JP2013092335A - Aluminum capillary tube for heat exchanger, and heat exchanger using the same - Google Patents

Aluminum capillary tube for heat exchanger, and heat exchanger using the same Download PDF

Info

Publication number
JP2013092335A
JP2013092335A JP2011236065A JP2011236065A JP2013092335A JP 2013092335 A JP2013092335 A JP 2013092335A JP 2011236065 A JP2011236065 A JP 2011236065A JP 2011236065 A JP2011236065 A JP 2011236065A JP 2013092335 A JP2013092335 A JP 2013092335A
Authority
JP
Japan
Prior art keywords
tube
fin
less
heat exchanger
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011236065A
Other languages
Japanese (ja)
Inventor
Munehisa Takahashi
宗尚 高橋
Yasunori Hyogo
靖憲 兵庫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2011236065A priority Critical patent/JP2013092335A/en
Publication of JP2013092335A publication Critical patent/JP2013092335A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an aluminum capillary tube for a heat exchanger which has a reduced outer diameter of 2 to 5 mm and allows diameter expansion without causing buckling or deformation.SOLUTION: The capillary tube consists of a tube body as a heat transfer tube for a heat exchanger made of aluminum or aluminum alloy and having an outer diameter not less than 2 mm and not more than 5 mm. On an inner surface of the tube body, a plurality of radiation fins in the form of a protruding stripe extending in a longitudinal direction of the tube body are formed at substantially regular intervals along an inner circumferential direction of the tube body and a plurality of fin grooves are formed between these radiation fins and the thickness of the tube body at each of the fin grooves is not less than 0.1 mm and not more than 0.6 mm, the height of each radiation fin is not less than 0.05 mm and not more than 0.35 mm, the number of fin grooves is not less than 20 and not more than 60, and a ratio of the total width of top flat parts of the plurality of radiation fins in the circumferential direction of the inner circumference of the tube body to the entire circumferential length of the inner bottom surface of the tube body is not less than 20% and not more than 80%.

Description

本発明は、内面溝付き型の熱交換器用アルミニウム細管およびこれを用いた熱交換器に関する。   The present invention relates to an inner grooved type heat exchanger aluminum thin tube and a heat exchanger using the same.

エアコン用の熱交換器は、主として、ヘアピン状に折曲加工した銅管からなる伝熱管と、アルミニウムまたはアルミニウム合金の板材からなるフィン(以下、アルミニウムフィンと略称する)とから構成されている。例えば、熱交換器の伝熱部は、U字状に折曲加工した銅管からなる伝熱管をアルミニウムフィンの貫通孔に挿通し、U字状の伝熱管内にビュレットと称される治具を挿入して拡管することにより、伝熱管とアルミニウムフィンとを密着させている。そして、このU字状の伝熱管の開放端を拡管してこの拡管開放部に同じくU字状に折曲加工したベンド管を挿入し、このベンド管をろう付けすることで銅管を接続し、熱交換器としている。   A heat exchanger for an air conditioner mainly includes a heat transfer tube made of a copper tube bent into a hairpin shape and a fin made of aluminum or an aluminum alloy plate (hereinafter abbreviated as aluminum fin). For example, the heat transfer part of the heat exchanger is a jig called a buret in a U-shaped heat transfer tube, by inserting a heat transfer tube made of a copper tube bent into a U shape into a through hole of an aluminum fin. By inserting and expanding the tube, the heat transfer tube and the aluminum fin are brought into close contact with each other. Then, the open end of the U-shaped heat transfer tube is expanded, a bend tube bent in the same U shape is inserted into the expanded tube opening, and the copper tube is connected by brazing the bend tube. A heat exchanger.

従来、銅管からエアコン用の熱交換器の伝熱部を構成する場合、銅管の組成や金属組織を改善し銅管の構成材料の組成改善、組織改善を行うことが必要であり、以下の特許文献1に記載のように組成を調整して引張強さを改善し、結晶組織の改善を行って集合組織を誘導するなどの改善策がなされてきた。   Conventionally, when configuring the heat transfer part of a heat exchanger for an air conditioner from a copper tube, it is necessary to improve the composition and metal structure of the copper tube, improve the composition of the constituent material of the copper tube, improve the structure, In order to improve the tensile strength by adjusting the composition and improving the crystal structure to induce a texture, as described in Japanese Patent Application Laid-Open No. 2003-228688, there have been improved measures.

エアコン用熱交換器の性能向上のため、伝熱部を構成する銅管はその形状や組織、組成の面で種々の改良がなされてきているが、近年の資源、エネルギー事情の高まりを背景として、東南アジア等の諸外国においてインフラ整備が急速に進められている関係から、送電線用途などとして銅の需要が急速に高まり、銅のコストが高騰し始めている。
そこで、銅よりも安価な金属で加工性に富み、熱交換器用の一部構成材料として多用されているアルミニウムを用いて伝熱管を構成しようとする試みがなされている。
In order to improve the performance of heat exchangers for air conditioners, copper pipes that make up heat transfer parts have been improved in terms of their shape, structure, and composition. Due to the rapid development of infrastructure in other countries such as Southeast Asia, the demand for copper for use in power transmission lines has increased rapidly, and the cost of copper has begun to rise.
Therefore, an attempt has been made to construct a heat transfer tube using aluminum, which is cheaper than copper and rich in workability, and is frequently used as a partial constituent material for heat exchangers.

銅管からなる伝熱管の置き換えとしてアルミニウム製の伝熱管とした場合、アルミニウムが銅よりも変形し易いことに鑑み、アルミニウム製の伝熱管の内面に溝を形成しておき、ビュレットが溝を介し伝熱管の拡管を行う場合に、好適な溝形状を検討し、伝熱管の変形を抑制しようとした技術が特許文献2に開示されている。
即ち、伝熱管を拡管する際、ビュレットと称される拡張子を伝熱管の内側に挿通して伝熱管の管壁を塑性変形させて拡張するので、その塑性変形分を考慮して好適な溝形状を工夫すると、拡管後において良好な溝形状の伝熱管を得ることができる技術が開示されている。
When replacing the heat transfer tube made of copper with an aluminum heat transfer tube, in view of the fact that aluminum is more easily deformed than copper, a groove is formed on the inner surface of the aluminum heat transfer tube, and the burette passes through the groove. Japanese Patent Application Laid-Open No. H10-228561 discloses a technique for examining a suitable groove shape when suppressing expansion of a heat transfer tube and suppressing deformation of the heat transfer tube.
That is, when expanding the heat transfer tube, an extension called a burette is inserted inside the heat transfer tube and the tube wall of the heat transfer tube is plastically deformed and expanded. If the shape is devised, a technique that can obtain a heat transfer tube having a good groove shape after the pipe expansion is disclosed.

特開2009−102690号公報JP 2009-102690 A 特開2001−289585号公報JP 2001-289585 A

アルミニウムからなる伝熱管を熱交換器に適用する場合において、伝熱管を細径化すると、伝熱管が高耐圧化したことになるので、伝熱管を薄肉化することができる。また、熱交換器の性能向上を図るために、冷媒通路を狭くした場合、冷媒の流速向上に直結するので、伝熱管を細管として薄肉化することが熱交換器の内部熱伝達効率が良好になることを意味する。
上述のような背景から、熱交換器用の伝熱管は薄肉化がなされ、熱交換器としての更なる高性能化の面から、アルミニウム製の外径2〜5mm程度の細管が検討されている。
しかし、外径2〜5mm程度の細管を伝熱管として使用すると、細管の内面に溝を形成した場合、拡管時にビュレットを挿通させる場合の抵抗が大きくなり、細管が変形するか座屈する問題がある。
When a heat transfer tube made of aluminum is applied to a heat exchanger, if the diameter of the heat transfer tube is reduced, the pressure of the heat transfer tube is increased, so that the heat transfer tube can be thinned. In addition, if the refrigerant passage is narrowed to improve the performance of the heat exchanger, it directly leads to an increase in the flow rate of the refrigerant, so reducing the heat transfer tube as a thin tube improves the internal heat transfer efficiency of the heat exchanger. It means to become.
From the background as described above, heat transfer tubes for heat exchangers have been made thinner, and aluminum tubes with an outer diameter of about 2 to 5 mm have been studied from the viewpoint of further improving performance as heat exchangers.
However, when a thin tube having an outer diameter of about 2 to 5 mm is used as a heat transfer tube, when a groove is formed on the inner surface of the thin tube, there is a problem that the resistance when the burette is inserted at the time of tube expansion increases and the thin tube is deformed or buckled. .

先の特許文献2に記載の技術によれば、伝熱管の外径が7mm程度のサイズの場合の熱交換器について望ましい溝形状が検討されたが、熱交換器の更なる性能改善、伝熱管の薄型化に伴い、アルミニウム製の外径2〜5mm程度の細管が使用される場合は、伝熱管の肉厚が薄く、座屈や変形し易い問題が顕在化するので、アルミニウム製であって、細径化した伝熱管において、特別な溝形状を検討する必要があった。   According to the technique described in Patent Document 2, a groove shape desirable for a heat exchanger in the case where the outer diameter of the heat transfer tube is about 7 mm has been studied. Further improvement in performance of the heat exchanger, heat transfer tube When thin tubes with an outer diameter of about 2 to 5 mm are used, the heat transfer tubes are thin and the problem of being easily buckled and deformed becomes obvious. Therefore, it was necessary to consider a special groove shape in the heat transfer tube with a reduced diameter.

本発明は、上述の問題を解決するためになされたものであり、熱交換器用であって、外径2〜5mmに細径化したアルミニウム製の細管において、座屈や変形を引き起こすことなく拡管が可能な熱交換器用アルミニウム製細管とそれを備えた熱交換器を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is used for a heat exchanger. In an aluminum thin tube having an outer diameter of 2 to 5 mm, the tube is expanded without causing buckling or deformation. It is an object of the present invention to provide an aluminum thin tube for a heat exchanger and a heat exchanger including the same.

本発明の熱交換器用細管は、アルミニウムまたはアルミニウム合金からなる外径2mm以上、5mm以下の熱交換器用伝熱管とする管本体からなる細管であり、管本体の内面に、管本体の長手方向に延在する突条型の放熱フィンが管本体の内周方向に沿って間隔をあけて略均等に複数形成され、これら放熱フィンの間に複数のフィン溝が形成され、該フィン溝の部分の管本体の肉厚が0.1mm以上、0.6mm以下、放熱フィンの高さが0.05mm以上、0.35mm以下、前記フィン溝の数が20以上、60以下、前記管本体内周の周方向に存在する複数の放熱フィンの頂平部合計幅が前記管本体の内底面全周長に対する割合で20%以上、80%以下であることを特徴とする。   The thin tube for a heat exchanger of the present invention is a thin tube composed of a tube body made of aluminum or an aluminum alloy and having an outer diameter of 2 mm or more and 5 mm or less, and is formed on the inner surface of the tube body in the longitudinal direction of the tube body. A plurality of elongated radiating fins extending in the inner circumferential direction of the tube main body are formed substantially evenly at intervals, and a plurality of fin grooves are formed between these radiating fins. The wall thickness of the tube body is 0.1 mm or more and 0.6 mm or less, the height of the heat radiating fin is 0.05 mm or more and 0.35 mm or less, the number of the fin grooves is 20 or more and 60 or less, The total width of the top flat portions of the plurality of heat dissipating fins present in the circumferential direction is 20% or more and 80% or less as a ratio with respect to the total inner peripheral length of the tube main body.

本発明の熱交換器用細管は、前記放熱フィンの横断面形状が、頂平部とそれを挟む2つの傾斜部を有する等脚台形状に形成され、前記2つの傾斜部のなす山頂角が10゜以上、60゜以下とされたことを特徴とする。
本発明の熱交換器用細管は、前記管本体の横断面において前記全ての放熱フィンの中心軸が前記管本体の径方向に対し10゜以上、30゜以下の角度で傾斜されてなることを特徴とする。
本発明の熱交換器用細管は、前記放熱フィンの横断面形状において、頂平部とそれを挟む2つの傾斜部を有し、前記2つの傾斜部の傾斜角度を同一、前記2つの傾斜部の高さを相違させて台形状に形成され、前記2つの傾斜部の前記管本体の内底面に対する山頂角が10゜以上、30゜以下とされたことを特徴とする。
本発明の熱交換器は、先のいずれかに記載の熱交換器用細管を伝熱管として備えたことを特徴とする。
In the thin tube for a heat exchanger of the present invention, the cross-sectional shape of the radiating fin is formed in an isosceles trapezoidal shape having a top flat portion and two inclined portions sandwiching the top flat portion, and a peak angle formed by the two inclined portions is 10. It is characterized in that it is not less than 60 ° and not more than 60 °.
The thin tube for a heat exchanger according to the present invention is characterized in that the central axis of all the radiation fins is inclined at an angle of not less than 10 ° and not more than 30 ° with respect to the radial direction of the tube body in the cross section of the tube body. And
The thin tube for a heat exchanger of the present invention has a top flat portion and two inclined portions sandwiching the top flat portion in the cross-sectional shape of the radiating fin, and the two inclined portions have the same inclination angle. It is formed in a trapezoidal shape with different heights, and the crest angle of the two inclined portions with respect to the inner bottom surface of the pipe body is 10 ° or more and 30 ° or less.
A heat exchanger according to the present invention is characterized in that the heat exchanger thin tube according to any one of the above is provided as a heat transfer tube.

本発明によれば、外径2〜5mmの細管からなる伝熱管であっても、熱交換器用として放熱フィンが好適な大きさと間隔で形成された溝付き細管とされているので、座屈や変形を引き起こすことなく拡管することができ、熱交換器用伝熱管として利用できる。
また、本発明に係る細管であるならば、拡管後において好適な放熱フィン形状とフィン高さとフィン数、並びに、放熱フィン高さとフィン溝数を確保できるので、熱交換器用の伝熱管とした場合に良好な熱交換効率の熱交換器を提供できる。
According to the present invention, even if the heat transfer tube is composed of a thin tube having an outer diameter of 2 to 5 mm, the radiating fin is a grooved thin tube formed with a suitable size and spacing for a heat exchanger. It can be expanded without causing deformation and can be used as a heat exchanger tube for a heat exchanger.
In addition, if it is a thin tube according to the present invention, it is possible to secure a suitable radiating fin shape, fin height and number of fins, and radiating fin height and number of fin grooves after tube expansion, so that it is a heat transfer tube for a heat exchanger It is possible to provide a heat exchanger with good heat exchange efficiency.

本発明に係る第1実施形態の熱交換器用アルミニウム細管を示す横断面図。The cross-sectional view which shows the aluminum thin tube for heat exchangers of 1st Embodiment which concerns on this invention. 本発明に係る第2実施形態の熱交換器用アルミニウム細管を示す横断面図。The cross-sectional view which shows the aluminum thin tube for heat exchangers of 2nd Embodiment which concerns on this invention. 図1と図2に示す熱交換器用アルミニウム細管に形成されている放熱フィンの一例を示すもので、図3(a)は放熱フィンの山頂角を示す図、図3(b)は捻り状態とした放熱フィンの傾斜部の傾斜角度を示す図、図3(c)は放熱フィンの捻り状態の他の例を示す図、図3(d)は放熱フィン傾斜形態が頂平部のみの場合の例を示す図。FIG. 3A shows an example of a heat radiating fin formed on the aluminum thin tube for a heat exchanger shown in FIGS. 1 and 2, FIG. 3A is a diagram showing a peak angle of the heat radiating fin, and FIG. 3B is a twisted state. The figure which shows the inclination angle of the inclined part of the radiating fin, FIG.3 (c) is a figure which shows the other example of the twist state of a radiating fin, FIG.3 (d) is the case where the radiating fin inclination form is only a top flat part. The figure which shows an example. 図2に示す捻り状態とした細管を得るための加工方法の一例を示す説明図。Explanatory drawing which shows an example of the processing method for obtaining the thin tube made into the twisted state shown in FIG. 図5は捻り加工前後の放熱フィンを示すもので、図5(a)は捻り加工を考慮した場合に捻り加工する前の放熱フィンに与えた傾斜状態の一例を示す説明図、図5(b)は捻り加工を考慮した構造とした場合に捻り加工した後の放熱フィンを示す説明図。FIG. 5 shows the heat dissipating fins before and after twisting, and FIG. 5 (a) is an explanatory view showing an example of an inclined state given to the heat dissipating fins before twisting in consideration of twisting, FIG. ) Is an explanatory view showing the heat dissipating fin after twisting in the case of a structure considering twisting. 図6は本発明に係るアルミニウム細管を備えた熱交換器の一例を示す側面図。FIG. 6 is a side view showing an example of a heat exchanger provided with an aluminum thin tube according to the present invention.

以下、本発明の具体的な実施形態について説明するが、本発明は以下に説明する実施形態に制限されるものではない。
図1は本発明に係る第1実施形態のアルミニウムまたはアルミニウム合金製の細管の横断面構造を拡大して示す図であり、この第1実施形態の細管1は、直径数mm、例えば、直径2〜5mm程度の管本体2の内部に複数の突条型の放熱フィン3が形成されてなる。放熱フィン3は、それぞれ管本体2の内周面から管本体2の中心に向いて突出形成され、管本体2の内面全長に渡り延在するように、管本体2の内周面の周方向に所定の間隔で複数形成されている。
本実施形態の放熱フィン3は、管本体2の横断面において、管本体2の中心に向く平坦な頂平部3aとこの頂平部3aを挟むように延在する傾斜部3b、3bとを有する横断面視等脚台形状に形成されている。これらの放熱フィン3は、管本体2の内周面の周方向に所定の間隔で複数形成されているので、管本体2の内周面に沿って隣接する放熱フィン3、3の間にフィン溝4が形成されている。
Hereinafter, specific embodiments of the present invention will be described, but the present invention is not limited to the embodiments described below.
FIG. 1 is an enlarged view showing the cross-sectional structure of a thin tube made of aluminum or aluminum alloy according to the first embodiment of the present invention. The thin tube 1 of the first embodiment has a diameter of several mm, for example, a diameter of 2 A plurality of protrusion-shaped radiating fins 3 are formed inside the tube body 2 of about ˜5 mm. The radiating fins 3 are formed so as to protrude from the inner peripheral surface of the tube main body 2 toward the center of the tube main body 2 and extend over the entire inner surface of the tube main body 2 in the circumferential direction of the inner peripheral surface of the tube main body 2. Are formed at predetermined intervals.
In the cross section of the tube main body 2, the heat radiating fin 3 of the present embodiment has a flat top flat portion 3a facing the center of the tube main body 2 and inclined portions 3b and 3b extending so as to sandwich the top flat portion 3a. It is formed in a trapezoidal shape such as a cross-sectional view. Since a plurality of these radiating fins 3 are formed at predetermined intervals in the circumferential direction of the inner peripheral surface of the tube main body 2, the fins are disposed between the radiating fins 3, 3 adjacent along the inner peripheral surface of the tube main body 2. A groove 4 is formed.

前記細管1を構成する管本体2は、アルミニウムあるいはアルミニウム合金からなる。本明細書ではアルミニウムあるいはアルミニウム合金からなる細管1について略称してアルミニウム細管と称する。この細管1を構成するアルミニウム合金に特に制限はなく、JISで規定される1050、1100、1200等の純アルミニウム系、あるいは、これらにMnを添加した3003に代表される3000系のアルミニウム合金等を適用することができる。勿論、これら以外にJISに規定されている5000系〜7000系のアルミニウム合金のいずれかを用いて管本体2を構成しても良いのは勿論である。   The tube body 2 constituting the narrow tube 1 is made of aluminum or an aluminum alloy. In this specification, the thin tube 1 made of aluminum or an aluminum alloy is abbreviated as an aluminum thin tube. There is no particular limitation on the aluminum alloy constituting the thin tube 1, and a pure aluminum system such as 1050, 1100, 1200, etc. defined by JIS, or a 3000 series aluminum alloy represented by 3003, in which Mn is added to these, etc. Can be applied. Of course, in addition to these, the tube main body 2 may be configured by using any one of the 5000 series to 7000 series aluminum alloys defined in JIS.

前記管本体2の外径は、2mm〜5mmであることが好ましい。管本体2の外径が2mm未満であると、現状の押出技術によりアルミニウムまたはアルミニウム合金製の細管として管本体2を押出形成することが困難となり、管本体2の外径が5mmを超えると熱交換器用伝熱管とする場合に耐圧が不足して必要な薄肉化が困難となる。
管本体2において放熱フィン3を除いた部分の肉厚、換言するとフィン溝4の部分に対応する管本体2の肉厚(底肉厚)は、0.1mm〜0.6mmの範囲が好ましい。肉厚が0.1mm未満であると熱交換器用伝熱管として見た場合に破壊圧力が不足となり、0.6mmを超える肉厚ではアルミニウム材料が多く必要になり製造コストが上昇してしまう。
The outer diameter of the tube body 2 is preferably 2 mm to 5 mm. If the outer diameter of the tube body 2 is less than 2 mm, it becomes difficult to extrude the tube body 2 as a thin tube made of aluminum or aluminum alloy by the current extrusion technology, and if the outer diameter of the tube body 2 exceeds 5 mm, heat will be generated. In the case of a heat exchanger tube for an exchanger, the pressure resistance is insufficient and it becomes difficult to reduce the thickness.
The wall thickness of the tube body 2 excluding the radiation fins 3, in other words, the wall thickness (bottom wall thickness) of the tube body 2 corresponding to the fin groove 4 is preferably in the range of 0.1 mm to 0.6 mm. When the wall thickness is less than 0.1 mm, the burst pressure becomes insufficient when viewed as a heat exchanger tube for heat exchanger, and when the wall thickness exceeds 0.6 mm, a large amount of aluminum material is required and the manufacturing cost increases.

管本体2において内面溝高さ、換言すると、放熱フィン3の高さは0.05mm〜0.35mmの範囲が好ましい。放熱フィン3の高さが0.05mm未満では拡管時に潰れてしまい、フィンが消失し、拡管荷重が増大するおそれがあり、放熱フィン3の高さが0.35mmを超えるようであると、熱交換器用伝熱管として圧損が高くなり、押出加工で成形不可となる傾向がある。
放熱フィン3において、頂平部3aを挟む2つの傾斜部3b、3bが成す角度(山頂角)は、10゜〜60゜の範囲が好ましい。図3(a)に放熱フィン3の山頂角θの一例を示すが、放熱フィン3を横断面視した場合、頂平部3aを挟む2つの傾斜部3bの延長線が交わって形成される角度θを山頂角と定義する。
山頂角が10゜未満の場合、拡管時に放熱フィン3が潰れ易くなり、拡管不足になり易く、60゜を超える山頂角では、拡管荷重が大きくなり、座屈の問題を生じるおそれがある。
In the tube main body 2, the inner surface groove height, in other words, the height of the radiation fin 3 is preferably in the range of 0.05 mm to 0.35 mm. If the height of the radiating fin 3 is less than 0.05 mm, it may be crushed during tube expansion, the fin may disappear, the tube expansion load may increase, and if the height of the radiating fin 3 seems to exceed 0.35 mm, As a heat transfer tube for an exchanger, the pressure loss increases, and it tends to be impossible to form by extrusion.
In the radiating fin 3, the angle (peak angle) formed by the two inclined portions 3b and 3b sandwiching the top flat portion 3a is preferably in the range of 10 ° to 60 °. FIG. 3A shows an example of the peak angle θ 1 of the radiating fin 3. When the radiating fin 3 is viewed in cross section, the extension lines of the two inclined portions 3 b sandwiching the top flat portion 3 a are formed to intersect. The angle θ 1 is defined as the peak angle.
When the summit angle is less than 10 °, the radiating fins 3 are liable to be crushed during tube expansion, and the tube expansion tends to be insufficient. When the summit angle exceeds 60 °, the tube expansion load becomes large, which may cause a buckling problem.

管本体2において頂平部合計幅の割合(管本体2の横断面においてフィン溝4が存在する位置に対応する管本体2の底面周長に対し、管本体2の内周に沿って存在する全ての頂平部3aの合計幅の割合)は、20%〜80%の範囲であることが望ましい。頂平部合計幅の割合は、具体的には、図1に示すように管本体2の内周に沿ってn個(nは自然数)の放熱フィン3が形成され、放熱フィン3の頂平部の幅をa〜aとし、それら放熱フィン3、3の間にフィン溝4が形成されている場合、管本体2の底面周長に対し、以下の(1)式で示される関係となる。
頂平部合計幅の割合={(a+a+a+a+…+a)/底面周長}×100 …(1)
頂平部合計幅の割合が20%未満では拡管時に放熱フィン3に荷重が集中するため、潰れる可能性があり、頂平部合計幅の割合が80%を超えると、拡管荷重が高くなり、管本体2が座屈する可能性がある。
The ratio of the total width of the top flat portion in the tube main body 2 (it exists along the inner periphery of the tube main body 2 with respect to the bottom circumference of the tube main body 2 corresponding to the position where the fin groove 4 exists in the cross section of the tube main body 2). The ratio of the total width of all the top flat portions 3a) is desirably in the range of 20% to 80%. Specifically, the ratio of the total width of the top flat portion is such that n (n is a natural number) radiating fins 3 are formed along the inner periphery of the tube body 2 as shown in FIG. the width of the part and a 1 ~a n, if the fin grooves 4 therebetween radiation fins 3, 3 are formed, against the bottom circumference of the tube body 2, represented by the following formula (1) relationship It becomes.
Ratio of total width of top flat portion = {(a 1 + a 2 + a 3 + a 4 +... + An ) / bottom circumference} × 100 (1)
If the ratio of the total width of the top portion is less than 20%, the load concentrates on the heat radiating fins 3 at the time of pipe expansion, so there is a possibility of crushing, and if the ratio of the total width of the top portion exceeds 80%, the tube expansion load increases. There is a possibility that the tube body 2 buckles.

管本体2において管本体2の周方向に沿うフィン溝4の数(換言すると管本体2の周方向に沿う放熱フィン3の山数)は、20〜60の範囲が好ましい。フィン溝4の数が20未満では放熱フィン3に荷重が集中するため、拡管時に放熱フィン3が潰れる可能性があり、フィン溝4の数が60を超えると拡管荷重が高くなり、管本体2が座屈する可能性が高くなる。
管本体2において、前記の範囲の外径、肉厚、放熱フィン高さ、頂平部合計幅の割合を満たすならば、前記構造の管本体2を熱交換器用の伝熱管としてフィンと組み合わせ、拡管して使用したとしても、拡管時に座屈することがなく、圧損が少ない状態で冷媒の輸送が出来、良好な熱交換性能を確保でき、コスト面でも問題の生じないという作用効果を得ることができる。
The number of fin grooves 4 along the circumferential direction of the tube body 2 in the tube body 2 (in other words, the number of radiating fins 3 along the circumferential direction of the tube body 2) is preferably in the range of 20-60. If the number of fin grooves 4 is less than 20, the load concentrates on the heat radiating fins 3. Therefore, there is a possibility that the heat radiating fins 3 may be crushed at the time of pipe expansion, and if the number of fin grooves 4 exceeds 60, the pipe expansion load increases. Is more likely to buckle.
If the tube body 2 satisfies the ratio of the outer diameter, the thickness, the heat radiation fin height, and the total width of the top flat portion in the above range, the tube body 2 having the above structure is combined with the fin as a heat transfer tube for a heat exchanger, Even if expanded and used, there is no buckling during expansion, and refrigerant can be transported with little pressure loss, good heat exchange performance can be secured, and there is no cost problem. it can.

図2は本発明に係る第2実施形態のアルミニウムまたはアルミニウム合金製の細管の横断面構造を示し、この実施形態の細管10は、第1実施形態の細管1と同様、管本体12の内周に突条型の放熱フィン13が形成されている点、隣接する放熱フィン間にフィン溝14が形成されている点、管本体12が第1実施形態の構造と同等範囲の外径、肉厚、放熱フィン高さ、頂平部合計幅割合を満たす点については同等構造とされている。また、放熱フィン13は管本体12の横断面において、頂平部13aと傾斜部13b、13bとから構成されている形状についても第1実施形態の構造と同様である。   FIG. 2 shows a cross-sectional structure of a thin tube made of aluminum or an aluminum alloy according to the second embodiment of the present invention. The narrow tube 10 of this embodiment is similar to the thin tube 1 of the first embodiment in the inner periphery of the tube body 12. The point that the ridge-shaped radiating fins 13 are formed on the surface, the point that the fin grooves 14 are formed between the adjacent radiating fins, the outer diameter and thickness of the tube body 12 in the same range as the structure of the first embodiment. The points satisfying the height of the heat dissipating fin and the total width of the top flat part are the same structure. Further, the shape of the heat radiating fin 13 including the top flat portion 13a and the inclined portions 13b and 13b in the cross section of the tube main body 12 is the same as the structure of the first embodiment.

この第2実施形態の細管10において、先の第1実施形態の細管1と異なる点は、放熱フィン3が細管10の内周面に沿ってその長さ方向に螺旋を描くように形成されている点である。
管本体12の内部に形成されている複数の放熱フィン13は全ての放熱フィン13が同じピッチで螺旋状に形成されていて、放熱フィン13の間に形成されているフィン溝14についても管本体12の内部において所定のピッチで螺旋を描くように形成されている。
また、管本体12を横断面視した場合、図3(a)に示すように放熱フィン13が傾斜していない状態(放熱フィン13の横断面の中心軸線S1が管本体12の径方向に沿う状態)に対し、本実施形態の放熱フィン13は図3(b)に示すように管本体12を横断面視した状態において、放熱フィン13の中心軸線S2が管本体12の周面に対し、60゜〜80゜の範囲の傾斜角θで傾斜されている。換言すると、放熱フィン13を横断面視した状態において、放熱フィン13の中心軸線S2は管本体12の径方向に対し10〜30゜(90゜−θ)の範囲で傾斜されている。
In the thin tube 10 of the second embodiment, the difference from the thin tube 1 of the first embodiment is that the radiating fins 3 are formed along the inner peripheral surface of the thin tube 10 so as to draw a spiral. It is a point.
The plurality of radiating fins 13 formed inside the tube main body 12 are all formed in a spiral shape with the same pitch, and the fin groove 14 formed between the radiating fins 13 is also the tube main body. 12 is formed so as to draw a spiral at a predetermined pitch.
Further, when the tube main body 12 is viewed in a cross section, as shown in FIG. 3A, the radiation fins 13 are not inclined (the central axis S <b> 1 of the cross section of the radiation fins 13 is along the radial direction of the tube main body 12. In the state where the heat dissipating fins 13 of the present embodiment are in a cross-sectional view of the tube main body 12 as shown in FIG. 3B, the central axis S2 of the heat dissipating fins 13 is relative to the peripheral surface of the tube main body 12. It is inclined at an inclination angle θ 2 in the range of 60 ° to 80 °. In other words, the central axis S2 of the radiating fin 13 is inclined in the range of 10 to 30 ° (90 ° −θ 2 ) with respect to the radial direction of the tube main body 12 in a state in which the radiating fin 13 is viewed in cross section.

本実施形態の放熱フィン13を備えた細管10であっても、先の第1実施形態の細管1と同等の作用効果を得ることができる。この第2実施形態のように放熱フィン13を管本体12の長さ方向に螺旋状になるように形成することで、フィン溝14についても管本体12の長さ方向に螺旋状に形成されるので、管本体12を冷媒が流れる際、冷媒との熱交換効率を良好にすることができる。   Even if it is the thin tube 10 provided with the radiation fin 13 of this embodiment, the effect equivalent to the thin tube 1 of previous 1st Embodiment can be obtained. The fin fins 14 are also formed in a spiral shape in the length direction of the tube body 12 by forming the heat radiation fins 13 in a spiral shape in the length direction of the tube body 12 as in the second embodiment. Therefore, when the refrigerant flows through the tube body 12, the heat exchange efficiency with the refrigerant can be improved.

次に、放熱フィン13の形状については、拡管時の加工に耐えるように構成することが好ましい。例えば、管本体12の内部には3次元的に形状付与された放熱フィン13が形成されているが、このような3次元形状を有した放熱フィン13を備えた管本体12をビュレットにより拡管する場合、放熱フィン13が螺旋状に配置されていると、ビュレットが放熱フィン13をそれらの捻り方向に沿って倒しつつ拡管してしまうことがある。
これを防止するためには、ビュレットが放熱フィン13を倒すと想定される方向と反対側に予め放熱フィン13を傾斜させておく必要がある。このように予め放熱フィン13を傾斜させておくことで、ビュレットによる拡管後においても放熱フィン13が潰れていない、目的の構造を提供できる。
Next, about the shape of the radiation fin 13, it is preferable to comprise so that it may endure the process at the time of pipe expansion. For example, although the heat dissipating fins 13 having a three-dimensional shape are formed inside the tube main body 12, the tube main body 12 including the heat dissipating fins 13 having such a three-dimensional shape is expanded by a burette. In this case, if the radiating fins 13 are arranged in a spiral shape, the buret may expand the tubes while laying down the radiating fins 13 along their twisting directions.
In order to prevent this, it is necessary to incline the radiating fins 13 in advance on the side opposite to the direction in which the burette is assumed to tilt the radiating fins 13. By inclining the heat dissipating fins 13 in advance in this way, it is possible to provide a target structure in which the heat dissipating fins 13 are not crushed even after pipe expansion by a burette.

例えば、一例として、管本体12に対し螺旋状に放熱フィン13が形成されている場合、管本体12の一端側から他端側に向けてビュレットを挿入して管本体12を拡管するので、ビュレットの挿入方向に沿って螺旋状の放熱フィン13を倒す方向に力が作用するので、この倒れる方向と反対側、即ち、ビュレットを挿入する方向と反対側に向いて放熱フィン13を予め倒しておけば良い。
このように放熱フィン13を予めビュレットの挿入方向と反対方向に傾斜させる構成とすることで、拡管時にビュレットにより放熱フィン13が倒れてしまうことを無くすることができる。よって、放熱フィン13の倒れていない、しかも螺旋状に放熱フィン13を配置した構造の管本体からなる熱交換器用のアルミニウム製細管を伝熱管として備えた熱交換器を得ることができる。
なお、先に説明した放熱フィン13の形状については、図3(b)に示す形状に限らず、図3(c)に示すように頂平部23aとそれを挟む2つの傾斜部23b、23bとからなる台形状の放熱フィン23であって、左右の傾斜部23bの長さを異ならせ、左右非対称の台形状に加工した形状の放熱フィン23であっても良い。
この放熱フィン23は頂平部23aを管本体の径方向に対し傾斜角θで傾斜させた放熱フィンとして表記できる。
また、先に説明した放熱フィン13の形状については、図3(c)に示す形状に限らず、図3(d)に示すように頂平部33aとそれを挟む2つの傾斜部33b、33bとからなる台形状の放熱フィン33であって、左右の傾斜部33bの傾斜角度が同一とされ、左右の傾斜部33bの高さを異ならせて台形状に加工した形状の放熱フィン33であっても良い。
この放熱フィン33は頂平部33aを管本体の内底面(図3(d)では内底面と平行な線)に対する傾斜角θで傾斜させた放熱フィンとして表記できる。
For example, as an example, when the heat radiation fin 13 is formed in a spiral shape with respect to the tube body 12, the burette is expanded by inserting the burette from one end side to the other end side of the tube body 12. Since a force acts in the direction of tilting the spiral radiating fins 13 along the insertion direction, the radiating fins 13 should be tilted in advance in the direction opposite to the direction in which they fall, ie, in the direction opposite to the direction in which the burette is inserted. It ’s fine.
Thus, by setting the radiation fin 13 to be inclined in the direction opposite to the insertion direction of the burette in advance, it is possible to prevent the radiating fin 13 from falling down due to the buret when the pipe is expanded. Therefore, it is possible to obtain a heat exchanger having a heat transfer tube provided with an aluminum thin tube for a heat exchanger composed of a tube body having a structure in which the heat radiation fins 13 are not collapsed and the heat radiation fins 13 are arranged in a spiral shape.
In addition, about the shape of the radiation fin 13 demonstrated previously, it is not restricted to the shape shown in FIG.3 (b), As shown in FIG.3 (c), the top flat part 23a and the two inclined parts 23b and 23b which pinch | interpose it are shown. It is also possible to use a heat radiation fin 23 having a shape that is processed into a left-right asymmetric trapezoidal shape by varying the lengths of the left and right inclined portions 23b.
The radiating fins 23 may be denoted as a heat radiation fin is inclined at an inclination angle theta 3 to the radial direction of the pipe main body Itadakitaira portion 23a.
Further, the shape of the radiating fin 13 described above is not limited to the shape shown in FIG. 3C, and as shown in FIG. 3D, the top flat portion 33a and the two inclined portions 33b and 33b sandwiching the top flat portion 33a. The left and right inclined portions 33b have the same inclination angle, and the left and right inclined portions 33b have different heights and are processed into a trapezoidal shape. May be.
The radiating fins 33 may be denoted as a heat radiation fin is inclined at an inclination angle theta 4 against the inner bottom surface of the tube main body Itadakitaira portion 33a (FIG. 3 (d) in the inner bottom surface and a line parallel).

図4は放熱フィン13を形成した管本体12を加工して放熱フィン13を傾斜させるための方法の一例を示すもので、巻胴35の外周面に図1に示す断面構造の管本体2を巻き付け、巻き付け後に巻胴35の軸方向と平行方向に管本体2を引き抜く引張加工を施すことで、図2に示す断面構造であって、管本体12の内部に螺旋状に旋回させた放熱フィン13を備えた細管10を得ることができる。なお、この方法で細管10を作製する場合、放熱フィン13を予め目的の方向に倒した状態で細管を作製することができる。   FIG. 4 shows an example of a method for processing the tube main body 12 on which the radiating fins 13 are formed to incline the radiating fins 13, and the tube main body 2 having the cross-sectional structure shown in FIG. 2 is a sectional view of the cross-sectional structure shown in FIG. 2 and is spirally swiveled inside the tube main body 12 by applying a tensile process of drawing the tube main body 2 in a direction parallel to the axial direction of the winding drum 35 after winding. 13 can be obtained. In addition, when producing the thin tube 10 by this method, the thin tube can be produced in a state in which the radiating fins 13 are previously tilted in a target direction.

例えば、細管を拡管する場合、図5(a)に示すように放熱フィン13’を一方向に倒すように所定の角度傾斜させて形成しておき、図5(a)の左側から右側に向けてビュレットを挿通させて拡管すると、放熱フィン13を図5(b)に示すようにほぼ直立するように変形させることができる。なお、図5(b)は管本体12の部分断面を簡略的に示すので放熱フィン13が螺旋状には描かれてはいないが、放熱フィン13は管本体12の内周面に沿って螺旋状に形成されているものとする。
以上説明のように予め所定の方向に倒れさせた状態で管本体の内面に螺旋状に複数の放熱フィン13’を図5(a)に示すように形成することができるので、この放熱フィン13’を備えた細管を熱交換器の伝熱管としてフィンの挿通孔に挿通し拡管することで、図5(b)に示すように倒れていない状態の螺旋状に配置した放熱フィン13を備えた細管10を熱交換器用の伝熱管として組み込むことができる。
For example, when expanding the narrow tube, as shown in FIG. 5 (a), the radiating fins 13 'are inclined at a predetermined angle so as to be tilted in one direction, and are directed from the left side to the right side in FIG. 5 (a). When the burette is inserted and the tube is expanded, the radiating fins 13 can be deformed so as to be almost upright as shown in FIG. FIG. 5B simply shows a partial cross section of the tube body 12, so that the radiating fins 13 are not drawn in a spiral shape, but the radiating fins 13 spiral along the inner peripheral surface of the tube body 12. It shall be formed in the shape.
As described above, a plurality of heat radiation fins 13 ′ can be spirally formed on the inner surface of the tube main body in a state where the heat radiation fins 13 are preliminarily tilted in a predetermined direction as shown in FIG. As shown in FIG. 5 (b), the heat dissipating fins 13 arranged in a spiral shape are provided by inserting and expanding the thin tubes provided with a 'through the fin insertion holes as heat transfer tubes of the heat exchanger. The thin tube 10 can be incorporated as a heat transfer tube for a heat exchanger.

図6は、前述の構成の放熱フィン3あるいは放熱フィン13を備えた熱交換器の一例を示すもので、この例の熱交換器30は、アルミニウムあるいはアルミニウム合金製のフィン材を多層積層した構成のフィン31に対し、このフィン31を貫通するように細管1あるいは細管10が接合されている。
フィン31を貫通した細管1あるいは細管10の端部にはエルボ管32を接合することで細管1あるいは細管10が蛇行管として構成されている。
図6に示す構成の熱交換器30は、前述の構造の細管1あるいは細管10を有しているので、銅の細管を備えた構造よりも低コストで製造することができ、また、細管1、10を備えているので、拡管時の座屈が生じていない細管1、10からなる伝熱管を備え、フィン31に対する接合状態の良好な伝熱管を備えた熱交換器30を提供できる。
FIG. 6 shows an example of a heat exchanger provided with the heat dissipating fins 3 or the heat dissipating fins 13 having the above-described structure, and the heat exchanger 30 in this example has a structure in which fins made of aluminum or aluminum alloy are laminated in multiple layers. The thin tube 1 or the thin tube 10 is joined to the fin 31 so as to penetrate the fin 31.
By connecting an elbow tube 32 to the end of the thin tube 1 or the thin tube 10 penetrating the fins 31, the thin tube 1 or the thin tube 10 is configured as a meandering tube.
Since the heat exchanger 30 having the configuration shown in FIG. 6 has the thin tube 1 or the thin tube 10 having the above-described structure, the heat exchanger 30 can be manufactured at a lower cost than a structure having a copper thin tube. Therefore, it is possible to provide a heat exchanger 30 that includes a heat transfer tube including the thin tubes 1 and 10 that are not buckled during tube expansion and includes a heat transfer tube that is well bonded to the fins 31.

JIS規定3003合金を押出加工して図1に示す形状と図2に示す形状のアルミニウム製細管を複数作成した。
図1に示す構造の細管は通常の押出で作製した。また、図2に示す細管の構造は、図1に示す構造のアルミニウム製細管を製造後、円筒状の巻胴に細管を巻き付け、巻き付け後に巻胴の中心軸と平行な方向に巻胴の周面から引き剥がすように細管を引っ張ることで形成した。
A plurality of aluminum thin tubes having the shape shown in FIG. 1 and the shape shown in FIG. 2 were produced by extruding JIS standard 3003 alloy.
A thin tube having the structure shown in FIG. 1 was produced by ordinary extrusion. In addition, the structure of the thin tube shown in FIG. 2 is obtained by manufacturing the aluminum thin tube having the structure shown in FIG. 1, winding the thin tube around a cylindrical winding drum, and then winding the winding tube in a direction parallel to the central axis of the winding drum. It was formed by pulling a thin tube so as to peel off from the surface.

細管の外径、肉厚、放熱フィン高さ(頂平部の中央の高さ)、頂平部合計幅割合、山頂角、山頂平部傾斜角、放熱フィンの傾斜形態について以下の表1に示すように設定してそれぞれ試料を作製した。
表1において肉厚とは、フィン溝部分における管本体の肉厚、山頂角とは放熱フィンの2つの傾斜部のなす角度、山頂平部傾斜角とは管本体をねじり加工して螺旋状の放熱フィンを管本体の径方向に対して所定の角度倒す場合の倒す角度、放熱フィン傾斜形態とは、図3(b)に示す形状(1つの放熱フィンを横断面視した場合にその放熱フィン全体がその中心軸線を傾斜させて傾斜された状態)か、図3(c)に示す状態(放熱フィンの頂平部のみ傾斜した状態)のいずれかであることを意味する。
表1において拡管性評価基準は以下の通りである。
◎拡管性良好。
○拡管率狙い値を若干下回り、外部フィンとの密着が若干悪い。
△コアの座屈こそ生じないものの、拡管荷重が高い、あるいは拡管率が低く、外部フィンとの密着が悪い。
×拡管荷重が高く、コアが座屈、あるいは拡管率狙い値を明らかに下回り、外部フィンとの密着が悪い。
表1において破壊圧力評価基準は、5MPa以下NG、圧損判断基準は、100MPa以上をNGとした。
Table 1 below shows the outer diameter of the thin tube, the wall thickness, the height of the radiating fin (the height at the center of the top flat part), the total width ratio of the top flat part, the summit angle, the summit flat part inclination angle, and the radiating fin inclination form. Samples were prepared by setting as shown.
In Table 1, the thickness refers to the thickness of the tube body in the fin groove portion, the peak angle refers to the angle formed by the two inclined portions of the radiating fin, and the peak angle defines the spiral shape by twisting the tube body. The tilt angle when the radiating fin is tilted at a predetermined angle with respect to the radial direction of the tube body, and the radiating fin inclination form are the shape shown in FIG. 3B (when one radiating fin is viewed in cross section, the radiating fin is It means that the whole is in a state inclined with its central axis inclined) or a state shown in FIG. 3C (a state in which only the top flat portion of the radiation fin is inclined).
In Table 1, the pipe expandability evaluation criteria are as follows.
◎ Good tube expandability.
○ Slightly below the target value for tube expansion rate, the adhesion to the external fin is slightly worse.
Δ Although the core does not buckle, the tube expansion load is high or the tube expansion rate is low, and the adhesion with the external fin is poor.
× The tube expansion load is high, the core is buckled, or the tube expansion rate is clearly below the target value, and the adhesion with the external fin is poor.
In Table 1, the failure pressure evaluation standard was 5 MPa or less NG, and the pressure loss judgment standard was 100 MPa or more NG.

Figure 2013092335
Figure 2013092335

表1に示す結果から、比較例1の試料では管本体の外径を2mm未満としたので冷媒を流す際の圧損が大きくなり、比較例2の試料では管本体の外径を5mmを超える値としたので耐圧が不足した。このことから細管の外径について、2〜5mmの範囲が望ましいと判断できる。
比較例3の試料では、肉厚が0.1mm未満であるので、耐圧不足となり、比較例4の試料では、肉厚が0.6mmを超える0.8mmであるのでコスト高となった。このことから肉厚について、0.1mm〜0.6mmの範囲が望ましいと判断できる。
From the results shown in Table 1, since the outer diameter of the tube body was less than 2 mm in the sample of Comparative Example 1, the pressure loss when flowing the refrigerant increased, and in the sample of Comparative Example 2, the outer diameter of the tube body exceeded 5 mm. As a result, the pressure resistance was insufficient. From this, it can be judged that the outer diameter of the thin tube is preferably in the range of 2 to 5 mm.
In the sample of Comparative Example 3, since the wall thickness was less than 0.1 mm, the pressure resistance was insufficient, and in the sample of Comparative Example 4, the wall thickness was 0.8 mm exceeding 0.6 mm, resulting in an increase in cost. From this, it can be judged that the thickness is preferably in the range of 0.1 mm to 0.6 mm.

比較例5の試料では、放熱フィン高さが0.05mm未満の0.03mmであるので、拡管時に放熱フィンが潰れる結果となり、拡管加重が高くなってコアの座屈が生じ、比較例6の試料では、放熱フィン高さが0.35mmを超える0.4mmであるので圧損が大きくなった。このことから放熱フィン高さについて、0.05mm〜0.35mmの範囲が望ましいと判断できる。
比較例7の試料では、頂平部合計幅の割合が20%未満の15%であるので、拡管時に放熱フィンが潰れる結果となり、拡管加重が高くなってコアの座屈が生じ、比較例8の試料では、頂平部合計幅の割合が80%を超える85%であるので拡管荷重が大きくなった。このことから頂平部合計幅の割合について、20〜80%の範囲が望ましいと判断できる。
In the sample of Comparative Example 5, since the height of the radiating fin is 0.03 mm, which is less than 0.05 mm, the radiating fin is crushed at the time of tube expansion, the tube expansion load is increased, and the core buckling occurs. In the sample, the heat dissipation fin height was 0.4 mm exceeding 0.35 mm, so the pressure loss increased. From this, it can be judged that the range of 0.05 mm to 0.35 mm is desirable for the height of the radiation fin.
In the sample of Comparative Example 7, the ratio of the total width of the top flat portion is 15%, which is less than 20%. As a result, the heat dissipating fins are crushed during tube expansion, the tube expansion load is increased, and the core is buckled. In this sample, the ratio of the total width of the top flat portion was 85% exceeding 80%, so that the pipe expansion load was large. From this, it can be judged that the range of 20 to 80% is desirable for the ratio of the total width of the top flat portion.

比較例9の試料では、フィン溝数が20を下回る15であるので、拡管時にコアが座屈する結果となり、比較例10の試料では、フィン溝数が60を超える65であるので圧損が大きくなった。このことからフィン溝数について、20〜60の範囲が望ましいと判断できる。
実施例23の試料では、山頂角が10゜未満の5゜であるので、やや拡管不足の結果となり、実施例24の試料では、山頂角が60゜を超える65゜であるのでやや拡管荷重が大きくなった。このことから山頂角について、10゜〜60゜の範囲が望ましいと判断できる。
実施例25の試料では、山頂平部傾斜状態が10゜未満の5゜であるので、やや拡管不足の結果となり、実施例26の試料では、山頂平部傾斜状態が30゜を超える35゜であるのでやや圧損大となった。
In the sample of Comparative Example 9, since the number of fin grooves is 15 less than 20, the result is that the core buckles at the time of pipe expansion, and in the sample of Comparative Example 10, the number of fin grooves exceeds 65, so the pressure loss increases. It was. From this, it can be judged that the range of 20 to 60 is desirable for the number of fin grooves.
In the sample of Example 23, the summit angle is 5 °, which is less than 10 °, which results in a shortage of tube expansion. In the sample of Example 24, the summit angle is 65 ° exceeding 60 °, so the tube expansion load is somewhat It became bigger. From this, it can be judged that a range of 10 ° to 60 ° is desirable for the peak angle.
In the sample of Example 25, the slope state of the summit flat part is 5 °, which is less than 10 °, which results in a somewhat insufficient expansion of the tube. It was a little overwhelming because there was.

以上説明したように、本発明の範囲とした実施例1〜28の試料は、好適な外径、肉厚、放熱フィン高さ、フィン溝数、頂平部合計幅割合、好適な山頂角を有するので、拡管時に放熱フィンを潰すことなくフィンに接合でき、拡管時に座屈や折損のおそれのない熱交換器用アルミニウム製細管として提供できる。   As described above, the samples of Examples 1 to 28 within the scope of the present invention have a suitable outer diameter, thickness, radiating fin height, number of fin grooves, total width ratio of the top flat portion, and a suitable peak angle. Therefore, it can be joined to the fins without crushing the radiating fins when expanding the tube, and can be provided as an aluminum thin tube for a heat exchanger that does not cause buckling or breakage when expanding the tube.

1、10…細管、2、12…管本体、3、13、13’、23…放熱フィン、3a、13a、23a…頂平部、3b、13b、23b…傾斜部、4、14…フィン溝、S1、S2、S3…中心軸線、θ…山頂角、θ、θ、θ…傾斜角、30…熱交換器、31…フィン、32…エルボ管。 DESCRIPTION OF SYMBOLS 1, 10 ... Thin tube, 2, 12 ... Tube main body, 3, 13, 13 ', 23 ... Radiation fin, 3a, 13a, 23a ... Top flat part, 3b, 13b, 23b ... Inclined part, 4, 14 ... Fin groove , S 1, S 2, S 3... Central axis, θ 1 .. peak angle, θ 2 , θ 3 , θ 4 ... Tilt angle, 30.

Claims (5)

アルミニウムまたはアルミニウム合金からなる外径2mm以上、5mm以下の熱交換器用伝熱管とする管本体からなる細管であり、管本体の内面に、管本体の長手方向に延在する突条型の放熱フィンが管本体の内周方向に沿って間隔をあけて略均等に複数形成され、これら放熱フィンの間に複数のフィン溝が形成され、該フィン溝の部分の管本体の肉厚が0.1mm以上、0.6mm以下、前記放熱フィン高さが0.05mm以上、0.35mm以下、前記フィン溝の数が20以上、60以下、前記管本体内周の周方向に存在する複数の放熱フィンの頂平部合計幅が前記管本体の内底面全周長に対する割合で20%以上、80%以下である熱交換器用アルミニウム細管。   It is a thin tube made of a tube body made of aluminum or an aluminum alloy and having an outer diameter of 2 mm or more and 5 mm or less, and is a ridge-shaped radiating fin extending on the inner surface of the tube body in the longitudinal direction of the tube body Are formed substantially evenly at intervals along the inner circumferential direction of the tube body, and a plurality of fin grooves are formed between the heat dissipating fins, and the thickness of the tube body at the fin groove portion is 0.1 mm. As described above, a plurality of heat dissipating fins present in the circumferential direction of the inner periphery of the tube main body, 0.6 mm or less, the heat dissipating fin height of 0.05 mm or more and 0.35 mm or less, and the number of fin grooves is 20 or more and 60 or less. An aluminum thin tube for a heat exchanger, in which the total width of the top flat part is 20% or more and 80% or less as a percentage of the total circumference of the inner bottom surface of the pipe body. 前記放熱フィンの横断面形状が、頂平部とそれを挟む2つの傾斜部を有する等脚台形状に形成され、前記2つの傾斜部のなす山頂角が10゜以上、60゜以下とされた請求項1に記載の熱交換器用アルミニウム細管。   The cross-sectional shape of the radiating fin is formed in an isosceles trapezoidal shape having a top flat portion and two inclined portions sandwiching the top flat portion, and the peak angle formed by the two inclined portions is 10 ° or more and 60 ° or less. The aluminum thin tube for heat exchangers according to claim 1. 前記管本体の横断面において前記全ての放熱フィンの中心軸が前記管本体の径方向に対し10゜以上、30゜以下の角度で傾斜されてなることを特徴とする請求項1または2に記載の熱交換器用アルミニウム細管。   The central axis of all the radiation fins is inclined at an angle of 10 ° or more and 30 ° or less with respect to the radial direction of the tube main body in a cross section of the tube main body. Aluminum tubes for heat exchangers. 前記放熱フィンの横断面形状が、頂平部とそれを挟む2つの傾斜部を有し、前記2つの傾斜部の傾斜角度を同一、前記2つの傾斜部の高さを相違させて台形状に形成され、前記2つの傾斜部のなす頂平部の前記管本体の内底面に対する傾斜角度が10゜以上、30゜以下とされた請求項1または2に記載の熱交換器用アルミニウム細管。   The cross-sectional shape of the radiating fin has a top flat portion and two inclined portions sandwiching the top flat portion, the two inclined portions have the same inclination angle, and the two inclined portions have different heights to be trapezoidal. The aluminum thin tube for a heat exchanger according to claim 1 or 2, wherein an inclination angle of a top flat portion formed by the two inclined portions with respect to an inner bottom surface of the tube main body is 10 ° or more and 30 ° or less. 請求項1〜4のいずれかに記載の熱交換器用アルミニウム細管を伝熱管として備えたことを特徴とする熱交換器。   A heat exchanger comprising the heat exchanger aluminum thin tube according to any one of claims 1 to 4 as a heat transfer tube.
JP2011236065A 2011-10-27 2011-10-27 Aluminum capillary tube for heat exchanger, and heat exchanger using the same Pending JP2013092335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011236065A JP2013092335A (en) 2011-10-27 2011-10-27 Aluminum capillary tube for heat exchanger, and heat exchanger using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011236065A JP2013092335A (en) 2011-10-27 2011-10-27 Aluminum capillary tube for heat exchanger, and heat exchanger using the same

Publications (1)

Publication Number Publication Date
JP2013092335A true JP2013092335A (en) 2013-05-16

Family

ID=48615592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011236065A Pending JP2013092335A (en) 2011-10-27 2011-10-27 Aluminum capillary tube for heat exchanger, and heat exchanger using the same

Country Status (1)

Country Link
JP (1) JP2013092335A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142173A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2015175574A (en) * 2014-03-17 2015-10-05 株式会社コベルコ マテリアル銅管 Return bend pipe for heat exchanger, heat transfer tube for heat exchanger, heat exchanger and process of manufacturing heat exchanger
JP2016032816A (en) * 2014-07-30 2016-03-10 三菱アルミニウム株式会社 Tube with internal spiral groove, method for production thereof, and heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260793A (en) * 1991-02-13 1992-09-16 Furukawa Electric Co Ltd:The Heat transfer tube with inner surface groove
JPH1114277A (en) * 1997-06-24 1999-01-22 Daikin Ind Ltd Heat transfer tube and air conditioner
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
JP2001147089A (en) * 1999-11-19 2001-05-29 Mitsubishi Shindoh Co Ltd Heat conductive pipe fitted with inner face groove and pipe expansion method therefor
JP2001343194A (en) * 2000-05-31 2001-12-14 Mitsubishi Shindoh Co Ltd Inner surface grooved heat exchanger tube and heat exchanger
US20050045319A1 (en) * 2003-05-26 2005-03-03 Pascal Leterrible Grooved tubes for heat exchangers that use a single-phase fluid
JP2008267714A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Tube with inner surface groove made of aluminum having superior formability and its manufacturing method
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04260793A (en) * 1991-02-13 1992-09-16 Furukawa Electric Co Ltd:The Heat transfer tube with inner surface groove
US6164370A (en) * 1993-07-16 2000-12-26 Olin Corporation Enhanced heat exchange tube
JPH1114277A (en) * 1997-06-24 1999-01-22 Daikin Ind Ltd Heat transfer tube and air conditioner
JP2001147089A (en) * 1999-11-19 2001-05-29 Mitsubishi Shindoh Co Ltd Heat conductive pipe fitted with inner face groove and pipe expansion method therefor
JP2001343194A (en) * 2000-05-31 2001-12-14 Mitsubishi Shindoh Co Ltd Inner surface grooved heat exchanger tube and heat exchanger
US20050045319A1 (en) * 2003-05-26 2005-03-03 Pascal Leterrible Grooved tubes for heat exchangers that use a single-phase fluid
JP2008267714A (en) * 2007-04-20 2008-11-06 Furukawa Sky Kk Tube with inner surface groove made of aluminum having superior formability and its manufacturing method
JP2010078289A (en) * 2008-09-29 2010-04-08 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014142173A (en) * 2012-12-27 2014-08-07 Mitsubishi Alum Co Ltd Tube with spiral grooved inner surface, manufacturing method therefor, and heat exchanger
JP2018134683A (en) * 2012-12-27 2018-08-30 三菱アルミニウム株式会社 Twisting tube with inner surface spiral groove and heat exchanger
JP2015175574A (en) * 2014-03-17 2015-10-05 株式会社コベルコ マテリアル銅管 Return bend pipe for heat exchanger, heat transfer tube for heat exchanger, heat exchanger and process of manufacturing heat exchanger
JP2016032816A (en) * 2014-07-30 2016-03-10 三菱アルミニウム株式会社 Tube with internal spiral groove, method for production thereof, and heat exchanger

Similar Documents

Publication Publication Date Title
WO2009131072A1 (en) Heat exchanger and air conditioner using the same
EP3141858B1 (en) Bended heat exchanger
JP2007218486A (en) Heat transfer tube for heat exchanger, and heat exchanger using the same
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2007271123A (en) Inner face-grooved heat transfer tube
EP3399269B1 (en) Double-row bent type heat exchanger and manufacturing method therefor
JP2010002093A (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP4932439B2 (en) Plate fin tube heat exchanger and manufacturing method thereof
WO2008007694A1 (en) Fin-and-tube type heat exchanger, and its return bend pipe
US20160361749A1 (en) Heat exchanger manufacturing method and diameter enlargement tool
JP2013092335A (en) Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP2010214404A (en) Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2012097920A (en) Heat exchanger
JP2006266628A (en) Fin for heat exchanger, and heat exchanger using the same
JP2009186090A (en) Heat exchanger and its manufacturing method
JP2014105951A (en) Heat exchanger
JP6238063B2 (en) Expansion plug
JP2018124034A (en) Tube for heat exchanger
CN110895065A (en) Heat exchanger, method for manufacturing heat exchanger, and air conditioner provided with heat exchanger
JP2013071176A (en) Method of manufacturing small tube made of aluminum
JP5289088B2 (en) Heat exchanger and heat transfer tube
JP6294709B2 (en) Heat transfer tube with inner groove for evaporator
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP6521424B2 (en) Expansion pipe and design method for expansion pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151027