JPH02165875A - Heat exchanger tube and its manufacture - Google Patents

Heat exchanger tube and its manufacture

Info

Publication number
JPH02165875A
JPH02165875A JP31773388A JP31773388A JPH02165875A JP H02165875 A JPH02165875 A JP H02165875A JP 31773388 A JP31773388 A JP 31773388A JP 31773388 A JP31773388 A JP 31773388A JP H02165875 A JPH02165875 A JP H02165875A
Authority
JP
Japan
Prior art keywords
heat exchanger
tube
exchanger tube
grooves
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31773388A
Other languages
Japanese (ja)
Inventor
Toshiaki Hashizume
利明 橋爪
Hiroshi Kawaguchi
川口 寛
Koji Yamamoto
山本 孝司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP31773388A priority Critical patent/JPH02165875A/en
Publication of JPH02165875A publication Critical patent/JPH02165875A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To improve both characteristics of evaporation and condensation of the heat exchanger tube by forming many notches to cross mutually on fin parts and groove bottoms of inside grooves of the heat exchanger tube form vacancies. CONSTITUTION:The plural fine inside grooves 11 are formed on the inside of the heat exchanger tube 1 and these inside grooves 11 are provided continuously on the tube inside and formed parallel or spirally with respect to the tube axis. Many notches 12 are formed on the inside of the heat exchanger tube 1 and the notches 12 are formed in the mutually different directions and formed parallel or so as to cross mutually on the fin parts 11a and the groove bottoms 11b of the inside grooves 11. Many vacancies are formed on the inside of the heat exchanger tube 1 by these notches 12. By this method, the heat exchanger tube excellent in both evaporating performance and condensing performance and moreover, having little variance on those is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、冷凍機用、空調機用等の熱交換器に用いられ
る伝熱管およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube used in a heat exchanger for refrigerators, air conditioners, etc., and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

一般に、冷凍機や空調機の熱交換器に用いられる伝熱管
は、管内にフレオン等の冷媒液を流し、熱交換を行わせ
るもので、熱交換器の高効率化や省エネルギー化の観点
から内面溝付伝熱管の使用が多くなっている。この内面
溝付伝熱管は、管内に微細な三角形や台形等の断面をも
つ溝を、管軸に対して平行にもしくはらせん状に形成し
たのもであって、平滑管に比べて伝熱面積が増加するこ
とや、冷媒液を攪拌させる作用があるなどの利点があり
、伝熱性能は大きく向上する。
Generally, heat transfer tubes used in heat exchangers for refrigerators and air conditioners exchange heat by flowing a refrigerant liquid such as Freon inside the tube. Grooved heat exchanger tubes are increasingly being used. These internally grooved heat transfer tubes have minute grooves with triangular or trapezoidal cross sections formed inside the tube, parallel to the tube axis or spirally, and have a larger heat transfer area than smooth tubes. It has the advantage of increasing the amount of water and stirring the refrigerant liquid, and the heat transfer performance is greatly improved.

近年、特に、空調機用熱交損器に対しては、高性能化や
小型軽量化の要求が強く、ヒートポンプ式エアコンの普
及もあいまって、伝熱管としては高性能化がより一層強
く要求されている。
In recent years, there has been a strong demand for higher performance, smaller size and lighter weight, especially for heat exchangers for air conditioners, and with the spread of heat pump air conditioners, there has been an even stronger demand for higher performance for heat exchanger tubes. ing.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、従来の内面溝付伝熱管では、溝数、リード角、
溝深さ、溝形状等積々の改良が行なわれているものの、
性能向上にはおのずと限界があった。
However, with conventional internally grooved heat exchanger tubes, the number of grooves, lead angle,
Although many improvements have been made to groove depth, groove shape, etc.
There were naturally limits to performance improvement.

一方、これらの要求に応えるために、従来の内面溝付伝
熱管に代わって、管の内面に金属粉粒体を焼結して、多
孔質層を形成した伝熱管が開発されている。
On the other hand, in order to meet these demands, a heat exchanger tube in which a porous layer is formed by sintering metal powder on the inner surface of the tube has been developed in place of the conventional heat exchanger tube with internal grooves.

この伝熱管は、管内蒸発時に、形成されている多孔質層
により核沸騰が促進されて、伝熱性能は大幅に向上する
が、管内凝縮時に、凝縮した冷媒液が多孔質層内に滞留
したり、ときには撹拌されずに管内表面に液膜を形成し
て、伝熱性能が向上しない場合があった。
In this heat transfer tube, when evaporating inside the tube, the formed porous layer promotes nucleate boiling, and the heat transfer performance is greatly improved. However, when condensing inside the tube, the condensed refrigerant liquid stays in the porous layer. In some cases, a liquid film was formed on the inner surface of the tube without stirring, and heat transfer performance was not improved.

また、この伝熱管は、製造工程が多いうえ、長尺物の加
工においては、多孔質層を均一に形成することが困難な
ため、伝熱性能等にバラツキが発生するなどの欠点があ
った。
In addition, this heat transfer tube requires many manufacturing steps, and it is difficult to form a porous layer uniformly when processing long objects, so there are drawbacks such as variations in heat transfer performance. .

本発明の目的は、蒸発性能、凝縮性能がともによく、し
かもそれらのバラツキの少ない伝熱管を提供することで
ある。
An object of the present invention is to provide a heat exchanger tube that has good evaporation performance and condensation performance and less variation in them.

さらに他の目的は、そのような伝熱管を長尺に容易に加
工できる伝熱管の製造方法を提供することである。
Still another object is to provide a method for manufacturing a heat exchanger tube that can easily process such a heat exchanger tube into a long length.

〔課題を解決するための手段) 前記課題を解決するために、本発明による伝熱管は、管
内面の管軸に対して平行にもしくはらせん状に連続して
形成された微細な多数の内面溝を有する伝熱管において
、前記内面溝のフィン部や溝底部に、平行もしくは交差
するように、互いに異なる方向をもつ多数の切込みを形
成する構成としである。
[Means for Solving the Problems] In order to solve the above problems, the heat exchanger tube according to the present invention has a large number of fine inner grooves formed continuously in a spiral shape or parallel to the tube axis on the inner surface of the tube. The heat exchanger tube has a structure in which a large number of cuts in mutually different directions are formed in the fin portion and the groove bottom of the inner groove so as to be parallel or intersect with each other.

また、本発明による伝熱管の製造方法は、管内面の管軸
に対して平行にもしくはらせん状に、互いに平行な多数
の溝を形成し、それらの溝に平行もしくは交差する互い
に平行な他の多数の溝を1回以上形成することにより、
管内面に多数の突起部または凹部を形成し、それらの突
起部または凹部を潰しながら、管内面の管軸に対して平
行にもしくはらせん状に連続して内面溝を形成すること
により、前記内面溝のフィン部や溝底部に、平行もしく
は交差するように、互いに異なる方向をもつ多数の切込
みを形成する構成としである。
Further, the method for manufacturing a heat exchanger tube according to the present invention includes forming a large number of mutually parallel grooves in parallel or spirally with respect to the tube axis on the inner surface of the tube, and forming other mutually parallel grooves parallel to or intersecting with these grooves. By forming a large number of grooves one or more times,
By forming a large number of protrusions or recesses on the inner surface of the tube, and while crushing these protrusions or recesses, forming an inner groove on the inner surface of the tube parallel to the tube axis or continuously in a spiral shape, the inner surface of the tube can be improved. The structure is such that a large number of parallel or intersecting cuts in different directions are formed in the fin portion of the groove or the bottom of the groove.

〔作用〕[Effect]

本発明による伝熱管は、多数の切込みによって空孔部が
できるので、従来の内面溝付伝熱管に比較して、冷媒液
の蒸発時の核沸騰を大福に向上させることができる。こ
れは、多孔質層を形成した伝熱管と略同等の蒸発性能と
なる。
Since the heat exchanger tube according to the present invention has voids formed by a large number of cuts, the nucleate boiling during evaporation of the refrigerant liquid can be greatly improved compared to the conventional heat exchanger tube with internal grooves. This results in approximately the same evaporation performance as that of a heat exchanger tube with a porous layer formed thereon.

また、管内@縮時においては、基本的には、内面溝が形
成されているため、′a縮した冷媒液は適度に攪拌され
て、液膜を形成することがなく、空孔部によりさらに攪
拌され、従来の内面溝付伝熱管に比較して凝縮性能が向
上する。
In addition, when the inside of the pipe is compressed, basically an inner groove is formed, so that the compressed refrigerant liquid is appropriately stirred and does not form a liquid film. This improves condensation performance compared to conventional internally grooved heat exchanger tubes.

さらに、本発明による伝熱管の製造方法は、基本的には
、従来の内面溝付伝熱管の製造時の溝加工を複数回繰り
返すだけで、略同じ装置を使用して、長尺物の加工もバ
ラツキ無しに製造できるようになった。
Furthermore, the method for manufacturing a heat exchanger tube according to the present invention basically requires only repeating the grooving process multiple times during the manufacture of conventional internally grooved heat exchanger tubes, and uses substantially the same equipment to process long objects. can now be manufactured without any variation.

〔実施例〕〔Example〕

以下、図面等を参照して、実施例につき、本発明の詳細
な説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to the drawings and the like.

第1図は、本発明による伝熱管の実施例を示した図であ
って、第1A図は伝熱管の内面を展開して示した図、第
1B図は伝熱管の一部を拡大して示した断面図である。
FIG. 1 is a diagram showing an embodiment of a heat exchanger tube according to the present invention, in which FIG. 1A is an expanded view of the inner surface of the heat exchanger tube, and FIG. 1B is an enlarged view of a part of the heat exchanger tube. FIG.

伝熱管1は、その内面に複数の微細な内面溝11が形成
されている。この内面溝11は、管内面に連続して設け
られており、管軸に対して平行にもしくはらせん状に形
成されている。
The heat exchanger tube 1 has a plurality of fine inner grooves 11 formed on its inner surface. This inner surface groove 11 is provided continuously on the inner surface of the tube, and is formed parallel to the tube axis or in a spiral shape.

この伝熱管lの内面には、多数本の切込み12が形成さ
れている。切込み12は、互いに異なる方向に形成され
ており、内面溝11のフィン部工1aや溝底部11bに
、互いに平行にもしくは交差するように形成されている
。この切込み12により、伝熱管lの内面に多数の空孔
部が形成される。
A large number of cuts 12 are formed on the inner surface of the heat exchanger tube l. The cuts 12 are formed in mutually different directions, and are formed in the fin part 1a of the inner groove 11 and the groove bottom 11b so as to be parallel to each other or to cross each other. This cut 12 forms a large number of holes on the inner surface of the heat exchanger tube l.

第2図は、本発明による伝熱管の製造方法の実施例を説
明するための図である。
FIG. 2 is a diagram for explaining an embodiment of the method for manufacturing a heat exchanger tube according to the present invention.

伝熱管1は、鋼管等の素管10を用いて、製造装置12
により製造することができる。
The heat exchanger tube 1 is manufactured using a manufacturing device 12 using a raw tube 10 such as a steel tube.
It can be manufactured by

製造装置2は、素管10の外側に配置され素管10の径
を絞る縮径ダイス21と、素管10の内側に縮径ダイス
21に対向して設けられたフローティングプラグ22と
、そのフローティングプラグ22に連結棒23により素
管lO内の一定の位置に保持された第1〜第3溝付プラ
グ24〜26と、素管10の外側の第1〜第3溝付プラ
グ24〜26に対向する位置に配置され公転しながら素
管10を縮径加工する第1〜第3転造ローラ27〜29
とから構成されている。
The manufacturing apparatus 2 includes a diameter-reducing die 21 arranged outside the raw pipe 10 to reduce the diameter of the raw pipe 10, a floating plug 22 provided inside the raw pipe 10 facing the diameter-reducing die 21, and a floating The plug 22 has first to third grooved plugs 24 to 26 held at fixed positions inside the raw pipe 10 by a connecting rod 23, and first to third grooved plugs 24 to 26 outside the raw pipe 10. The first to third rolling rollers 27 to 29 are arranged at opposing positions and perform a diameter reduction process on the raw pipe 10 while rotating.
It is composed of.

まず、第1溝付プラグ24と第1転造ローラ27および
第2溝付プラグ25と第2転遣ローラ28とにより、素
管10内に微細な多数の略四角錐や鋸刃状の突起を形成
する0次に、第3溝付プラグ26と第3転造ローラ29
とにより、内面溝11を形成する。
First, the first grooved plug 24, the first rolling roller 27, the second grooved plug 25, and the second rolling roller 28 form a large number of fine approximately quadrangular pyramidal or saw blade-shaped projections in the raw pipe 10. Next, the third grooved plug 26 and the third rolling roller 29
Thus, the inner groove 11 is formed.

ここで、第3溝付プラグ26を用いて、内面溝11を形
成するときに、前工程までに形成されている略四角錐や
鋸刃状の突起を押し潰すようにして、内面溝11を主と
して形成するようにする。
Here, when forming the inner groove 11 using the third grooved plug 26, the inner groove 11 is formed by crushing the substantially square pyramid or saw blade-shaped protrusions formed in the previous step. Mainly to form.

このため、内面溝11によって成形されるフィン部11
aや溝底部llbに、略四角錐や鋸刃状の突起が押し潰
された形で、平行もしくは交差した切込み12が形成さ
れ、そこに多数の空孔部が形成される。
Therefore, the fin portion 11 formed by the inner groove 11
Parallel or intersecting notches 12 are formed in the shape of substantially square pyramidal or saw blade-shaped protrusions crushed in a and the groove bottom llb, and a large number of holes are formed therein.

この実施例では、第1溝付プラグ24として、溝数90
、リード角28度(右ねじり)、溝深さ0.15mmの
ものを用い、第2溝付プラグ25として、溝数80、リ
ード角20度(左ねじり)、溝深さO,10mmのもの
を用い、第3溝付プラグ26として、溝数60、リード
角18度(右ねじり)、溝深さ0.20mmのものを用
い、素管10として鋼管を用いて溝加工した結果、溝数
60、リード角18度(右ねじり)、溝深さ0.20m
mの内面溝11を得た。その後、図示しない空引きダイ
スを通して、外径φ9.53mmの伝熱管1を得た。得
られた伝熱管1の内面には、第1図に示すように、内面
溝11のフィン部11aおよび溝底部11bに多数の切
込み12が交差するように成形されていた。
In this embodiment, the first grooved plug 24 has 90 grooves.
, a plug with a lead angle of 28 degrees (right-handed twist) and a groove depth of 0.15 mm is used, and the second grooved plug 25 has a number of grooves of 80, a lead angle of 20 degrees (left-handed twist), and a groove depth of O, 10 mm. The third grooved plug 26 had a groove count of 60, a lead angle of 18 degrees (right-handed twist), and a groove depth of 0.20 mm.As a result of grooving using a steel pipe as the base pipe 10, the number of grooves was 60, lead angle 18 degrees (right-handed twist), groove depth 0.20 m
An inner groove 11 of m was obtained. Thereafter, the heat exchanger tube 1 having an outer diameter of 9.53 mm was obtained by passing through a dry die (not shown). As shown in FIG. 1, a large number of cuts 12 were formed on the inner surface of the obtained heat exchanger tube 1 so as to intersect with the fin portion 11a and the groove bottom portion 11b of the inner groove 11.

第3図、第4図は、本発明による伝熱管の実施例の管内
蒸発性能、管内凝縮性能をそれぞれ示した図である。
FIG. 3 and FIG. 4 are diagrams respectively showing the evaporation performance and condensation performance within the tube of an example of the heat exchanger tube according to the present invention.

製造した伝熱管1は、二重管式熱交換器を用いて伝熱測
定した0本発明による内面溝付伝熱管の特性(A)は、
第3図、第4図に示すように、従来の内面溝付伝熱管の
特性(B)に比較して、管内蒸発性能で約100%、管
内li!縮性能で約70%程度性能が向上した。
The heat transfer of the produced heat exchanger tube 1 was measured using a double tube heat exchanger. The characteristics (A) of the internally grooved heat exchanger tube according to the present invention are as follows:
As shown in Figures 3 and 4, compared to the characteristics (B) of the conventional internally grooved heat exchanger tube, the tube evaporation performance is approximately 100%, and the tube li! The compression performance improved by about 70%.

この伝熱測定で使用した従来の内面溝付伝熱管は、外径
φ9.53mm、溝数60.リード角18度、溝深さ0
.20mmのものを用いた。
The conventional internally grooved heat exchanger tube used in this heat transfer measurement had an outer diameter of φ9.53 mm and a groove count of 60. Lead angle 18 degrees, groove depth 0
.. A 20 mm one was used.

第5図は、本発明による伝熱管の製造方法の他の実施例
を説明するための図である。
FIG. 5 is a diagram for explaining another embodiment of the method for manufacturing a heat exchanger tube according to the present invention.

第2図に示した製造装置は、素管10を転造する例を示
したが、この実施例では、帯板30を用いて、製造装置
4により伝熱管3を製造したものである。
The manufacturing apparatus shown in FIG. 2 shows an example of rolling the raw tube 10, but in this embodiment, the heat exchanger tube 3 is manufactured by the manufacturing apparatus 4 using the strip plate 30.

帯板30は、らせん状の溝を有する第1溝付ローラ41
とフラットローラ44および第2溝付ローラ42とフラ
ットローラ45とにより、帯板30の片面に微細な多数
の略四角錐や鋸刃状の突起を形成する0次に、第3溝付
ローラ43とフラットローラ46とにより、内面溝31
を形成する。
The band plate 30 has a first grooved roller 41 having a spiral groove.
A third grooved roller 43 forms a large number of fine substantially quadrangular pyramidal or saw blade-shaped protrusions on one side of the strip plate 30 by the flat roller 44, the second grooved roller 42, and the flat roller 45. and the flat roller 46, the inner groove 31
form.

このとき、第3溝付ローラ43では、内面溝31を形成
するときに、前工程までに形成されている略四角錐や鋸
刃状の突起を押し潰すようにして、内面溝31を形成す
る。
At this time, when the third grooved roller 43 forms the inner groove 31, the inner groove 31 is formed by crushing the substantially square pyramid or saw blade-shaped protrusions formed in the previous process. .

次に、成形ローラ群47a〜47hにより、管状に成形
し、続いて誘導コイル4日により高周波誘導溶接を施し
たのち、スクイズロール49a。
Next, it is formed into a tubular shape by a group of forming rollers 47a to 47h, and then high-frequency induction welding is performed using an induction coil for four days, and then the squeeze roll 49a is formed.

49bを通して、伝熱管3を製造した。得られた伝熱管
3には、第1図と同様に、内面溝31に多数の切込み3
2が形成されていた。
49b, the heat exchanger tube 3 was manufactured. The obtained heat exchanger tube 3 has a large number of cuts 3 in the inner groove 31, as shown in FIG.
2 was formed.

以上説明した実施例にとられれることなく、種々の変形
を施すことができる。
Various modifications can be made without being limited to the embodiments described above.

ここで説明した実施例では、2回の溝加工によリ、略四
角錐や鋸刃状の突起を形成するようにしたが、2回目の
溝加工で内面溝が形成されるようにしてもよい。
In the embodiment described here, the substantially square pyramid or saw blade-shaped protrusions are formed by grooving twice, but it is also possible to form inner grooves in the second grooving. good.

また、2回目の溝加工後の管内形状は、いかなる形状で
あってもよく、内面溝を主として形成する溝加工のとき
に、2回目までの溝加工後に形成された突起部もしくは
溝部等を押し潰してしまうようにすればよい、そして、
1回目と2回目の溝加工によるそれぞれの溝の形状(連
敗、リード角。
Furthermore, the shape of the inside of the pipe after the second groove machining may be any shape, and when grooving mainly forms internal grooves, the protrusions or grooves formed after the second groove machining are pressed. All you have to do is destroy it, and
The shape of each groove (losing streak, lead angle) from the first and second groove machining.

溝深さ等)を適宜選択することにより、第1図に示すよ
うな管内面に平行もしくは交差するような切込みが入り
、それらが多数の空孔部を形成するようになればよい。
By appropriately selecting the groove depth, etc., parallel or intersecting cuts may be made on the inner surface of the tube as shown in FIG. 1, and these may form a large number of holes.

また、この実施例では、3回の溝加工により内面溝を形
成した例を説明したが、溝加工の回数は3回に限らず、
4回、5回またはそれ以上でもよく、最終の溝加工時に
、内面溝を加工して多重交差の切込みを形成するように
してもよい。
In addition, in this embodiment, an example was explained in which the inner groove was formed by grooving three times, but the number of grooving is not limited to three times.
It may be four, five or more times, and the internal groove may be machined to form multiple intersecting cuts during the final groove machining.

なお、第5図に示したローラ群47a〜47hを用いて
帯板を管加工したのち、第2図に示した製造装置2で溝
加工してもよい。
Note that after the strip plate is pipe-processed using the roller groups 47a to 47h shown in FIG. 5, the groove may be processed using the manufacturing apparatus 2 shown in FIG. 2.

〔発明の効果〕〔Effect of the invention〕

以上詳しく説明したように、本発明によれば、伝熱管の
内面溝のフィン部や溝底部に、交差する切込みを多数入
れ、空孔を形成するようにしたので、蒸発、amの両特
性を大幅に向上させることができた。従って、ヒートポ
ンプタイプの伝熱管として、好適に使用できる。
As explained in detail above, according to the present invention, a large number of intersecting cuts are made in the fin portion and the groove bottom of the inner groove of the heat exchanger tube to form holes, thereby improving both the evaporation and am characteristics. I was able to improve it significantly. Therefore, it can be suitably used as a heat pump type heat exchanger tube.

また、製造方法は、従来の内面溝付伝熱管と略同様にし
て製造できるので、容易に長尺物の加工が行えるなど、
工業上極めて有用である。
In addition, since the manufacturing method is almost the same as that of conventional internally grooved heat exchanger tubes, long products can be easily processed, etc.
It is extremely useful industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第F図は、本発明による伝熱管の実施例を示した図であ
って、第1A図は伝熱管の内面を展開して示した図、第
1B図は伝熱管の一部を拡大して示した断面図である。 第2図は、本発明による伝熱管の製造方法の実施例を説
明するための図である。 第3図、第4図は、本発明による伝熱管の実施例の管内
蒸発性能、管内凝縮性能をそれぞれ示した図である。 第5図は、本発明による伝熱管の製造方法の他の実施例
を説明するための図である。 1・・・伝熱管 11・・・内面溝 11a・・・フィン部    11b・・・溝底部12
・・・切込み 2・・・製造装置 21・・・縮径ダイス 22・・・フローティングプラグ 23・・・連結棒 24〜26・・・第1〜第3溝付プラグ27〜29・・
・第1〜第3転遣ローラ3・・・伝熱管 31・・・内面溝      32・・・切込み4・・
・製造装置 41〜43・・・第1〜第3溝付ローラ44〜46・・
・フラットローラ 47a〜47h・・・成形ローラ群 48・・・誘導コイル 第 1A 図 11t) 第 B 図
FIG. F is a diagram showing an embodiment of the heat exchanger tube according to the present invention, FIG. 1A is an expanded view of the inner surface of the heat exchanger tube, and FIG. 1B is an enlarged view of a part of the heat exchanger tube. FIG. FIG. 2 is a diagram for explaining an embodiment of the method for manufacturing a heat exchanger tube according to the present invention. FIG. 3 and FIG. 4 are diagrams respectively showing the evaporation performance in the tube and the condensation performance in the tube of an example of the heat exchanger tube according to the present invention. FIG. 5 is a diagram for explaining another embodiment of the method for manufacturing a heat exchanger tube according to the present invention. 1... Heat exchanger tube 11... Inner groove 11a... Fin portion 11b... Groove bottom 12
... Cutting depth 2 ... Manufacturing equipment 21 ... Diameter reducing die 22 ... Floating plug 23 ... Connecting rods 24 to 26 ... First to third grooved plugs 27 to 29 ...
・First to third transfer rollers 3...Heat transfer tube 31...Inner groove 32...Notch 4...
・Manufacturing devices 41 to 43...first to third grooved rollers 44 to 46...
・Flat rollers 47a to 47h... Forming roller group 48... Induction coil 1A Fig. 11t) Fig. B

Claims (2)

【特許請求の範囲】[Claims] (1)管内面の管軸に対して平行にもしくはらせん状に
連続して形成された微細な多数の内面溝を有する伝熱管
において、前記内面溝のフィン部や溝底部に、平行もし
くは交差するように、互いに異なる方向をもつ多数の切
込みを形成したことを特徴とする伝熱管。
(1) In a heat exchanger tube having a large number of fine inner grooves formed parallel to the tube axis on the inner surface of the tube or continuously in a spiral shape, the grooves are parallel to or intersect with the fins or groove bottoms of the inner grooves. A heat exchanger tube characterized in that a large number of cuts are formed in mutually different directions.
(2)管内面の管軸に対して平行にもしくはらせん状に
、互いに平行な多数の溝を形成し、それらの溝に平行も
しくは交差する互いに平行な他の多数の溝を1回以上形
成することにより、管内面に多数の突起部または凹部を
形成し、それらの突起部または凹部を潰しながら、管内
面の管軸に対して平行にもしくはらせん状に連続して内
面溝を形成することにより、前記内面溝のフィン部や溝
底部に、平行もしくは交差するように、互いに異なる方
向をもつ多数の切込みを形成するようにした伝熱管の製
造方法。
(2) A large number of mutually parallel grooves are formed parallel to or spirally with respect to the tube axis on the inner surface of the tube, and many other mutually parallel grooves that are parallel to or intersect with these grooves are formed one or more times. By forming a large number of protrusions or recesses on the inner surface of the tube, and while crushing those protrusions or recesses, forming an inner groove on the inner surface of the tube parallel to the tube axis or continuously in a spiral shape. A method for manufacturing a heat exchanger tube, comprising forming a large number of parallel or intersecting cuts in mutually different directions in the fin portions and groove bottoms of the internal grooves.
JP31773388A 1988-12-16 1988-12-16 Heat exchanger tube and its manufacture Pending JPH02165875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31773388A JPH02165875A (en) 1988-12-16 1988-12-16 Heat exchanger tube and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31773388A JPH02165875A (en) 1988-12-16 1988-12-16 Heat exchanger tube and its manufacture

Publications (1)

Publication Number Publication Date
JPH02165875A true JPH02165875A (en) 1990-06-26

Family

ID=18091435

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31773388A Pending JPH02165875A (en) 1988-12-16 1988-12-16 Heat exchanger tube and its manufacture

Country Status (1)

Country Link
JP (1) JPH02165875A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259448A (en) * 1991-07-09 1993-11-09 Mitsubishi Shindoh Co., Ltd. Heat transfer tubes and method for manufacturing
US5975196A (en) * 1994-08-08 1999-11-02 Carrier Corporation Heat transfer tube
WO2000062001A1 (en) * 1999-04-08 2000-10-19 Daikin Industries, Ltd. Heat transfer tube with internal grooves and method and device for manufacturing the tube
US6167950B1 (en) 1994-11-17 2001-01-02 Carrier Corporation Heat transfer tube
US6176301B1 (en) * 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
JP2007225272A (en) * 2006-02-22 2007-09-06 Wieland Werke Ag Structured heat-exchanger tube, and manufacturing method therefor
KR100905509B1 (en) * 2007-11-16 2009-07-01 지앤티소결 주식회사 Heat exchanging panel of the sinter metal
WO2015007386A1 (en) * 2013-07-17 2015-01-22 Rollwalztechnik Abele + Höltich GmbH Device for machining a workpiece

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125595A (en) * 1984-11-20 1986-06-13 Furukawa Electric Co Ltd:The Heat transfer tube for boiling and manufacture thereof
JPS6264421A (en) * 1985-09-13 1987-03-23 Kobe Steel Ltd Manufacture of heat exchanger tube
JPS62182595A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61125595A (en) * 1984-11-20 1986-06-13 Furukawa Electric Co Ltd:The Heat transfer tube for boiling and manufacture thereof
JPS6264421A (en) * 1985-09-13 1987-03-23 Kobe Steel Ltd Manufacture of heat exchanger tube
JPS62182595A (en) * 1986-02-06 1987-08-10 Furukawa Electric Co Ltd:The Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5259448A (en) * 1991-07-09 1993-11-09 Mitsubishi Shindoh Co., Ltd. Heat transfer tubes and method for manufacturing
US5975196A (en) * 1994-08-08 1999-11-02 Carrier Corporation Heat transfer tube
US6167950B1 (en) 1994-11-17 2001-01-02 Carrier Corporation Heat transfer tube
US6176301B1 (en) * 1998-12-04 2001-01-23 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
WO2000062001A1 (en) * 1999-04-08 2000-10-19 Daikin Industries, Ltd. Heat transfer tube with internal grooves and method and device for manufacturing the tube
EP1087198A1 (en) * 1999-04-08 2001-03-28 Daikin Industries, Ltd. Heat transfer tube with internal grooves and method and device for manufacturing the tube
EP1087198A4 (en) * 1999-04-08 2005-04-27 Daikin Ind Ltd Heat transfer tube with internal grooves and method and device for manufacturing the tube
JP2007225272A (en) * 2006-02-22 2007-09-06 Wieland Werke Ag Structured heat-exchanger tube, and manufacturing method therefor
KR100905509B1 (en) * 2007-11-16 2009-07-01 지앤티소결 주식회사 Heat exchanging panel of the sinter metal
WO2015007386A1 (en) * 2013-07-17 2015-01-22 Rollwalztechnik Abele + Höltich GmbH Device for machining a workpiece

Similar Documents

Publication Publication Date Title
US4549606A (en) Heat transfer pipe
AU2003231750B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
EP0483047B1 (en) High performance heat transfer surface for high pressure refrigerants
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
JPS62797A (en) Improved heat transfer tube with internal protruded streak section and manufacture thereof
JPS6158757B2 (en)
CN1122444A (en) Heat exchanging tube used for refriging agent of non-co-boiling mixture and heat exchanger using same
US4938282A (en) High performance heat transfer tube for heat exchanger
JPH02165875A (en) Heat exchanger tube and its manufacture
US5010643A (en) High performance heat transfer tube for heat exchanger
US4194384A (en) Method of manufacturing heat-transfer wall for vapor condensation
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH085278A (en) Heat transfer tube with inner surface grooves
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2628712B2 (en) Method of forming heat transfer surface
JPS6239359B2 (en)
JP2912826B2 (en) Heat transfer tube with internal groove
JPS61125595A (en) Heat transfer tube for boiling and manufacture thereof
JPS61209723A (en) Manufacture of heat exchanger tube
JPS61111732A (en) Manufacture of heat exchanger
JP2001074384A (en) Internally grooved tube
JPH02161290A (en) Inner face processed heat transfer tube
JP2524983B2 (en) Small diameter heat transfer tube
JPS59202397A (en) Internally grooved pipe and manufacture thereof
JPH01317637A (en) Heat transfer tube with internal surface groove