JPS59205591A - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JPS59205591A
JPS59205591A JP8136783A JP8136783A JPS59205591A JP S59205591 A JPS59205591 A JP S59205591A JP 8136783 A JP8136783 A JP 8136783A JP 8136783 A JP8136783 A JP 8136783A JP S59205591 A JPS59205591 A JP S59205591A
Authority
JP
Japan
Prior art keywords
partition wall
refrigerant
porous
refrigerant pipe
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8136783A
Other languages
Japanese (ja)
Inventor
Shigenobu Fukumi
重信 福見
Toshio Ohara
敏夫 大原
Yoshiyuki Yamauchi
芳幸 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP8136783A priority Critical patent/JPS59205591A/en
Publication of JPS59205591A publication Critical patent/JPS59205591A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Abstract

PURPOSE:To make the thickness of a partition wall smaller as well as increase the number of parallel refrigerant paths by forming the partition wall in the porous refrigerant tube into a latticed shape. CONSTITUTION:In a porous refrigerant tube 2 of a flat cross section, made of aluminum by extrusion molding, latticed internal partition walls 4a and 4b are provided to form many refrigerant paths 5. Since the thickness t1 and t2 of the internal partition walls 4a and 4b are sufficient small to prevent the lowering of the strength, the raduction of the cross section of the refrigerant paths 5 can be avoided. When the thickness t1 of the partition wall 4a is uniform, the buckling resistance of the partition wall 4a is more greatly raised, th shorter the length of the wall 4a becomes.

Description

【発明の詳細な説明】 本発明は、冷房冷凍装置に用いられる、多孔冷媒管を有
する熱交換器に開する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is directed to a heat exchanger having porous refrigerant tubes used in a cooling/refrigeration system.

一般に、冷凍冷房装置の熱交換器は、例えは第1図に示
す凝縮器1のように、蛇行状に曲げ加工された冷媒管2
と、この冷媒管2の間に接合されたh9.熱用のコルゲ
ートフィン3とから構成されている。この凝縮器1は、
周知のように、冷媒管2内邪の高温高圧のカス冷媒を冷
媒管2およびコルケートフィン3によって放りハさせ、
液冷媒にするようになっている。したがって、従来の冷
媒管2では熱交換率を向上させるために、第2図に示す
ように冷媒管2の内部に仕切壁4を設け、複数の並列冷
媒通路5を形成して、多孔冷媒管とし、冷媒の伝熱面積
を増加させている。すなわち、冷媒通路5の本数が増加
すれば、多孔冷媒管2での熱交換率は大きくなり、結果
として凝縮器1の性能は向上する。また、凝縮器1は軽
量化して材質費の低減が要求される。この性能向上、お
よび軽量化のために、多孔冷媒管2の仕切壁4の厚さt
を薄くする必要がある。一方、多孔冷媒雀2は、第1図
に示すように蛇行状に曲げ加工しなければならず、仕切
壁4の厚さtlを薄くするに従い、強度も小さくなり、
曲げ加工時に仕切壁4が座屈してしまうという問題が生
ずる。
In general, a heat exchanger for a refrigeration/cooling system includes a refrigerant pipe 2 bent into a meandering shape, such as a condenser 1 shown in FIG.
and h9. connected between this refrigerant pipe 2. It is composed of corrugated fins 3 for heat. This condenser 1 is
As is well known, the high temperature and high pressure waste refrigerant inside the refrigerant pipe 2 is released through the refrigerant pipe 2 and the corkated fins 3,
It is designed to be a liquid refrigerant. Therefore, in order to improve the heat exchange efficiency in the conventional refrigerant pipe 2, a partition wall 4 is provided inside the refrigerant pipe 2 to form a plurality of parallel refrigerant passages 5, as shown in FIG. This increases the heat transfer area of the refrigerant. That is, as the number of refrigerant passages 5 increases, the heat exchange rate in the porous refrigerant pipes 2 increases, and as a result, the performance of the condenser 1 improves. Furthermore, the condenser 1 is required to be lightweight and to reduce material costs. In order to improve this performance and reduce weight, the thickness t of the partition wall 4 of the porous refrigerant pipe 2 is
It is necessary to make it thinner. On the other hand, the porous refrigerant sparrow 2 must be bent into a meandering shape as shown in FIG.
A problem arises in that the partition wall 4 buckles during bending.

本発明は、上記諸点に鑑みてなされたもので、冷凍冷房
装置に用いられる凝縮器等の熱交換器において、上記熱
交換器を構成する多孔冷媒管2の強度を低下させること
なく、多孔冷媒管2の内部仕切壁4を薄肉化することを
目的とする。
The present invention has been made in view of the above points, and in a heat exchanger such as a condenser used in a refrigeration/cooling device, a porous refrigerant can be used without reducing the strength of the porous refrigerant pipes 2 constituting the heat exchanger. The purpose is to make the internal partition wall 4 of the pipe 2 thinner.

以下図に示す実施例によって本発明を説明する。The present invention will be explained below with reference to embodiments shown in the figures.

第3図は、本発明の多孔冷媒管2の断面形状を示すもの
で、多孔冷媒管2は、図示のごとき断面偏平形状に、ア
ルミを押し出し加コニして形成したものである。多孔冷
媒管2内には、格子状の内部仕切壁(4a、  4 b
)と、この仕切壁(4a、4b)によって多数の冷媒通
路5とが形成されている。
FIG. 3 shows the cross-sectional shape of the porous refrigerant pipe 2 of the present invention, and the porous refrigerant pipe 2 is formed by extruding and hardening aluminum into the flat cross-sectional shape shown in the figure. Inside the porous refrigerant pipe 2, there are lattice-shaped internal partition walls (4a, 4b
), and a large number of refrigerant passages 5 are formed by the partition walls (4a, 4b).

上記の本実施例の仕切壁(4a、4b)は、従来の縦方
向の仕切壁4aに加えて、この仕切壁4aを直角2等分
するような横方向の仕切壁4bを設けることにより格子
状に形成されていることを特徴としている。
The above-mentioned partition walls (4a, 4b) of this embodiment are constructed by providing a horizontal partition wall 4b that divides the partition wall 4a into two equal parts at right angles in addition to the conventional vertical partition wall 4a. It is characterized by being formed in the shape of

従って、本実施例の多孔冷媒管2は、第2図に示すよう
な多孔冷媒管2に比べて冷媒通路5の数は2倍となり、
冷媒の伝熱面積は倍に増加し、また内部仕切壁(4a、
4b)(IJ厚さくtl、t2)は、下記の如き強度を
低下させることなく薄くできるため、冷媒通路5の断面
積が減少することもない。従って、第1図に示すような
凝縮器1に本実施例の多孔冷媒管2を適用ずれば凝縮器
1の冷却性能は向上することになる。
Therefore, the porous refrigerant pipe 2 of this embodiment has twice the number of refrigerant passages 5 compared to the porous refrigerant pipe 2 shown in FIG.
The heat transfer area of the refrigerant is doubled, and the internal partition walls (4a,
4b) (IJ thickness tl, t2) can be made thinner without reducing the strength as described below, so the cross-sectional area of the refrigerant passage 5 does not decrease. Therefore, if the porous refrigerant pipe 2 of this embodiment is applied to the condenser 1 shown in FIG. 1, the cooling performance of the condenser 1 will be improved.

また、仕切壁(4a、  4 b)の厚さくtl、t2
)は、現在の押し出し加工技術では、0.2〜0.4 
+u程度まで薄くできるが、仕切壁(4a、4b)の厚
さくLl、t2)が薄くなれば、それに伴なって仕切壁
(4a、  4 b)の耐座屈強度も小さくなるから、
多孔冷媒管2を第1図に示すように蛇行状に曲げ加工す
る際、仕切壁(4a、4.b)に加わる応力が耐座屈強
度より大き(なると、仕切壁(4a、4b)は座屈する
In addition, the thicknesses of the partition walls (4a, 4b) are tl and t2.
) is 0.2 to 0.4 with current extrusion processing technology.
It can be made as thin as +u, but as the thickness Ll, t2) of the partition walls (4a, 4b) becomes thinner, the buckling strength of the partition walls (4a, 4b) also decreases accordingly.
When bending the porous refrigerant pipe 2 into a meandering shape as shown in FIG. buckle.

ここで、多孔冷媒管2を曲げ加工する際に、多孔冷媒管
2に加わる応力は、第2図の矢印入方向カラノ応力であ
り、特に強度が問題となるのは、縦方向の仕切壁4aで
ある。一般に、仕切壁4aの厚さtlが一定のときに、
仕切壁4aの入方向からの応力に対する耐座屈強度は、
仕切壁4aの長さhlの2乗に反比例する。すなわち、
仕切壁4aの厚さ1.が同し場合に、仕切壁4aの長さ
が短かくなればなる程仕切壁4aの耐座屈強度は向上す
る。
Here, when bending the porous refrigerant pipe 2, the stress applied to the porous refrigerant pipe 2 is the Calano stress in the direction of the arrow in FIG. It is. Generally, when the thickness tl of the partition wall 4a is constant,
The buckling strength of the partition wall 4a against stress from the entrance direction is:
It is inversely proportional to the square of the length hl of the partition wall 4a. That is,
Thickness of partition wall 4a 1. are the same, the shorter the length of the partition wall 4a, the higher the buckling strength of the partition wall 4a.

そこで、本実施例では、上記のように縦方向の仕切壁4
aを2分するように横方向の仕切壁4bを設けているた
め、従来、縦方向の仕切壁4aの長さがhlであったも
のが、h2 (h2=h+/2)に短かくなっている。
Therefore, in this embodiment, as described above, the vertical partition wall 4
Since the horizontal partition wall 4b is provided to divide a into two, the length of the vertical partition wall 4a, which used to be hl, has been shortened to h2 (h2=h+/2). ing.

従って、仕切壁4aの厚さtlが同しならば、耐座屈強
度は第2図に示す従来のものに比べて、4倍に向上する
。換言すれば、仕切壁4aの厚さ1.が従来より薄くな
っても、従来と同程度の強度が維持できる。
Therefore, if the thickness tl of the partition wall 4a is the same, the buckling strength is four times higher than that of the conventional structure shown in FIG. In other words, the thickness of the partition wall 4a is 1. Even if it becomes thinner than before, it can maintain the same strength as before.

次に本発明の他の実施例について説明する。第4図は、
第2図の実施例の多孔冷媒管2の断面形状を示すもので
、第1の実施例で記述した横方向の仕切壁4bを2つに
増加することを特徴としている。従って、第2図に示す
従来の多孔冷媒管2と社較した場合、冷媒通路5の本数
、すなわち冷媒の伝熱面積は3倍となる。また、縦方向
の仕切壁4aの長さh3は、1/3となるため、仕切壁
4aの耐座屈強度は9倍に向上する。すなわち、仕切壁
4aの厚さを薄くしても、十分な耐座屈強度が得られる
Next, other embodiments of the present invention will be described. Figure 4 shows
This figure shows the cross-sectional shape of the porous refrigerant pipe 2 of the embodiment shown in FIG. 2, which is characterized by increasing the number of horizontal partition walls 4b described in the first embodiment to two. Therefore, when compared with the conventional porous refrigerant pipe 2 shown in FIG. 2, the number of refrigerant passages 5, that is, the heat transfer area of the refrigerant, is tripled. Further, since the length h3 of the partition wall 4a in the vertical direction is 1/3, the buckling strength of the partition wall 4a is improved by nine times. That is, even if the thickness of the partition wall 4a is reduced, sufficient buckling strength can be obtained.

なお、上記横方向の仕切壁4bは、2つであるが、さら
に数を増加すれば、当然冷媒の伝熱面積および縦方向の
仕切壁4aの耐座屈強度は増加する。
Although there are two horizontal partition walls 4b, if the number is further increased, the heat transfer area of the refrigerant and the buckling strength of the vertical partition walls 4a will naturally increase.

第5図は、第3の実施例の多孔冷媒管2の断面形状を示
しており、縦方向の仕切壁4δは、横方向の仕切壁4b
をはさんで、図示のごとく横方向にβだけずれている。
FIG. 5 shows the cross-sectional shape of the porous refrigerant pipe 2 of the third embodiment, where the vertical partition wall 4δ is different from the horizontal partition wall 4b.
As shown in the figure, it is shifted by β in the horizontal direction.

この第3実施例の仕切壁(4a、4b)の断面形状は、
本発明で言及している格子状という形状に含まれるもの
とする。この場合、第3実施例の多孔冷媒%−2は、第
1実施例と同様に、冷媒の伝熱面積は、負′31図に示
す従来のもののほぼ2倍となり、ih力方向仕切壁の耐
座屈強度は4倍となる。
The cross-sectional shape of the partition walls (4a, 4b) of this third embodiment is as follows:
This is included in the lattice shape referred to in the present invention. In this case, with the porous refrigerant %-2 of the third embodiment, the heat transfer area of the refrigerant is almost twice that of the conventional one shown in Figure 31, as in the first embodiment, and the ih force direction partition wall The buckling strength is four times higher.

また、第2実施例と同様に、横方向の仕切壁4bを増加
せば、冷媒の伝熱面積および縦方向の仕切壁の強度が向
上することは言うまでもない。
Further, as in the second embodiment, it goes without saying that by increasing the number of horizontal partition walls 4b, the heat transfer area of the refrigerant and the strength of the vertical partition walls are improved.

また、上記の実施例は、冷房冷凍装置の凝縮器1に本発
明を適用したものであるか、凝縮器と同様に蒸発器にも
適用できる。
Further, in the embodiments described above, the present invention is applied to the condenser 1 of a cooling/refrigeration system, or it can be applied to an evaporator as well as a condenser.

以上述べたように、本発明は、多孔冷媒管内部の仕切壁
を格子状にしているため、従来に比べて仕切壁の耐座屈
強度が向上するので、特に多孔冷媒管を蛇行状に曲げ加
工するさいに、内部仕切壁が座屈することな(仕切壁の
薄肉化が可能となるという効果がある。
As described above, in the present invention, since the partition walls inside the porous refrigerant pipe are shaped like a lattice, the buckling strength of the partition wall is improved compared to the conventional method. This has the effect that the internal partition wall does not buckle during processing (the partition wall can be made thinner).

また、多孔冷媒管内部−の仕切壁を格子状にすることに
より、並列冷媒通路の数が増加し、冷媒の伝熱面積が増
える。しかも内部仕切壁の肉厚を薄くすることが可能と
なるため、仕切壁が増加しても冷媒通路の断面積を減少
させることがない。その結果、熱交換器の性能も向上す
るという効果がある。
Further, by making the partition wall inside the porous refrigerant pipe into a lattice shape, the number of parallel refrigerant passages increases and the heat transfer area of the refrigerant increases. Moreover, since it is possible to reduce the thickness of the internal partition wall, the cross-sectional area of the refrigerant passage does not decrease even if the number of partition walls increases. As a result, there is an effect that the performance of the heat exchanger is also improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の多孔冷媒管を適用する凝縮器の斜視
図、第2図は、従来の多孔冷媒管の内部構造を示す断面
図、第3図は、本発明の多孔冷媒管の内部構造を示す断
面図、第4図は、本発明の多孔冷媒管の第2の実施例を
示す断面図、第5図は、本発明の多孔冷媒管の第3の実
施例を示す断面図である。 ■・・・凝縮器、2・・・多孔冷媒管、3・・・コlレ
ゲートフィン、4a、4b・・・内部仕切壁。 代理人弁理士 岡 部   隆
Fig. 1 is a perspective view of a condenser to which the porous refrigerant pipe of the present invention is applied, Fig. 2 is a sectional view showing the internal structure of a conventional porous refrigerant pipe, and Fig. 3 is a perspective view of a condenser to which the porous refrigerant pipe of the present invention is applied. 4 is a sectional view showing the internal structure of the porous refrigerant pipe according to the second embodiment of the present invention. FIG. 5 is a sectional view showing the third embodiment of the porous refrigerant pipe of the present invention. It is. ■... Condenser, 2... Porous refrigerant pipe, 3... Collaget fins, 4a, 4b... Internal partition wall. Representative Patent Attorney Takashi Okabe

Claims (1)

【特許請求の範囲】[Claims] 断面偏平状であって、かつ蛇行状に曲げ囲うされた多孔
冷媒管と、この多fL冷媒管に接合されたコルゲートフ
ィンとを組み合わせた熱交換器において、j)11記多
孔冷媒管内部に多数の並列冷媒通路を形成するように格
子状の仕切壁を設けることを特徴とする熱交換器。
In a heat exchanger that combines a porous refrigerant pipe having a flat cross-section and being bent and enclosed in a serpentine shape, and corrugated fins joined to this multi-fL refrigerant pipe, A heat exchanger characterized in that a grid-like partition wall is provided to form parallel refrigerant passages.
JP8136783A 1983-05-09 1983-05-09 Heat exchanger Pending JPS59205591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8136783A JPS59205591A (en) 1983-05-09 1983-05-09 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8136783A JPS59205591A (en) 1983-05-09 1983-05-09 Heat exchanger

Publications (1)

Publication Number Publication Date
JPS59205591A true JPS59205591A (en) 1984-11-21

Family

ID=13744342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8136783A Pending JPS59205591A (en) 1983-05-09 1983-05-09 Heat exchanger

Country Status (1)

Country Link
JP (1) JPS59205591A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219974A2 (en) * 1985-10-02 1987-04-29 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5586598A (en) * 1993-12-21 1996-12-24 Sanden Corporation Heat exchanger
JP2002098486A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method therefor
WO2003095918A2 (en) * 2002-05-07 2003-11-20 Valeo, Inc. Improved heat exchanger
EP1424531A2 (en) * 2002-11-29 2004-06-02 Valeo Climatisation Thermally inert heat exchanger for circuit of heat transfer fluid, particularly of vehicles
US6904963B2 (en) 2003-06-25 2005-06-14 Valeo, Inc. Heat exchanger
US6935414B2 (en) * 2001-10-09 2005-08-30 Denso Corporation Tube and heat exchanger having the same
US7337832B2 (en) 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
US7527087B2 (en) * 2003-06-30 2009-05-05 Valeo, Inc. Heat exchanger
JP2010038477A (en) * 2008-08-07 2010-02-18 Tokyo Radiator Mfg Co Ltd Porous tube for heat exchange
WO2014048951A1 (en) * 2012-09-28 2014-04-03 Valeo Systemes Thermiques Tube for a motor vehicle heat exchanger
DE102014213088A1 (en) * 2014-07-04 2016-01-07 Mahle International Gmbh flat tube

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0219974A2 (en) * 1985-10-02 1987-04-29 Modine Manufacturing Company Condenser with small hydraulic diameter flow path
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5586598A (en) * 1993-12-21 1996-12-24 Sanden Corporation Heat exchanger
JP2002098486A (en) * 2000-09-25 2002-04-05 Zexel Valeo Climate Control Corp Heat exchanger and manufacturing method therefor
US6935414B2 (en) * 2001-10-09 2005-08-30 Denso Corporation Tube and heat exchanger having the same
WO2003095918A3 (en) * 2002-05-07 2004-04-01 Valeo Inc Improved heat exchanger
US6793012B2 (en) 2002-05-07 2004-09-21 Valeo, Inc Heat exchanger
WO2003095918A2 (en) * 2002-05-07 2003-11-20 Valeo, Inc. Improved heat exchanger
US6942023B2 (en) 2002-05-07 2005-09-13 Valeo, Inc. Heat exchanger
US7059393B2 (en) 2002-05-07 2006-06-13 Valeo, Inc. Heat exchanger
US7156156B2 (en) 2002-11-29 2007-01-02 Valeo Climatisation Heat exchanger with thermal inertia for a heat transfer fluid circuit, particularly of a motor vehicle
FR2847973A1 (en) * 2002-11-29 2004-06-04 Valeo Climatisation HEAT EXCHANGER WITH THERMAL INERTIA FOR HEAT FLUID CIRCUIT, ESPECIALLY A MOTOR VEHICLE.
EP1424531A2 (en) * 2002-11-29 2004-06-02 Valeo Climatisation Thermally inert heat exchanger for circuit of heat transfer fluid, particularly of vehicles
EP1424531A3 (en) * 2002-11-29 2005-09-14 Valeo Climatisation Thermally inert heat exchanger for circuit of heat transfer fluid, particularly of vehicles
US7337832B2 (en) 2003-04-30 2008-03-04 Valeo, Inc. Heat exchanger
US6904963B2 (en) 2003-06-25 2005-06-14 Valeo, Inc. Heat exchanger
US7527087B2 (en) * 2003-06-30 2009-05-05 Valeo, Inc. Heat exchanger
JP2010038477A (en) * 2008-08-07 2010-02-18 Tokyo Radiator Mfg Co Ltd Porous tube for heat exchange
WO2014048951A1 (en) * 2012-09-28 2014-04-03 Valeo Systemes Thermiques Tube for a motor vehicle heat exchanger
FR2996296A1 (en) * 2012-09-28 2014-04-04 Valeo Systemes Thermiques TUBE FOR A HEAT EXCHANGER OF A MOTOR VEHICLE
DE102014213088A1 (en) * 2014-07-04 2016-01-07 Mahle International Gmbh flat tube

Similar Documents

Publication Publication Date Title
US6901995B2 (en) Heat exchangers and fin for heat exchangers and methods for manufacturing the same
US5411079A (en) Heat exchanger and method for manufacturing the same
JPS59205591A (en) Heat exchanger
JPH1114288A (en) Heat exchanger
JPH04187991A (en) Heat exchanger
JPH04369388A (en) Heat exchanger
JPH01114697A (en) Heat exchanger
JPS633191A (en) Heat exchanger
JPH02230091A (en) Serpentine type heat exchanger
JP2002318086A (en) Heat exchanger tube
JP2706497B2 (en) Finned heat exchanger
JPH03102193A (en) Condenser
JPH0245729Y2 (en)
JPH05240534A (en) Heat exchanger
JPH03117887A (en) Heat exchanger
JPH0459425A (en) Heat exchanger
JPH04340092A (en) Laminated type heat exchanger
JPS6314091A (en) Heat transfer pipe
JPH0345034Y2 (en)
JP3359182B2 (en) Heat exchanger
EP0097612A2 (en) Heat exchanger
JPH01137174A (en) Condenser
JP2008159757A (en) Cooling structure of heat generating substance, and manufacturing method of same cooling structure
JPS59215569A (en) Fin tube evaporator and manufacture thereof
JPS61153493A (en) Finned heat exchanger