JPH04260793A - Heat transfer tube with inner surface groove - Google Patents

Heat transfer tube with inner surface groove

Info

Publication number
JPH04260793A
JPH04260793A JP4106991A JP4106991A JPH04260793A JP H04260793 A JPH04260793 A JP H04260793A JP 4106991 A JP4106991 A JP 4106991A JP 4106991 A JP4106991 A JP 4106991A JP H04260793 A JPH04260793 A JP H04260793A
Authority
JP
Japan
Prior art keywords
tube
groove
heat transfer
heat exchanger
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4106991A
Other languages
Japanese (ja)
Inventor
Koji Yamamoto
山本 孝司
Toshiaki Hashizume
利明 橋爪
Hiroshi Kawaguchi
寛 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP4106991A priority Critical patent/JPH04260793A/en
Publication of JPH04260793A publication Critical patent/JPH04260793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To enhance heat transfer performance in a tube, to improve a manufacturing amount per unit time, to prevent collapse of a groove due to extension of the tube when fins are mounted on an outside of the tube and to limit a decrease in the heat transfer performance to a minimum limit by specifying a crest state of a heat transfer tube with an inner surface groove for a heat exchanger. CONSTITUTION:In a heat transfer tube 1 in which a spiral or many axially continuous grooves 2 and crests 3 are formed on an inner surface, an angle alphaof a vertex is formed -20 deg.<alpha< 20 deg., a depth of the groove 2 is formed 0.10-0.25mm, a radio W/H of a width W of the vertex to a depth H of the groove 2 is W/H = 0.3-1.5, and a width W1 of the bottom of the groove is W1 0.1-0.3mm.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、冷凍機、空調機等の熱
交換器に用いられる内面溝付伝熱管に関するものである
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an internally grooved heat exchanger tube used in a heat exchanger for refrigerators, air conditioners, etc.

【0002】0002

【従来の技術とその課題】近年、ヒートポンプエアコン
に対する省エネルギー、省スペースの要求は強く、その
主要部分をしめる熱交換器も高効率化、コンパクト化が
重要課題となっている。ヒートポンプエアコンには、管
外側に空気と熱交換のため、表面にルーバー等の切りお
こしを行ったアルミフィンが使用され、伝熱管内に拡管
プラグを通し、管を拡げアルミフィンと密着させ、その
アルミフィンに垂直に組み込み、管内にフレオン等の冷
媒を流すクロスフィン型熱交換器が主に使用されている
。そして、以前は、伝熱管として、平滑管が使用されて
いた。しかし、管内面に微細な螺旋溝が多数形成された
内面溝付管が開発され、これにより管内伝熱性能の高性
能化が行われた。現在、熱交換器の改良のため主に外径
9.53mm及び7.00mmの台形溝、三角山型の内
面溝付管が使用されているが、さらに熱交換器のコンパ
クト化、高効率化への要求がある。このためコスト面か
ら考え、現在と同程度の単位時間当りの製造量がみこめ
、伝熱性能も向上させるものとして、各種溝形状の改良
が行われている。その1つの方法として、溝頂角を小さ
くする方法が有効であるとされている。しかし、この場
合、熱交換器組み立て時の拡管で山がつぶれやすく(と
くに、小径管になるほどつぶれやすい)、伝熱性能が低
下する問題があった。
[Prior Art and its Problems] In recent years, there has been a strong demand for energy saving and space saving for heat pump air conditioners, and it has become important to make the heat exchanger, which is the main part of the air conditioner, more efficient and more compact. Heat pump air conditioners use aluminum fins with louvers or other cutouts on the surface for heat exchange with the air on the outside of the tube.A tube expansion plug is inserted into the heat transfer tube, the tube is expanded, and the tube is brought into close contact with the aluminum fin. Cross-fin type heat exchangers are mainly used, which are installed vertically in aluminum fins and allow a refrigerant such as Freon to flow through the tubes. In the past, smooth tubes were used as heat transfer tubes. However, an internally grooved tube in which many fine spiral grooves are formed on the inner surface of the tube has been developed, and this has improved the heat transfer performance within the tube. Currently, to improve heat exchangers, trapezoidal grooves with outer diameters of 9.53 mm and 7.00 mm and triangular mountain-shaped inner grooved tubes are mainly used, but heat exchangers can also be made more compact and highly efficient. There is a demand for Therefore, from a cost perspective, various groove shapes are being improved in order to allow for the same amount of production per unit time as at present and to improve heat transfer performance. One of the effective methods is to reduce the groove apex angle. However, in this case, there was a problem in that the peaks were easily crushed during tube expansion during the assembly of the heat exchanger (in particular, the smaller the diameter of the tube, the more likely it was to collapse), resulting in a decrease in heat transfer performance.

【0003】0003

【発明が解決しようとする課題】本発明は、これに鑑み
、種々の検討の結果、従来内面溝付管に比べ、単位時間
当りの製造量が変わらず、伝熱性能が向上し、かつ拡管
時に溝のつぶれを小さくして、熱交換器として飛躍的に
効率が向上する内面溝付伝熱管を開発したものである。
[Problems to be Solved by the Invention] In view of this, as a result of various studies, the present invention has been developed to achieve the same production volume per unit time, improved heat transfer performance, and improved tube expansion compared to conventional internally grooved tubes. We have developed an internally grooved heat exchanger tube that dramatically improves efficiency as a heat exchanger by reducing the collapse of the grooves.

【0004】0004

【課題を解決するための手段および作用】本発明は、管
内面に螺旋状又は、管軸方向に連続する多数の溝と山を
形成した伝熱管において、山頂角を−20°<α<20
°、溝深さを0.10〜0.25mmであって、かつ山
頂幅と溝深さの比W/H=0.3〜1.5、溝底幅W1
 =0.1〜0.3mmとしたことを特徴とする内面溝
付伝熱管である。すなわち本発明は、図1に示すように
伝熱管1の山頂角(α)、溝深さ(H)、山頂巾(W)
と溝深さ(H)の比、及び溝底幅(W1 )などを上記
のように限定することにより、伝熱性能が優れ、単位時
間当りの製造量が低下せず、かつ拡管時における溝のつ
ぶれを小さくして熱交換器としての性能が向上する内面
溝付管を得たものである。
[Means for Solving the Problems and Effects] The present invention provides a heat transfer tube in which a large number of grooves and ridges are formed on the inner surface of the tube in a spiral shape or continuous in the axial direction of the tube, and the crest angle is set to -20°<α<20.
°, the groove depth is 0.10 to 0.25 mm, and the ratio of the peak width to the groove depth W/H = 0.3 to 1.5, and the groove bottom width W1
This is a heat exchanger tube with inner grooves having a diameter of 0.1 to 0.3 mm. That is, the present invention, as shown in FIG.
By limiting the ratio of the groove depth (H) and the groove bottom width (W1) as described above, the heat transfer performance is excellent, the production amount per unit time does not decrease, and the groove width during pipe expansion is improved. This provides an internally grooved tube that improves its performance as a heat exchanger by reducing its collapse.

【0005】そして上記の山頂角を−20°<α<20
°としたのは、この範囲外では従来の三角山形状のもの
と変りがなく拡管時における溝のつぶれが生じ、また単
位時間当りの製造量が低下する。溝深さを0.10〜0
.25mmとしたのは、0.10mm未満及び0.25
mmを越えると山頂巾と溝深さの比が所定の数値になら
ず、伝熱性能が低下するからである。また山頂巾と溝深
さの比W/H=0.3〜1.5としたのは、0.3未満
では、溝深さに対する山頂巾が小さい、すなわち山底巾
が極端にせまくなり、所定の溝深さが形成できない。 また1.5を越えると山底巾が広くなり過ぎて所定の溝
深さができないためであり、いずれも単位時間当りの製
造量が低下する。さらに溝底巾W1 を0.1〜0.3
mmとしたのは、0.1mm未満および0.3mmを越
えると蒸発性能が低下する。
[0005] And the above mountain top angle is -20°<α<20
The reason for this is that outside this range, there is no difference from the conventional triangular peak shape, and the groove collapses during tube expansion, and the production amount per unit time decreases. Groove depth 0.10~0
.. 25mm is less than 0.10mm and 0.25mm.
This is because if it exceeds mm, the ratio of the peak width to the groove depth will not reach a predetermined value, and the heat transfer performance will deteriorate. The ratio W/H of the peak width to the groove depth is set to 0.3 to 1.5 because if it is less than 0.3, the peak width will be small relative to the groove depth, that is, the bottom width will become extremely narrow. The specified groove depth cannot be formed. On the other hand, if it exceeds 1.5, the bottom width becomes too wide and a predetermined groove depth cannot be achieved, and in either case, the production amount per unit time decreases. Furthermore, the groove bottom width W1 is set to 0.1 to 0.3.
The reason why it is set as mm is that if it is less than 0.1 mm or more than 0.3 mm, the evaporation performance will deteriorate.

【0006】[0006]

【実施例】以下に本発明の一実施例について説明する。 溝付プラグを用いた転造加工により、りん脱酸銅からな
る外径6.00mmφの各種溝付管を作製した。この時
の形状は、山頂角はα=15°一定、溝深さは、H=0
.1〜0.2mm、底肉厚は約0.27mmで、山頂巾
を各種に変化させた。図1にその代表的形状を示す。 また図2に山頂巾/溝深さに対する単位時間当りの製造
量を示す。図においてW/Hが0.3未満で製造量が急
激に低下しているのは、溝深さに対する山頂巾が小さい
ためすなわち、山底幅が、極端にせまくなり、所定の溝
深さの溝付加工ができないからであり、また1.5以上
で低下しているのは、逆に極端に広くなりすぎ、所定の
溝深さができないためであり、山頂巾/溝深さの比W/
Hが0.3〜1.5の範囲で単位時間当りの製造量が従
来の三角山形状のものより多いことが判る。
[Embodiment] An embodiment of the present invention will be described below. Various grooved tubes made of phosphorus-deoxidized copper and having an outer diameter of 6.00 mmφ were manufactured by rolling using a grooved plug. The shape at this time is that the peak angle is constant α = 15°, and the groove depth is H = 0.
.. The thickness was 1 to 0.2 mm, the bottom thickness was about 0.27 mm, and the width of the top was varied. Figure 1 shows its typical shape. Further, FIG. 2 shows the production amount per unit time with respect to the peak width/groove depth. In the figure, when W/H is less than 0.3, the production amount decreases rapidly because the crest width is small relative to the groove depth, that is, the crest width becomes extremely narrow, and when the predetermined groove depth is This is because groove processing cannot be performed, and the reason why it decreases at 1.5 or more is because the groove becomes extremely wide and the specified groove depth cannot be achieved, and the ratio W of the peak width/groove depth /
It can be seen that when H is in the range of 0.3 to 1.5, the production amount per unit time is greater than that of the conventional triangular mountain shape.

【0007】次に、このサンプルを縮径率33%で、4
mmφに空引きして、焼鈍後、最大内径よりも0.6m
m、太径の拡管プラグを使用して管内に挿入し拡管した
。図3にその時の山頂巾と溝深さの比に対する溝のつぶ
れ量を示した。これによるとW/Hが大きくなるほど、
拡管に強くなり、溝のつぶれは小さくなっていることが
わかる。特にW/H<0.3では山形状が細くなりすぎ
て、溝のつぶれが大きくなり山形状が三角型の従来品と
同等になっている。これらのことより溝形状をW/H=
0.3〜1.5に形成することにより、従来の山形状が
三角型のものと同等以上の加工性が望め、かつ拡管時に
溝のつぶれを小さくすることができることが判る。 次に外径7mmφの伝熱管において、α=10°、H=
0.15〜0.20mm、W=0.1mmの山部形状に
おいて、リード角18°とし、溝数をかえて、溝底巾W
1 を変化させたサンプルを数種試作した。これを、二
重管式熱交換器の内管に組み込み、伝熱管内にフレオン
R−22を流し、管外側に被冷却水を流して表1に示す
測定条件で、管内熱伝達率及びその圧力損失を測定した
[0007] Next, this sample was 4
After dry drawing to mmφ and annealing, 0.6 m from the maximum inner diameter
m, a large-diameter tube expansion plug was used to insert it into the tube and expand the tube. Figure 3 shows the amount of groove collapse versus the ratio of the peak width to the groove depth. According to this, the larger the W/H,
It can be seen that the pipe has become more resistant to expansion, and the collapse of the groove has become smaller. In particular, when W/H<0.3, the ridge shape becomes too thin and the groove collapses so much that the ridge shape becomes the same as a conventional triangular product. From these facts, the groove shape is W/H=
It can be seen that by forming the groove to have a diameter of 0.3 to 1.5, it is possible to achieve workability equivalent to or better than that of the conventional triangular mountain shape, and to reduce the collapse of the groove during tube expansion. Next, in a heat exchanger tube with an outer diameter of 7 mmφ, α=10°, H=
In the mountain shape of 0.15 to 0.20 mm, W = 0.1 mm, the lead angle is 18°, the number of grooves is changed, and the groove bottom width W
We made several prototype samples with variations in 1. This was installed in the inner tube of a double tube heat exchanger, Freon R-22 was flowed inside the heat exchanger tube, water to be cooled was flowed outside the tube, and the heat transfer coefficient inside the tube and its value were measured under the measurement conditions shown in Table 1. Pressure drop was measured.

【0008】[0008]

【表1】 図4に溝底巾と従来品に対する蒸発熱伝達率の上昇率を
示す。この場合、冷媒流量が50kg/hの時の値をも
ちいている。
[Table 1] Figure 4 shows the groove bottom width and the rate of increase in the evaporative heat transfer coefficient compared to the conventional product. In this case, the value when the refrigerant flow rate is 50 kg/h is used.

【0009】従来品は図7に示すような三角山形状であ
り、溝数60、リード角18°、溝深さ0.15mm、
山頂角が55°、溝底巾0.15mmである。図4から
明らかなように圧力損失は、どれも従来品と同等以上で
あった。従来の三角山形状の場合、蒸発時に最適な形状
は、60溝で溝底巾0.15mm付近であったが、本発
明の頂角の小さい山形状の場合、溝底巾W1 =0.2
mm付近に最適値があり、従来品より性能を向上させる
ためには、0.1≦W1 ≦0.3に形成することが望
ましいことが判る。次に本発明において頂角が0°〜2
0°の山形状の図5に示すような伝熱管の製作方法とし
ては、0°付近の溝形状を前述と同様な方法で、溝付加
工し、その後20〜40%の縮径加工を行うことにより
、頂角を減少することができる。同様にしてつくった頂
角がα=0〜−20°の形状においても、前述と同様の
傾向を見出すことができた。また本発明伝熱管の形状に
おいて図6に示すように山部先端が丸みをおびている場
合にも、何ら問題なく同傾向を見出すことができた。
The conventional product has a triangular peak shape as shown in FIG. 7, and has 60 grooves, a lead angle of 18°, and a groove depth of 0.15 mm.
The peak angle is 55° and the groove bottom width is 0.15 mm. As is clear from FIG. 4, the pressure loss was equal to or higher than that of the conventional product in all cases. In the case of the conventional triangular ridge shape, the optimal shape for evaporation was 60 grooves with a groove bottom width of around 0.15 mm, but in the case of the ridge shape with a small apex angle of the present invention, the groove bottom width W1 = 0.2
It can be seen that the optimum value is around mm, and in order to improve the performance over conventional products, it is desirable to form 0.1≦W1≦0.3. Next, in the present invention, the apex angle is 0° to 2
The method for manufacturing a heat exchanger tube with a 0° mountain shape as shown in FIG. 5 is to groove the groove shape around 0° in the same manner as described above, and then reduce the diameter by 20 to 40%. By doing so, the apex angle can be reduced. The same tendency as described above was also found for shapes with apex angles of α=0 to −20°, which were created in the same manner. Furthermore, the same tendency could be found without any problem even when the heat exchanger tube of the present invention has a rounded tip as shown in FIG. 6.

【0010】0010

【発明の効果】このように本発明の内面溝付伝熱管は、
管内伝熱性能を向上することができ、かつ管外側にフィ
ンと拡管密着させる場合に溝のつぶれをおさえ、密着を
強くでき熱交換器の性能向上を行うことができる。さら
に従来品と同等以上の加工性を有する。
[Effect of the invention] As described above, the internally grooved heat exchanger tube of the present invention has
The heat transfer performance within the tube can be improved, and when the expanded tube is brought into close contact with the fins on the outside of the tube, the collapse of the groove can be suppressed and the close contact can be strengthened, thereby improving the performance of the heat exchanger. Furthermore, it has workability that is equal to or better than conventional products.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明内面溝付管の一例の要部断面図である。FIG. 1 is a sectional view of a main part of an example of an internally grooved tube of the present invention.

【図2】伝熱管の製造量と山頂巾/溝深さとの関係を示
す線図である。
FIG. 2 is a diagram showing the relationship between the production volume of heat transfer tubes and the peak width/groove depth.

【図3】溝のつぶれ量と山頂巾/溝深さとの関係を示す
線図である。
FIG. 3 is a diagram showing the relationship between the amount of groove collapse and the peak width/groove depth.

【図4】従来品に対する蒸発性能上昇率と溝底巾との関
係を示す線図である。
FIG. 4 is a diagram showing the relationship between the rate of increase in evaporation performance and the groove bottom width relative to the conventional product.

【図5】本発明内面溝付管の一例の要部断面図である。FIG. 5 is a sectional view of a main part of an example of an internally grooved tube of the present invention.

【図6】本発明内面溝付管の一例の要部断面図である。FIG. 6 is a sectional view of a main part of an example of an internally grooved tube of the present invention.

【図7】従来の内面溝付伝熱管の要部断面図である。FIG. 7 is a sectional view of a main part of a conventional internally grooved heat exchanger tube.

【符号の説明】[Explanation of symbols]

1  伝熱管 2  溝 3  山 1 Heat exchanger tube 2 groove 3 Mountain

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  管内面に螺旋状又は、管軸方向に連続
する多数の溝と山を形成した伝熱管において、山頂角を
−20°<α<20°、溝深さを0.10〜0.25m
mであって、かつ山頂幅と溝深さの比W/H=0.3〜
1.5、溝底幅W1 =0.1〜0.3mmとしたこと
を特徴とする内面溝付伝熱管。
Claim 1: In a heat exchanger tube in which a large number of grooves and ridges are formed spirally or continuously in the tube axis direction on the inner surface of the tube, the crest angle is -20°<α<20°, and the groove depth is 0.10~. 0.25m
m, and the ratio of the peak width to the groove depth W/H = 0.3 ~
1.5. An internally grooved heat exchanger tube characterized in that the groove bottom width W1 is 0.1 to 0.3 mm.
JP4106991A 1991-02-13 1991-02-13 Heat transfer tube with inner surface groove Pending JPH04260793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4106991A JPH04260793A (en) 1991-02-13 1991-02-13 Heat transfer tube with inner surface groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4106991A JPH04260793A (en) 1991-02-13 1991-02-13 Heat transfer tube with inner surface groove

Publications (1)

Publication Number Publication Date
JPH04260793A true JPH04260793A (en) 1992-09-16

Family

ID=12598158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4106991A Pending JPH04260793A (en) 1991-02-13 1991-02-13 Heat transfer tube with inner surface groove

Country Status (1)

Country Link
JP (1) JPH04260793A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201286A (en) * 1992-10-02 1994-07-19 Carrier Corp Heat transfer pipe
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
JP2013092335A (en) * 2011-10-27 2013-05-16 Mitsubishi Alum Co Ltd Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2018091610A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Heat transfer pipe, heat exchanger, and method for manufacturing heat transfer pipe

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201286A (en) * 1992-10-02 1994-07-19 Carrier Corp Heat transfer pipe
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JPH0849992A (en) * 1994-08-04 1996-02-20 Sumitomo Light Metal Ind Ltd Heat transfer tube with internal groove
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
JP2013092335A (en) * 2011-10-27 2013-05-16 Mitsubishi Alum Co Ltd Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP2014142175A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2018091610A (en) * 2016-11-30 2018-06-14 三菱アルミニウム株式会社 Heat transfer pipe, heat exchanger, and method for manufacturing heat transfer pipe

Similar Documents

Publication Publication Date Title
US4658892A (en) Heat-transfer tubes with grooved inner surface
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
EP1502067B1 (en) Heat transfer tubes, including methods of fabrication and use thereof
JPH04260793A (en) Heat transfer tube with inner surface groove
WO2004053415A1 (en) Method for producing cross-fin tube for heat exchanger, and cross fin-type heat exchanger
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JP2006162100A (en) Heat transfer tube with inner helical groove for high pressure refrigerant
JPH04260792A (en) Small-diameter heat transfer tube
JPH0579783A (en) Heat transfer tube with inner surface groove
JP2912826B2 (en) Heat transfer tube with internal groove
JP3747974B2 (en) Internal grooved heat transfer tube
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JP3199636B2 (en) Heat transfer tube with internal groove
JPH02161290A (en) Inner face processed heat transfer tube
JP3417825B2 (en) Inner grooved pipe
JPH051891A (en) Heat transfer tube with internal groove
JPH0712483A (en) Heat transfer tube with inner surface groove
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JPH11270980A (en) Heat transfer pipe for evaporator
JPH01317637A (en) Heat transfer tube with internal surface groove
JPH06101986A (en) Heat exchanger tube with grooved internal wall
JP2006090657A (en) Heat exchanger tube for heat exchanger, and its manufacturing method