JP2721755B2 - Heat transfer tube and method of manufacturing the same - Google Patents

Heat transfer tube and method of manufacturing the same

Info

Publication number
JP2721755B2
JP2721755B2 JP3111813A JP11181391A JP2721755B2 JP 2721755 B2 JP2721755 B2 JP 2721755B2 JP 3111813 A JP3111813 A JP 3111813A JP 11181391 A JP11181391 A JP 11181391A JP 2721755 B2 JP2721755 B2 JP 2721755B2
Authority
JP
Japan
Prior art keywords
heat transfer
opening
groove
mountain
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3111813A
Other languages
Japanese (ja)
Other versions
JPH04339530A (en
Inventor
昭夫 礒崎
守 石川
実 西部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP3111813A priority Critical patent/JP2721755B2/en
Publication of JPH04339530A publication Critical patent/JPH04339530A/en
Application granted granted Critical
Publication of JP2721755B2 publication Critical patent/JP2721755B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機、空気調和機の
蒸発器に使用して好適な伝熱管およびその製造方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube suitable for use in an evaporator of a refrigerator or an air conditioner, and a method of manufacturing the same.

【0002】[0002]

【従来の技術】従来、この種の蒸発器の熱交換性能を向
上させる目的で開発または提供された伝熱管としては、
管内を流れる冷媒の蒸発あるいは沸騰の際の伝熱性能を
向上させる観点から次の項目の改善が必要とされてい
る。内表面積を拡大すること。流れの乱れを大きく
して伝熱抵抗を下げること。内面での沸騰が活発に行
われるようにすること。上記〜項の適当な組合せ
によって、さらに性能の改善をはかること。
2. Description of the Related Art Conventionally, heat transfer tubes developed or provided for the purpose of improving the heat exchange performance of this type of evaporator include:
The following items need to be improved from the viewpoint of improving the heat transfer performance when the refrigerant flowing in the pipe evaporates or boils. To increase the inner surface area. To increase the turbulence of the flow and lower the heat transfer resistance. Ensure that the boiling inside is active. To further improve the performance by a suitable combination of the above items.

【0003】項を満足する伝熱管としては、管内に高
いフィンを成形あるいはフィン材を管内に装入したもの
がある。項に対してはコルゲート管があり、項に対
しては粒子を内面に焼結した伝熱管がある。
As a heat transfer tube satisfying the above requirements, there is a tube in which a high fin is formed or a fin material is charged in the tube. For the item, there is a corrugated tube, and for the item, there is a heat transfer tube in which particles are sintered on the inner surface.

【0004】[0004]

【発明が解決しようとする課題】ところで、項が満足
し得る上記伝熱管は、管内を流れる冷媒の圧力損失が平
滑管の約10倍と大きくなって使用上問題があり、また、
コルゲート管についても圧力損失が平滑管の約5倍と大
きいのでやはり問題がある。
By the way, in the above-mentioned heat transfer tube which can satisfy the requirements, the pressure loss of the refrigerant flowing in the tube becomes about 10 times as large as that of the smooth tube, and there is a problem in use.
The corrugated pipe also has a problem because the pressure loss is as large as about 5 times that of the smooth pipe.

【0005】一方、粒子を焼結した伝熱管は、伝熱性能
が平滑管に対して約5〜10倍となるが、小径化、長尺化
が困難であること、生産性が低くコスト高となるのが難
点である。
On the other hand, a heat transfer tube obtained by sintering particles has a heat transfer performance about 5 to 10 times that of a smooth tube, but it is difficult to reduce the diameter and length, and the productivity is low and the cost is high. The disadvantage is that

【0006】近年、多くのルームエアコンや冷凍機の蒸
発器に、項を組合せてなる内面溝付管が使用されて
きているが、これは、溝が微細なため圧力損失が平滑管
の約2倍程度と比較的小さいことや、溝によって内面積
が増加し平滑管の約 1.5倍となること、また、溝が管軸
に対して5°〜30°とねじれていて流れが旋回すること
により、伝熱性能が平滑管の約2〜3倍に改善されるな
どの利点があることからである。さらに、機械加工(抽
伸機による芯引き加工など)により製造され長尺化、小
径化も可能になったことから大きく普及した。
In recent years, an internal grooved tube made of a combination of terms has been used in many room air conditioners and evaporators of refrigerators. It is relatively small, about twice as large, the inner area is increased by the groove to about 1.5 times that of the smooth pipe, and the groove is twisted at 5 ° to 30 ° with respect to the pipe axis, and the flow turns. This is because there is an advantage that the heat transfer performance is improved to about 2 to 3 times that of the smooth tube. Furthermore, it has been widely used because it has been manufactured by machining (centering with a drawing machine and the like) and can be made longer and smaller in diameter.

【0007】しかし、今後、ヒートポンプ機の高性能化
をさらに進めるには、伝熱性能をより一層改善する必要
があるが、現在の溝形状では限界に達していて、長尺
化、小径化を併せて満足し得るものは到底得られないと
されている。
However, in order to further improve the performance of the heat pump machine in the future, it is necessary to further improve the heat transfer performance. However, the current groove shape has reached its limit, and it is necessary to increase the length and diameter of the heat pump machine. At the same time, it is said that anything that can be satisfied is never obtained.

【0008】このように伝熱性能を改善しようとする
と、沸騰がより活発に起こり得る如き構造を伝熱管内面
に形成することが肝要であり、そこで本発明は、かかる
要望を満たすことが可能で、しかも長尺化、小径化なら
びに低コスト化を同時に果たし得る新規な構成の伝熱管
を提供することを主要な目的とするものである。
In order to improve the heat transfer performance as described above, it is important to form a structure on the inner surface of the heat transfer tube so that boiling can occur more actively. Further, it is a main object of the present invention to provide a heat transfer tube having a novel structure capable of simultaneously increasing the length, the diameter, and the cost.

【0009】[0009]

【課題を解決するための手段】本発明は上記目的を達成
するために以下述べる構成としたことを特徴とする。先
ず、本発明に係わる伝熱管は、内面にらせん状の溝を有
する内面溝付伝熱管であって、溝のリード角βが5°乃
至30°の範囲であり、溝断面形状が実質的に台形であ
り、溝底幅w、溝深さh、山底幅tの間にはh≧2w、
t<wの関係が成立し、山は全体として実質的に山頂角
αが30°乃至90°の断面三角形で、且つ、山内部にその
長手方向に連通した三角形のトンネル状通路が設けら
れ、また、山頂部には、所定間隔で断続したスリット状
の開口部がトンネル状通路に連通して設けられていて、
前記開口部は幅vが0.05乃至0.15mm、長さlが0.05乃至
0.15mmの範囲であり、さらに非開口部長さcが開口部長
さlに対して1乃至10倍としたものである。
SUMMARY OF THE INVENTION The present invention is characterized in that it has the following configuration to achieve the above object. First, the heat transfer tube according to the present invention is a heat transfer tube with an inner surface groove having a spiral groove on the inner surface, the lead angle β of the groove is in the range of 5 ° to 30 °, and the groove cross-sectional shape is substantially It has a trapezoidal shape, and a groove bottom width w, a groove depth h, and a mountain bottom width t have h ≧ 2w,
The relationship of t <w is established, and the mountain is substantially triangular in cross section with a peak angle α of 30 ° to 90 ° as a whole, and a triangular tunnel-like passage communicating with the longitudinal direction is provided inside the mountain. In addition, a slit-shaped opening intermittently provided at a predetermined interval is provided at the mountaintop in communication with the tunnel-like passage,
The opening has a width v of 0.05 to 0.15 mm and a length l of 0.05 to 0.1
In this case, the non-opening length c is 1 to 10 times the opening length l.

【0010】次に、本発明に係わる伝熱管の製造方法
は、熱伝導性に優れた板あるいは帯条に溝付ロール等を
押圧させて、溝底幅w、溝深さh、山底幅tの間にh≧
2w、t<wの関係が成立し、且つ、溝のリード角βが
5°乃至30°の多数の溝を表面に形成する第1工程と、
この多数の溝が表面に形成された板あるいは帯条に溝付
ロール等を押圧させて、隣り合う山を交互に接近、離間
させて、山頂角αが30°乃至90°で、山頂部に幅vが0.
05乃至0.15mmの開口部が存し、且つ、内部に断面三角形
で前記開口部に連通するトンネル状通路が設けられてい
る断面三角形の山を溝間に形成する第2工程と、次い
で、ロールフォーミング法によって管状に変形した後、
突き合わせた縁部を溶接により接合する第3工程とから
なるものである。
Next, the method for manufacturing a heat transfer tube according to the present invention is characterized in that a grooved roll or the like is pressed against a plate or a strip having excellent heat conductivity to thereby obtain a groove bottom width w, a groove depth h, and a mountain bottom width. h ≧ t during t
2w, a first step of forming a large number of grooves having a lead angle β of 5 ° to 30 ° on the surface, where a relationship of t <w is satisfied, and
By pressing a grooved roll or the like on a plate or a strip having a large number of grooves formed on the surface, the adjacent peaks are alternately approached and separated, and the peak angle α is 30 ° to 90 °, and the peak angle α is 30 ° to 90 °. The width v is 0.
A second step of forming between the grooves a mountain having a triangular cross section in which an opening of 05 to 0.15 mm is present and in which a tunnel-like passage communicating with the opening having a triangular cross section is provided. After being formed into a tube by the forming method,
And a third step of joining the butted edges by welding.

【0011】[0011]

【作用】本発明によれば、断面三角形の山内に形成され
て、しかも山頂部に開口部を有する図4に示される如き
トンネル構造は、冷媒が沸騰する際、発生した気泡が全
て伝熱面から離脱することなく、一部が開口部に保持さ
れて図7に示す状態を呈し、「過熱度=管壁温度−液温
度」の関係より明らかなように、大きな過熱度を必要と
しない。またそのために高い伝熱性能を示すのである。
According to the present invention, the tunnel structure as shown in FIG. 4, which is formed in a mountain having a triangular cross section and has an opening at the top of the mountain, is characterized in that all the bubbles generated when the refrigerant boils are transferred to the heat transfer surface. Without being separated from the opening, a part is held in the opening, and the state shown in FIG. 7 is exhibited, and a large degree of superheat is not required, as is clear from the relationship of “superheat degree = tube wall temperature−liquid temperature”. In addition, it exhibits high heat transfer performance.

【0012】また、板をロールフォーミング加工し、溶
接によって管を成形する方法を採用することによって、
長尺化が可能であり、さらに幅の狭い帯条を使用するこ
とによって小径化が当然可能である。
Further, by adopting a method in which a plate is roll-formed and a pipe is formed by welding,
The length can be increased, and the diameter can be reduced by using a narrower strip.

【0013】次に、溝形状の数値限定の理由を説明す
る。溝のリード角βについては、5°未満では冷媒流量
が大きくなったときに、旋回流が得られなくなるため蒸
発性能が低下することになり、一方、30°を超えると圧
力損失が増大するため伝熱性能が低下し、さらに山中央
部のトンネル状通路の両サイドを構成する壁部を、各々
個別にロール圧延成形する場合、ロールの歯型とその壁
部となる山が干渉して成形が困難となる問題があり、こ
れ等を勘案してリード角βを5°乃至30°の範囲にする
こととした。
Next, the reason for limiting the numerical value of the groove shape will be described. If the groove lead angle β is less than 5 °, when the flow rate of the refrigerant becomes large, the swirling flow cannot be obtained, so that the evaporation performance is reduced. On the other hand, when the flow angle exceeds 30 °, the pressure loss increases. When the heat transfer performance is reduced, and the walls forming both sides of the tunnel-like passage at the center of the mountain are individually roll-rolled, the tooth shape of the roll and the mountain forming the wall interfere with each other. In view of these problems, the lead angle β is set in the range of 5 ° to 30 °.

【0014】山頂角αに関しては、30°未満では山中央
部のトンネル状通路両サイドを構成する壁部を各々個別
にロール圧延成形する場合に、前述した通り干渉が生じ
て成形困難となる。一方、90°以上では、山斜面の液膜
厚さが厚くなって、凝縮性能が低下する。したがって、
山頂角αは30°乃至90°の範囲にすることとした。
If the peak angle α is less than 30 °, when the walls forming both sides of the tunnel-shaped passage at the center of the peak are individually roll-rolled, interference occurs as described above, and forming is difficult. On the other hand, when the angle is 90 ° or more, the liquid film thickness on the mountain slope becomes thick, and the condensation performance decreases. Therefore,
The peak angle α is in the range of 30 ° to 90 °.

【0015】山頂開口部の大きさについては、幅vおよ
び長さlが0.05mm未満では、トンネル状通路内の気泡の
内圧が十分高まらなくて気泡が放出されにくくなるため
沸騰性能が低下することになり、一方、0.15mmを超える
と、気泡が一気に放出され、トンネル状通路内から気泡
が離脱して連続した沸騰現象が生じなくなる。したがっ
て、山頂開口部の大きさは、v=0.05〜0.15mm、l=0.
05〜0.15mmとした。
With respect to the size of the opening at the top of the mountain, if the width v and the length 1 are less than 0.05 mm, the internal pressure of the bubbles in the tunnel-like passage is not sufficiently increased, so that the bubbles are difficult to be discharged. On the other hand, if it exceeds 0.15 mm, the bubbles are released at a stretch, and the bubbles are separated from the inside of the tunnel-like passage so that a continuous boiling phenomenon does not occur. Therefore, the size of the top opening is v = 0.05 to 0.15 mm, l = 0.
05 to 0.15 mm.

【0016】さらに、山頂開口部の長さlと非開口部の
長さcとの関係については、鋸歯状の溝を有するロール
で刻みを入れて開口部と非開口部とを形成する加工によ
る場合で、刻み部が非開口部、非刻み部が開口部となる
例えばAタイプと称するものは、c/lが1/1未満で
は山頂部強度が不足して熱交換器組立ての際の拡管加工
で山頂部が潰れ、開口部が閉じてしまう。またc/lが
大きくなるとそれに伴い必然的に沸騰に有効な開口数が
減少するので、特にc/lが10/1を超えると、蒸発性
能が平滑管の 2.5倍程度となって従来の溝付管並みの性
能しか得られなくなる。
Further, the relationship between the length 1 of the crest opening and the length c of the non-opening portion is determined by forming the opening portion and the non-opening portion by making a notch with a roll having a sawtooth-shaped groove. In the case where the cut portion is a non-opening portion and the non-cut portion is an opening, for example, what is referred to as an A type, if c / l is less than 1/1, the strength of the peak is insufficient and the pipe expansion at the time of assembling the heat exchanger. The peak is crushed during processing and the opening is closed. Also, as c / l increases, the effective numerical aperture for boiling decreases inevitably. Therefore, especially when c / l exceeds 10/1, the evaporation performance becomes about 2.5 times that of a smooth tube, and the conventional groove is used. Only the performance equivalent to that of an attached pipe can be obtained.

【0017】また、刻み部が開口部、非刻み部が非開口
部となる例えばBタイプと称するものについては、c/
lが1/1未満では山頂部強度が不足して熱交換器組立
ての際の拡管加工で山頂部が平坦に潰れて凝縮性能が低
下し、またc/lが10/1を超えると、上記Aタイプと
同様の問題が生じる。したがって、c/lは1/1〜10
/1とした。
Further, for a type called a B type in which the cut portion is an opening and the non-cut portion is a non-opening, c /
If l is less than 1/1, the peak strength is insufficient and the peak is crushed flat by pipe expansion processing at the time of assembling the heat exchanger, and condensing performance is reduced. If c / l exceeds 10/1, the above-mentioned value is obtained. The same problem as the A type occurs. Therefore, c / l is 1/1 to 10
/ 1.

【0018】[0018]

【実施例】以下、本発明の実施例を添付図面によって説
明する。図1は、本発明に係わる内面溝付伝熱管の製造
工程の概要図であり、伝熱管の素材である熱伝導性に優
れた板 (1)例えば銅板を巻き取ってなるロール (2)が回
転可能に支持されている繰り出し部(イ)、上下に配置
された一対の溝付ロール(3), (3)からなる溝成形工程
(ロ)、上下に配置された一対の山合わせロール(4),
(4)からなる山成形工程(ハ)、同じく上下に配置され
た一対の刻みロール(5), (5)からなる開口成形工程
(ニ)、水平方向の間隔を順次狭めて相対向して配設さ
れた複数組の一対のフォーミング用ロール(6), (6)……
…からなる管成形工程(ホ)および溶接機 (7)によって
管状となった突き合わせ縁部を連続溶接する溶接工程
(ヘ)が上手側から順に設けられている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a schematic view of a manufacturing process of a heat transfer tube with an inner surface groove according to the present invention. The heat transfer tube is made of a plate having excellent heat conductivity (1) a roll formed by winding a copper plate, for example. A feeding part (a) rotatably supported, a groove forming step (b) including a pair of grooved rolls (3) and (3) arranged vertically, a pair of ridged rolls arranged vertically ( Four),
The mountain forming step (c) consisting of (4), the opening forming step (d) consisting of a pair of notch rolls (5) and (5) also arranged up and down, A plurality of pairs of forming rolls arranged (6), (6) ……
.. And a welding step (f) for continuously welding the butted edges formed into a tubular shape by the welding machine (7).

【0019】繰り出し部(イ)から例えば幅30mm、厚さ
0.5mmの銅板 (1)が繰り出されると、一対の溝付ロール
(3), (3)間を通って、その間に深さhが 0.3mm、リード
角18°の溝 (8)と、山頂角αが30°の断面三角形の山
(9)とが交互に配置された溝数70の溝加工が溝成形工程
(ロ)で行われる。図2は溝成形された板の部分拡大図
で、図に示される通り、溝 (8)の断面形状は台形であ
り、溝底幅w、溝深さh、山底幅tの間にはh≧2w、
t<wの関係が成立している。
From the feeding portion (a), for example, a width of 30 mm and a thickness
When the 0.5 mm copper plate (1) is unreeled, a pair of grooved rolls
(3), a groove with a depth h of 0.3 mm and a lead angle of 18 ° (8) and a mountain with a triangular cross-section having a peak angle α of 30 °
The groove processing of 70 grooves in which (9) is alternately arranged is performed in the groove forming step (b). FIG. 2 is a partially enlarged view of the groove-formed plate. As shown in the figure, the cross-sectional shape of the groove (8) is trapezoidal, and the groove bottom width w, the groove depth h, and the mountain bottom width t are between. h ≧ 2w,
The relationship of t <w holds.

【0020】次いで、山成形工程(ハ)に送られて、一
対の山合わせロール(4), (4)間に通され、隣り合う山
(9), (9)の相互を接近させて、図3に示す通り、山頂に
開口幅vが0.05〜0.15mmである間隙(11)が形成され、同
時にこの間隙(11)に連通して山(9), (9)に挟まれてなる
トンネル状通路(10)が長手方向に延びて成形される。
Next, it is sent to a mountain forming step (c), and is passed between a pair of mountain-matching rolls (4), (4) to form an adjacent mountain
As shown in FIG. 3, a gap (11) having an opening width v of 0.05 to 0.15 mm is formed at the top of the mountain by bringing the (9) and (9) closer to each other, and at the same time, the gap (11) communicates with the gap (11). A tunnel-like passage (10) sandwiched between the mountains (9), (9) extends in the longitudinal direction and is formed.

【0021】続いて、開口成形工程(ニ)に送られて、
鋸歯状の溝を有する一対の刻みロール(5), (5)によっ
て、溝 (8)とは逆リード方向に、間隙(11)が存する山頂
部に刻みを入れ、図4に示される如く、刻みの入った部
分の材料が変形して、この溝頂部が閉じた前記Aタイプ
構造の波形が形成される。
Subsequently, it is sent to the opening forming step (d),
A pair of notching rolls (5), (5) having serrated grooves are cut in the crest at the gap (11) in the lead direction opposite to the groove (8), as shown in FIG. The material of the notched portion is deformed to form a waveform of the A type structure in which the groove top is closed.

【0022】この工程(ニ)で、山頂部に閉塞部と開口
部とを交互に有するトンネル状通路(10)を山部内に形成
することができる。
In this step (d), a tunnel-like passage (10) having alternately closed portions and openings at the peak can be formed in the peak.

【0023】次に、上記の如く加工された板 (1)を管成
形工程(ホ)のフォーミング用ロール(6), (6)………に
導いて、山、溝を有する面が内面になるように両縁部か
ら順に丸曲げ加工して所定径の管に曲げ、突き合わされ
た縁部を次の溶接工程(ヘ)で、溶接機 (7)によって高
周波抵抗溶接し内面溝付伝熱管に仕上げる。
Next, the plate (1) processed as described above is guided to the forming rolls (6), (6),... In the tube forming step (e), and the surface having the peaks and grooves is formed on the inner surface. In order to form a pipe with a predetermined diameter, the pipe is bent into a pipe of a predetermined diameter in the order from the both edges, and the butted edges are subjected to high-frequency resistance welding by a welding machine (7) in the next welding step (f), and heat-transfer tubes with internal grooves are formed. To finish.

【0024】上記製造工程および要領で、表1に示す如
き管諸元の直径9.52mmの伝熱銅管を製造し、従来の台形
溝付銅管および平滑銅管と併せて蒸発性能(Eva.)
ならびに凝縮性能(Cond.)の性能比較を行った。
その結果を併せて表1に示す。表1より明らかなよう
に、本発明に係わる伝熱銅管は、蒸発性能(Eva.)
ならびに凝縮性能(Cond.)ともに優れるものであ
った。
According to the above-mentioned manufacturing process and procedure, a heat-transfer copper pipe having a diameter of 9.52 mm as shown in Table 1 was manufactured, and together with a conventional trapezoidal grooved copper pipe and a smooth copper pipe, the evaporation performance (Eva. )
And a comparison of the condensation performance (Cond.).
Table 1 also shows the results. As is clear from Table 1, the heat transfer copper tube according to the present invention has an evaporating performance (Eva.).
And the condensing performance (Cond.) Was excellent.

【0025】尚、上記性能試験は、長さ5000mmの管およ
び冷媒としてフロンR−22を使用し、管内に冷媒を流量
50kg/hrで流し、蒸発温度 7℃、出口過熱度 5℃の条件
で管内境膜伝熱性能を調査した。
In the above performance test, a pipe having a length of 5000 mm and Freon R-22 as a refrigerant were used, and a refrigerant was flowed into the pipe.
The tube inner film heat transfer performance was investigated under the conditions of a flow rate of 50 kg / hr, an evaporation temperature of 7 ° C, and an outlet superheat of 5 ° C.

【0026】また、表1中の管諸元において、βは溝の
リード角、αは山頂角、vは開口部の幅、lは開口部の
長さ、cは非開口部の長さ、hは溝深さを示す。また N
o.25は内面平滑管である。また判定は、Eva.3.0 以
上且つCond.2.2 以上である場合を○、Eva.と
Cond.のいずれか一方あるいは両者が前記値以下で
ある場合を△とした。
In the tube specifications in Table 1, β is the lead angle of the groove, α is the peak angle, v is the width of the opening, l is the length of the opening, c is the length of the non-opening, h indicates the groove depth. Also N
o.25 is an inner smooth tube. The determination is made in Eva. 3.0 or more and Cond. If the value is 2.2 or more, ○, Eva. And Cond. The case where either one or both of them is equal to or less than the above value is defined as Δ.

【0027】[0027]

【表1】 [Table 1]

【0028】以上説明した例とは別に、図5に示す成形
ロール(12)によって互いに隣り合う山(9), (9)を寄せて
頂部を密着させると同時に、この頂部よりは僅かに低い
頭部を形成して、この頭部に開口を設けてなる溝付管
(図6参照)を製作することも可能であり、いずれも開
口部の幅vおよび長さlが共に0.05〜0.15mm、非開口部
長さcが前記長さlに対し1乃至10倍の長さとなるよう
に製作することが肝要である。
Separately from the example described above, the peaks (9), (9) adjacent to each other are brought closer together by the forming roll (12) shown in FIG. It is also possible to produce a grooved tube (see FIG. 6) in which an opening is formed in the head by forming a portion, and the width v and the length l of the opening are both 0.05 to 0.15 mm, It is important that the non-opening portion length c is 1 to 10 times the length l.

【0029】[0029]

【発明の効果】スリット状で断続した間欠配置の開口部
を有するトンネル構造を管内壁に多数備えてなる本発明
伝熱管は、上述した通り、冷媒沸騰の際、大きい過熱度
を必要としないことから高い伝熱特性を示すものであ
る。
As described above, the heat transfer tube of the present invention having a large number of tunnel structures having slit-shaped intermittently arranged openings on the inner wall of the tube does not require a large degree of superheat at the time of refrigerant boiling. And high heat transfer characteristics.

【0030】また、板を加工し溶接によって管に成形す
るので小径化、長尺化が可能であり、さらに連続的且つ
量産的に管成形が可能であって低コストの伝熱管を容易
に得ることができる。
Further, since the plate is processed and formed into a tube by welding, the diameter can be reduced and the length can be increased. Further, the tube can be formed continuously and in mass production, and a low-cost heat transfer tube can be easily obtained. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係わる実施例の伝熱管の製造工程の概
要図である。
FIG. 1 is a schematic view of a manufacturing process of a heat transfer tube according to an embodiment of the present invention.

【図2】図1の溝成形工程における中間製品の部分拡大
斜視図である。
FIG. 2 is a partially enlarged perspective view of an intermediate product in a groove forming step of FIG. 1;

【図3】図1の山成形工程における中間製品の部分拡大
斜視図である。
FIG. 3 is a partially enlarged perspective view of an intermediate product in a mountain forming step of FIG. 1;

【図4】本発明に係わる実施例の伝熱管の内壁の部分拡
大斜視図である。
FIG. 4 is a partially enlarged perspective view of the inner wall of the heat transfer tube of the embodiment according to the present invention.

【図5】本発明に係わる他の実施例の開口成形工程にお
ける中間製品の部分拡大断面図である。
FIG. 5 is a partially enlarged cross-sectional view of an intermediate product in an opening forming step according to another embodiment of the present invention.

【図6】本発明に係わる他の実施例により得られる伝熱
管の内壁の部分拡大斜視図である。
FIG. 6 is a partially enlarged perspective view of an inner wall of a heat transfer tube obtained by another embodiment according to the present invention.

【図7】本発明伝熱管の管壁での沸騰状態を説明するた
めの拡大断面図である。
FIG. 7 is an enlarged cross-sectional view for explaining a boiling state on a tube wall of the heat transfer tube of the present invention.

【符号の説明】 1:板 2:ロール 3:溝
付ロール 4:山合わせロール 5:刻みロール 6:フ
ォーミング用ロール 7:溶接機 8:溝 9:山 10:トンネル状通路 11:間隙 イ:繰り出し部 ロ:溝成形工程 ハ:山
成形工程 ニ:開口成形工程 ホ:管成形工程 ヘ:溶
接工程 α:山頂角 w:溝底幅 h:溝
深さ t:山底幅 v:開口部の幅 l:開
口部の長さ c:非開口部の長さ β:溝のリード角
[Description of Signs] 1: Plate 2: Roll 3: Grooved Roll 4: Crest Roll 5: Notch Roll 6: Forming Roll 7: Welding Machine 8: Groove 9: Crest 10: Tunnel-like Passage 11: Gap Feeding part B: Groove forming process C: Mountain forming process D: Opening forming process E: Tube forming process F: Welding process α: Peak width w: Groove bottom width h: Groove depth t: Mountain bottom width v: Opening portion Width l: Length of opening c: Length of non-opening β: Lead angle of groove

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 内面にらせん状の溝を有する内面溝付伝
熱管であって、溝のリード角βが5°乃至30°の範囲で
あり、溝断面形状が実質的に台形であり、溝底幅w、溝
深さh、山底幅tの間にはh≧2w、t<wの関係が成
立し、山は全体として実質的に山頂角αが30°乃至90°
の断面三角形で、且つ、山内部にその長手方向に連通し
た三角形のトンネル状通路が設けられ、また、山頂部に
は、所定間隔で断続したスリット状の開口部がトンネル
状通路に連通して設けられていて、前記開口部は幅vが
0.05乃至0.15mm、長さlが0.05乃至0.15mmの範囲であ
り、さらに非開口部長さcが開口部長さlに対して1乃
至10倍であることを特徴とする伝熱管。
An internally grooved heat transfer tube having a spiral groove on an inner surface, wherein a lead angle β of the groove is in a range of 5 ° to 30 °, and a groove cross-sectional shape is substantially trapezoidal. The relationship h ≧ 2w, t <w is established among the bottom width w, the groove depth h, and the mountain bottom width t, and the mountain has a peak angle α of substantially 30 ° to 90 ° as a whole.
A triangular tunnel-like passage having a triangular cross-section and communicating with the longitudinal direction inside the mountain is provided, and a slit-shaped opening intermittently interrupted at a predetermined interval communicates with the tunnel-like passage at the top of the mountain. And the opening has a width v.
A heat transfer tube, wherein the heat transfer tube has a length of 0.05 to 0.15 mm and a length 1 in a range of 0.05 to 0.15 mm, and a non-opening length c is 1 to 10 times the opening length l.
【請求項2】 熱伝導性に優れた板あるいは帯条に溝付
ロール等を押圧させて、溝底幅w、溝深さh、山底幅t
の間にh≧2w、t<wの関係が成立し、且つ、溝のリ
ード角βが5°乃至30°の多数の溝を表面に形成する第
1工程と、この多数の溝が表面に形成された板あるいは
帯条に溝付ロール等を押圧させて、隣り合う山を交互に
接近、離間させて、山頂角αが30°乃至90°で、山頂部
に幅vが0.05乃至0.15mmの開口部が存し、且つ、内部に
断面三角形で前記開口部に連通するトンネル状通路が設
けられている断面三角形の山を溝間に形成する第2工程
と、次いで、ロールフォーミング法によって管状に変形
した後、突き合わせた縁部を溶接により接合する第3工
程とからなることを特徴とする伝熱管の製造方法。
2. A grooved roll w, a groove depth h, and a crest width t are pressed by pressing a grooved roll or the like against a plate or strip having excellent thermal conductivity.
A first step of forming on the surface a number of grooves having a relationship of h ≧ 2w and t <w, and a lead angle β of the grooves of 5 ° to 30 °; By pressing a grooved roll or the like on the formed plate or strip, adjacent peaks are alternately approached and separated, the peak angle α is 30 ° to 90 °, and the width v at the peak is 0.05 to 0.15 mm. A second step of forming between the grooves a triangular section having a triangular cross-section in which a tunnel-like passage communicating with the opening is provided, and then forming a tubular shape by a roll forming method. And a third step of welding the butted edges together by welding after the deformation.
JP3111813A 1991-05-16 1991-05-16 Heat transfer tube and method of manufacturing the same Expired - Lifetime JP2721755B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3111813A JP2721755B2 (en) 1991-05-16 1991-05-16 Heat transfer tube and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3111813A JP2721755B2 (en) 1991-05-16 1991-05-16 Heat transfer tube and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04339530A JPH04339530A (en) 1992-11-26
JP2721755B2 true JP2721755B2 (en) 1998-03-04

Family

ID=14570806

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3111813A Expired - Lifetime JP2721755B2 (en) 1991-05-16 1991-05-16 Heat transfer tube and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2721755B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3296325B2 (en) * 1999-04-08 2002-06-24 ダイキン工業株式会社 Heat transfer tube with internal groove
DE102016006914B4 (en) * 2016-06-01 2019-01-24 Wieland-Werke Ag heat exchanger tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560089U (en) * 1978-10-12 1980-04-23
JPH01271008A (en) * 1988-04-20 1989-10-30 Furukawa Electric Co Ltd:The Manufacture of heat exchanger tube
JP2580353B2 (en) * 1990-01-09 1997-02-12 三菱重工業株式会社 ERW heat transfer tube and its manufacturing method

Also Published As

Publication number Publication date
JPH04339530A (en) 1992-11-26

Similar Documents

Publication Publication Date Title
US6026892A (en) Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
EP2232187B1 (en) Heat transfer tube
US6336501B1 (en) Tube having grooved inner surface and its production method
US5931226A (en) Refrigerant tubes for heat exchangers
JP4597475B2 (en) Manufacturing method of cross fin tube for heat exchanger and cross fin type heat exchanger
JP3331518B2 (en) Heat transfer tubes and heat exchangers with internal fins
EP0762070B1 (en) Refrigerant tubes for heat exchangers
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2628712B2 (en) Method of forming heat transfer surface
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2868163B2 (en) Method of manufacturing heat exchanger tube for heat exchanger
JPH02161290A (en) Inner face processed heat transfer tube
JPH08327272A (en) Heat transfer tube and manufacture thereof
KR940010977B1 (en) Heat pipe using heat exchanger
JP3145277B2 (en) Heat transfer tube with internal groove
JPH02280933A (en) Heat transfer tube and manufacture thereof
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH11108579A (en) Pipe with grooved inner face
JPH06101986A (en) Heat exchanger tube with grooved internal wall
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JP3779794B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2000283680A (en) Pipe with grooved inside face and its manufacture
JPH03169441A (en) Heat exchanger pipe and its manufacture

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19971028