JPH04274816A - Manufacture of inside surface double grooved tube - Google Patents

Manufacture of inside surface double grooved tube

Info

Publication number
JPH04274816A
JPH04274816A JP5838791A JP5838791A JPH04274816A JP H04274816 A JPH04274816 A JP H04274816A JP 5838791 A JP5838791 A JP 5838791A JP 5838791 A JP5838791 A JP 5838791A JP H04274816 A JPH04274816 A JP H04274816A
Authority
JP
Japan
Prior art keywords
grooved
tube
plug
inside surface
executing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5838791A
Other languages
Japanese (ja)
Other versions
JP2756194B2 (en
Inventor
Koji Yamamoto
山本 孝司
Hiroshi Kawaguchi
寛 川口
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP5838791A priority Critical patent/JP2756194B2/en
Publication of JPH04274816A publication Critical patent/JPH04274816A/en
Application granted granted Critical
Publication of JP2756194B2 publication Critical patent/JP2756194B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To manufacture the inside surface double grooved tube for a heat exchanger at the same working speed as a conventional inside surface single grooved tube, to prevent the occurrence of generation of rolling-up and a rupture of the tube on the outside surface of the tube, and also, to form the prescribed groove shape. CONSTITUTION:In the manufacturing method for placing thread rolling tools 6, 7 for executing wire diameter working, while rotating like a planet on a plane being orthogonal to a tube axis in two stages on the same axis as an extrusion die, placing grooved plugs 3, 4 connected to a reduction plug in the corresponding position of each thread rolling tool, and executing grooving doubly and continuously in a pipe 1, this manufacturing method for the inside surface double grooved tube constitutes a characteristic feature of executing the grooving by a grooved plug whose outside diameter is >=7.5mm, and thereafter, executing thin diameter working of 10-50% by sink drawing reduction of once or twice or more, and finishing to 8-4mm outside diameter.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍機、空調機等の熱
交換器に用いられる内面溝付管の製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing internally grooved tubes used in heat exchangers for refrigerators, air conditioners, etc.

【0002】0002

【従来の技術とその課題】一般に空調機や冷凍機の熱交
換器に用いられる伝熱管は管内に冷媒としてフロン等を
流し、管外側空調と熱交換を行わせるもので、最近では
外径9.53及び7.0mmで三角形や台形の溝を持つ
内面溝付管を使用することにより、熱交換器の高効率化
やコンパクト化が進められている。しかし、よりコンパ
クト化、高効率化の要求が強いことから、従来の内面溝
付管に代わってらせん溝同志を交差させた内面二重溝付
管及びその製造方法が開発されている。内面二重溝付管
は、管内面に二度溝を形成することにより従来の一重の
溝に比べ、溝形状を複雑化し、乱流効果を活発にし、か
つ伝熱面積を増加させる。又、管内面に沸騰の促進をね
らってキャビティを形成して、伝熱性能が大幅に向上す
ることもできる(特開昭57−150799号、特開平
1−317637号)。その製造方法としては、抽伸ダ
イスと同軸上に縮径加工用の転造ローラーを二段に配置
し、各々のローラー相当位置にフローティングプラグに
連結した溝加工用のプラグを配し、二重に溝付加工する
方法が知られている。しかしこのような高性能管が特に
コンパクト化、高効率化の要求の高い小型空調機におい
て、使用されていない問題点としては、このような小型
空調機に使用されている8〜4mmφの細径内面二重溝
付管を従来の方法で製造すると、単一の溝付加工に比べ
二重に溝付加工を行うため、溝付加工部での摩擦抵抗及
び塑性変形抵抗を二倍にうけることになり、連続的に抽
伸溝付加工する際にある速度以上になると管の引張り強
さが管にかかる抵抗を越え、管が破断してしまう。特に
小径管になるほどこの傾向は顕著となり、従来の単一の
内面溝付管に比べ加工速度は、大幅に低下してしまう。 このため、特開昭60−15015号のように、第一の
内面溝加工部と第二の内面溝加工部の間に管の連続引抜
装置を設ける方法も考案されている。しかし、実際の製
造にこのような方法を用いると装置が大型化することは
まぬがれない。
[Prior art and its problems] Generally, heat exchanger tubes used in heat exchangers for air conditioners and refrigerators flow fluorocarbons or the like as a refrigerant inside the tube to perform heat exchange with air conditioning outside the tube. Heat exchangers are becoming more efficient and more compact by using internally grooved tubes with triangular or trapezoidal grooves of .53 and 7.0 mm. However, as there is a strong demand for more compactness and higher efficiency, an inner double grooved tube in which spiral grooves intersect with each other and a method for manufacturing the same have been developed in place of the conventional inner grooved tube. By forming two grooves on the inner surface of the tube, the inner double grooved tube makes the groove shape more complicated than the conventional single groove, activates the turbulent flow effect, and increases the heat transfer area. Furthermore, by forming a cavity on the inner surface of the tube to promote boiling, the heat transfer performance can be greatly improved (Japanese Patent Application Laid-open Nos. 57-150799 and 1-317637). The manufacturing method is to arrange rolling rollers for diameter reduction in two stages on the same axis as the drawing die, and to place a plug for groove processing connected to a floating plug at the position corresponding to each roller. A method of forming grooves is known. However, the problem with such high-performance tubes being that they are not used, especially in small air conditioners that have high demands for compactness and high efficiency, is that the small diameter of 8 to 4 mmφ used in such small air conditioners When internally double-grooved pipes are manufactured using conventional methods, the grooves are double-grooved compared to single-groove processing, so the frictional resistance and plastic deformation resistance at the grooved part is doubled. When the drawing speed exceeds a certain level during continuous drawing and grooving, the tensile strength of the pipe exceeds the resistance applied to the pipe and the pipe breaks. In particular, this tendency becomes more pronounced as the diameter of the tube becomes smaller, and the machining speed becomes significantly lower than that of a conventional single internally grooved tube. For this reason, a method has been devised, as disclosed in Japanese Patent Application Laid-Open No. 15015/1985, in which a continuous pipe drawing device is provided between the first inner grooved part and the second inner grooved part. However, if such a method is used in actual manufacturing, the size of the device will inevitably increase.

【0003】0003

【発明が解決しようとする課題】本発明は上記の問題に
ついて検討の結果比較的簡単な方法により、加工速度が
低下せず、かつ優れた性能を有する内面二重溝付管の製
造方法を開発したものである。
[Problems to be Solved by the Invention] As a result of studies on the above-mentioned problems, the present invention has developed a method for manufacturing internally double-grooved pipes that does not reduce processing speed and has excellent performance using a relatively simple method. This is what I did.

【0004】0004

【課題を解決するための手段】本発明は、抽伸ダイスと
同軸上に管軸に直交する平面上を遊星状に回転しながら
縮径加工する転造工具を二段に配置し、各々の転造工具
の相当位置に抽伸プラグに連結された溝付プラグを配し
、管内に連続して二重に溝付加工する製造方法において
外径7.5mm以上の溝付プラグで溝加工した後1回又
は2回以上の空引抽伸により10〜50%の細径加工を
行い、外径8〜4mmに仕上げることを特徴とする内面
二重溝付管の製造方法である。すなわち本発明は、例え
ば図1に示すような装置により内面に二重溝付管を製造
するものである。この装置は抽伸ダイス22の内側にフ
ローティングプラグ2と溝付加工用の第一溝付プラグ3
と第二溝付プラグ4がタイロッド5により結合され、溝
付プラグの外側に第一転造ローラー6と第2転造ローラ
ー7により構成されている。素管1は、フローティング
プラグと抽伸ダイスにより縮径され、第一の溝付プラグ
と第一転造ローラーにより内面に一方向に傾斜または傾
斜しない溝を形成し、第二溝付プラグと第二転造ローラ
ーにより、上記の溝とクロスする溝を形成することによ
り、例えば図2に示すような溝部9と山部10を有し、
該溝9とクロスするクロス溝11を形成した内面二重溝
付管8を製造するものである。また本発明は図3に示す
ように溝部9と山部10とがクロス溝11の部分でズレ
部12を有する内面二重溝付管8も製造できる。この溝
付管は、上記のズレ部の存在により、溝部内の冷媒液の
流れが変化して伝熱性能が向上する。
[Means for Solving the Problems] The present invention provides two stages of rolling tools that perform diameter reduction while rotating planetarily on a plane perpendicular to the tube axis on the same axis as a drawing die, and After grooving with a grooved plug with an outer diameter of 7.5 mm or more in a manufacturing method in which a grooved plug connected to a drawing plug is placed at the corresponding position of the forming tool and the inside of the pipe is continuously double-grooved, 1 This is a method for manufacturing an inner double grooved tube, which is characterized by performing a diameter reduction process of 10 to 50% by dry drawing or two or more times to obtain an outer diameter of 8 to 4 mm. That is, the present invention is to manufacture a pipe with double grooves on the inner surface using an apparatus such as that shown in FIG. 1, for example. This device has a floating plug 2 and a first grooved plug 3 for groove processing inside a drawing die 22.
and a second grooved plug 4 are connected by a tie rod 5, and a first rolling roller 6 and a second rolling roller 7 are formed on the outside of the grooved plug. The diameter of the blank pipe 1 is reduced by a floating plug and a drawing die, a groove that is inclined or not inclined in one direction is formed on the inner surface by a first grooved plug and a first rolling roller, and a groove that is inclined or not inclined in one direction is formed on the inner surface by a first grooved plug and a first rolling roller. By forming grooves that cross the above-mentioned grooves using a rolling roller, for example, grooves 9 and peaks 10 as shown in FIG. 2 are formed,
An inner double grooved tube 8 having a cross groove 11 that crosses the groove 9 is manufactured. Further, the present invention can also manufacture an inner double-grooved tube 8 in which the groove portion 9 and the peak portion 10 have an offset portion 12 at the cross groove 11, as shown in FIG. In this grooved tube, the presence of the above-mentioned deviation portion changes the flow of the refrigerant liquid within the groove portion, thereby improving heat transfer performance.

【0005】[0005]

【作用】本発明の製造方法によれば、従来高速溝付加工
ができなかった二重溝付管、特に細径の内面二重溝付管
を、従来の単一の内面溝付管と同様な速度で製造するこ
とができる。本発明において溝付プラグの外径を7.5
mm以上としたのは、それ未満になると、素管の外径が
細くなり、高速で二重に溝加工できなくなるためである
。又、溝加工後の空引率を10%〜50%としたのは、
50%を越えると図4に示すような管外表面にマクレコ
ミ13が空引き時に頻繁に発生するためである。また、
10%未満では従来の方法とかわらなくなり、細径管溝
付時の加工速度を高速にすることができなくなるためで
ある。
[Function] According to the manufacturing method of the present invention, double grooved pipes that could not be processed at high speed in the past, especially small-diameter inner double grooved pipes, can be processed in the same way as conventional single internally grooved pipes. can be manufactured at fast speeds. In the present invention, the outer diameter of the grooved plug is 7.5
The reason why the diameter is set to be equal to or more than mm is that if it is less than that, the outer diameter of the raw tube becomes thinner and double groove processing cannot be performed at high speed. In addition, the empty draw rate after groove machining was set to 10% to 50% because
This is because if it exceeds 50%, creases 13 will frequently occur on the outer surface of the tube as shown in FIG. 4 during empty pumping. Also,
This is because if it is less than 10%, it will not be any different from the conventional method, and it will not be possible to increase the machining speed when grooving a small diameter pipe.

【0006】[0006]

【実施例】以下に本発明の一実施例について説明する。 図1に示すような装置を用い、素管として外径12.7
mm×肉厚0.45mmのりん脱酸銅管を図示していな
いが、連続抽伸機などの引張装置によりAの矢印方向へ
引張り移動する。そして、この管内にフローティングプ
ラグ2と溝付加工用の第一溝付プラグ3に外径φ9.9
mmと第二溝付プラグ4にφ9.5mmのものを用いて
フローティングプラグに挿入し管外面から公転して銅管
を縮径加工する第一及び第二転造ローラー6、7により
銅管を縮径加工して、管内面に二重に溝を形成した。こ
こで、第一の溝付プラグ3と第一の転造ローラー6によ
り伝熱面に溝数90、リード角(左ねじり)18°、溝
深さ0.10mmの微細な第1溝を多数形成し、次いで
第二の溝付プラグ4と第二の転造ローラー7により、溝
数60、リード角(右ねじり)18°、溝深さ0.16
mmの溝を第1の溝を押しつぶすように形成し、図2の
ような第2の溝9により、第1の溝11が押しつぶされ
た形でクロス溝11が形成された外径10mmの内面二
重溝付管を形成した。その後、巻き取り機によりコイル
状に巻き取る時に、ダイスにて、空引抽伸し、抽伸率3
0%で、外径7.00mmに仕上げながら、製品とした
[Embodiment] An embodiment of the present invention will be described below. Using a device like the one shown in Figure 1, the outer diameter of the raw tube is 12.7 mm.
Although not shown, a phosphorus-deoxidized copper tube of mm x wall thickness of 0.45 mm is pulled in the direction of the arrow A by a pulling device such as a continuous drawing machine. Then, inside this pipe, a floating plug 2 and a first grooved plug 3 for groove processing are installed with an outer diameter of φ9.9.
The second grooved plug 4 is inserted into the floating plug, and the copper pipe is rolled by first and second rolling rollers 6 and 7 which revolve from the outside surface of the pipe and reduce the diameter of the copper pipe. The diameter was reduced to form double grooves on the inner surface of the tube. Here, the first grooved plug 3 and the first rolling roller 6 form a large number of fine first grooves on the heat transfer surface with a number of grooves of 90, a lead angle (left-handed twist) of 18°, and a groove depth of 0.10 mm. The number of grooves is 60, the lead angle (right-handed twist) is 18°, and the groove depth is 0.16 using the second grooved plug 4 and the second rolling roller 7.
An inner surface with an outer diameter of 10 mm, in which cross grooves 11 are formed by forming grooves of 1.5 mm in diameter so as to crush the first grooves, and the first grooves 11 are crushed by the second grooves 9 as shown in FIG. A double grooved tube was formed. After that, when winding it into a coil shape with a winder, it is empty drawn with a die and the drawing rate is 3.
0%, and the product was finished with an outer diameter of 7.00 mm.

【0007】ここで従来の方法と比較すると同製品を二
重に溝付をした後に10%以下の抽伸率で仕上げた場合
、例えば、素管に9.53mm×肉厚0.40mmを使
用して、第一溝付プラグ外径7.5mm、第二溝付プラ
グ外径7mmを使用して、溝付加工を行った外径7.5
mmの溝付管をその後外径7.00mmに仕上げながら
、(抽伸率7%)コイルに巻き取った場合に比べ、単位
時間あたりの製造量は、本発明の30%の抽伸率により
7.00mmに仕上げた方が約2.8倍であり、従来の
単一内面溝付管の場合とほぼ同等であった。これは一つ
に溝付時に管の外径が太いために、単位長さあたりの重
量が重くなり、かりに同一加工速度で溝付加工された場
合にも単位時間あたりの製造量は増加するためである。 もう一つには、内面に二重に溝付加工する場合は、溝付
加工部での摩擦抵抗及び塑性変形抵抗は単一溝付の二倍
かかり、素管が細い場合ほど、連続的に抽伸溝付加工す
る速度限界が低くなり、必然的に単位時間あたりの製造
量が減少するためである。しかし、このような溝付後の
空引抽伸の際に抽伸率を大きくとりすぎると、(50%
が限界)マクレコミ不良が頻発するようになり、逆に単
位時間あたりの良品の製造量は激減してしまう。次に図
3に示すようなズレ部12を有する切り込み状のクロス
溝11が形成された内面二重溝付管の製造は空引抽伸し
た場合、クロス溝に沿って溝がずれる減少が起こるため
に形成されるものであり、ズレ部12を形成することに
より、溝部内の冷媒液の流れが山部10の片側に衝突し
て流れを乱し、もう一方の片側で流れに対して液のよど
みをもたせる保持部をつくり、溝部内に液膜の分布を形
成して、伝熱性能を向上させる。又、このようなズレ部
の乱流作用によって、クロス溝11内に付着し、性能の
低下をまねく冷凍機油や汚れを除去する効果もある。こ
のようにして得られた内面二重溝付管を二重式熱交換器
に組み込み管内に冷媒を流し、環状部に水を流して熱交
換を行わせ、蒸発熱伝達を求めた。その時の実験条件を
表1に示す。
[0007]Comparing this with the conventional method, if the same product is double grooved and then finished with a drawing ratio of 10% or less, for example, a material pipe of 9.53 mm x wall thickness of 0.40 mm is used. Using the first grooved plug outer diameter of 7.5 mm and the second grooved plug outer diameter of 7 mm, the grooved outer diameter is 7.5 mm.
Compared to the case where a grooved tube of 1.5 mm is wound into a coil while finishing it to an outer diameter of 7.00 mm (at a drawing rate of 7%), the production amount per unit time is 7.0 mm due to the drawing rate of 30% of the present invention. 00 mm was about 2.8 times, which was almost equivalent to the conventional single inner grooved tube. One reason for this is that when grooving, the outer diameter of the tube is thicker, which increases the weight per unit length, and even when grooving is performed at the same processing speed, the production volume per unit time increases. It is. Another reason is that when the inner surface is double grooved, the frictional resistance and plastic deformation resistance at the grooved part are twice as high as those with a single groove. This is because the speed limit for drawing and grooving processing becomes lower, and the production amount per unit time inevitably decreases. However, if the drawing ratio is set too high during dry drawing after grooving, (50%
(Limit)) Bad reviews will occur frequently, and the amount of good products produced per unit time will drastically decrease. Next, when producing an inner double grooved tube in which cut-shaped cross grooves 11 with misaligned portions 12 are formed, as shown in FIG. By forming the gap portion 12, the flow of the refrigerant liquid in the groove portion collides with one side of the peak portion 10 and disturbs the flow, and the liquid refrigerant flow on the other side collides with the flow on the other side. By creating a holding part that causes stagnation and forming a liquid film distribution within the groove, heat transfer performance is improved. Further, the turbulent flow effect of such a misaligned portion has the effect of removing refrigerating machine oil and dirt that adhere to the inside of the cross groove 11 and lead to a decrease in performance. The inner double grooved tube thus obtained was assembled into a double heat exchanger, a refrigerant was flowed through the tube, and water was flowed through the annular portion to perform heat exchange, and the evaporative heat transfer was determined. Table 1 shows the experimental conditions at that time.

【0008】[0008]

【表1】[Table 1]

【0009】また図5にその蒸発時の管内熱伝達率を示
した。同図上には図6に示すような従来の7.00mm
の一重内面溝付管(溝数60、ねじれ角18°、溝深さ
0.15mm)の結果も示した。これによると、本発明
製造法による内面二重溝付管は、従来の内面溝付管に比
べて2倍高い蒸発性能を示した。
FIG. 5 shows the heat transfer coefficient within the tube during evaporation. The figure shows the conventional 7.00 mm as shown in Figure 6.
The results for a single internally grooved tube (number of grooves: 60, helix angle: 18°, groove depth: 0.15 mm) are also shown. According to this, the inner double grooved tube produced by the manufacturing method of the present invention showed twice the evaporation performance than the conventional inner grooved tube.

【0010】0010

【発明の効果】以上に説明したように本発明の内面二重
溝付管の製造法によれば、従来の内面溝付管に比べ約2
倍の蒸発性能を持つ内面二重溝付管を従来の一重内面溝
付管と単位時間当り、ほぼ同等の重量を製造することが
できる。
[Effects of the Invention] As explained above, according to the method of manufacturing the inner double grooved tube of the present invention, compared to the conventional inner grooved tube, the
It is possible to manufacture an internally double grooved tube with twice the evaporation performance and a weight that is almost the same as a conventional single internally grooved tube per unit time.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の内面二重溝付管の製造に使用する装置
の一例を示す概略図。
FIG. 1 is a schematic diagram showing an example of an apparatus used for manufacturing the inner double grooved tube of the present invention.

【図2】本発明により製造される内面二重溝付管の例を
示す要部斜視図。
FIG. 2 is a perspective view of essential parts showing an example of an inner double grooved tube manufactured according to the present invention.

【図3】本発明により製造される内面二重溝付管の例を
示す要部斜視図。
FIG. 3 is a perspective view of essential parts showing an example of an inner double grooved tube manufactured according to the present invention.

【図4】内面二重溝付管の製造時に生じるマクレ部のあ
る溝付管の断面図。
FIG. 4 is a cross-sectional view of a grooved tube with a bulge portion that occurs during the manufacture of an inner double grooved tube.

【図5】本発明により製造された内面二重溝付管の蒸発
熱伝達率と冷媒流量との関係を示す線図。
FIG. 5 is a diagram showing the relationship between the evaporative heat transfer coefficient and the refrigerant flow rate of the inner double grooved tube manufactured according to the present invention.

【図6】従来の内面溝付管の要部斜視図。FIG. 6 is a perspective view of a main part of a conventional internally grooved tube.

【符号の説明】[Explanation of symbols]

1  素管 2  フローティングプラグ 3  第一溝付プラグ 4  第二溝付プラグ 1 Main pipe 2 Floating plug 3 First grooved plug 4 Second grooved plug

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  抽伸ダイスと同軸上に管軸に直交する
平面上を遊星状に回転しながら縮径加工する転造工具を
二段に配置し、各々の転造工具の相当位置に抽伸プラグ
に連結された溝付プラグを配し、管内に連続して二重に
溝付加工する製造方法において、外径7.5mm以上の
溝付プラグで溝加工した後1回又は2回以上の空引抽伸
により10〜50%の細径加工を行い、外径8〜4mm
に仕上げることを特徴とする内面二重溝付管の製造方法
Claim 1: Two rolling tools are arranged coaxially with a drawing die and perform diameter reduction while rotating planetarily on a plane perpendicular to the tube axis, and a drawing plug is placed at a corresponding position of each rolling tool. In a manufacturing method in which a grooved plug connected to a tube is placed and double grooves are continuously formed inside the pipe, the grooved plug with an outer diameter of 7.5 mm or more is used to groove the pipe, and then the grooved plug is connected to the grooved plug once or twice or more. The diameter is reduced by 10-50% by drawing, and the outer diameter is 8-4 mm.
A method for manufacturing an inner double grooved pipe characterized by finishing the pipe with a double groove on the inside.
JP5838791A 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe Expired - Lifetime JP2756194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5838791A JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5838791A JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Publications (2)

Publication Number Publication Date
JPH04274816A true JPH04274816A (en) 1992-09-30
JP2756194B2 JP2756194B2 (en) 1998-05-25

Family

ID=13082932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5838791A Expired - Lifetime JP2756194B2 (en) 1991-02-28 1991-02-28 Method for manufacturing inner double grooved pipe

Country Status (1)

Country Link
JP (1) JP2756194B2 (en)

Also Published As

Publication number Publication date
JP2756194B2 (en) 1998-05-25

Similar Documents

Publication Publication Date Title
KR950007759B1 (en) Method of producing in small electric tube
JP6169538B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
US5010643A (en) High performance heat transfer tube for heat exchanger
WO2001063196A1 (en) Tube with inner surface grooves and method of manufacturing the tube
JPH046448B2 (en)
JPH0769117B2 (en) Small diameter heat transfer tube and its manufacturing method
JPH04274816A (en) Manufacture of inside surface double grooved tube
JPH02165875A (en) Heat exchanger tube and its manufacture
JP3050795B2 (en) Heat transfer tube
JPH0457406B2 (en)
JP2628712B2 (en) Method of forming heat transfer surface
JPH06159859A (en) Heat transfer pipe for absorber and fabrication
JPH0724522A (en) Heat-transfer tube for absorber and production therefor
JPS61125595A (en) Heat transfer tube for boiling and manufacture thereof
JPH02280933A (en) Heat transfer tube and manufacture thereof
JPS61209723A (en) Manufacture of heat exchanger tube
JP2812786B2 (en) Manufacturing method of small diameter inner grooved pipe
JPH04266417A (en) Manufacture of heat transfer tube
JP3337880B2 (en) Manufacturing method of heat transfer tube with double groove
JP6358720B2 (en) Manufacturing method and manufacturing apparatus of internally spiral grooved tube
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof
JPH02108410A (en) Heat transfer tube having grooves on its inside surface and its manufacturing method
JPH02160110A (en) Manufacture of inside grooved tube
JPH03169441A (en) Heat exchanger pipe and its manufacture

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080306

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090306

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100306

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110306

Year of fee payment: 13

EXPY Cancellation because of completion of term