JPH0245729Y2 - - Google Patents

Info

Publication number
JPH0245729Y2
JPH0245729Y2 JP1831283U JP1831283U JPH0245729Y2 JP H0245729 Y2 JPH0245729 Y2 JP H0245729Y2 JP 1831283 U JP1831283 U JP 1831283U JP 1831283 U JP1831283 U JP 1831283U JP H0245729 Y2 JPH0245729 Y2 JP H0245729Y2
Authority
JP
Japan
Prior art keywords
porous
refrigerant
refrigerant pipe
evaporator
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1831283U
Other languages
Japanese (ja)
Other versions
JPS59124973U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1831283U priority Critical patent/JPS59124973U/en
Publication of JPS59124973U publication Critical patent/JPS59124973U/en
Application granted granted Critical
Publication of JPH0245729Y2 publication Critical patent/JPH0245729Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 本考案は冷房冷凍装置に用いられる、多孔冷媒
管を有した蒸発器に関するものである。
[Detailed Description of the Invention] The present invention relates to an evaporator having a porous refrigerant tube used in a cooling/refrigeration system.

従来周知の多孔冷媒管を有した蒸発器において
は第1図に示すように多孔冷媒管1内の冷媒通路
3の断面積が同じであり、また多数の冷媒通路3
間の仕切壁4の肉厚tも同じであつた。しかしな
がら、蒸発器の空気の流れの流入側は空気と冷媒
との温度差が大きく受熱量が大きいため冷媒が早
く過熱蒸気となり、冷媒不足になり、また反対側
の空気流出側においては逆に冷媒過多となり霜等
が付着しやすく、蒸発器全体を有効に使用できな
いという問題があつた。
In a conventionally known evaporator having a porous refrigerant pipe, the cross-sectional area of the refrigerant passage 3 within the porous refrigerant pipe 1 is the same, as shown in FIG.
The wall thickness t of the partition wall 4 between them was also the same. However, on the inlet side of the air flow of the evaporator, the temperature difference between the air and the refrigerant is large and the amount of heat received is large, so the refrigerant quickly turns into superheated vapor, resulting in a shortage of refrigerant. There was a problem that the evaporator as a whole could not be used effectively because the amount of evaporator was excessive and frost was likely to adhere thereto.

そこで、この問題を解決するために、第2図に
示すように、多孔冷媒管1内の冷媒通路3の断面
積を空気の流れの流入側を大きくし、反対側に近
づくにつれて小さくし、冷媒量を変化させること
により、蒸発器内の冷媒の蒸発の均一化を図り、
冷却性能を向上させるようにした蒸発器も従来提
案されている。ところが、本考案者の検討による
と、この従来構造のごとく多孔冷媒管1内の空気
入口側の冷媒通路断面積を大きくすると、冷媒通
路仕切壁3の肉厚tが同一である場合、多孔冷媒
管1の押し出し加工時に、第2図の左右の押し出
し面積が異なるため、ダイスを通過後、多孔冷媒
管1が押し出し方向にわん曲するという問題が生
じる。また、多孔冷媒管1を蛇行状に曲げ加工す
る際に、多孔冷媒管1の長手方向(矢印A方向)
の両端部のうち空気流入側の仕切壁4が座屈する
という問題が生じる。また、蒸発器としては、破
壊圧に対して、冷媒通路断面積の広い部分は、冷
媒通路仕切壁へ加わる力が大きくなり、強度が弱
くなるという欠点があつた。
Therefore, in order to solve this problem, as shown in Fig. 2, the cross-sectional area of the refrigerant passage 3 in the porous refrigerant pipe 1 is made larger on the inflow side of the air flow, and becomes smaller as it approaches the opposite side. By changing the amount, we aim to equalize the evaporation of refrigerant in the evaporator,
Evaporators with improved cooling performance have also been proposed. However, according to the inventor's study, if the cross-sectional area of the refrigerant passage on the air inlet side in the porous refrigerant pipe 1 is increased as in this conventional structure, if the wall thickness t of the refrigerant passage partition wall 3 is the same, the porous refrigerant During extrusion of the tube 1, since the extrusion areas on the left and right sides in FIG. 2 are different, a problem arises in that the porous refrigerant tube 1 is bent in the extrusion direction after passing through the die. In addition, when bending the porous refrigerant pipe 1 into a meandering shape, the longitudinal direction of the porous refrigerant pipe 1 (direction of arrow A)
A problem arises in that the partition wall 4 on the air inflow side of both ends of the partition wall 4 buckles. Furthermore, the evaporator has a disadvantage in that the force applied to the refrigerant passage partition wall becomes large in a portion where the cross-sectional area of the refrigerant passage is large relative to the burst pressure, and the strength becomes weak.

本考案は上記諸点に鑑みてなされたもので、蒸
発器を構成する多孔冷媒管内の冷媒通路断面積を
空気の流れの進入側を大きく反対側に近づくにつ
れて小さくした蒸発器において、多孔冷媒管の加
工性および強度の改善を図ることを目的とする。
The present invention has been made in view of the above points, and is an evaporator in which the cross-sectional area of the refrigerant passage in the porous refrigerant tube constituting the evaporator is large on the air flow entrance side and becomes smaller as it approaches the opposite side. The purpose is to improve workability and strength.

以下図に示す一実施例について本考案を説明す
る。第3図は蒸発器全体の形状を示すもので、蛇
行状に曲げ加工されたアルミ製の多孔冷媒管1と
アルミ製のコルゲートフイン2とを一体にろう付
したものであり、自動車用空調装置に使用する。
The present invention will be described below with reference to an embodiment shown in the drawings. Figure 3 shows the overall shape of the evaporator, which is made by brazing an aluminum porous refrigerant pipe 1 bent into a meandering shape and an aluminum corrugated fin 2, which is used in an automobile air conditioner. used for.

第4図は上記多孔冷媒管1の断面形状を示すも
ので、多孔冷媒管1はアルミを押し出し加工して
図示のごとき断面偏平形状に形成したものであ
り、多孔冷媒管1内には多数の冷媒通路3と、こ
の通路3を分割する仕切壁4が形成されている。
ここで、気は矢印A方向に流れるようになつてお
り、この空気の流入側では仕切壁4の間隔が広
く、空気の流出側へ向うに従つて仕切壁4の間隔
が順次狭くなるようにしてある。それ故、冷媒通
路3の断面積も空気流入側から空気流出側へ向つ
て順次狭くなつている。これにより、多孔冷媒管
1内における各冷媒通路3で冷媒が均一に蒸発す
るようになり、蒸発器の性能向上を図ることがで
きる。
FIG. 4 shows the cross-sectional shape of the porous refrigerant pipe 1. The porous refrigerant pipe 1 is formed by extruding aluminum into a flat cross-sectional shape as shown in the figure. A refrigerant passage 3 and a partition wall 4 that divides the passage 3 are formed.
Here, air flows in the direction of arrow A, and the intervals between the partition walls 4 are wide on the air inflow side, and the intervals between the partition walls 4 are gradually narrowed toward the air outflow side. There is. Therefore, the cross-sectional area of the refrigerant passage 3 also becomes narrower from the air inflow side to the air outflow side. Thereby, the refrigerant comes to evaporate uniformly in each refrigerant passage 3 in the porous refrigerant pipe 1, and the performance of the evaporator can be improved.

一方、仕切壁4の厚さtは、冷媒通路3の断面
積に対応して決めてあり、通路断面積が大である
ほど厚さtも大となるようにしてある。
On the other hand, the thickness t of the partition wall 4 is determined in accordance with the cross-sectional area of the refrigerant passage 3, and the larger the passage cross-sectional area, the larger the thickness t.

第5図は、本考案による多孔冷媒管1の通路幅
lと仕切壁厚さtと耐圧強度Pの関係を示し、関
係式として、t=(l/Kσ)Pを導いた。ここで
σは材料の引張強度であり、アルミ合金の材料で
あれば、一般に10Km/mm2程度である。尚、Kは実
験的に求めた定数である。またtの最小値は、現
在の押し出し加工技術では、0.2mm程度が限界で
ある。第5図は前記したごとく多孔冷媒管1の通
路幅lより、耐圧強度Pと、仕切壁厚さtとの関
係を示しているものであるが、ここで具体的一例
を示すと、一般に、冷媒としてフロン12を用い
た冷凍装置における蒸発器の破壊圧強度は、45
Kg/cm2で、通路幅lは、製造技術および、空気側
冷房負荷に対する必要冷媒量より決定され、3mm
〜6mm程度である。いま、通路幅lを4mmとする
と必要な仕切壁厚さtは、t=(l/Kσ)Pより
t=(4/0.545×10)×(45/100)=0.33mmとな
る。なお、定数Kは本例では実験より求めた
0.545という補正係数を用いている。
FIG. 5 shows the relationship between the passage width l, partition wall thickness t, and compressive strength P of the porous refrigerant pipe 1 according to the present invention, and the relational expression t=(l/Kσ)P was derived. Here, σ is the tensile strength of the material, and in the case of aluminum alloy material, it is generally about 10 Km/mm 2 . Note that K is a constant determined experimentally. Furthermore, the minimum value of t is limited to approximately 0.2 mm using current extrusion processing technology. As mentioned above, FIG. 5 shows the relationship between the pressure resistance P and the partition wall thickness t based on the passage width l of the porous refrigerant pipe 1. To give a specific example here, generally, The burst pressure strength of the evaporator in a refrigeration system using Freon 12 as the refrigerant is 45
Kg/cm 2 , the passage width l is determined from the manufacturing technology and the amount of refrigerant required for the air side cooling load, and is 3 mm.
It is about 6 mm. Now, if the passage width l is 4 mm, the necessary partition wall thickness t is t=(4/0.545×10)×(45/100)=0.33 mm from t=(l/Kσ)P. In addition, in this example, the constant K was determined by experiment.
A correction factor of 0.545 is used.

同様に上記計算式から、通路幅Lが最大値の6
mmであれば、t=0.495mmとなり、通路幅lが最
小値の3mmであれば、t=0.248mmとなる。従つ
て、仕切壁厚さtは第4図の空気流入側から空気
流出側へ向つて、0.495mmから0.248mmへ順次狭く
なる。但し、空気流出側の最下流部の仕切壁の厚
さt0は他の部分より大きく(例えば0.7mm程度)
して、蛇行状に曲げ加工する場合の座屈を防ぐよ
うにしてある。また、仕切壁の厚さを順次小さく
せず部分的に厚くして補強を図つてもよい。
Similarly, from the above calculation formula, the passage width L is the maximum value of 6
mm, t=0.495 mm, and if the passage width l is the minimum value of 3 mm, t=0.248 mm. Therefore, the partition wall thickness t gradually decreases from 0.495 mm to 0.248 mm from the air inflow side to the air outflow side in FIG. However, the thickness t 0 of the partition wall at the most downstream part on the air outflow side is larger than other parts (for example, about 0.7 mm).
This prevents buckling when bending into a meandering shape. Further, the thickness of the partition wall may be strengthened by partially increasing the thickness instead of gradually reducing the thickness.

なお、多孔冷媒管1の外周部の厚さfは耐圧強
度と外部からの腐食の点を考慮して、一般に0.5
〜1.0mm程度に設計する。
Note that the thickness f of the outer circumference of the porous refrigerant pipe 1 is generally 0.5 in consideration of pressure resistance and corrosion from the outside.
Design to around 1.0mm.

本考案は以上説明した通りのもので、その効果
を列挙すれば次のごとくである。
The present invention is as explained above, and its effects are listed as follows.

(1) 多孔冷媒管の冷媒通路断面積を空気流入側か
ら空気流出側へ向つて順次小さくしているか
ら、各冷媒通路での冷媒の蒸発が均等となり蒸
発器の性能向上を図ることができる。
(1) Since the cross-sectional area of the refrigerant passage in the porous refrigerant pipe is gradually decreased from the air inflow side to the air outflow side, the refrigerant evaporates uniformly in each refrigerant passage, improving the performance of the evaporator. .

(2) 冷媒通路間の仕切壁の厚さを空気流入側から
空気流出側へ向つて順次小さくしているから、
多孔冷媒管を押し出し成形する際に、多孔冷媒
管における左右の押し出し量が近似したものと
なり、多孔冷媒管が押し出し方向に湾曲すると
いう不具合が生じない。
(2) Since the thickness of the partition wall between the refrigerant passages is gradually decreased from the air inflow side to the air outflow side,
When the porous refrigerant tube is extruded, the amount of extrusion on the left and right sides of the porous refrigerant tube becomes similar, and the problem that the porous refrigerant tube curves in the extrusion direction does not occur.

同様に、多孔冷媒管を蛇行状に曲げ加工する
際に、多孔冷媒管の端部が座屈するという不具
合も生じない。
Similarly, when bending a porous refrigerant pipe into a meandering shape, the problem of buckling of the end portion of the porous refrigerant pipe does not occur.

(3) 上記(2)項の構成を有することにより、多孔冷
媒管の断面積の大きい冷媒通路部分における耐
圧強度が向上し、蒸発器全体として信頼性の高
い製品が得られる。
(3) By having the configuration described in item (2) above, the pressure resistance in the refrigerant passage portion with a large cross-sectional area of the porous refrigerant pipe is improved, and a highly reliable product can be obtained as a whole of the evaporator.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は従来の蒸発器における多
孔冷媒管の断面図、第3図は本考案の一実施例を
説明するための蒸発器の斜視図、第4図は本考案
による多孔冷媒管の断面図、第5図は本考案の説
明に供するグラフである。 1……多孔冷媒管、2……コルゲートフイン、
3……冷媒通路、4……仕切壁。
1 and 2 are cross-sectional views of a porous refrigerant pipe in a conventional evaporator, FIG. 3 is a perspective view of an evaporator for explaining an embodiment of the present invention, and FIG. 4 is a cross-sectional view of a porous refrigerant pipe according to the present invention. The cross-sectional view of the tube, FIG. 5, is a graph for explaining the present invention. 1... Porous refrigerant pipe, 2... Corrugated fin,
3... Refrigerant passage, 4... Partition wall.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 断面偏平状であつて、かつ蛇行状に曲げ加工さ
れた多孔冷媒管と、この多孔冷媒管に接合された
コルゲートフインとを組み合せた蒸発器におい
て、前記多孔冷媒管内に形成されている多数の冷
媒通路の断面積を多孔冷媒管の空気流入側から空
気流出側へ向つて順次小さくするとともに、前記
多数の冷媒通路間の仕切壁の厚さを前記空気流入
側から空気流出側へ向つて順次小さくすることを
特徴とする蒸発器。
In an evaporator that combines a porous refrigerant pipe with a flat cross section and a meandering shape and a corrugated fin joined to the porous refrigerant pipe, a large number of refrigerants are formed in the porous refrigerant pipe. The cross-sectional area of the passages is gradually reduced from the air inflow side to the air outflow side of the porous refrigerant pipe, and the thickness of the partition wall between the plurality of refrigerant passages is gradually reduced from the air inflow side to the air outflow side. An evaporator characterized by:
JP1831283U 1983-02-11 1983-02-11 Evaporator Granted JPS59124973U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1831283U JPS59124973U (en) 1983-02-11 1983-02-11 Evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1831283U JPS59124973U (en) 1983-02-11 1983-02-11 Evaporator

Publications (2)

Publication Number Publication Date
JPS59124973U JPS59124973U (en) 1984-08-22
JPH0245729Y2 true JPH0245729Y2 (en) 1990-12-04

Family

ID=30149514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1831283U Granted JPS59124973U (en) 1983-02-11 1983-02-11 Evaporator

Country Status (1)

Country Link
JP (1) JPS59124973U (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373940B2 (en) * 1994-07-14 2003-02-04 シャープ株式会社 Heat exchanger
JP2002139282A (en) * 2000-10-31 2002-05-17 Mitsubishi Electric Corp Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
JP2019188862A (en) * 2018-04-19 2019-10-31 マツダ株式会社 Heat pipe device
JP2019188863A (en) * 2018-04-19 2019-10-31 マツダ株式会社 Heat pipe device
CN111895839B (en) * 2019-05-05 2021-09-21 浙江三花智能控制股份有限公司 Micro-channel flat tube and micro-channel heat exchanger

Also Published As

Publication number Publication date
JPS59124973U (en) 1984-08-22

Similar Documents

Publication Publication Date Title
JP4347961B2 (en) Multiway flat tube
KR950007282B1 (en) Condenser with small hydraulic diameter flow path
US5332034A (en) Heat exchanger tube
US20110005738A1 (en) Soldered flat tube for condensers and/or evaporators
US6412549B1 (en) Heat transfer pipe for refrigerant mixture
JPH0245729Y2 (en)
CN108398045A (en) A kind of flat tube, heat exchanger and its manufacturing method using the flat tube
JPH0510633A (en) Condenser
JP3661275B2 (en) Stacked evaporator
JPH07260393A (en) Header for heat exchanger and tank structure
JPH0328273Y2 (en)
US20240200886A1 (en) Heat Exchanger
JP2003343942A (en) Evaporator
JP2000234882A (en) Heat exchanger
JP2002130973A (en) Heat exchanger
JP2001324290A (en) Refrigerant evaporator
JPH03102193A (en) Condenser
JPH0247417Y2 (en)
JPS59110435A (en) Manufacture of heat exchange tube
JPH02166394A (en) Heat exchanger with fin
JPH0345034Y2 (en)
JP3286171B2 (en) Heat transfer tube with internal groove
JPS61191889A (en) Heat exchanger
JPH0443756Y2 (en)
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same