JP6294709B2 - Heat transfer tube with inner groove for evaporator - Google Patents

Heat transfer tube with inner groove for evaporator Download PDF

Info

Publication number
JP6294709B2
JP6294709B2 JP2014043803A JP2014043803A JP6294709B2 JP 6294709 B2 JP6294709 B2 JP 6294709B2 JP 2014043803 A JP2014043803 A JP 2014043803A JP 2014043803 A JP2014043803 A JP 2014043803A JP 6294709 B2 JP6294709 B2 JP 6294709B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
fin
relationship
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014043803A
Other languages
Japanese (ja)
Other versions
JP2015169363A (en
Inventor
沖ノ谷 剛
剛 沖ノ谷
淑夫 久米
淑夫 久米
祐典 中浦
祐典 中浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Aluminum Co Ltd
Denso Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, Denso Corp filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2014043803A priority Critical patent/JP6294709B2/en
Publication of JP2015169363A publication Critical patent/JP2015169363A/en
Application granted granted Critical
Publication of JP6294709B2 publication Critical patent/JP6294709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、熱交換器の蒸発器用内面溝付伝熱管に関し、特に、冷凍機油を含有する二酸化炭素を冷媒として使用する蒸発器用内面溝付伝熱管に関する。   The present invention relates to an inner grooved heat transfer tube for an evaporator of a heat exchanger, and more particularly to an inner grooved heat transfer tube for an evaporator that uses carbon dioxide containing refrigeration oil as a refrigerant.

従来、二酸化炭素冷媒を使用した熱交換器において、銅または銅合金製の伝熱管の内面に溝を形成した内面溝付管が使用されており、この伝熱管の内面溝により、伝熱管と冷媒との接触面積を増大し、伝熱性能を向上させている。   Conventionally, in a heat exchanger using a carbon dioxide refrigerant, an internally grooved tube in which a groove is formed on the inner surface of a copper or copper alloy heat transfer tube is used, and the heat transfer tube and the refrigerant are formed by the inner surface groove of the heat transfer tube. The contact area is increased and the heat transfer performance is improved.

しかしながら、伝熱管を流通する二酸化炭素冷媒中には、圧縮機用の潤滑剤である冷凍機油が含まれている。このため、単に伝熱管の内面に溝を形成しただけでは、管内面に冷凍機油が滞留するおそれがある。   However, the carbon dioxide refrigerant flowing through the heat transfer tube contains refrigeration oil that is a lubricant for the compressor. For this reason, if the groove is simply formed on the inner surface of the heat transfer tube, the refrigerating machine oil may stay on the inner surface of the tube.

ところで、フィンアンドチューブ式熱交換器は、次のように製造される。すなわち、金属製の複数の板状部材(以下、外側フィンという)を相互に離間して配置し、複数の外側フィンに共通の貫通孔を設け、この貫通孔に伝熱管を通す。その後、伝熱管内に拡管子を挿通し、拡管子により管内面を機械的に拡管して伝熱管と外側フィンとを密着させる。   By the way, the fin-and-tube heat exchanger is manufactured as follows. That is, a plurality of metal plate-like members (hereinafter referred to as outer fins) are arranged apart from each other, a common through hole is provided in the plurality of outer fins, and the heat transfer tube is passed through the through hole. Thereafter, the expansion tube is inserted into the heat transfer tube, the tube inner surface is mechanically expanded by the expansion tube, and the heat transfer tube and the outer fin are brought into close contact with each other.

このため、伝熱管を機械拡管する際に、伝熱管内部における隣り合う溝間に形成されたフィンが潰れたり、倒れたりして、フィンアンドチューブ式熱交換器を組み立てたときに伝熱性能が低下するおそれがある。   For this reason, when the heat transfer tube is mechanically expanded, the fins formed between adjacent grooves inside the heat transfer tube are crushed or fall down, and the heat transfer performance is improved when the fin-and-tube heat exchanger is assembled. May decrease.

これに対し、伝熱管やフィンの諸元を規定することで、冷凍機油の滞留を抑制するとともに、伝熱管の拡管時のフィン潰れやフィン倒れの発生を抑制した内面溝付伝熱管が提案されている(例えば、特許文献1参照)。   On the other hand, by defining the specifications of the heat transfer tubes and fins, an internally grooved heat transfer tube that suppresses the accumulation of refrigeration oil and the occurrence of fin crushing and fin collapse during expansion of the heat transfer tubes has been proposed. (For example, refer to Patent Document 1).

特開2009−228929号公報JP 2009-228929 A

ところで、冷凍機油を含有する二酸化炭素を冷媒として使用する蒸発器用内面溝付伝熱管において、構成材料を銅からアルミニウムまたはアルミニウム合金に変更して製造コストの低減を図りたいという要請がある。   Incidentally, there is a demand for reducing the manufacturing cost by changing the constituent material from copper to aluminum or an aluminum alloy in an evaporator inner surface grooved heat transfer tube using carbon dioxide containing refrigeration oil as a refrigerant.

しかしながら、以下の理由により、単に上記特許文献1に記載の内面溝付伝熱管の構成材料をアルミニウムまたはアルミニウム合金に変更しただけでは、伝熱性能が低下してしまう。   However, for the following reasons, simply changing the constituent material of the internally grooved heat transfer tube described in Patent Document 1 to aluminum or an aluminum alloy deteriorates the heat transfer performance.

すなわち、アルミニウムは銅に対して材料強度が1/2程度しかないため、伝熱管の肉厚を増大させる必要がある。一方、伝熱管の肉厚を厚くした場合、伝熱管を従来と同様の大きさに拡管するためには、伝熱管により大きな荷重をかける必要がある。このため、伝熱管を機械拡管する際にフィンの頂点にかかる荷重が大きくなり、フィン潰れが発生しやすくなる。   That is, since aluminum has a material strength of only about ½ that of copper, it is necessary to increase the thickness of the heat transfer tube. On the other hand, when the thickness of the heat transfer tube is increased, it is necessary to apply a large load to the heat transfer tube in order to expand the heat transfer tube to the same size as the conventional one. For this reason, when the heat transfer tube is mechanically expanded, the load applied to the apex of the fins is increased, and the fins are easily crushed.

これに対し、フィンの巾寸法(伝熱管の周方向の長さ)を大きくしてフィン潰れを抑制することが考えられる。しかしながら、フィンの巾寸法を大きくすると、溝面積または溝の巾寸法が小さくなるので、冷凍機油が伝熱管内に滞留し易くなり、伝熱性能が低下してしまう。   On the other hand, it is conceivable to increase the width of the fin (the length in the circumferential direction of the heat transfer tube) to suppress the collapse of the fin. However, when the width dimension of the fin is increased, the groove area or the width dimension of the groove is decreased, so that the refrigerating machine oil is liable to stay in the heat transfer tube and the heat transfer performance is deteriorated.

本発明は上記点に鑑みて、冷凍機油を含有する二酸化炭素を冷媒として使用する、アルミニウムまたはアルミニウム合金製の蒸発器用内面溝付伝熱管において、伝熱性能を向上させることを目的とする。   In view of the above points, an object of the present invention is to improve heat transfer performance in an internally grooved heat transfer tube for an evaporator made of aluminum or aluminum alloy that uses carbon dioxide containing refrigerating machine oil as a refrigerant.

上記目的を達成するため、請求項1に記載の発明では、冷凍機油を含有する二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管において、アルミニウムまたはアルミニウム合金により構成された伝熱管(1)を備えており、伝熱管(1)内面に、伝熱管(1)の管軸と平行または傾斜する方向に延びる複数個の溝(11)が形成されており、隣り合う溝(11)間には、複数個のフィン(12)が形成されており、伝熱管(1)の管外径をD(単位:mm)、溝(11)の個数をN、フィン(12)の高さをH(単位:mm)、フィン(12)の巾をW2(単位:mm)としたとき、管外径および溝(11)の個数が、4≦N/D≦9の関係を満たしており、かつ、フィン(12)の高さおよびフィン(12)の巾が、0.5≦H/W2≦1.7の関係を満たしており、伝熱管(1)は、引き抜き加工または押し出し加工により形成されていることを特徴とする。 In order to achieve the above object, according to the first aspect of the present invention, in an internally grooved heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide containing refrigeration oil as a refrigerant, the heat transfer tube is made of aluminum or an aluminum alloy. A heat pipe (1) is provided, and a plurality of grooves (11) extending in a direction parallel to or inclined with respect to the tube axis of the heat transfer pipe (1) are formed on the inner surface of the heat transfer pipe (1). 11), a plurality of fins (12) are formed. The outer diameter of the heat transfer tube (1) is D (unit: mm), the number of grooves (11) is N, and the number of fins (12) When the height is H (unit: mm) and the width of the fin (12) is W2 (unit: mm), the outer diameter of the pipe and the number of grooves (11) satisfy the relationship of 4 ≦ N / D ≦ 9. And the height of the fin (12) and the width of the fin (12) are 0. ≦ H / W2 satisfies the relation of ≦ 1.7, the heat transfer tube (1) is characterized in that it is formed by drawing or extruding.

これによれば、管外径および溝(11)の個数を4≦N/D≦9の関係を満たすようにすることで、伝熱性能を向上させることができる。また、フィン(12)の高さとフィン(12)の巾との比(H/W2)が小さくなると、溝(11)内に冷凍機油が滞留しやすくなり、これにより伝熱性能が急激に低下する。一方、フィン(12)の高さとフィン(12)の巾との比(H/W2)が大きくなると、拡管子等による伝熱管(1)の拡管の際にフィン(12)が倒れてしまうため、伝熱性能が低下する。このため、フィン(12)の高さおよびフィン(12)の巾が0.5≦H/W2≦1.7の関係を満たすようにすることで、伝熱性能を向上させることができる。   According to this, the heat transfer performance can be improved by satisfying the relationship of 4 ≦ N / D ≦ 9 for the tube outer diameter and the number of grooves (11). In addition, when the ratio (H / W2) between the height of the fin (12) and the width of the fin (12) is reduced, the refrigeration oil is likely to stay in the groove (11), and thus the heat transfer performance is drastically reduced. To do. On the other hand, when the ratio (H / W2) between the height of the fin (12) and the width of the fin (12) is increased, the fin (12) falls when the heat transfer tube (1) is expanded by a tube expander or the like. , Heat transfer performance decreases. For this reason, heat transfer performance can be improved by making the height of the fin (12) and the width of the fin (12) satisfy the relationship of 0.5 ≦ H / W2 ≦ 1.7.

なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each means described in this column and the claim shows the correspondence with the specific means as described in embodiment mentioned later.

本発明の実施形態におけるフィンアンドチューブ式熱交換器を示す概略斜視図である。It is a schematic perspective view which shows the fin and tube type heat exchanger in embodiment of this invention. 本発明の実施形態に係る内面溝付伝熱管の管軸直行断面図である。It is a pipe axis orthogonal sectional view of an inner surface grooved heat exchanger tube concerning an embodiment of the present invention. 本発明の実施形態に係る内面溝付伝熱管の管軸を含む縦断面図である。It is a longitudinal cross-sectional view containing the tube axis | shaft of the heat transfer tube with an inner surface groove | channel which concerns on embodiment of this invention. 図2のIV部拡大図である。It is the IV section enlarged view of FIG. アルミニウムまたはアルミニウム合金により構成した内面溝付伝熱管および銅または銅合金により構成した内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dとフィン巾W2との関係を示す特性図である。The relationship between the ratio N / D of the number of grooves N and the tube outer diameter D and the fin width W2 is shown for the internally grooved heat transfer tube made of aluminum or aluminum alloy and the internally grooved heat transfer tube made of copper or copper alloy. FIG. アルミニウムまたはアルミニウム合金により構成した内面溝付伝熱管および銅または銅合金により構成した内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dと溝巾W1との関係を示す特性図である。The relationship between the ratio N / D of the number N of grooves and the tube outer diameter D and the groove width W1 is shown for an internally grooved heat transfer tube made of aluminum or an aluminum alloy and an internally grooved heat transfer tube made of copper or a copper alloy. FIG. アルミニウムまたはアルミニウム合金により構成した内面溝付伝熱管および銅または銅合金により構成した内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を示す特性図である。Relationship between the ratio N / D of the number of grooves N and the tube outer diameter D and the heat transfer coefficient improvement ratio for the internally grooved heat transfer tube made of aluminum or aluminum alloy and the internally grooved heat transfer tube made of copper or copper alloy FIG. 本発明の実施形態における内面溝付伝熱管の拡管子による拡管前後のフィン形状を示す模式図である。It is a schematic diagram which shows the fin shape before and behind the pipe expansion by the pipe expander of the inner surface grooved heat transfer tube in the embodiment of the present invention. 本発明の実施形態に係る内面溝付伝熱管および比較例に係る内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dとフィン巾W2との関係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the ratio N / D of the number of grooves N and the tube outer diameter D and the fin width W2 for the internally grooved heat transfer tube according to the embodiment of the present invention and the internally grooved heat transfer tube according to the comparative example. is there. 本発明の実施形態に係る内面溝付伝熱管および比較例に係る内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dと溝巾W1との関係を示す特性図である。FIG. 5 is a characteristic diagram showing the relationship between the ratio N / D of the number of grooves N and the tube outer diameter D and the groove width W1 for the internally grooved heat transfer tube according to the embodiment of the present invention and the internally grooved heat transfer tube according to the comparative example. is there. 比較例における内面溝付伝熱管の拡管子による拡管前後のフィン形状を示す模式図である。It is a schematic diagram which shows the fin shape before and behind the pipe expansion by the pipe expander of the inner surface grooved heat transfer pipe in the comparative example. 冷凍サイクルにオイルセパレータが設けられている場合における、本発明の実施形態に係る内面溝付伝熱管、比較例に係る内面溝付伝熱管および銅または銅合金により構成した内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を示す特性図である。When the oil separator is provided in the refrigeration cycle, the inner surface grooved heat transfer tube according to the embodiment of the present invention, the inner surface grooved heat transfer tube according to the comparative example, and the inner surface grooved heat transfer tube configured by copper or copper alloy, It is a characteristic view which shows the relationship between ratio N / D of the number N of grooves, and pipe outer diameter D, and a heat transfer rate improvement ratio. 冷凍サイクルにオイルセパレータが設けられていない場合における本発明の実施形態に係る内面溝付伝熱管、比較例に係る内面溝付伝熱管および銅または銅合金により構成した内面溝付伝熱管について、溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を示す特性図である。In the case where the oil separator is not provided in the refrigeration cycle, the inner surface grooved heat transfer tube according to the embodiment of the present invention, the inner surface grooved heat transfer tube according to the comparative example, and the inner surface grooved heat transfer tube configured by copper or copper alloy, the groove It is a characteristic view which shows the relationship between ratio N / D of number N and pipe outer diameter D, and a heat transfer rate improvement ratio. フィン高さHとフィン巾W2との比H/W2と熱伝達率向上比との関係を示す特性図である。It is a characteristic view which shows the relationship between ratio H / W2 of fin height H and fin width W2, and a heat transfer rate improvement ratio. フィン高さHと伝熱管1の構成材料であるアルミニウムまたはアルミニウム合金の引張り強度σとの比H/σと熱伝達率向上比との関係を示す特性図である。It is a characteristic view showing the relationship between the ratio H / σ of the fin height H and the tensile strength σ of the aluminum or aluminum alloy that is the constituent material of the heat transfer tube 1 and the heat transfer coefficient improvement ratio. リード角θと熱伝達率向上比との関係を示す特性図である。It is a characteristic view which shows the relationship between lead angle (theta) and a heat transfer rate improvement ratio. リード角θと冷媒の圧力損失上昇比との関係を示す特性図である。It is a characteristic view which shows the relationship between lead angle (theta) and the pressure loss increase ratio of a refrigerant | coolant. リード角θと熱交換性能比との関係を示す特性図である。It is a characteristic view which shows the relationship between lead angle (theta) and heat exchange performance ratio.

以下、本発明の一実施形態について図に基づいて説明する。本実施形態に係る内面溝付伝熱管は、冷凍サイクルの冷凍機油を含有する二酸化炭素冷媒と空気との間で熱交換を行うフィンアンドチューブ式熱交換器に適用される。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The internally grooved heat transfer tube according to this embodiment is applied to a fin-and-tube heat exchanger that performs heat exchange between a carbon dioxide refrigerant containing refrigeration oil for a refrigeration cycle and air.

図1に示すように、フィンアンドチューブ式熱交換器は、内面溝付伝熱管1(以下、伝熱管1という)、プレートフィン2、Uベント管3およびヘッダ4等から構成されている。   As shown in FIG. 1, the fin-and-tube heat exchanger includes an internally grooved heat transfer tube 1 (hereinafter referred to as a heat transfer tube 1), a plate fin 2, a U vent tube 3 and a header 4.

伝熱管1は、内部を冷媒が流通する管であり、ヘアピン状(略U字状)に曲折されている。本実施形態では、伝熱管1は、アルミニウムまたはアルミニウム合金により構成されている。プレートフィン2は、空気と伝熱管1との伝熱面積を増大させて空気と冷媒との熱交換を促進する伝熱促進部材であり、プレート状(板状)に形成されている。Uベント管3は、U字状に形成されており、複数の伝熱管1の端部同士を接続する管である。ヘッダ4は、伝熱管1に対して冷媒の分配または集合を行うものである。   The heat transfer tube 1 is a tube through which a refrigerant flows, and is bent into a hairpin shape (substantially U shape). In the present embodiment, the heat transfer tube 1 is made of aluminum or an aluminum alloy. The plate fin 2 is a heat transfer promotion member that increases the heat transfer area between the air and the heat transfer tube 1 and promotes heat exchange between the air and the refrigerant, and is formed in a plate shape (plate shape). The U vent pipe 3 is formed in a U shape and connects the ends of the plurality of heat transfer tubes 1. The header 4 distributes or collects the refrigerant with respect to the heat transfer tube 1.

本実施形態のフィンアンドチューブ式熱交換器は、次のように製造される。まず、引き抜き加工により管を形成した後、この管の内面に転造加工を施すことにより管内面に溝が形成された伝熱管1を形成する。   The fin-and-tube heat exchanger of this embodiment is manufactured as follows. First, after forming a tube by drawing, the heat transfer tube 1 having a groove formed on the inner surface of the tube is formed by rolling the inner surface of the tube.

次に、プレートフィン2に、伝熱管1が挿通される貫通孔を形成する。そして、複数のプレートフィン2を等間隔に配置した後、貫通孔に伝熱管1を挿通する。その状態で、伝熱管1内に拡管子を挿通し、拡管子により管内面を機械的に拡管して伝熱管1とプレートフィン2とを密着させる。その後、伝熱管1にUベント管3およびヘッダ4をろう付け接合する。これにより、図1に示すような、内部に冷媒流路が形成されたフィンアンドチューブ式熱交換器が完成する。   Next, a through hole through which the heat transfer tube 1 is inserted is formed in the plate fin 2. And after arrange | positioning the several plate fin 2 at equal intervals, the heat exchanger tube 1 is penetrated to a through-hole. In this state, a tube expander is inserted into the heat transfer tube 1, and the tube inner surface is mechanically expanded by the tube expander to bring the heat transfer tube 1 and the plate fin 2 into close contact with each other. Thereafter, the U vent pipe 3 and the header 4 are brazed to the heat transfer pipe 1. As a result, a fin-and-tube heat exchanger having a coolant channel formed therein is completed as shown in FIG.

続いて、本実施形態の伝熱管1の詳細な構成について説明する。以下、特に明記しない限り「伝熱管1」とは、拡管前の伝熱管1を意味している。   Then, the detailed structure of the heat exchanger tube 1 of this embodiment is demonstrated. Hereinafter, unless otherwise specified, “heat transfer tube 1” means the heat transfer tube 1 before expansion.

図2および図3に示すように、伝熱管1の管内面には、複数の溝11が螺旋状に形成されている。溝11は、伝熱管1の管軸と傾斜する方向に延びている。また、伝熱管1の管内面には、螺旋状の溝11間の突起として螺旋状に延びるフィン12が形成されている。伝熱管1の管内面に溝11およびフィン12が形成されることにより、管内面と冷媒との接触面積が増え、伝熱性能が向上する。   As shown in FIGS. 2 and 3, a plurality of grooves 11 are spirally formed on the inner surface of the heat transfer tube 1. The groove 11 extends in a direction inclined with respect to the tube axis of the heat transfer tube 1. In addition, fins 12 that spirally extend as protrusions between the spiral grooves 11 are formed on the inner surface of the heat transfer tube 1. By forming the grooves 11 and the fins 12 on the tube inner surface of the heat transfer tube 1, the contact area between the tube inner surface and the refrigerant is increased, and the heat transfer performance is improved.

図2に示すように、伝熱管1の外径(管外径)をD(単位:mm)とする。図3に示すように、溝11の管軸方向に対するリード角、すなわち伝熱管1の管内面における管軸方向に平行な直線Lと溝11が延びる方向とが成す角度(ねじれ角)をθ(単位:°)とする。   As shown in FIG. 2, the outer diameter (tube outer diameter) of the heat transfer tube 1 is D (unit: mm). As shown in FIG. 3, the lead angle with respect to the tube axis direction of the groove 11, that is, the angle (twist angle) formed by the straight line L parallel to the tube axis direction on the tube inner surface of the heat transfer tube 1 and the direction in which the groove 11 extends is θ ( Unit: °).

図4に示すように、伝熱管1の管軸直交断面において、底肉厚をt、フィンの高さ、すなわち溝の深さをH(単位:mm)とする。伝熱管1の管軸直交断面において、溝11の底面の巾(溝巾)、すなわち溝11の底面における伝熱管1の周方向の長さをW1(単位:mm)とする。伝熱管1の管軸直交断面において、フィン12の根本部分の巾(フィン巾)、すなわちフィン12の根本部分における伝熱管1の周方向の長さをW2(単位:mm)とする。1つの伝熱管1の有する溝11の個数(溝数)をNとする。   As shown in FIG. 4, in the tube axis orthogonal cross section of the heat transfer tube 1, the bottom wall thickness is t, and the fin height, that is, the groove depth is H (unit: mm). In the cross section perpendicular to the tube axis of the heat transfer tube 1, the width of the bottom surface of the groove 11 (groove width), that is, the length in the circumferential direction of the heat transfer tube 1 at the bottom surface of the groove 11 is defined as W1 (unit: mm). In the cross section orthogonal to the tube axis of the heat transfer tube 1, the width of the root portion of the fin 12 (fin width), that is, the circumferential length of the heat transfer tube 1 at the root portion of the fin 12 is W2 (unit: mm). Let N be the number of grooves 11 (number of grooves) of one heat transfer tube 1.

ここで、溝数Nと管外径Dとの比N/Dとフィン巾W2との関係を図5に示し、溝数Nと管外径Dとの比N/Dと溝巾W1との関係を図6に示す。また、溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を図7に示す。   Here, the relationship between the ratio N / D between the number of grooves N and the tube outer diameter D and the fin width W2 is shown in FIG. 5, and the ratio N / D between the number of grooves N and the tube outer diameter D and the groove width W1 The relationship is shown in FIG. FIG. 7 shows the relationship between the ratio N / D between the number N of grooves and the pipe outer diameter D and the heat transfer coefficient improvement ratio.

図7の縦軸は、伝熱管1を管内面に溝11およびフィン12がない平滑管としたフィンアンドチューブ式熱交換器に対する熱伝達率の向上比を示している。なお、後述する図12〜16の縦軸も、図7の縦軸と同様の熱交換率の向上比を示している。また、図5〜図7において、実線は伝熱管1をアルミニウムまたはアルミニウム合金により構成した場合(以下、Al溝付管という)を、破線は伝熱管1を銅または銅合金により構成した場合(以下、Cu溝付管という)をそれぞれ示している。   The vertical axis | shaft of FIG. 7 has shown the improvement ratio of the heat transfer rate with respect to the fin and tube type heat exchanger which made the heat exchanger tube 1 the smooth tube which does not have the groove | channel 11 and the fin 12 in the tube inner surface. In addition, the vertical axis | shaft of FIGS. 12-16 mentioned later has also shown the improvement ratio of the heat exchange rate similar to the vertical axis | shaft of FIG. 5 to 7, the solid line indicates the case where the heat transfer tube 1 is made of aluminum or an aluminum alloy (hereinafter referred to as an Al grooved tube), and the broken line indicates the case where the heat transfer tube 1 is formed of copper or a copper alloy (hereinafter referred to as “the aluminum grooved tube”). , Referred to as a Cu grooved tube).

Al溝付管は、Cu溝付管と比較して構成材料の引張り強度が低下するので、伝熱管1の底肉厚tが増加する。このため、Al溝付管では、図5に示すように、溝数Nを同一とした場合のフィン巾W2がCu溝付管よりも大きくなるとともに、図6に示すように、溝数Nを同一とした場合の溝巾W1がCu溝付管よりも小さくなる。その結果、Al溝付管では、溝11に冷凍機油が滞留し易くなり、図7に示すように、フィン12による良好な伝熱促進効果が得られない可能性がある。   Since the tensile strength of the constituent material of the Al grooved tube is lower than that of the Cu grooved tube, the bottom wall thickness t of the heat transfer tube 1 is increased. Therefore, in the Al grooved tube, as shown in FIG. 5, the fin width W2 when the number of grooves N is the same is larger than that of the Cu grooved tube, and as shown in FIG. The groove width W1 when made the same is smaller than the Cu grooved tube. As a result, in the Al grooved tube, the refrigerating machine oil is likely to stay in the groove 11, and as shown in FIG.

ところで、従来の伝熱管1は、構成材料として銅または銅合金が用いられ、拡管子による伝熱管1の拡管によってフィン12が潰れることを抑制するために、一定以上のフィン巾W2を確保している。   By the way, the conventional heat transfer tube 1 uses copper or a copper alloy as a constituent material, and in order to prevent the fin 12 from being crushed by the expansion of the heat transfer tube 1 by the expansion tube, ensure a fin width W2 of a certain level or more. Yes.

これに対し、本実施形態の伝熱管1は、構成材料としてアルミニウムまたはアルミニウム合金が用いられるとともに、図8に示すように、拡管後の溝巾W1’を一定以上確保するために、拡管前のフィン巾W2が従来よりも小さく設定されている。そこで、本発明者は、拡管後のフィン潰れを見越したフィン高さHと溝数Nとの最適仕様を検討した。   On the other hand, the heat transfer tube 1 of the present embodiment uses aluminum or an aluminum alloy as a constituent material, and, as shown in FIG. 8, in order to ensure a groove width W1 ′ after the tube expansion to a certain level or more, The fin width W2 is set smaller than the conventional one. Therefore, the present inventor examined the optimum specifications of the fin height H and the number of grooves N in anticipation of the fin crush after the pipe expansion.

本実施形態に係る伝熱管1および比較例に係る伝熱管1について、溝数Nと管外径Dとの比N/Dとフィン巾W2との関係を図9に示し、溝数Nと管外径Dとの比N/Dと溝巾W1との関係を図10に示す。図9および図10において、実線は本実施形態に係る伝熱管1を、一点鎖線は比較例に係る伝熱管1をそれぞれ示している。   For the heat transfer tube 1 according to this embodiment and the heat transfer tube 1 according to the comparative example, the relationship between the ratio N / D of the number of grooves N and the tube outer diameter D and the fin width W2 is shown in FIG. FIG. 10 shows the relationship between the ratio N / D with the outer diameter D and the groove width W1. 9 and 10, the solid line indicates the heat transfer tube 1 according to the present embodiment, and the alternate long and short dash line indicates the heat transfer tube 1 according to the comparative example.

なお、比較例に係る伝熱管1は、図11に示すような従来の形状の伝熱管1、すなわち拡管子による伝熱管1の拡管によってフィン12が潰れることを抑制するために一定以上のフィン巾W2を確保した伝熱管1を、アルミニウムまたはアルミニウム合金により構成したものである。   The heat transfer tube 1 according to the comparative example has a fin width of a certain level or more in order to prevent the fin 12 from being crushed by the heat transfer tube 1 having a conventional shape as shown in FIG. The heat transfer tube 1 that secures W2 is made of aluminum or an aluminum alloy.

本実施形態に係る伝熱管1は、図9に示すように溝数Nを同一とした場合のフィン巾W2が比較例に係る伝熱管1よりも小さく、図10に示すように溝数Nを同一とした場合の溝巾W1が比較例に係る伝熱管1よりも大きい。   The heat transfer tube 1 according to the present embodiment has a fin width W2 that is smaller than that of the heat transfer tube 1 according to the comparative example when the number of grooves N is the same as shown in FIG. 9, and the number of grooves N is as shown in FIG. The groove width W1 when it is the same is larger than the heat transfer tube 1 according to the comparative example.

続いて、本実施形態に係る伝熱管1、比較例の伝熱管1および従来技術であるCu溝付管について、溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を図12および図3に示す。図12は、冷凍サイクルに、冷媒中に混入した圧縮機潤滑用の冷凍機油を冷媒から分離するオイルセパレータ(図示せず)が設けられている場合(オイルレートが1%未満)を示しており、図13は、冷凍サイクルにオイルセパレータが設けられていない場合(オイルレートが1〜5%)を示している。   Subsequently, for the heat transfer tube 1 according to the present embodiment, the heat transfer tube 1 of the comparative example, and the Cu grooved tube as the conventional technology, the ratio N / D of the number N of grooves and the tube outer diameter D and the heat transfer coefficient improvement ratio The relationship is shown in FIG. 12 and FIG. FIG. 12 shows a case where the refrigeration cycle is provided with an oil separator (not shown) for separating the compressor lubrication oil mixed in the refrigerant from the refrigerant (oil rate is less than 1%). FIG. 13 shows a case where an oil separator is not provided in the refrigeration cycle (oil rate is 1 to 5%).

また、図12および図13において、実線は本実施形態に係る伝熱管1を、一点鎖線は比較例に係る伝熱管1を、破線はCu溝付管をそれぞれ示している。なお、図12および図13中には、本実施形態に係る伝熱管1として、フィン高さHを0.15mmから0.3mmの間で4段階変化させた場合のそれぞれにおける溝数Nと管外径Dとの比N/Dと熱伝達率向上比との関係を示している。   12 and 13, the solid line indicates the heat transfer tube 1 according to the present embodiment, the alternate long and short dash line indicates the heat transfer tube 1 according to the comparative example, and the broken line indicates a Cu grooved tube. 12 and 13, as the heat transfer tube 1 according to the present embodiment, the number of grooves N and the tube in the case where the fin height H is changed in four steps between 0.15 mm and 0.3 mm. The relationship between the ratio N / D with the outer diameter D and the heat transfer coefficient improvement ratio is shown.

図12に示すように、冷凍サイクルにオイルセパレータが設けられている場合、従来技術であるCu溝付管では、最大で平滑管の熱伝達率の2.1倍程度まで熱伝達率を向上させることができる。一方、比較例の伝熱管1、すなわちCu溝付管と同様の形状の伝熱管をアルミニウムまたはアルミニウム合金で構成したものでは、最大で平滑管の熱伝達率の1.3倍程度までしか熱伝達率を向上させることができない。   As shown in FIG. 12, in the case where an oil separator is provided in the refrigeration cycle, the conventional Cu grooved tube improves the heat transfer coefficient up to about 2.1 times the heat transfer coefficient of the smooth tube. be able to. On the other hand, in the heat transfer tube 1 of the comparative example, that is, the heat transfer tube having the same shape as the Cu grooved tube is made of aluminum or an aluminum alloy, the heat transfer is only up to about 1.3 times the heat transfer coefficient of the smooth tube. The rate cannot be improved.

これに対し、本実施形態の伝熱管1では、従来技術であるCu溝付管と同様に、最大で平滑管の熱伝達率の2.1倍程度まで熱伝達率を向上させることができる。具体的には、溝数Nと管外径Dとの比N/Dを4以上、9以下の範囲とすることで、平滑管の熱伝達率の約1.7倍の熱伝達率を確保することができる。   On the other hand, in the heat transfer tube 1 of the present embodiment, the heat transfer rate can be improved up to about 2.1 times the heat transfer rate of the smooth tube, similarly to the conventional Cu grooved tube. Specifically, by setting the ratio N / D between the number of grooves N and the tube outer diameter D to be in the range of 4 to 9, the heat transfer coefficient of about 1.7 times the heat transfer coefficient of the smooth tube is secured. can do.

また、図13に示すように、冷凍サイクルにオイルセパレータが設けられていない場合、従来技術であるCu溝付管では、最大で平滑管の熱伝達率の1.9倍程度まで熱伝達率を向上させることができる。一方、比較例の伝熱管1、すなわちCu溝付管と同様の形状の伝熱管をアルミニウムまたはアルミニウム合金で構成したものでは、最大で平滑管の熱伝達率の1.3倍程度までしか熱伝達率を向上させることができない。   In addition, as shown in FIG. 13, when the oil separator is not provided in the refrigeration cycle, the heat transfer coefficient can be increased up to about 1.9 times the heat transfer coefficient of the smooth tube in the conventional Cu grooved tube. Can be improved. On the other hand, in the heat transfer tube 1 of the comparative example, that is, the heat transfer tube having the same shape as the Cu grooved tube is made of aluminum or an aluminum alloy, the heat transfer is only up to about 1.3 times the heat transfer coefficient of the smooth tube. The rate cannot be improved.

これに対し、本実施形態の伝熱管1では、従来技術であるCu溝付管と同様に、最大で平滑管の熱伝達率の1.9倍程度まで熱伝達率を向上させることができる。具体的には、溝数Nと管外径Dとの比N/Dを4以上、7.5以下の範囲とすることで、平滑管の熱伝達率の約1.7倍の熱伝達率を確保することができる。   On the other hand, in the heat transfer tube 1 of the present embodiment, the heat transfer coefficient can be improved up to about 1.9 times the heat transfer coefficient of the smooth tube, similarly to the Cu grooved tube which is the prior art. Specifically, by setting the ratio N / D between the number of grooves N and the pipe outer diameter D to be in the range of 4 to 7.5, the heat transfer coefficient is about 1.7 times the heat transfer coefficient of the smooth tube. Can be secured.

続いて、フィン高さHとフィン巾W2との比H/W2と熱伝達率向上比との関係を図14に示す。図14に示すように、フィン高さHとフィン巾W2との比H/W2が小さくなると、溝11内に冷凍機油が滞留しやすくなり、これにより伝熱性能が急激に低下する。一方、フィン高さHとフィン巾W2との比H/W2が大きくなると、拡管子による伝熱管1の拡管の際にフィン12が倒れるフィン倒れが発生し、伝熱性能が低下する。このため、フィン高さHとフィン巾W2との比H/W2を0.5以上、1.7以下の範囲とすることで、伝熱性能を向上させることができる。   Next, FIG. 14 shows the relationship between the ratio H / W2 between the fin height H and the fin width W2 and the heat transfer coefficient improvement ratio. As shown in FIG. 14, when the ratio H / W2 between the fin height H and the fin width W2 is reduced, the refrigerating machine oil is liable to stay in the groove 11, and thereby the heat transfer performance is drastically reduced. On the other hand, when the ratio H / W2 between the fin height H and the fin width W2 is increased, fin collapse occurs in which the fin 12 collapses when the heat transfer tube 1 is expanded by the expander, and heat transfer performance is reduced. For this reason, heat transfer performance can be improved by making ratio H / W2 of fin height H and fin width W2 into the range of 0.5 or more and 1.7 or less.

続いて、フィン高さHと伝熱管1の構成材料であるアルミニウムまたはアルミニウム合金の引張り強度σとの比H/σと熱伝達率向上比との関係を図15に示す。なお、本実施形態では、伝熱管1の構成材料の引張り強度σは、95MPa以上に設定されている。   Next, FIG. 15 shows the relationship between the ratio H / σ between the fin height H and the tensile strength σ of aluminum or aluminum alloy which is a constituent material of the heat transfer tube 1 and the heat transfer coefficient improvement ratio. In the present embodiment, the tensile strength σ of the constituent material of the heat transfer tube 1 is set to 95 MPa or more.

図15に示すように、フィン高さHと引張り強度σとの比H/σが小さくなると、フィン12による冷媒撹拌効果が小さくなることで伝熱性能が急激に低下する。一方、フィン高さHと引張り強度σとの比H/σが大きくなると、拡管子による伝熱管1の拡管の際にフィン12が倒れるフィン倒れが発生し、伝熱性能が低下する。   As shown in FIG. 15, when the ratio H / σ between the fin height H and the tensile strength σ becomes small, the effect of stirring the refrigerant by the fins 12 becomes small, so that the heat transfer performance sharply decreases. On the other hand, when the ratio H / σ between the fin height H and the tensile strength σ is increased, the fin collapse occurs in which the fin 12 falls when the heat transfer tube 1 is expanded by the tube expander, and the heat transfer performance is deteriorated.

このため、フィン高さHと引張り強度σとの比H/σを0.0014以上、0.004以下の範囲とすることで、伝熱性能を向上させることができる。特に、伝熱性能が最も高くなる溝数Nと管外径Dとの比N/Dが7の場合では、フィン高さHと引張り強度σとの比H/σを0.002以上、0.004以下の範囲とすることで、伝熱性能を向上させることができる。   For this reason, the heat transfer performance can be improved by setting the ratio H / σ of the fin height H to the tensile strength σ in the range of 0.0014 or more and 0.004 or less. In particular, when the ratio N / D between the number of grooves N where the heat transfer performance is highest and the pipe outer diameter D is 7, the ratio H / σ between the fin height H and the tensile strength σ is 0.002 or more, 0 Heat transfer performance can be improved by setting it as the range below 0.004.

続いて、リード角θと熱伝達率向上比との関係を図16に示し、リード角θと冷媒の圧力損失上昇比との関係を図17に示し、リード角θと熱交換器の性能比との関係を図18に示す。図17の縦軸は、伝熱管1を平滑管としたフィンアンドチューブ式熱交換器に対する冷媒の圧力損失の上昇比を示している。また、図18の縦軸に示す熱交換器の性能比は、伝熱管1を平滑管としたフィンアンドチューブ式熱交換器の熱交換性能を1として表した熱交換性能の値である。   Subsequently, FIG. 16 shows the relationship between the lead angle θ and the heat transfer coefficient improvement ratio, and FIG. 17 shows the relationship between the lead angle θ and the pressure loss increase ratio of the refrigerant. FIG. 18 shows the relationship. The vertical axis | shaft of FIG. 17 has shown the raise ratio of the pressure loss of the refrigerant | coolant with respect to the fin and tube type heat exchanger which used the heat exchanger tube 1 as the smooth tube. Further, the performance ratio of the heat exchanger shown on the vertical axis in FIG. 18 is a value of the heat exchange performance in which the heat exchange performance of the fin-and-tube heat exchanger having the heat transfer tube 1 as a smooth tube is represented as 1.

図16に示すように、リード角θが10°より小さくなると、伝熱管1内の冷媒の流れが螺旋状から直線状に近くなるため、高渇き度領域においてドライアウトし、熱伝達率が低下する。一方、図17に示すように、リード角θが大きくなるにつれて、冷媒の圧力損失が上昇する。   As shown in FIG. 16, when the lead angle θ is smaller than 10 °, the refrigerant flow in the heat transfer tube 1 becomes closer to a straight line from the spiral shape, so that it is dried out in the high thirst degree region and the heat transfer coefficient is lowered. To do. On the other hand, as shown in FIG. 17, the pressure loss of the refrigerant increases as the lead angle θ increases.

このため、リード角θを10°以上、40°以下の範囲とすることで、図18に示すように熱交換性能を向上させることができる。具体的には、熱交換性能を平滑管の1.05倍まで向上させることができる。   For this reason, heat exchange performance can be improved as shown in FIG. 18 by making lead angle (theta) into the range of 10 degrees or more and 40 degrees or less. Specifically, the heat exchange performance can be improved up to 1.05 times that of the smooth tube.

(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(Other embodiments)
The present invention is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present invention.

(1)上記実施形態では、溝11を、伝熱管1の管軸と傾斜する方向に延びるように形成した例について説明したが、これに限らず、溝11を、伝熱管1の管軸と平行に延びるように形成してもよい。   (1) Although the said embodiment demonstrated the example which formed the groove | channel 11 so that it might extend in the direction inclined with respect to the tube axis | shaft of the heat exchanger tube 1, it does not restrict to this but the groove | channel 11 is the tube axis | shaft of the heat exchanger tube 1. You may form so that it may extend in parallel.

(2)上記実施形態では、伝熱管1を、引き抜き加工により管を形成した後、この管の内面に転造加工を施すことにより形成した例について説明したが、伝熱管1の製造方法はこれに限定されない。例えば、伝熱管1を、押出し成形により形成してもよい。 (2) In the above-described embodiment, the heat transfer tube 1 is formed by drawing the tube by drawing and then rolling the inner surface of the tube. However, the method for manufacturing the heat transfer tube 1 is described below. It is not limited to. For example, the heat transfer tube 1, but it may also be formed by extrusion molding.

1 内面溝付伝熱管
11 溝
12 フィン
1 Heat Transfer Tube with Internal Groove 11 Groove 12 Fin

Claims (5)

冷凍機油を含有する二酸化炭素を冷媒として使用する熱交換器の蒸発器用内面溝付伝熱管であって、
アルミニウムまたはアルミニウム合金により構成された伝熱管(1)を備えており、
前記伝熱管(1)内面に、前記伝熱管(1)の管軸と平行または傾斜する方向に延びる複数個の溝(11)が形成されており、
隣り合う前記溝(11)間には、複数個のフィン(12)が形成されており、
前記伝熱管(1)の管外径をD(単位:mm)、前記溝(11)の個数をN、前記フィン(12)の高さをH(単位:mm)、前記フィン(12)の巾をW2(単位:mm)としたとき、前記管外径および前記溝(11)の個数が、4≦N/D≦9の関係を満たしており、かつ、前記フィン(12)の高さおよび前記フィン(12)の巾が、0.5≦H/W2≦1.7の関係を満たしており、
前記伝熱管(1)は、引き抜き加工または押し出し加工により形成されていることを特徴とする蒸発器用内面溝付伝熱管。
An internal grooved heat transfer tube for an evaporator of a heat exchanger that uses carbon dioxide containing refrigeration oil as a refrigerant,
A heat transfer tube (1) made of aluminum or aluminum alloy;
A plurality of grooves (11) extending in a direction parallel to or inclined with respect to the tube axis of the heat transfer tube (1) are formed on the inner surface of the heat transfer tube (1),
A plurality of fins (12) are formed between the adjacent grooves (11),
The tube outer diameter of the heat transfer tube (1) is D (unit: mm), the number of the grooves (11) is N, the height of the fin (12) is H (unit: mm), and the fin (12) When the width is W2 (unit: mm), the outer diameter of the tube and the number of the grooves (11) satisfy the relationship of 4 ≦ N / D ≦ 9, and the height of the fin (12) And the width of the fin (12) satisfies the relationship of 0.5 ≦ H / W2 ≦ 1.7 ,
The heat transfer tube (1) is an internally grooved heat transfer tube for an evaporator, wherein the heat transfer tube (1) is formed by drawing or extrusion .
前記管外径および前記溝(11)の個数が、4≦N/D≦7.5の関係を満たしており、かつ、前記フィン(12)の高さおよび前記フィン(12)の巾が、0.5≦H/W2≦1.7の関係を満たしていることを特徴とする請求項1に記載の蒸発器用内面溝付伝熱管。   The tube outer diameter and the number of grooves (11) satisfy the relationship of 4 ≦ N / D ≦ 7.5, and the height of the fin (12) and the width of the fin (12) are The internal grooved heat transfer tube for an evaporator according to claim 1, wherein a relationship of 0.5 ≦ H / W2 ≦ 1.7 is satisfied. 前記伝熱管(1)内面における前記管軸方向に平行な直線と前記溝(11)が延びる方向とが成す角度であるリード角(θ)が、10°以上、40°以下であることを特徴とする請求項1または2に記載の蒸発器用内面溝付伝熱管。   A lead angle (θ) that is an angle formed by a straight line parallel to the tube axis direction on the inner surface of the heat transfer tube (1) and a direction in which the groove (11) extends is 10 ° or more and 40 ° or less. An internally grooved heat transfer tube for an evaporator according to claim 1 or 2. 前記伝熱管(1)の構成材料であるアルミニウムまたはアルミニウム合金の引張り強度をσ(単位:MPa)としたとき、前記フィン(12)の高さおよび前記構成材料の引張り強度が、0.0014≦H/σ≦0.004の関係を満たしていることを特徴とする請求項1ないし3のいずれか1つに記載の蒸発器用内面溝付伝熱管。   When the tensile strength of aluminum or aluminum alloy as the constituent material of the heat transfer tube (1) is σ (unit: MPa), the height of the fin (12) and the tensile strength of the constituent material are 0.0014 ≦ 4. The evaporator inner grooved heat transfer tube according to claim 1, wherein a relationship of H / σ ≦ 0.004 is satisfied. 5. 前記フィン(12)の高さおよび前記構成材料の引張り強度が、0.002≦H/σ≦0.004の関係を満たしていることを特徴とする請求項4に記載の蒸発器用内面溝付伝熱管。   5. The inner groove for an evaporator according to claim 4, wherein the height of the fin (12) and the tensile strength of the constituent material satisfy a relationship of 0.002 ≦ H / σ ≦ 0.004. Heat transfer tube.
JP2014043803A 2014-03-06 2014-03-06 Heat transfer tube with inner groove for evaporator Active JP6294709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014043803A JP6294709B2 (en) 2014-03-06 2014-03-06 Heat transfer tube with inner groove for evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014043803A JP6294709B2 (en) 2014-03-06 2014-03-06 Heat transfer tube with inner groove for evaporator

Publications (2)

Publication Number Publication Date
JP2015169363A JP2015169363A (en) 2015-09-28
JP6294709B2 true JP6294709B2 (en) 2018-03-14

Family

ID=54202261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043803A Active JP6294709B2 (en) 2014-03-06 2014-03-06 Heat transfer tube with inner groove for evaporator

Country Status (1)

Country Link
JP (1) JP6294709B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180817A1 (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09101093A (en) * 1995-10-02 1997-04-15 Mitsubishi Shindoh Co Ltd Heat transfer pipe with inner surface groove
JP2001289585A (en) * 2000-04-05 2001-10-19 Mitsubishi Alum Co Ltd Inner grooved aluminum tube and heat exchanger comprising the same
JP2009228929A (en) * 2008-03-19 2009-10-08 Kobelco & Materials Copper Tube Inc Internally-grooved heat transfer pipe for evaporator
ES2624188T3 (en) * 2011-12-19 2017-07-13 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JP2015169363A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
US11085701B2 (en) Double-row bent heat exchanger
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2005288502A (en) Tube expanding tool and method for expanding tube using the same
JP2007271123A (en) Inner face-grooved heat transfer tube
EP2917674B1 (en) Evaporation heat transfer tube with a hollow cavity
JP2006322661A (en) Heat transfer tube for heat dissipation, and radiator
JPWO2012102053A1 (en) Finned tube heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP6294709B2 (en) Heat transfer tube with inner groove for evaporator
EP2959251B1 (en) Tube structures for heat exchanger
JP2006130558A (en) Method for manufacturing heat exchanger
WO2013094084A1 (en) Air conditioner
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
KR20190072413A (en) Heat exchanger
JP4339665B2 (en) Manufacturing method of heat exchanger
JP2013092335A (en) Aluminum capillary tube for heat exchanger, and heat exchanger using the same
JP2002090086A (en) Inner helically grooved heat exchanger tube and method for manufacturing heat exchanger
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2009121738A (en) Air-cooled heat exchanger
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP5883383B2 (en) Internal grooved tube with excellent extrudability
JP5476080B2 (en) Aluminum inner surface grooved heat transfer tube
WO2010016198A1 (en) Grooved tube for heat exchanger
JP6521424B2 (en) Expansion pipe and design method for expansion pipe
US20200378692A1 (en) Bent heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180216

R150 Certificate of patent or registration of utility model

Ref document number: 6294709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250