JP2756194B2 - Method for manufacturing inner double grooved pipe - Google Patents

Method for manufacturing inner double grooved pipe

Info

Publication number
JP2756194B2
JP2756194B2 JP5838791A JP5838791A JP2756194B2 JP 2756194 B2 JP2756194 B2 JP 2756194B2 JP 5838791 A JP5838791 A JP 5838791A JP 5838791 A JP5838791 A JP 5838791A JP 2756194 B2 JP2756194 B2 JP 2756194B2
Authority
JP
Japan
Prior art keywords
grooved
tube
groove
double
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5838791A
Other languages
Japanese (ja)
Other versions
JPH04274816A (en
Inventor
孝司 山本
寛 川口
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP5838791A priority Critical patent/JP2756194B2/en
Publication of JPH04274816A publication Critical patent/JPH04274816A/en
Application granted granted Critical
Publication of JP2756194B2 publication Critical patent/JP2756194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、冷凍機、空調機等の熱
交換器に用いられる内面溝付管の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a grooved tube used in a heat exchanger such as a refrigerator or an air conditioner.

【0002】[0002]

【従来の技術とその課題】一般に空調機や冷凍機の熱交
換器に用いられる伝熱管は管内に冷媒としてフロン等を
流し、管外側空調と熱交換を行わせるもので、最近では
外径9.53及び7.0mmで三角形や台形の溝を持つ
内面溝付管を使用することにより、熱交換器の高効率化
やコンパクト化が進められている。しかし、よりコンパ
クト化、高効率化の要求が強いことから、従来の内面溝
付管に代わってらせん溝同志を交差させた内面二重溝付
管及びその製造方法が開発されている。内面二重溝付管
は、管内面に二度溝を形成することにより従来の一重の
溝に比べ、溝形状を複雑化し、乱流効果を活発にし、か
つ伝熱面積を増加させる。又、管内面に沸騰の促進をね
らってキャビティを形成して、伝熱性能が大幅に向上す
ることもできる(特開昭57−150799号、特開平
1−317637号)。その製造方法としては、抽伸ダ
イスと同軸上に縮径加工用の転造ローラーを二段に配置
し、各々のローラー相当位置にフローティングプラグに
連結した溝加工用のプラグを配し、二重に溝付加工する
方法が知られている。しかしこのような高性能管が特に
コンパクト化、高効率化の要求の高い小型空調機におい
て、使用されていない問題点としては、このような小型
空調機に使用されている8〜4mmφの細径内面二重溝
付管を従来の方法で製造すると、単一の溝付加工に比べ
二重に溝付加工を行うため、溝付加工部での摩擦抵抗及
び塑性変形抵抗を二倍にうけることになり、連続的に抽
伸溝付加工する際にある速度以上になると管の引張り強
さが管にかかる抵抗を越え、管が破断してしまう。特に
小径管になるほどこの傾向は顕著となり、従来の単一の
内面溝付管に比べ加工速度は、大幅に低下してしまう。
このため、特開昭60−15015号のように、第一の
内面溝加工部と第二の内面溝加工部の間に管の連続引抜
装置を設ける方法も考案されている。しかし、実際の製
造にこのような方法を用いると装置が大型化することは
まぬがれない。
2. Description of the Related Art Generally, a heat transfer tube used for a heat exchanger of an air conditioner or a refrigerator is a device in which chlorofluorocarbon or the like is flown as a refrigerant in a tube to perform heat exchange with outside air conditioning of the tube. The use of internally grooved tubes having triangular or trapezoidal grooves of .53 and 7.0 mm has led to higher efficiency and more compact heat exchangers. However, since there is a strong demand for more compact and higher efficiency, an inner surface double grooved tube in which spiral grooves cross each other instead of the conventional inner surface grooved tube and a method of manufacturing the same have been developed. By forming a groove twice on the inner surface of the tube, the inner surface double grooved tube makes the groove shape more complicated, activates the turbulent flow effect, and increases the heat transfer area as compared with the conventional single groove. In addition, a cavity can be formed on the inner surface of the tube in order to promote boiling, and the heat transfer performance can be greatly improved (Japanese Patent Application Laid-Open Nos. 57-150799 and 1-317637). As its manufacturing method, rolling rollers for diameter reduction processing are arranged in two stages coaxially with the drawing die, plugs for groove processing connected to floating plugs are arranged at positions corresponding to each roller, and doubled. There is known a method of forming a groove. However, such a high performance pipe is not used in a small air conditioner which is particularly required to be compact and highly efficient. One of the problems is that a small diameter of 8 to 4 mmφ used in such a small air conditioner is used. When the inner surface double grooved pipe is manufactured by the conventional method, the friction resistance and plastic deformation resistance at the grooved part are doubled because double groove processing is performed compared to single groove processing. If the speed exceeds a certain value during continuous drawing groove processing, the tensile strength of the pipe exceeds the resistance applied to the pipe, and the pipe breaks. In particular, this tendency becomes remarkable as the pipe becomes smaller in diameter, and the processing speed is greatly reduced as compared with the conventional single-sided grooved pipe.
For this reason, a method of providing a continuous pipe drawing device between the first inner groove processing portion and the second inner groove processing portion has been devised as in JP-A-60-15015. However, if such a method is used in actual production, the size of the apparatus is inevitably increased.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果比較的簡単な方法により、加工速度が
低下せず、かつ優れた性能を有する内面二重溝付管の製
造方法を開発したものである。
DISCLOSURE OF THE INVENTION As a result of studying the above problems, the present invention has developed a method of manufacturing an inner double grooved pipe having a superior performance without reducing the processing speed by a relatively simple method. It was done.

【0004】[0004]

【課題を解決するための手段】本発明は、抽伸ダイスと
同軸上に管軸に直交する平面上を遊星状に回転しながら
縮径加工する転造工具を二段に配置し、各々の転造工具
の相当位置に抽伸プラグに連結された溝付プラグを配
し、管内に連続して二重に溝付加工する製造方法におい
て外径7.5mm以上の溝付プラグで溝加工した後1回
又は2回以上の空引抽伸により10〜50%の細径加工
を行い、外径8〜4mmに仕上げることを特徴とする内
面二重溝付管の製造方法である。すなわち本発明は、例
えば図1に示すような装置により内面に二重溝付管を製
造するものである。この装置は抽伸ダイス22の内側に
フローティングプラグ2と溝付加工用の第一溝付プラグ
3と第二溝付プラグ4がタイロッド5により結合され、
溝付プラグの外側に第一転造ローラー6と第2転造ロー
ラー7により構成されている。素管1は、フローティン
グプラグと抽伸ダイスにより縮径され、第一の溝付プラ
グと第一転造ローラーにより内面に一方向に傾斜または
傾斜しない溝を形成し、第二溝付プラグと第二転造ロー
ラーにより、上記の溝とクロスする溝を形成することに
より、例えば図2に示すような溝部9と山部10を有
し、該溝9とクロスするクロス溝11を形成した内面二
重溝付管8を製造するものである。また本発明は図3に
示すように溝部9と山部10とがクロス溝11の部分で
ズレ部12を有する内面二重溝付管8も製造できる。こ
の溝付管は、上記のズレ部の存在により、溝部内の冷媒
液の流れが変化して伝熱性能が向上する。
According to the present invention, a rolling tool for reducing the diameter while rotating in a planetary manner on a plane perpendicular to the tube axis coaxially with the drawing die is arranged in two stages. A grooved plug connected to a drawing plug is arranged at a corresponding position of a forming tool, and after a grooved plug having an outer diameter of 7.5 mm or more is formed in a manufacturing method of continuously forming a groove in a pipe continuously, the grooved plug is set to 1 This is a method for producing a double-grooved tube with an inner surface, characterized in that a small diameter processing of 10 to 50% is performed by drawing or drawing twice or more times to finish the outer diameter to 8 to 4 mm. That is, the present invention is to produce a double-grooved tube on the inner surface by an apparatus as shown in FIG. 1, for example. In this apparatus, a floating plug 2, a first grooved plug 3 for grooved processing, and a second grooved plug 4 are connected by a tie rod 5 inside a drawing die 22.
A first rolling roller 6 and a second rolling roller 7 are provided outside the grooved plug. The base tube 1 is reduced in diameter by a floating plug and a drawing die, forms a groove inclined or not inclined in one direction on an inner surface by a first grooved plug and a first rolling roller, and forms a second grooved plug and a second By forming a groove crossing the above groove by a rolling roller, for example, an inner surface double having a groove 9 and a peak 10 as shown in FIG. 2 and forming a cross groove 11 crossing the groove 9 is formed. A grooved tube 8 is manufactured. Further, the present invention can also produce an inner surface double grooved tube 8 having a groove portion 9 and a peak portion 10 having a cross portion 11 at a cross groove 11 as shown in FIG. In the grooved tube, the flow of the refrigerant liquid in the groove changes due to the presence of the above-mentioned misalignment, and the heat transfer performance is improved.

【0005】[0005]

【作用】本発明の製造方法によれば、従来高速溝付加工
ができなかった二重溝付管、特に細径の内面二重溝付管
を、従来の単一の内面溝付管と同様な速度で製造するこ
とができる。本発明において溝付プラグの外径を7.5
mm以上としたのは、それ未満になると、素管の外径が
細くなり、高速で二重に溝加工できなくなるためであ
る。又、溝加工後の空引率を10%〜50%としたの
は、50%を越えると図4に示すような管外表面にマク
レコミ13が空引き時に頻繁に発生するためである。ま
た、10%未満では従来の方法とかわらなくなり、細径
管溝付時の加工速度を高速にすることができなくなるた
めである。
According to the manufacturing method of the present invention, a double-grooved tube which could not be subjected to high-speed groove processing in the past, in particular, a small-diameter inner-surface double-grooved tube is replaced with a conventional single-inner-groove tube. It can be manufactured at a high speed. In the present invention, the outer diameter of the grooved plug is 7.5.
The reason why the diameter is not less than mm is that when the diameter is less than the above value, the outer diameter of the raw tube becomes thin, and it becomes impossible to form a double groove at high speed. The reason why the emptying rate after the groove processing is set to 10% to 50% is that when the airtightness exceeds 50%, the scraping 13 frequently occurs on the outer surface of the tube as shown in FIG. 4 during emptying. On the other hand, if it is less than 10%, the conventional method cannot be used, and the processing speed at the time of forming a small-diameter pipe groove cannot be increased.

【0006】[0006]

【実施例】以下に本発明の一実施例について説明する。
図1に示すような装置を用い、素管として外径12.7
mm×肉厚0.45mmのりん脱酸銅管を図示していな
いが、連続抽伸機などの引張装置によりAの矢印方向へ
引張り移動する。そして、この管内にフローティングプ
ラグ2と溝付加工用の第一溝付プラグ3に外径φ9.9
mmと第二溝付プラグ4にφ9.5mmのものを用いて
フローティングプラグに挿入し管外面から公転して銅管
を縮径加工する第一及び第二転造ローラー6、7により
銅管を縮径加工して、管内面に二重に溝を形成した。こ
こで、第一の溝付プラグ3と第一の転造ローラー6によ
り伝熱面に溝数90、リード角(左ねじり)18°、溝
深さ0.10mmの微細な第1溝を多数形成し、次いで
第二の溝付プラグ4と第二の転造ローラー7により、溝
数60、リード角(右ねじり)18°、溝深さ0.16
mmの溝を第1の溝を押しつぶすように形成し、図2の
ような第2の溝9により、第1の溝11が押しつぶされ
た形でクロス溝11が形成された外径10mmの内面二
重溝付管を形成した。その後、巻き取り機によりコイル
状に巻き取る時に、ダイスにて、空引抽伸し、抽伸率3
0%で、外径7.00mmに仕上げながら、製品とし
た。
An embodiment of the present invention will be described below.
Using an apparatus as shown in FIG. 1, an outer diameter of 12.7 was used as a raw tube.
Although not shown, a phosphoric acid deoxidized copper tube of mm × 0.45 mm in thickness is pulled in the direction of the arrow A by a pulling device such as a continuous drawing machine. In this pipe, a floating plug 2 and a first grooved plug 3 for groove processing have an outer diameter φ9.9.
mm and a second grooved plug 4 having a diameter of 9.5 mm is inserted into a floating plug and revolved from the outer surface of the tube to reduce the diameter of the copper tube. The groove was reduced to form a double groove on the inner surface of the tube. Here, a large number of fine first grooves having 90 grooves, a lead angle (left-handed twist) of 18 °, and a groove depth of 0.10 mm were formed on the heat transfer surface by the first grooved plug 3 and the first rolling roller 6. Formed, and then the number of grooves is 60, the lead angle (right-hand twist) is 18 °, and the groove depth is 0.16 by the second grooved plug 4 and the second rolling roller 7.
mm groove is formed so as to crush the first groove, and the second groove 9 as shown in FIG. 2 crushes the first groove 11 to form the cross groove 11 and forms an inner surface with an outer diameter of 10 mm. A double grooved tube was formed. After that, when winding into a coil by a winder, the drawing is performed by a die and the drawing rate is 3
At 0%, the product was finished with an outer diameter of 7.00 mm.

【0007】ここで従来の方法と比較すると同製品を二
重に溝付をした後に10%以下の抽伸率で仕上げた場
合、例えば、素管に9.53mm×肉厚0.40mmを
使用して、第一溝付プラグ外径7.5mm、第二溝付プ
ラグ外径7mmを使用して、溝付加工を行った外径7.
5mmの溝付管をその後外径7.00mmに仕上げなが
ら、(抽伸率7%)コイルに巻き取った場合に比べ、単
位時間あたりの製造量は、本発明の30%の抽伸率によ
り7.00mmに仕上げた方が約2.8倍であり、従来
の単一内面溝付管の場合とほぼ同等であった。これは一
つに溝付時に管の外径が太いために、単位長さあたりの
重量が重くなり、かりに同一加工速度で溝付加工された
場合にも単位時間あたりの製造量は増加するためであ
る。もう一つには、内面に二重に溝付加工する場合は、
溝付加工部での摩擦抵抗及び塑性変形抵抗は単一溝付の
二倍かかり、素管が細い場合ほど、連続的に抽伸溝付加
工する速度限界が低くなり、必然的に単位時間あたりの
製造量が減少するためである。しかし、このような溝付
後の空引抽伸の際に抽伸率を大きくとりすぎると、(5
0%が限界)マクレコミ不良が頻発するようになり、逆
に単位時間あたりの良品の製造量は激減してしまう。次
に図3に示すようなズレ部12を有する切り込み状のク
ロス溝11が形成された内面二重溝付管の製造は空引抽
伸した場合、クロス溝に沿って溝がずれる減少が起こる
ために形成されるものであり、ズレ部12を形成するこ
とにより、溝部内の冷媒液の流れが山部10の片側に衝
突して流れを乱し、もう一方の片側で流れに対して液の
よどみをもたせる保持部をつくり、溝部内に液膜の分布
を形成して、伝熱性能を向上させる。又、このようなズ
レ部の乱流作用によって、クロス溝11内に付着し、性
能の低下をまねく冷凍機油や汚れを除去する効果もあ
る。このようにして得られた内面二重溝付管を二重式熱
交換器に組み込み管内に冷媒を流し、環状部に水を流し
て熱交換を行わせ、蒸発熱伝達を求めた。その時の実験
条件を表1に示す。
[0007] In comparison with the conventional method, when the same product is double-grooved and finished with a drawing rate of 10% or less, for example, the base tube is 9.53 mm x 0.40 mm thick. Then, using a first grooved plug outer diameter of 7.5 mm and a second grooved plug outer diameter of 7 mm, a grooved outer diameter of 7.
Compared to a case where a 5 mm grooved tube was wound around a coil (drawing ratio: 7%) while finishing the outer diameter to 7.00 mm, the production amount per unit time was 7.30% by the drawing ratio of 30% according to the present invention. The case finished to 00 mm is about 2.8 times, which is almost the same as the case of the conventional single inner grooved tube. One of the reasons is that the outer diameter of the tube is large when grooved, so the weight per unit length is heavy, and even if grooved at the same processing speed, the production volume per unit time increases. It is. On the other hand, if you want to make a double groove on the inner surface,
The frictional resistance and plastic deformation resistance in the grooved part take twice as much as that with a single groove, and the narrower the raw tube, the lower the speed limit for continuous drawing groove processing, inevitably per unit time This is because the production amount decreases. However, if the drawing rate is set too large during the drawing drawing after such groove formation, (5)
(0% is the limit) Insufficient mark-to-claw frequent, and conversely, the amount of non-defective products per unit time is drastically reduced. Next, in the production of the inner surface double grooved tube in which the cut-shaped cross groove 11 having the deviation portion 12 as shown in FIG. 3 is formed, the groove is shifted along the cross groove when drawing by drawing. By forming the deviation portion 12, the flow of the refrigerant liquid in the groove collides with one side of the mountain portion 10 to disturb the flow, and the flow of the liquid is A stagnation holding section is formed, and a liquid film distribution is formed in the groove to improve heat transfer performance. In addition, due to the turbulent flow action of such a deviation portion, there is also an effect of removing refrigerating machine oil and dirt which adhere to the inside of the cross groove 11 and cause deterioration in performance. The thus-obtained double-grooved tube was assembled in a double-type heat exchanger, a refrigerant was flowed in the tube, water was flowed in the annular portion to perform heat exchange, and evaporation heat transfer was obtained. Table 1 shows the experimental conditions at that time.

【0008】[0008]

【表1】 [Table 1]

【0009】また図5にその蒸発時の管内熱伝達率を示
した。同図上には図6に示すような従来の7.00mm
の一重内面溝付管(溝数60、ねじれ角18°、溝深さ
0.15mm)の結果も示した。これによると、本発明
製造法による内面二重溝付管は、従来の内面溝付管に比
べて2倍高い蒸発性能を示した。
FIG. 5 shows the heat transfer coefficient in the tube during the evaporation. FIG. 6 shows a conventional 7.00 mm as shown in FIG.
The results are also shown for a single inner grooved tube (number of grooves 60, twist angle 18 °, groove depth 0.15 mm). According to this, the inner surface double grooved tube according to the production method of the present invention showed twice as high evaporation performance as the conventional inner surface grooved tube.

【0010】[0010]

【発明の効果】以上に説明したように本発明の内面二重
溝付管の製造法によれば、従来の内面溝付管に比べ約2
倍の蒸発性能を持つ内面二重溝付管を従来の一重内面溝
付管と単位時間当り、ほぼ同等の重量を製造することが
できる。
As described above, according to the method for manufacturing the inner surface double grooved tube of the present invention, the inner surface grooved tube is about two times smaller than the conventional inner surface grooved tube.
An inner double grooved tube having twice the evaporation performance can be manufactured at approximately the same weight per unit time as a conventional single inner grooved tube.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内面二重溝付管の製造に使用する装置
の一例を示す概略図。
FIG. 1 is a schematic view showing an example of an apparatus used for manufacturing an inner surface double grooved tube of the present invention.

【図2】本発明により製造される内面二重溝付管の例を
示す要部斜視図。
FIG. 2 is a perspective view of an essential part showing an example of an inner double grooved tube manufactured according to the present invention.

【図3】本発明により製造される内面二重溝付管の例を
示す要部斜視図。
FIG. 3 is a perspective view of an essential part showing an example of an inner surface double grooved tube manufactured according to the present invention.

【図4】内面二重溝付管の製造時に生じるマクレ部のあ
る溝付管の断面図。
FIG. 4 is a cross-sectional view of a grooved tube having a mark portion generated during manufacturing of an inner surface double grooved tube.

【図5】本発明により製造された内面二重溝付管の蒸発
熱伝達率と冷媒流量との関係を示す線図。
FIG. 5 is a diagram showing the relationship between the evaporation heat transfer coefficient and the refrigerant flow rate of the inner double-grooved tube manufactured according to the present invention.

【図6】従来の内面溝付管の要部斜視図。FIG. 6 is a perspective view of a main part of a conventional inner grooved pipe.

【符号の説明】[Explanation of symbols]

1 素管 2 フローティングプラグ 3 第一溝付プラグ 4 第二溝付プラグ DESCRIPTION OF SYMBOLS 1 Base tube 2 Floating plug 3 First grooved plug 4 Second grooved plug

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−42112(JP,A) 特開 平4−266417(JP,A) 特開 平2−197551(JP,A) (58)調査した分野(Int.Cl.6,DB名) B21C 1/00────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-42112 (JP, A) JP-A-4-266417 (JP, A) JP-A-2-197551 (JP, A) (58) Field (Int.Cl. 6 , DB name) B21C 1/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 抽伸ダイスと同軸上に管軸に直交する平
面上を遊星状に回転しながら縮径加工する転造工具を二
段に配置し、各々の転造工具の相当位置に抽伸プラグに
連結された溝付プラグを配し、管内に連続して二重に溝
付加工する製造方法において、外径7.5mm以上の溝
付プラグで溝加工した後1回又は2回以上の空引抽伸に
より10〜50%の細径加工を行い、外径8〜4mmに
仕上げることを特徴とする内面二重溝付管の製造方法。
1. A rolling tool for reducing the diameter while rotating in a planetary manner on a plane perpendicular to the tube axis coaxially with a drawing die is arranged in two stages, and a drawing plug is provided at a position corresponding to each rolling tool. In the manufacturing method of arranging a grooved plug connected to the pipe and doubling the groove continuously in the pipe, after grooving with a grooved plug having an outer diameter of 7.5 mm or more, once or twice or more emptying is performed. A method for producing a double-grooved tube with an inner surface, characterized in that a small-diameter processing of 10 to 50% is performed by drawing and finishing to an outer diameter of 8 to 4 mm.
JP5838791A 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe Expired - Lifetime JP2756194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5838791A JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5838791A JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Publications (2)

Publication Number Publication Date
JPH04274816A JPH04274816A (en) 1992-09-30
JP2756194B2 true JP2756194B2 (en) 1998-05-25

Family

ID=13082932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5838791A Expired - Lifetime JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Country Status (1)

Country Link
JP (1) JP2756194B2 (en)

Also Published As

Publication number Publication date
JPH04274816A (en) 1992-09-30

Similar Documents

Publication Publication Date Title
KR950007759B1 (en) Method of producing in small electric tube
WO2016010113A1 (en) Production method and production device for pipe with spirally grooved inner surface
US5010643A (en) High performance heat transfer tube for heat exchanger
WO2001063196A1 (en) Tube with inner surface grooves and method of manufacturing the tube
JPH046448B2 (en)
JP2756194B2 (en) Method for manufacturing inner double grooved pipe
US4942751A (en) Process and apparatus for forming internally enhanced tubing
JPH0769117B2 (en) Small diameter heat transfer tube and its manufacturing method
JP6316698B2 (en) Internal spiral grooved tube, manufacturing method thereof and heat exchanger
JP2721253B2 (en) Heat transfer tube manufacturing method
JP2628712B2 (en) Method of forming heat transfer surface
JPH0994623A (en) Manufacture of metallic tube with spiral fin
JPH02280933A (en) Heat transfer tube and manufacture thereof
JPH0428402A (en) Internal high-fined tube and manufacture of internally high-finned type double tube
JP2812786B2 (en) Manufacturing method of small diameter inner grooved pipe
JP2756192B2 (en) Heat transfer tube manufacturing method
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JP2524983B2 (en) Small diameter heat transfer tube
JPS58187681A (en) Grooved pipe and its manufacture
JP2858446B2 (en) Manufacturing equipment for metal pipes with internal grooves
JP3353635B2 (en) Method for manufacturing inner spiral finned tube and apparatus for manufacturing the same
JPH10166032A (en) Manufacture of metallic tube having internal spiral fin
JPH03169441A (en) Heat exchanger pipe and its manufacture
JPH02108410A (en) Heat transfer tube having grooves on its inside surface and its manufacturing method
JPH0821696A (en) Tube with inner surface grooves and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090306

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 12

Free format text: PAYMENT UNTIL: 20100306

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 13

Free format text: PAYMENT UNTIL: 20110306

EXPY Cancellation because of completion of term