication part (21B) is at a height position near the upper end of the condenser outlet header (13). That is, the refrigerant inlet (16) of the condensing unit inlet header (12) and the lower communication unit (21A) are below the center (X) in the vertical direction of the condensing unit (2) and on the lower side The other communication part (21B) is provided on the opposite side of the one communication part (21A) across the center (X) in the vertical direction of the condensing part (2). The communication portions (21A) and (21B) are disposed between the condenser outlet header (13) and the liquid receiver (31) and brazed to the second header tank (34) and the liquid receiver (31). And it consists of the aluminum communication member (22) which has the channel | path which lets the inside of a condensation part exit header (13) and a liquid receiving part (31) pass. The portion above the supercooling section inlet header (14) in the third header tank (35) and the supercooling section inlet header (14) communicate with each other in the third header tank (35).

その他の構成は第1の実施形態のコンデンサと同様である。   Other configurations are the same as those of the capacitor of the first embodiment.

コンデンサ(30)は、圧縮機、膨張弁(減圧器)およびエバポレータとともに冷凍サイクルを構成し、カーエアコンとして車両に搭載される。当該冷凍サイクルにおいては、冷媒は圧縮機に吸引されて循環するようになっている。   The condenser (30) constitutes a refrigeration cycle together with a compressor, an expansion valve (decompressor) and an evaporator, and is mounted on the vehicle as a car air conditioner. In the refrigeration cycle, the refrigerant is sucked into the compressor and circulated.

上述した構成のコンデンサ(30)において、圧縮機により圧縮された高温高圧の気相冷媒が、入口部材(17)の冷媒流入路(17a)を通って冷媒入口(16)から凝縮部入口ヘッダ(12)内の下部に流入する。凝縮部入口ヘッダ(12)内に流入した冷媒は、第1熱交換パス(P1)の熱交換管(5)内に入り、第1熱交換パス(P1)の熱交換管(5)の流路を左方に流れて凝縮部出口ヘッダ(13)内に流入する。凝縮部出口ヘッダ(13)内に流入した冷媒は、上下2つの連通部(21A)(21B)を通って受液部(31)を兼ねる第3ヘッダタンク(35)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入する。   In the condenser (30) configured as described above, the high-temperature and high-pressure gas-phase refrigerant compressed by the compressor passes through the refrigerant inflow passage (17a) of the inlet member (17) from the refrigerant inlet (16) to the condenser inlet header ( 12) It flows into the lower part of the inside. The refrigerant flowing into the condenser inlet header (12) enters the heat exchange pipe (5) of the first heat exchange path (P1) and flows through the heat exchange pipe (5) of the first heat exchange path (P1). The road flows to the left and flows into the condenser outlet header (13). The refrigerant flowing into the condenser outlet header (13) passes through the upper and lower two communicating portions (21A) and (21B), and the supercooling portion inlet header in the third header tank (35) that also serves as the liquid receiving portion (31). It flows into the part above (14).

このとき、冷媒は圧縮機に吸引されて循環するようになっており、一方の連通部(21A)と冷媒入口(16)とは、凝縮部(2)の上下方向の中心(X)よりも下側に設けられるとともに、他方の連通部(21B)が凝縮部(2)の上下方向の中心(X)を挟んで前記一方の連通部(21A)とは反対側(上側)に設けられているので、連通部(21B)においても、凝縮部出口ヘッダ(13)から受液部(31)へ冷媒を吸い込む吸い込み圧が発生し、第1熱交換パス(P1)の全熱交換管(5)から凝縮部出口ヘッダ(13)へ冷媒を吸い込む吸い込み圧が発生する。したがって、凝縮部入口ヘッダ(12)から第1熱交換パス(P1)の全熱交換管(5)への冷媒の流れが促進され、冷媒は、第1熱交換パス(P1)の下側に位置する熱交換管(5)だけではなく、上側に位置する熱交換管(5)にも流入しやすくなる。その結果、凝縮部入口ヘッダ(12)内に流入した冷媒は凝縮部入口ヘッダ(12)内の全体に行き渡り、凝縮部入口ヘッダ(12)に接続された第1熱交換パス(P1)の全熱交換管(5)に均等に分流される。   At this time, the refrigerant is sucked into the compressor and circulates, and the one communication part (21A) and the refrigerant inlet (16) are more than the center (X) in the vertical direction of the condensing part (2). The other communication part (21B) is provided on the opposite side (upper side) of the one communication part (21A) across the vertical center (X) of the condensation part (2). Therefore, also in the communication part (21B), a suction pressure for sucking the refrigerant from the condenser outlet header (13) to the liquid receiver (31) is generated, and the total heat exchange pipe (5 in the first heat exchange path (P1)) ) To suck in the refrigerant into the condenser outlet header (13). Therefore, the flow of the refrigerant from the condenser inlet header (12) to the total heat exchange pipe (5) of the first heat exchange path (P1) is promoted, and the refrigerant flows below the first heat exchange path (P1). It becomes easy to flow into not only the heat exchange pipe (5) positioned but also the heat exchange pipe (5) located on the upper side. As a result, the refrigerant flowing into the condenser inlet header (12) reaches the entire condenser inlet header (12), and all of the first heat exchange path (P1) connected to the condenser inlet header (12). It is evenly divided into the heat exchange pipe (5).

第3ヘッダタンク(35)内における過冷却部入口ヘッダ(14)よりも上方の部分に流入した冷媒は、気液混相冷媒であり、当該気液混相冷媒のうち液相主体混相冷媒は重力により第3ヘッダタンク(35)の過冷却部入口ヘッダ(14)内に溜まり、第2熱交換パス(P2)の熱交換管(5)内に入る。第2熱交換パス(P2)の熱交換管(5)内に入った液相主体混相冷媒は熱交換管(5)の流路を右方に流れる間に過冷却された後、第1ヘッダタンク(32)の過冷却部出口ヘッダ(15)内に入り、冷媒出口(18)および出口部材(19)の冷媒流出路(19a)を通って流出し、膨張弁を経てエバポレータに送られる。   The refrigerant that has flowed into the portion above the supercooling section inlet header (14) in the third header tank (35) is a gas-liquid mixed phase refrigerant. Among the gas-liquid mixed phase refrigerant, the liquid-phase main mixed phase refrigerant is caused by gravity. It accumulates in the supercooling section inlet header (14) of the third header tank (35) and enters the heat exchange pipe (5) of the second heat exchange path (P2). The liquid phase main mixed refrigerant entering the heat exchange pipe (5) of the second heat exchange path (P2) is supercooled while flowing rightward through the flow path of the heat exchange pipe (5), and then the first header. The refrigerant enters the supercooling section outlet header (15) of the tank (32), flows out through the refrigerant outlet (18) and the refrigerant outlet path (19a) of the outlet member (19), and is sent to the evaporator through the expansion valve.

上述した2つの実施形態においては、凝縮部出口ヘッダ(13)と受液器(4)および受液部(31)とが、上下方向に間隔をおいて設けられた2つの連通部により通じさせられているが、これに限定されるものではなく、3以上の連通部により通じさせられていたもよい。3以上の連通部が用いられる場合、全連通部中の2つの連通部のうち一方の連通部と凝縮部入口ヘッダの冷媒入口とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、前記2つの連通部のうち他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部および冷媒入口とは反対側に設けられる。   In the two embodiments described above, the condenser outlet header (13), the liquid receiver (4), and the liquid receiver (31) are communicated with each other by two communicating portions provided at intervals in the vertical direction. However, the present invention is not limited to this, and may be communicated by three or more communication portions. When three or more communication parts are used, one of the two communication parts in all the communication parts and the refrigerant inlet of the condenser inlet header are above and below the center in the vertical direction of the condenser. The other communication part of the two communication parts is provided on the opposite side to the one communication part and the refrigerant inlet across the center in the vertical direction of the condensing part.

この発明によるコンデンサは、自動車に搭載されるカーエアコンに好適に用いられる。   The capacitor | condenser by this invention is used suitably for the car air conditioner mounted in a motor vehicle.

(1)(30):コンデンサ
(2):凝縮部
(3):過冷却部
(4):受液器(受液部)
(5):熱交換管
(6):第1ヘッダタンク
(7):第2ヘッダタンク
(11):仕切部材
(12):凝縮部入口ヘッダ
(13):凝縮部出口ヘッダ
(14):過冷却部入口ヘッダ
(15):過冷却部出口ヘッダ
(16):冷媒入口
(18):冷媒出口
(21A)(21B):連通部
(22):連通部材
(31):受液部
(32):第1ヘッダタンク
(33):仕切部材
(34):第2ヘッダタンク
(35):第3ヘッダタンク
(1) (30): Capacitor
(2): Condensing part
(3): Supercooling section
(4): Liquid receiver (liquid receiver)
(5): Heat exchange pipe
(6): First header tank
(7): Second header tank
(11): Partition member
(12): Condenser inlet header
(13): Condenser outlet header
(14): Supercooler inlet header
(15): Supercooler outlet header
(16): Refrigerant inlet
(18): Refrigerant outlet
(21A) (21B): Communication part
(22): Communication member
(31): Liquid receiver
(32): First header tank
(33): Partition member
(34): Second header tank
(35): Third header tank

Claims (8)

凝縮部、凝縮部の下方に設けられた過冷却部、および凝縮部と過冷却部との間に設けられ、かつ凝縮部から流入した気液混相冷媒を気相冷媒と液相冷媒とに分離するとともに液相冷媒を過冷却部に送り出す受液部とを備えており、凝縮部が、上下方向に間隔をおいて配置された複数の熱交換管からなる1つの凝縮用熱交換パスと、長手方向を上下方向に向けて配置され、かつ冷媒入口が形成されるとともに凝縮用熱交換パスの熱交換管が通じる凝縮部入口ヘッダと、長手方向を上下方向に向けて配置されかつ凝縮用熱交換パスの熱交換管が通じる凝縮部出口ヘッダとを有し、過冷却部が、上下方向に間隔をおいて配置された複数の熱交換管からなる少なくとも1つの過冷却用熱交換パスと、長手方向を上下方向に向けて配置されかつ冷媒流れ方向上流端の過冷却用熱交換パスの熱交換管が通じる過冷却部入口ヘッダと、長手方向を上下方向に向けて配置され、かつ冷媒出口が形成されるとともに冷媒流れ方向下流端の過冷却用熱交換パスの熱交換管が通じる過冷却部出口ヘッダとを有し、受液部が、凝縮部出口ヘッダとは別個に形成されるとともに長手方向を上下方向に向けて配置され、かつ凝縮部出口ヘッダおよび過冷却部入口ヘッダに通じているコンデンサであって、
凝縮部出口ヘッダと受液部とが、上下方向に間隔をおいて設けられた複数の連通部により通じさせられており、全連通部中の2つの連通部のうち一方の連通部と凝縮部入口ヘッダの冷媒入口とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、前記2つの連通部のうち他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部および冷媒入口とは反対側に設けられているコンデンサ。
Separating the condensing unit, the supercooling unit provided below the condensing unit, and the gas-liquid mixed phase refrigerant flowing between the condensing unit and the condensing unit into a gas phase refrigerant and a liquid phase refrigerant And a liquid receiving part for sending the liquid-phase refrigerant to the supercooling part, and the condensing part has one heat exchange path for condensation comprising a plurality of heat exchange tubes arranged at intervals in the vertical direction, Condenser inlet header that is arranged with the longitudinal direction facing up and down and that forms a refrigerant inlet and leads to the heat exchange pipe of the heat exchange path for condensation, and heat that is condensed with the longitudinal direction arranged up and down And a condenser outlet header through which the heat exchange pipe of the exchange path communicates, and the supercooling part includes at least one supercooling heat exchange path composed of a plurality of heat exchange pipes spaced in the vertical direction; The refrigerant flow is arranged with the longitudinal direction facing up and down. A supercooling section inlet header through which the heat exchange pipe of the heat exchange path for supercooling at the improved flow end communicates, and a supercooling at the downstream end in the refrigerant flow direction while being arranged with the longitudinal direction directed vertically and a refrigerant outlet formed A subcooling section outlet header through which the heat exchange pipe of the heat exchange path for communication is connected, and the liquid receiving section is formed separately from the condensing section outlet header, and is arranged with the longitudinal direction thereof directed vertically, and is condensed. A condenser leading to the outlet header and the subcooling inlet header,
The condensing unit outlet header and the liquid receiving unit are communicated with each other by a plurality of communicating units provided at intervals in the vertical direction, and one of the two communicating units in all communicating units and the condensing unit The refrigerant inlet of the inlet header is provided on the same side of either the upper side or the lower side of the center of the condensing part in the vertical direction, and the other communication part of the two communication parts is in the vertical direction of the condensing part. A capacitor provided on the opposite side of the one communicating portion and the refrigerant inlet across the center.
受液部が凝縮部出口ヘッダの外側方に配置され、受液部の下端が凝縮部出口ヘッダの下端よりも下方に位置するとともに、受液部の上端が凝縮部出口ヘッダの下端よりも上方に位置しており、凝縮部出口ヘッダと、受液部における凝縮部出口ヘッダの下端よりも上方に位置する部分とが、上下方向に間隔をおいて設けられた複数の連通部により通じさせられている請求項1記載のコンデンサ。 The liquid receiver is disposed outside the condenser outlet header, the lower end of the liquid receiver is positioned below the lower end of the condenser outlet header, and the upper end of the liquid receiver is above the lower end of the condenser outlet header. The condensing unit outlet header and a portion located above the lower end of the condensing unit outlet header in the liquid receiving unit are communicated with each other by a plurality of communication units provided at intervals in the vertical direction. The capacitor according to claim 1. 連通部が、凝縮部出口ヘッダと受液部との間に配置され、かつ凝縮部出口ヘッダ内と受液部内とを通じさせる通路を有する連通部材からなり、全連通部材の形状が通路を含んで同一である請求項1または2記載のコンデンサ。 The communication portion is a communication member that is disposed between the condensation portion outlet header and the liquid receiving portion and has a passage that allows the inside of the condensation portion outlet header and the liquid reception portion to pass therethrough, and the shape of all the communication members includes the passage. The capacitor according to claim 1 or 2, which is the same. 前記連通部が上下方向に間隔をおいて2つ設けられ、凝縮部入口ヘッダの冷媒入口といずれか一方の連通部とが、凝縮部の上下方向の中心よりも上側および同下側のうちいずれか同じ側に設けられ、同他方の連通部が凝縮部の上下方向の中心を挟んで前記一方の連通部とは反対側に設けられている請求項1〜3のうちのいずれかに記載のコンデンサ。 Two communicating portions are provided at intervals in the vertical direction, and the refrigerant inlet of the condensing unit inlet header and any one of the communicating units are either above or below the center in the vertical direction of the condensing unit. The other communication part is provided in the other side with respect to said one communication part on both sides of the center of the up-down direction of a condensation part. Capacitor. 凝縮部入口ヘッダの冷媒入口といずれか一方の連通部とが、凝縮部の上下方向の中心よりも下側に設けられている請求項4記載のコンデンサ。 The capacitor according to claim 4, wherein the refrigerant inlet of the condenser inlet header and one of the communication parts are provided below the center in the vertical direction of the condenser. 過冷却部に1つの過冷却用熱交換パスが設けられるとともに、当該熱交換パスの全熱交換管が過冷却部入口ヘッダおよび過冷却部出口ヘッダに通じさせられている請求項1〜5のうちのいずれかに記載のコンデンサ。 The supercooling section is provided with one supercooling heat exchange path, and the total heat exchange pipe of the heat exchange path is communicated with the supercooling section inlet header and the supercooling section outlet header. A capacitor according to any one of the above. 左右いずれか一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第2ヘッダタンクとは別個に形成された受液部が、受液部が左右方向外側に位置するように配置され、第1および第2ヘッダタンク内が仕切部材により上下2つの区画に分割され、第1および第2ヘッダタンクの上区画に凝縮用熱交換パスの全熱交換管が接続され、同じく下区画に過冷却部の過冷却用熱交換パスの全熱交換管が接続され、第1ヘッダタンクの上区画に凝縮部入口ヘッダが設けられ、第1ヘッダタンクの下区画に過冷却部出口ヘッダが設けられ、第2ヘッダタンクの上区画に凝縮部出口ヘッダが設けられ、第2ヘッダタンクの下区画に過冷却部入口ヘッダが設けられている請求項6記載のコンデンサ。 A first header tank with the longitudinal direction oriented in the vertical direction is arranged on either one of the left and right sides, and formed separately from the second header tank and the second header tank with the longitudinal direction oriented in the vertical direction on the other end side The liquid receiving part is arranged so that the liquid receiving part is located on the outer side in the left-right direction, and the inside of the first and second header tanks is divided into two upper and lower sections by a partition member, and the first and second header tanks The total heat exchange pipe of the heat exchange path for condensation is connected to the upper section, the total heat exchange pipe of the subcooling heat exchange path of the supercooling section is connected to the lower section, and the condenser section is connected to the upper section of the first header tank. An inlet header is provided, a subcooler outlet header is provided in the lower section of the first header tank, a condenser outlet header is provided in the upper section of the second header tank, and a supercooler is installed in the lower section of the second header tank. Entrance header is provided Capacitor according to claim 6, wherein. 左右いずれか一端側に長手方向を上下方向に向けた第1ヘッダタンクが配置されるとともに、他端側に長手方向を上下方向に向けた第2ヘッダタンクおよび第3ヘッダタンクが、第3ヘッダタンクが左右方向外側に位置するように配置され、第1ヘッダタンクおよび第3ヘッダタンクの下端が第2ヘッダタンクの下端よりも下方に位置するとともに同上端が第2ヘッダタンクの下端よりも上方に位置しており、第1ヘッダタンク内が仕切部材により上下2つの区画に分割され、第1ヘッダタンクの上区画に凝縮用熱交換パスの全熱交換管が接続され、同じく下区画に過冷却用熱交換パスの全熱交換管が接続され、第2ヘッダタンクに凝縮用熱交換パスの全熱交換管が接続され、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却用熱交換パスの全熱交換管が接続され、第1ヘッダタンクの上区画に凝縮部入口ヘッダが設けられ、第1ヘッダタンクの下区画に過冷却部出口ヘッダが設けられ、第2ヘッダタンクに凝縮部出口ヘッダが設けられ、第3ヘッダタンクが受液部を兼ねているとともに、第3ヘッダタンクにおける第2ヘッダタンクの下端よりも下方に位置する部分に過冷却部入口ヘッダが設けられている請求項6記載のコンデンサ。
A first header tank whose longitudinal direction is directed vertically is arranged on one of the left and right ends, and a second header tank and a third header tank whose longitudinal direction is directed vertically on the other end are third headers The tank is arranged so as to be located on the outer side in the left-right direction, the lower ends of the first header tank and the third header tank are located below the lower end of the second header tank, and the upper end is above the lower end of the second header tank The first header tank is divided into two upper and lower sections by a partition member, and the total heat exchange pipe of the heat exchange path for condensation is connected to the upper section of the first header tank. The total heat exchange pipe of the cooling heat exchange path is connected, the total heat exchange pipe of the condensation heat exchange path is connected to the second header tank, and is below the lower end of the second header tank in the third header tank. The total heat exchange pipe of the heat exchange path for supercooling is connected to the portion to be placed, the condenser inlet header is provided in the upper section of the first header tank, and the supercooler outlet header is provided in the lower section of the first header tank. The second header tank is provided with a condensing part outlet header, and the third header tank also serves as a liquid receiving part, and is supercooled at a portion located below the lower end of the second header tank in the third header tank. The capacitor according to claim 6, further comprising a part inlet header.
JP2017104182A 2017-05-26 2017-05-26 Condenser Pending JP2018200132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017104182A JP2018200132A (en) 2017-05-26 2017-05-26 Condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104182A JP2018200132A (en) 2017-05-26 2017-05-26 Condenser

Publications (1)

Publication Number Publication Date
JP2018200132A true JP2018200132A (en) 2018-12-20

Family

ID=64668015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104182A Pending JP2018200132A (en) 2017-05-26 2017-05-26 Condenser

Country Status (1)

Country Link
JP (1) JP2018200132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110935293A (en) * 2019-12-26 2020-03-31 济南海能仪器股份有限公司 Condensation box and condensation water trap
WO2020084943A1 (en) 2018-10-24 2020-04-30 コニカミノルタ株式会社 Image processing device, control program, and image processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020084943A1 (en) 2018-10-24 2020-04-30 コニカミノルタ株式会社 Image processing device, control program, and image processing method
CN110935293A (en) * 2019-12-26 2020-03-31 济南海能仪器股份有限公司 Condensation box and condensation water trap

Similar Documents

Publication Publication Date Title
JP6259703B2 (en) Capacitor
US9335077B2 (en) Condenser with first header tank and second header tank provided on one side of the condenser
US20120305228A1 (en) Condenser
US10094601B2 (en) Condenser
US20180058737A1 (en) Condenser
JP5412195B2 (en) Heat exchanger
JP6572040B2 (en) Capacitor
JP2018200132A (en) Condenser
JP2011185562A (en) Condenser
CN107606825B (en) Condenser
JP2010065880A (en) Condenser
JP5622411B2 (en) Capacitor
JP6572031B2 (en) Capacitor
JP2008267753A (en) Heat exchanger
JP2018036041A (en) Condenser
JP2019027685A (en) Condenser
JP2013029257A (en) Condenser
JP6776949B2 (en) Condenser
JP2014052163A (en) Heat exchanger
JP2020101335A (en) Condenser
JP4043577B2 (en) Subcool system capacitor
JP2020016342A (en) Condenser
KR100858514B1 (en) Receiver drier - integrated condenser
JP2021025736A (en) Condenser
JP2011202918A (en) Condenser