JPH02280933A - Heat transfer tube and manufacture thereof - Google Patents

Heat transfer tube and manufacture thereof

Info

Publication number
JPH02280933A
JPH02280933A JP9783089A JP9783089A JPH02280933A JP H02280933 A JPH02280933 A JP H02280933A JP 9783089 A JP9783089 A JP 9783089A JP 9783089 A JP9783089 A JP 9783089A JP H02280933 A JPH02280933 A JP H02280933A
Authority
JP
Japan
Prior art keywords
tube
heat transfer
heat exchanger
protrusions
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9783089A
Other languages
Japanese (ja)
Inventor
Yasuhiko Yoshida
康彦 吉田
Hideto Yoshida
吉田 英登
Hiroshi Kawaguchi
川口 寛
Koji Yamamoto
山本 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP9783089A priority Critical patent/JPH02280933A/en
Publication of JPH02280933A publication Critical patent/JPH02280933A/en
Pending legal-status Critical Current

Links

Landscapes

  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

PURPOSE:To improve the heat transfer performance by providing >=2 kinds of continuous or discontinuous projections intersecting on the inside surface of a tube. CONSTITUTION:Two kinds of spiral grooves 4, 5 are provided on a grooved roll 2 and they twist to a roll axis and intersect each other at a prescribed intersection angle. A metal bar 1 is rolled by this grooved roll 2 and a smooth roll and the groove shape of the grooved roll 2 is transferred on the surface of one side of the metal bar 1 to provide intersecting oblique projections 6, 7 on the surface of one side of the metal bar 1. Consequently, heat transfer performance can greatly be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍機や空調機の熱交換器に用いられる伝熱
管とその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube used in a heat exchanger for a refrigerator or an air conditioner, and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

冷凍機や空調機の熱交換器に用いられる伝熱管は、熱交
換の高効率の点から一般的に内面溝付管が使われている
。これは管内面に三角形や台形などの突起または溝を管
軸に対して平行又は螺旋状に連続して形成したもので、
平滑管に比べて伝熱性能は向上する。この伝熱管は第1
0図(イ)(ロ)に示すように管(12)の内面に突起
(13)を形成したもので、これを用いた熱交換器では
、管内に冷媒を蒸発又は凝縮の相変化をさせながら流す
ものである。
Heat exchanger tubes used in heat exchangers for refrigerators and air conditioners are generally internally grooved tubes due to their high heat exchange efficiency. This is a pipe in which triangular or trapezoidal protrusions or grooves are continuously formed on the inner surface of the pipe, either parallel to the pipe axis or spirally.
Heat transfer performance is improved compared to smooth tubes. This heat exchanger tube is the first
As shown in Figure 0 (a) and (b), a protrusion (13) is formed on the inner surface of a tube (12), and in a heat exchanger using this, the refrigerant undergoes a phase change of evaporation or condensation within the tube. It is something to be flowed while doing so.

このような内面溝付管が平滑管に比べて伝熱性能が向上
する理由としては、内面の微細な溝による流れの1乱と
伝熱面積の増大が上げられる。しかしこのように内面で
相変化させる場合には突起先端の高乾き度域において、
第11図に示すように溝(14)内に液膜(15)を保
持し、管軸方向にも溝(14)内の毛細管力により、突
起(13)のような高乾き度領域まで薄液膜を形成し、
これが効果的に作用する。
The reason why the heat transfer performance of such an internally grooved tube is improved compared to that of a smooth tube is that the fine grooves on the inner surface cause flow turbulence and the heat transfer area increases. However, when the phase changes on the inner surface in this way, in the high dryness region at the tip of the protrusion,
As shown in Fig. 11, the liquid film (15) is maintained in the groove (14), and even in the tube axis direction, the capillary force in the groove (14) is used to thin the liquid film (15) even to highly dry areas such as the protrusions (13). forms a liquid film,
This works effectively.

この種の伝熱管は、第12図に示すように平滑管(16
)をダイス(18)とフローティングプラグ(17)に
より管内の所定の位置に保持された溝付プラグ(19)
と管(I6)の外周に設けた転造ロール(2G)により
転造加工して管(16)の内面に突起(13)を形成し
、最後に仕上げダイス(21)を通して造られるか、又
は第13図(イ)1(ロ)に示すように金属条(1)を
溝付ロール(2)と平滑ロール(3)により圧延して、
金属条(1)の片側表面に突起を形成し、しかる後突起
が内側になるように成形ロール(8−1)、 (8−n
)で管状に成形し、その両縁を接合して造られている。
This type of heat exchanger tube is a smooth tube (16
) is held in place in the pipe by a die (18) and a floating plug (17) with a grooved plug (19).
and rolling with a rolling roll (2G) provided on the outer periphery of the tube (I6) to form a protrusion (13) on the inner surface of the tube (16), and finally through a finishing die (21), or As shown in FIGS. 13(a) and 1(b), the metal strip (1) is rolled with a grooved roll (2) and a smooth roll (3),
A protrusion is formed on one surface of the metal strip (1), and then the forming roll (8-1), (8-n
) is formed into a tubular shape and its edges are joined together.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

内面溝付管は溝(突起)の形状を変化させることにより
、より高性能の伝熱管が得られるように改良されてきた
が、従来の加工法では得られる溝(突起)の形状に限界
があり、加工された伝熱管の性能にも限界があった。
Internally grooved tubes have been improved by changing the shape of the grooves (protrusions) to obtain higher performance heat transfer tubes, but there is a limit to the shape of the grooves (protrusions) that can be obtained with conventional processing methods. However, there were limits to the performance of the processed heat exchanger tubes.

また高性能の伝熱管として二回以上の転造加工又は圧延
加工を行なうことにより、管内面により複雑な形状の突
起(溝)を施して伝熱性能を向上せしめたものが提案さ
れている。しかし2回以上の加工を行なう場合は設備が
複雑となり、設備費が高くついたり、また設備の調整が
むずかしく、安定して長尺加工ができないばかりか、加
工速度を上げることができないなどの問題があった。
In addition, a high-performance heat transfer tube has been proposed in which the tube is subjected to rolling or rolling twice or more to form protrusions (grooves) with a complex shape on the inner surface of the tube to improve heat transfer performance. However, when machining is performed more than once, the equipment becomes complicated, equipment costs are high, and it is difficult to adjust the equipment, which not only makes it impossible to stably process long lengths, but also makes it impossible to increase the machining speed. was there.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれに鑑み種々検討の結果、1回の加工で管内
面に、従来伝熱管に比べてより複雑な形状の突起(溝)
を施し、伝熱特性を向上した伝熱管とその製造方法を開
発したものである。
In view of this, as a result of various studies, the present invention has been developed to create protrusions (grooves) with a more complex shape than conventional heat exchanger tubes on the inner surface of the tube in one process.
We have developed a heat exchanger tube with improved heat transfer characteristics and a method for manufacturing it.

即ち本発明伝熱管は、管内面に交差する2種以上の連続
又は不連続な突起を設けたことを特徴とするもので、主
な゛る突起に交差する副なる突起の高さを、主なる突起
の高さの374以下とし、また副なる突起の高さを0.
2mm未満とすることが望ましい。
That is, the heat exchanger tube of the present invention is characterized by having two or more types of continuous or discontinuous protrusions that intersect on the inner surface of the tube, and the height of the secondary protrusions that intersect with the main protrusion is determined by the main protrusion. The height of the sub-protrusions is 374 or less, and the height of the sub-protrusions is 0.
It is desirable that it be less than 2 mm.

また本発明製造方法は、連続的に供給される金属条を、
溝付ロールと平滑ロールにより加圧し、金属条の片面に
突起を形成し、しかる後突起部を内側にして管状に成形
し、その両縁を接合して管内面に突起を形成する伝熱管
の製造において、上記溝付ロールの周面に交差する2種
以上の連続又は不連続の溝を形成して金属条を加圧する
ことを特徴とするものである。
In addition, the manufacturing method of the present invention allows the metal strip to be continuously supplied to
Heat exchanger tubes are produced by applying pressure with grooved rolls and smooth rolls to form protrusions on one side of the metal strip, then forming the protrusions into a tube with the protrusions inside, and joining both edges to form protrusions on the inner surface of the tube. In manufacturing, two or more types of continuous or discontinuous grooves are formed intersecting the circumferential surface of the grooved roll, and the metal strip is pressurized.

〔作用〕[Effect]

内壁面に交差したリブを設けた伝熱管が実開昭59−1
53476号公報により提案されている。これは管内に
単相流を流し、管外フィンにより管外の冷媒を相変化さ
せて熱交換を行なうものであり、本発明伝熱管とはその
用途が異なる。この伝熱管の場合、管内熱伝達性能を向
上させるためには、内壁面での擾乱作用のみが必要とさ
れ、このためリブの高さを0.2〜1.Ommと数値限
定し、0.2mmよりも小さい場合は有効な擾乱作用が
期待できないとしている。
A heat exchanger tube with intersecting ribs on the inner wall surface was developed in 1988.
This is proposed in Japanese Patent No. 53476. This heat exchange is performed by flowing a single-phase flow inside the tube and changing the phase of the refrigerant outside the tube using fins outside the tube, and its application is different from that of the heat exchanger tube of the present invention. In the case of this heat transfer tube, in order to improve the heat transfer performance inside the tube, only a disturbance action on the inner wall surface is required, and therefore the height of the ribs is set to 0.2 to 1. The numerical value is limited to 0.0 mm, and if it is smaller than 0.2 mm, it is said that no effective disturbance effect can be expected.

これに対し本発明伝熱管は、管内で蒸発、凝縮の相変化
を行なう熱交換器に使用されるもので、伝熱性能を向上
させる要因として伝熱面積の増大や、乱流効果による伝
熱性能の向上も上げられるが、それよりも溝内の液の保
持力の増大や毛細管力により、軸方向へ溝をつたわって
液膜を広がらせ、より高乾き度域までの液膜の形成が上
げられる。
In contrast, the heat transfer tube of the present invention is used in a heat exchanger that undergoes phase changes such as evaporation and condensation within the tube, and the factors that improve heat transfer performance include an increase in the heat transfer area and heat transfer due to turbulent flow effects. Performance can be improved, but the increase in the retention of liquid in the grooves and capillary force causes the liquid film to spread in the axial direction through the grooves, making it easier to form liquid films in higher dryness areas. It can be raised.

本発明伝熱管においては、交差する突起に囲まれた溝部
における液の保持力が増加するが、主なる突起の高さ(
H+)と、それに交差する副なる突起の高さ(H2)の
比(H2/H,)が大きすぎれば、例えばH2/H,=
1では毛細管力による軸方向への液膜の広がりがなくな
り、伝熱性は低下し圧力損失が増大してしまう。
In the heat exchanger tube of the present invention, the liquid retention force in the groove surrounded by the intersecting protrusions increases, but the height of the main protrusions (
If the ratio (H2/H,) between H+) and the height (H2) of the sub-protrusion that intersects it is too large, for example, H2/H,=
In No. 1, the liquid film does not spread in the axial direction due to capillary force, resulting in a decrease in heat conductivity and an increase in pressure loss.

そこでH2/′H+ ≦374とすることにより、液の
保持力を保ち、軸方向への液膜を広がらせることによっ
て、従来伝熱管に比べて伝熱性能を著しく向上させるこ
とができる。また副なる突起による圧力損失の増加をお
さえるためH2≦0.2Mとすることが望ましい。
Therefore, by setting H2/'H+≦374, the liquid retention force is maintained and the liquid film is spread in the axial direction, thereby making it possible to significantly improve heat transfer performance compared to conventional heat transfer tubes. Further, in order to suppress an increase in pressure loss due to secondary protrusions, it is desirable that H2≦0.2M.

また本発明製造方法においては、上記高性能伝熱管を1
回の加工で施すことができるので、設備も従来のもので
よく、安定して加工速度を落すことなく、長尺加工を行
なうことができる。
In addition, in the manufacturing method of the present invention, the above-mentioned high-performance heat exchanger tube is
Since the process can be performed in one process, conventional equipment can be used, and long length processes can be carried out stably without reducing the process speed.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

〔実施例〕〔Example〕

第1図は本発明における金属条の圧延から管成形、溶接
までの一連の製造工程を示すもので、図において金属条
(1)は図示されていないアンコイラ−より連続的に供
給される。本実施例では銅条を50i/minの速度で
供給し、条(1)への突起と溝の加工は、溝付ロール(
2)と平滑ロール(3)によって構成された1台の圧延
機により行なう。溝付ロール(2)には第2図に示すよ
うに2種類のらせん溝(4)、 (5)が設けられ、こ
れらはロール軸に対してねじれており、所定の交差角を
持って交差している。この溝付ロール(2)と平滑ロー
ル(3)により圧延し、金属条(1)の片側表面に溝付
ロール(2)の溝形状を転写することにより、第3図に
示すように金属条(+1の片側表面に交差した斜線状の
突起(6)。
FIG. 1 shows a series of manufacturing steps in the present invention from rolling a metal strip to tube forming and welding. In the figure, a metal strip (1) is continuously supplied from an uncoiler (not shown). In this example, the copper strip was fed at a speed of 50 i/min, and the protrusions and grooves on the strip (1) were processed using a grooved roll.
2) and a smooth roll (3). As shown in Figure 2, the grooved roll (2) is provided with two types of spiral grooves (4) and (5), which are twisted with respect to the roll axis and intersect at a predetermined intersection angle. are doing. By rolling the metal strip (1) with the grooved roll (2) and the smooth roll (3) and transferring the groove shape of the grooved roll (2) to one side surface of the metal strip (1), the metal strip is rolled as shown in FIG. (A diagonal protrusion (6) that intersects on one side of +1.

(7)を施す。Perform (7).

その後複数個の成形ロール(8!、 8b、 8c、・
・・8h)からなるフォーミング装置により、突起加工
を施した金属条(1M)を突起f6)、 (71部が内
側となるようにして管状に成形する。そして管状に成形
した金属条(1為)の両縁を突き合せ、長手方向に沿っ
て高周波誘導溶接器(9)により接合し、仕上ロール(
to)、 (I+1又は仕上ダイス(図示せず)を通し
て外径9.53mmの伝熱管(12)を製造した。ここ
で溶接については高周波誘導溶接器を用いたが、これに
限ることなく、公知の技術により接合してもよい。
After that, multiple forming rolls (8!, 8b, 8c, ・
A metal strip (1M) with protrusions is formed into a tubular shape with the protrusions f6) and (71 parts facing inside) using a forming device consisting of a metal strip (1M) formed into a tubular shape. ) and join them along the longitudinal direction using a high-frequency induction welder (9).
to), (A heat exchanger tube (12) having an outer diameter of 9.53 mm was manufactured through I+1 or a finishing die (not shown).Here, a high frequency induction welder was used for welding, but the known method is not limited to this. They may be joined using the technique described above.

本発明伝熱管は、従来の内面溝付管に比べて、伝熱表面
が大きく、形状も複雑であることから、圧力損失が従来
内面溝付管に比べて大きいことが予想される。圧力損失
が大きいということは、熱交換器のポンプ動力を大きく
する必要があり、省エネルギーの観点から圧力損失は極
力小さく押える必要がある。そこで上記伝熱管について
蒸発時及び凝縮時の管内熱伝達率の測定と共に管内圧力
損失の測定を行なった。
Since the heat transfer tube of the present invention has a larger heat transfer surface and a more complex shape than a conventional inner grooved tube, it is expected that the pressure loss will be greater than that of a conventional inner grooved tube. If the pressure loss is large, it is necessary to increase the pump power of the heat exchanger, and from the viewpoint of energy saving, the pressure loss must be kept as small as possible. Therefore, the heat transfer coefficient within the tube during evaporation and condensation as well as the pressure loss within the tube were measured for the heat transfer tube.

測定を行った伝熱管は外径9.53m01で第1突起(
主となる突起)の管軸に対するねじれ角を20°、突起
高さ(H3)を0.2關とし、第2突起(副なる突起)
の管軸に対するねじれ角を第1突起とは逆方向に30°
、突起高さ(H2)を0(従来の内面溝付管)から0.
2胴、即ちH2/H1=0〜1と変化させた。
The heat exchanger tube that was measured had an outer diameter of 9.53m01 and the first protrusion (
The twist angle of the main protrusion with respect to the tube axis is 20°, the protrusion height (H3) is 0.2 degrees, and the second protrusion (secondary protrusion)
The twist angle with respect to the tube axis is 30° in the opposite direction to the first protrusion.
, the protrusion height (H2) was changed from 0 (conventional inner grooved tube) to 0.
Two cylinders, that is, H2/H1 was varied from 0 to 1.

上記伝熱管を二重管式熱交換器に組み込んで、管内に冷
媒としてフロンR−22を流し、管外には被冷却水を直
交に流し、第1表に示す測定条件により性能評価を行な
った。管内熱伝達率測定結果を第4図及び第5図に、圧
力損失測定結果を第6図及び第7図に示す。
The above heat transfer tube was assembled into a double tube heat exchanger, Freon R-22 was flowed as a refrigerant inside the tube, water to be cooled was flowed orthogonally outside the tube, and performance was evaluated under the measurement conditions shown in Table 1. Ta. The results of measuring the heat transfer coefficient in the tube are shown in FIGS. 4 and 5, and the results of measuring pressure loss are shown in FIGS. 6 and 7.

第  1  表 管内蒸発 冷媒入口乾き度 冷媒出口過熱度 伝熱管有効長さ 冷媒流量 管内凝縮 0.21   冷媒入口過熱度 35°05℃ 冷媒出
口過冷却 5℃ 5m 伝熱管有効長さ 5m 40kg/h  冷媒流量   40kg/h管内の熱
伝達率は第4図及び第5図より、H2/ H+ = 1
/4で従来内面溝付1f (H2=0)に比べて上昇し
ており、H2/H1>3/4になると性能が低下してい
る。その理由は液膜が第1の突起と第2の突起に囲まれ
た溝内にたまり、軸方向への広がりがなくなるためと考
えられる。
Table 1 Evaporation in the pipe Refrigerant inlet dryness Refrigerant outlet superheat degree Heat transfer tube effective length Refrigerant flow rate Condensation in the tube 0.21 Refrigerant inlet superheat degree 35°05℃ Refrigerant outlet subcooling 5℃ 5m Heat transfer tube effective length 5m 40kg/h Refrigerant Flow rate: 40kg/h From Figures 4 and 5, the heat transfer coefficient in the pipe is H2/H+ = 1
/4, which is higher than the conventional inner grooved 1f (H2=0), and when H2/H1>3/4, the performance decreases. The reason for this is thought to be that the liquid film accumulates in the groove surrounded by the first protrusion and the second protrusion, and does not spread in the axial direction.

圧力損失は第6図及び第7図より、H2/ H+≦37
4において、従来内面溝付管(H2=o)とほぼ同等で
あるが、H2/ H+ > 3/4では著しく上昇して
いる。圧力損失が著しく上昇する傾向は、H2/H14
3/4において突起高さを高くした場合(H+ ≧0.
26mm、  H220,20mm)にも見られた。
From Figures 6 and 7, the pressure loss is H2/H+≦37
4, it is almost the same as the conventional internally grooved tube (H2=o), but it increases significantly when H2/H+ > 3/4. The tendency for pressure drop to increase significantly is H2/H14
When the protrusion height is increased at 3/4 (H+ ≧0.
26mm, H220, 20mm).

このように圧力損失を増大させずに、性能を向上させる
ためには、H2/ H+≧3/4.H2<0.20閣に
することが望ましいことが判る。
In order to improve performance without increasing pressure loss, H2/H+≧3/4. It can be seen that it is desirable to set H2<0.20.

尚第2の突起の高さを第1の突起の高さと等しくした場
合でも第8図に示すように、第2の突起を不連続にする
ことにより、伝熱性能を低下させることなく圧力損失を
従来伝熱管の値と同等にすることができる。また本発明
実施例では互いに違うねじれ角を持つ2種類のらせん状
突起を有する伝熱管について説明したが、これに限らず
第9図に示すように突起の方向が7字状であったり、ま
たジグザグ状であってもかまわない。
Even if the height of the second protrusion is made equal to the height of the first protrusion, as shown in Figure 8, by making the second protrusion discontinuous, pressure loss can be reduced without deteriorating heat transfer performance. can be made equivalent to the value of conventional heat exchanger tubes. Furthermore, in the embodiments of the present invention, a heat exchanger tube having two types of helical protrusions with different twist angles has been described, but the present invention is not limited to this.As shown in FIG. It does not matter if it is in a zigzag shape.

〔発明の効果〕〔Effect of the invention〕

このように本発明によれば、従来伝熱管に比べて圧力損
失が増大することなく、伝熱性能を著しく向上させるこ
とができ、しかも伝熱性能を向上させる複雑な突起を1
回の加工で施すことができるので、従来の設備でよく、
加工速度を落すことなく、安定して長尺加工ができる等
工業上顕著な効果を奏するものである。
As described above, according to the present invention, it is possible to significantly improve heat transfer performance without increasing pressure loss compared to conventional heat transfer tubes, and moreover, it is possible to significantly improve heat transfer performance by eliminating complicated protrusions that improve heat transfer performance.
It can be applied in just one process, so conventional equipment is sufficient.
This method has remarkable industrial effects, such as being able to stably process long pieces without slowing down the processing speed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明伝熱管の製造方法を示す説明図、第2図
は本発明製造方法の溝付ロールの一例を示す正面図、第
3図は本発明製造方法により金属条の片側面に施した突
起の一例を示す斜視図、第4図及び第5図は本発明伝熱
管と従来伝熱管の熱伝達率の比を示すもので、第4図は
蒸発熱伝達率比、第5図は凝縮熱伝達率比の説明図、第
6図及び第7図は本発明伝熱管と従来伝熱管の圧力損失
の比を示すもので、第6図は蒸発時、第7図は凝縮時の
説明図、第8図は本発明における他の圧延後の金属条の
突起の一例を示す平面図、第9図は本発明における更に
他の圧延後の金属条の突起の一例を示す平面図、第10
図(イ)、(ロ)は従来伝熱管の一例を示すもので、(
イ)は縦断面図、(ロ)は側断面図、第11図は従来伝
熱管の効果を示す説明図、第12図は転造法による従来
の内面溝付管の製造工程を示す説明図、第13図(イ)
、(ロ)は圧延、溶接法による従来の内面溝付管の製造
工程を示す説明図で、(イ)は平面図、(ロ)は側面図
である。 l)金属条、(2)溝付ロール、(3)平滑ロール、4
)、 (5)  らせん溝、(61,(7)突起、8−
11  (If−nl、(8i1−=・(8h)成形ロ
ール、9)高周波誘導溶接器、flO)、 (II)仕
上ロール、12)伝熱管、(13)突起、(14)溝、
(15)液膜、16)平滑管、(17)フローティング
プラグ、1g)ダイス、(19)溝付プラグ、(20)
転造ローラ、21)仕上ダイス。 第2図 第3図 第8図 第11図 第9図 第12図 (イ) 第10図 (ロ) 第13図 1′を 手続中甫正書(自発) 平成2年1月B 日
FIG. 1 is an explanatory diagram showing the method for manufacturing a heat exchanger tube of the present invention, FIG. 2 is a front view showing an example of a grooved roll of the manufacturing method of the present invention, and FIG. A perspective view showing an example of the protrusions provided, and FIGS. 4 and 5 show the ratio of heat transfer coefficients between the heat exchanger tube of the present invention and a conventional heat exchanger tube. FIG. 4 shows the evaporative heat transfer coefficient ratio, and FIG. is an explanatory diagram of the condensation heat transfer coefficient ratio, and Figures 6 and 7 show the ratio of pressure loss between the heat exchanger tube of the present invention and the conventional heat exchanger tube. Figure 6 shows the ratio during evaporation, and Figure 7 shows the ratio during condensation. Explanatory drawings, FIG. 8 is a plan view showing an example of another protrusion of the metal strip after rolling in the present invention, FIG. 9 is a plan view showing an example of still another protrusion of the metal strip after rolling in the present invention, 10th
Figures (a) and (b) show examples of conventional heat exchanger tubes.
A) is a longitudinal sectional view, (B) is a side sectional view, FIG. 11 is an explanatory diagram showing the effect of a conventional heat exchanger tube, and FIG. 12 is an explanatory diagram showing the manufacturing process of a conventional internally grooved tube by the rolling method. , Figure 13 (a)
, (b) are explanatory diagrams showing the conventional manufacturing process of an internally grooved tube by rolling and welding methods, (a) is a plan view, and (b) is a side view. l) Metal strip, (2) Grooved roll, (3) Smooth roll, 4
), (5) Spiral groove, (61, (7) projection, 8-
11 (If-nl, (8i1-=・(8h) forming roll, 9) high-frequency induction welder, flO), (II) finishing roll, 12) heat exchanger tube, (13) protrusion, (14) groove,
(15) Liquid film, 16) Smooth tube, (17) Floating plug, 1g) Dice, (19) Grooved plug, (20)
Rolling roller, 21) Finishing die. Fig. 2 Fig. 3 Fig. 8 Fig. 11 Fig. 9 Fig. 12 (a) Fig. 10 (b)

Claims (4)

【特許請求の範囲】[Claims] (1)管内面に交差する2種以上の連続又は不連続な突
起を設けたことを特徴とする伝熱管。
(1) A heat exchanger tube characterized by having two or more types of continuous or discontinuous protrusions that intersect on the inner surface of the tube.
(2)主なる突起に交差する副なる突起の高さを、主な
る突起の高さの3/4以下とする請求項(1)記載の伝
熱管。
(2) The heat exchanger tube according to claim (1), wherein the height of the secondary protrusion that intersects the main protrusion is 3/4 or less of the height of the main protrusion.
(3)副なる突起の高さを0.2mm未満とする請求項
(1)又は(2)記載の伝熱管。
(3) The heat exchanger tube according to claim (1) or (2), wherein the height of the secondary protrusion is less than 0.2 mm.
(4)連続的に供給される金属条を、溝付ロールと平滑
ロールにより加圧し、金属条の片面に突起を形成し、し
かる後突起部を内側にして管状に成形し、その両縁を接
合して管内面に突起を形成する伝熱管の製造において、
上記溝付ロールの周面に交差する2種以上の連続又は不
連続の溝を形成して金属条を加圧することを特徴とする
伝熱管の製造方法。
(4) The continuously supplied metal strip is pressurized by a grooved roll and a smooth roll to form protrusions on one side of the metal strip, and then formed into a tube shape with the protrusions inside, and both edges of the metal strip are pressed. In manufacturing heat exchanger tubes that are joined to form protrusions on the inner surface of the tube,
A method for manufacturing a heat exchanger tube, comprising forming two or more types of continuous or discontinuous grooves that intersect with the circumferential surface of the grooved roll to pressurize the metal strip.
JP9783089A 1989-04-18 1989-04-18 Heat transfer tube and manufacture thereof Pending JPH02280933A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9783089A JPH02280933A (en) 1989-04-18 1989-04-18 Heat transfer tube and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9783089A JPH02280933A (en) 1989-04-18 1989-04-18 Heat transfer tube and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02280933A true JPH02280933A (en) 1990-11-16

Family

ID=14202639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9783089A Pending JPH02280933A (en) 1989-04-18 1989-04-18 Heat transfer tube and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02280933A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313691A (en) * 1991-04-10 1992-11-05 Kobe Steel Ltd Heat transfer tuber for heat exchanger and manufacture thereof
JPH07151480A (en) * 1993-09-13 1995-06-16 Carrier Corp Heat transfer pipe
DE10210016A1 (en) * 2002-03-07 2003-09-25 Wieland Werke Ag Heat exchange tube with a ribbed inner surface
WO2021132310A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Pyrolysis tube provided with fluid stirring element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858929A (en) * 1981-10-02 1983-04-07 Daikin Ind Ltd Manufacture of heat transfer tube
JPS61175485A (en) * 1985-01-30 1986-08-07 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JPS6478681A (en) * 1987-09-21 1989-03-24 Toyo Radiator Co Ltd Production of metal tube
JPH0275427A (en) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The Method for forming heating surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858929A (en) * 1981-10-02 1983-04-07 Daikin Ind Ltd Manufacture of heat transfer tube
JPS61175485A (en) * 1985-01-30 1986-08-07 Kobe Steel Ltd Heat transfer tube and manufacture thereof
JPS6478681A (en) * 1987-09-21 1989-03-24 Toyo Radiator Co Ltd Production of metal tube
JPH0275427A (en) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The Method for forming heating surface

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04313691A (en) * 1991-04-10 1992-11-05 Kobe Steel Ltd Heat transfer tuber for heat exchanger and manufacture thereof
JPH07151480A (en) * 1993-09-13 1995-06-16 Carrier Corp Heat transfer pipe
DE10210016A1 (en) * 2002-03-07 2003-09-25 Wieland Werke Ag Heat exchange tube with a ribbed inner surface
DE10210016B4 (en) * 2002-03-07 2004-01-08 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface
DE10210016B9 (en) * 2002-03-07 2004-09-09 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface
WO2021132310A1 (en) * 2019-12-27 2021-07-01 株式会社クボタ Pyrolysis tube provided with fluid stirring element
JPWO2021132310A1 (en) * 2019-12-27 2021-12-23 株式会社クボタ Pyrolysis tube with fluid agitation element

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
US4330036A (en) Construction of a heat transfer wall and heat transfer pipe and method of producing heat transfer pipe
US6164370A (en) Enhanced heat exchange tube
US6336501B1 (en) Tube having grooved inner surface and its production method
US5992513A (en) Inner surface grooved heat transfer tube
JPH02280933A (en) Heat transfer tube and manufacture thereof
JPS6298200A (en) Heat transfer tube of fine diameter and manufacture thereof
JPH04260793A (en) Heat transfer tube with inner surface groove
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JP2628712B2 (en) Method of forming heat transfer surface
JP2868163B2 (en) Method of manufacturing heat exchanger tube for heat exchanger
JPH03169441A (en) Heat exchanger pipe and its manufacture
JPS6115092A (en) Heat transfer tube for use in heat exchanger
JP3199636B2 (en) Heat transfer tube with internal groove
JPH02161290A (en) Inner face processed heat transfer tube
JPS61125595A (en) Heat transfer tube for boiling and manufacture thereof
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH04260792A (en) Small-diameter heat transfer tube
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH03170797A (en) Heat transfer tube
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JPH074884A (en) Heat transfer pipe with inner surface groove and its manufacturing method
JPH02161291A (en) Inner face processed heat transfer tube
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JPH04339530A (en) Heat-transfer pipe and manufacture of the same