WO2008007694A1 - Fin-and-tube type heat exchanger, and its return bend pipe - Google Patents

Fin-and-tube type heat exchanger, and its return bend pipe Download PDF

Info

Publication number
WO2008007694A1
WO2008007694A1 PCT/JP2007/063807 JP2007063807W WO2008007694A1 WO 2008007694 A1 WO2008007694 A1 WO 2008007694A1 JP 2007063807 W JP2007063807 W JP 2007063807W WO 2008007694 A1 WO2008007694 A1 WO 2008007694A1
Authority
WO
WIPO (PCT)
Prior art keywords
groove
tube
return bend
hairpin
pipe
Prior art date
Application number
PCT/JP2007/063807
Other languages
French (fr)
Japanese (ja)
Inventor
Hiroyuki Takahashi
Tsuneo Haba
Akihiko Ishibashi
Original Assignee
Kobelco & Materials Copper Tube, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco & Materials Copper Tube, Ltd. filed Critical Kobelco & Materials Copper Tube, Ltd.
Priority to EP07790611.3A priority Critical patent/EP2042825B1/en
Priority to CN2007800213773A priority patent/CN101466992B/en
Publication of WO2008007694A1 publication Critical patent/WO2008007694A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/09Improving heat transfers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • the present invention is a heat exchanger such as an air conditioner, and in particular, a refrigerant such as a chlorofluorocarbon refrigerant or a natural refrigerant is allowed to flow inside the pipe, and a large number of fins formed of aluminum or the like are installed in parallel on the outer surface of the pipe.
  • a refrigerant such as a chlorofluorocarbon refrigerant or a natural refrigerant is allowed to flow inside the pipe, and a large number of fins formed of aluminum or the like are installed in parallel on the outer surface of the pipe.
  • the fin-and-tube heat exchanger and the return bend pipe connected to the hairpin pipe.
  • Patent Document 1 or Patent Document 2 proposes a fin-and-tube heat exchanger using a smooth tube having a smooth inner surface as a return bend tube and an inner grooved tube as a hairpin tube.
  • the return bend pipe is described as a U-bend pipe
  • the hairpin pipe is described as an electric sewing pipe.
  • Patent Document 2 the return bend pipe is described as a U-bend pipe
  • the hairpin pipe is described as a heat transfer pipe.
  • Patent Document 3 proposes a fin-and-tube heat exchanger for an evaporator (evaporator) using an internally grooved tube as a return bend tube and a smooth tube as a hairpin tube.
  • a return bend pipe is described as a U-bend pipe
  • a hairpin pipe is described as a tube.
  • Patent Document 4 discloses a fin-and-tube heat exchanger using inner grooved tubes for both the return bend tube and the hairpin tube.
  • Patent Document 1 Japanese Utility Model Publication No. 63-154986 (Example, FIGS. 1 to 4)
  • Patent Document 2 JP-A-11-190597 (paragraphs 0022 to 0026, FIG. 1)
  • Patent Document 3 Japanese Utility Model Publication No. 4-122986 (paragraphs 0007 to 0008, FIG. 1)
  • Patent Document 4 Japanese Unexamined Patent Publication No. 2006-98033 (Claim 1, FIG. 4) Disclosure of the invention
  • the non-uniform refrigerant liquid film means that the liquid film thickness becomes non-uniform, and if the liquid film thickness is non-uniform, the thick part of the liquid film A state difference (a function of the surface tension of the refrigerant liquid film and the curvature of the liquid film) occurs in the thin part.
  • this state difference occurs, in principle, a liquid film with a thin refrigerant liquid film is pulled in a direction where the refrigerant liquid film is thicker. The thin part of the liquid film becomes thinner, and evaporation is promoted in this part, while the thick part of the refrigerant liquid film remains. The remaining refrigerant liquid film results in a dry-out state except for the remaining portion, which reduces the effective heat transfer area and lowers the evaporation performance.
  • the present invention has been made in view of the above problems, and it is an object of the present invention to provide a fin-and-tube heat exchanger that can further improve the evaporation performance of the heat exchanger and its return bend pipe. Say it.
  • a first aspect of the present invention provides a hairpin portion in which a large number of hairpin tubes are arranged in parallel, and a retarder in which a large number of return bend tubes joined to the hairpin tube ends of the hairbin portions are arranged in parallel.
  • a fin-and-tube heat exchanger having a bent portion and a fin portion composed of a large number of fins arranged in parallel at regular intervals on the outer surface of the hairpin tube, wherein a refrigerant is supplied into the tube,
  • Groove pitch ratio (P1 / P2) satisfies 0.665-2.
  • / S2 is configured as a fin-and-tube heat exchanger satisfying 0.3 to 3.6.
  • the predetermined first groove is formed on the inner surface of the return bend pipe of the fin-and-tube heat exchanger, so that the refrigerant liquid film is flattened on the return bend pipe inlet side. Furthermore, an “annular flow” can be formed in the refrigerant liquid film inside the pipe, and the disturbance of the refrigerant liquid film in the return bend pipe can be reduced.
  • a uniform “annular flow” is formed inside the tube, and the liquid film in the straight portion of the hairpin tube becomes uniform.
  • heat exchange with the outside of the tube is stabilized and evaporation performance is improved.
  • a second groove lead angle ( ⁇ 2) formed by the second groove of the hairpin tube and the tube axis is 15 ° or more.
  • At least a part of the refrigerant flow path constituted by the hairpin tube and the return bend pipe is branched to form a plurality of refrigerant flow paths.
  • the refrigerant flow rate of the fin-and-tube heat exchanger is branched, so that the refrigerant mass velocity per branch is lowered, and in particular, the refrigerant velocity at the return bend pipe inlet side is lowered.
  • the “annular flow” of the refrigerant liquid film formed inside the pipe is further stabilized.
  • a uniform “annular flow” is formed inside the tube, and the liquid film of the refrigerant becomes uniform in the straight portion of the hairpin tube. The heat exchange with the outside of the tube is stabilized and the evaporation performance is further improved.
  • the refrigerant is a hydrated fluorocarbon non-azeotropic refrigerant mixture.
  • the evaporation performance of the heat exchanger is further improved, and the pressure loss of the refrigerant is reduced.
  • a second aspect of the present invention is a fin-and-tube heat exchange which is joined to a tube end of a hepin tube provided with a large number of fins arranged in parallel at regular intervals on an outer surface, and a refrigerant is supplied into the tube.
  • a refrigerant is supplied into the tube.
  • Groove pitch ratio (P1 / P2) satisfies 0.665-2.
  • the first groove cross-sectional area (S1) per groove in the cross section perpendicular to the tube axis of the first groove and the second cross-sectional area (S2) per groove in the cross section perpendicular to the tube axis of the second groove It is constructed as a return bend pipe that satisfies the groove cross-sectional area ratio (S1 / S2) of 0.3 to 3.6.
  • the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S1 / S2) are predetermined.
  • the “swirl flow” of the liquid refrigerant formed in the hairpin tube is maintained even in the return bend tube.
  • the coolant liquid film can be flattened on the return bend tube inlet side, and the coolant liquid film inside the tube becomes uniform. Flow "can be formed. As a result, the disturbance of the refrigerant liquid film inside the return bend pipe is reduced.
  • the groove depth ratio (hl / h2) within a predetermined range, it is difficult for the refrigerant liquid film to be disturbed, which makes it difficult for the refrigerant to detach inside the pipe.
  • a uniform “annular flow” is formed inside the pipe, and the liquid film of the refrigerant in the straight pipe portion of the hairpin pipe is uniform. Therefore, heat exchange with the outside of the tube is stabilized, and the evaporation performance is further improved.
  • the foot length of the return bend pipe (U is preferably 1.0 to 1.5 times the pitch (P)).
  • the leg length of the return bend tube (U is set to a predetermined multiple of the bending pitch (P).
  • P the bending pitch
  • the “circular flow” is sufficiently formed in the refrigerant liquid film in the straight pipe part up to the bent part, and the refrigerant liquid film in the bent part of the return bend pipe is disturbed ( Peeling flow) Does not occur.
  • the “annular flow” flows in, forming a uniform liquid film in the straight portion of the hairpin tube, and heat exchange with the outside of the tube. The conversion is stabilized and the evaporation performance is further improved.
  • the material of the return bend tube is preferably made of a material having a lower thermal conductivity than the material of the hairpin tube.
  • the heat conductivity of the tube main body is lower than that of the hairpin tube, thereby suppressing heat loss in the return bend tube.
  • Reducing the heat loss in the return bend pipe causes the refrigerant liquid film to splash due to the evaporation of the refrigerant inside the return bend pipe or the collapse of the “annular flow” of the refrigerant liquid film. Disturbance (separated flow) does not occur.
  • the “annular flow” flows in, forming a uniform liquid film in the straight tube portion of the hairpin tube, and heat from the outside of the tube. Exchange is stabilized and evaporation performance is further improved.
  • the material of the return bend tube is preferably made of a copper alloy that is more heat resistant than the material of the hairpin tube.
  • the first maximum inner diameter (ID1) of the return bend tube is preferably (ID1) ⁇ (ID2) in relation to the second maximum inner diameter (ID2) of the hairpin tube.
  • the fin-and-tube heat exchanger of the first aspect of the present invention it is possible to improve the evaporation performance of the heat exchanger by using the return bend pipe.
  • the ring is formed on the refrigerant liquid film inside the pipe.
  • the refrigerant liquid film in the straight portion of the hairpin tube becomes uniform, and the evaporation performance of the heat exchanger can be improved.
  • the evaporation performance of the heat exchanger can be further improved. It becomes possible.
  • FIG. 1 is a perspective view showing a configuration of a return bend pipe according to the present invention.
  • FIG. 2 is a partially broken front view showing an example of a fin-and-tube heat exchanger incorporating a return bend pipe according to the present invention.
  • FIG. 3 (a) is a perspective view of the heat exchanger of FIG. 2 as viewed from the return bend tube side, (b) is a perspective view of the heat exchanger as viewed from the hairpin tube side, and (c) is the inside of the heat exchanger.
  • FIG. 6 is a schematic diagram schematically showing the flow of the refrigerant.
  • FIG. 4 is an enlarged end view when cut in the tube axis direction showing an example of a joint portion between a hairpin tube and a return bend tube.
  • FIG. 5 (a) is an end view perpendicular to the axis of the return bend pipe, and (b) is a partially enlarged end view of (a).
  • FIG. 6 (a) is an end view of the hairpin tube perpendicular to the tube axis, and (b) is a partially enlarged end view of (a).
  • FIG. 7] (a) and (b) are schematic views schematically showing the flow of refrigerant in a heat exchanger according to another embodiment of the present invention.
  • FIG. 8 (a) is a schematic diagram of a suction type wind tunnel used for measuring the evaporation performance of a heat exchanger, and (b) is a schematic diagram of a refrigerant supply device for supplying refrigerant to the suction type wind tunnel of (a). It is.
  • FIG. 1 shows the return bend pipe
  • Fig. 2 is a partially broken front view showing an example of a fin-and-tube heat exchanger incorporating a return bend tube.
  • Fig. 3 (a) shows the heat exchanger of Fig. 2 on the return bend tube side.
  • (B) is a perspective view of the heat exchanger as viewed from the hairpin tube side,
  • (c) is a schematic diagram schematically showing the flow of refrigerant in the heat exchanger, and
  • FIG. Fig. 5 (a) is an enlarged end view when cut in the tube axis direction showing an example of a joint with the return bend pipe, Fig.
  • Fig. 5 (a) is a pipe bend orthogonal end view of the return bend pipe, and (b) is a part of (a).
  • Fig. 6 (a) is an end view orthogonal to the axis of the hairpin tube, (b) is a partially enlarged end view of (a), and
  • Figs. 7 (a) and (b) are heat exchanges of other embodiments.
  • Fig. 8 (a) is a schematic diagram of the refrigerant flow in the exchanger.
  • Fig. 8 (a) is a schematic diagram of a suction wind tunnel used to measure the evaporation performance of the heat exchanger.
  • (B) is a schematic diagram of (a).
  • Supply refrigerant to suction type wind tunnel It is a schematic diagram of a medium supply device.
  • the return bend pipe 1 of the present invention is used in a fin-and-tube heat exchanger (hereinafter referred to as a heat exchanger) 20 and a hairpin for supplying refrigerant to the inside of the pipe. It is joined to the pipe end of the pipe 11.
  • This return bend pipe 1 is formed on a pipe body la formed in a U-shape, a pipe end lb connected to the hairpin pipe 11 at the pipe end of the pipe body la, and an inner surface of the pipe body la.
  • a number of first grooves 2 are provided (see FIG. 4; the description of the first groove is omitted in FIG. 1).
  • the return bend tube 1 is interposed between the two hairpin tubes 11 and 11 and connects the hairpin tubes 11 to each other, as shown in FIG. 2, a plurality of hairpin tubes 11 and 11 are connected in series. By connecting to, a long-distance refrigerant flow path is formed.
  • the return bend pipe 1 incorporates the return bend pipe 1 by restricting the inner groove shape of the first groove 2 formed on the inner surface of the pipe as follows.
  • the evaporation performance of the heat exchanger 20 (see Fig. 2 and Fig. 3) can be improved.
  • the return bend pipe 1 uses 3 to 10 mm as the outer diameter of the hairpin pipe 11 to be joined (second outer diameter OD2), the outer diameter of the pipe (first outer diameter OD1) is It is preferable to use a 3 to 1 Omm tube that is the same as a hairpin tube!
  • the first groove 2 of the return bend pipe 1 has the first groove pitch (P1) in the cross section perpendicular to the pipe axis,
  • the groove pitch ratio (P1 / P2) to the second groove pitch (P2) in the cross section perpendicular to the tube axis of the spiral second groove 12 formed on the inner surface of the hairpin tube 11 satisfies 0.665-2.
  • the first groove cross-sectional area (S1) per groove in the cross section perpendicular to the pipe axis of the first groove 2 and the second cross-sectional area per groove in the cross section perpendicular to the pipe axis of the second groove 12 ( The groove cross-sectional area ratio (S1 / S2) with S2) must satisfy 0.3 to 3.6.
  • the groove cross-sectional area ratio (S1 / S2) is more preferably 0.54-2.7.
  • the reason for limiting the numerical values of the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S1 / S2) will be described below.
  • the groove pitch ratio (P1 / P2) is less than 0.65, the number of grooves in the return bend pipe 1 that occupy one groove in the hairpin pipe 11 increases, so that the liquid refrigerant flows from the hairpin pipe 11 to the return bend pipe 1. Flows into the refrigerant liquid film inside the pipe (first groove 2) on the return bend pipe inlet side, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the hairpin tube 11 at the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is formed in the refrigerant liquid film at the straight tube portion of the hairpin tube, and heat exchange with the outside of the tube is performed. It becomes unstable and the evaporation performance decreases.
  • the groove cross-sectional area ratio (S1 / S2) is less than 0.3, when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1, the cross-sectional area of the first groove 2 is greatly reduced, so that the return bend The refrigerant liquid film contracts on the pipe inlet side, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the next-stage air pipe 11, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube. Heat exchange becomes unstable and evaporation performance decreases.
  • the first groove 2 of the return bend tube 1 has a first groove lead angle ( ⁇ 1) formed by the first groove 2 and the tube axis, and a hairpin tube 11
  • the angle difference ( ⁇ : ⁇ _ ⁇ 2) between the second groove 12 formed on the inner surface of the tube and the second groove lead angle ( ⁇ 2) formed by the tube axis satisfies ⁇ 15 to + 15 °, and Groove depth ratio (hl / h2) between the first groove depth (hi) in the cross section perpendicular to the pipe axis of the first groove 2 and the second groove depth (h2) in the cross section perpendicular to the pipe axis of the second groove 12 ) Is preferably between 0.47 and 1.5;
  • the first groove 2 includes the case where the first groove lead angle ( ⁇ 1) is 0 °, that is, the first groove 2 is parallel to the tube axis. The reason for limiting the numerical values of the angle difference ( ⁇ 1- ⁇ 2) and the groove depth ratio (hl / h
  • the angle difference ( ⁇ 1- ⁇ 2) is less than -15 °, that is, the first groove lead angle ( ⁇ 1) is smaller than (second groove lead angle ( ⁇ 2) -15 °)
  • the return bend pipe inlet side the coolant liquid film splashes from the peak of the first fin 3 formed between the first grooves 2, and turbulence (separation flow) occurs in the coolant liquid film.
  • the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat exchange with the outside of the tube becomes unstable and the evaporation performance tends to decrease.
  • the direction of the first groove lead angle ( ⁇ 1) formed by the first groove 2 and the tube axis is the second groove formed by the second groove 12 formed on the tube inner surface of the hairpin tube 11 and the tube axis. It is preferably formed in the same direction as the direction of the groove lead angle ( ⁇ 2). If the direction of the first groove lead angle ( ⁇ 1) and the direction of the second groove lead angle ( ⁇ 2) are different, the pressure loss of the refrigerant in the return bend pipe 1 becomes large, and the evaporation performance tends to deteriorate.
  • the groove depth ratio (hl / h2) is smaller than 0.47, the refrigerant liquid film in the first groove 2 is released immediately on the return bend pipe inlet side, and the liquid droplet of the refrigerant liquid film is formed immediately. Disturbance (separated flow) occurs. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is formed in the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat exchange with the outside of the tube becomes unstable and the evaporation performance tends to decrease.
  • the first groove 2 of the return bend pipe 1 includes the first fin peak angle ( ⁇ 1) and the first fin root radius (rl) force of the first fin 3 formed between the first grooves 2.
  • S more preferably formed so as to be the same as the second fin peak angle ( ⁇ 2) and the second fin root radius (r2) of the second fin 13 formed between the second grooves 12 of the hairpin tube 11.
  • the first fin peak angle ( ⁇ 1) is 4.5 to 45 °
  • the first fin root radius (rl) is 1/12 to 1/2 of the first groove depth (hi).
  • the first fin peak angle ( ⁇ ⁇ ) is 4.5 to 28.5 °
  • the first fin root radius (rl) is 1/12 to the first groove depth (hi); 1/4 is optimal. It is. This further maintains the formation of the “annular flow” of the refrigerant liquid film in the return bend pipe 1.
  • the resistance decreases due to the increase in the cross-sectional area of the first groove 2 when the liquid refrigerant flows into the return bend pipe 1 from the hairpin pipe 11.
  • the groove bottom width of the first groove 2 is widened, the retention of the refrigerant liquid film is deteriorated, and the formation of the “annular flow” is easily broken, and the refrigerant liquid film is disturbed.
  • the refrigerant liquid film flows in a turbulent state, and a thick portion is generated in the cooling liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube is disconnected. Heat exchange becomes unstable and evaporation performance tends to decrease.
  • the cross-sectional area of the first groove 2 decreases when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1.
  • the refrigerant liquid film contracts immediately on the return bend pipe inlet side, and the refrigerant liquid film is disturbed immediately.
  • the refrigerant liquid film is likely to flow in a turbulent state, and a thick portion is formed in the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube is Heat exchange becomes unstable, and evaporation performance tends to decrease.
  • the cross-sectional area of the first groove 2 increases when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1.
  • the resistance is reduced by the above, conversely, because the groove bottom width of the first groove 2 widens, the retention of the refrigerant liquid film decreases, and the formation of the "annular flow” tends to collapse, and the refrigerant liquid film is disturbed. .
  • the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube. Heat exchange becomes unstable and evaporation performance tends to decrease.
  • the return bend pipe 1 (pipe body la) preferably has a foot length (U is 1 ⁇ 0 to; 5 times the pitch (P). Note that the foot length (U is U-shaped) In the pipe-shaped main part la, the distance between the pipe end 1 b and the outer surface of the bent tip part, and the pitch (P) is the distance between the center of both pipe ends in the U-shaped pipe main part 1 a. Distance.
  • the material of the return bend tube 1 (tube body portion la) is preferably made of a material having a lower thermal conductivity than the material of the hairpin tube.
  • the return bend pipe 1 is used in the heat exchanger 20 (see Figs. 2 and 3), especially in the air heat exchanger, the return bend pipe 1 is used outside the heat exchange section. Therefore, when the material of the return bend pipe 1 has higher thermal conductivity than the material of the hairpin pipe, heat loss occurs in the return bend pipe 1 portion.
  • the refrigerant evaporates in the return bend pipe 1, and the formation of the "annular flow" of the refrigerant liquid film breaks down. Disturbance (separated flow) of the refrigerant liquid film due to the occurrence occurs.
  • the refrigerant liquid film flows in a turbulent state, and a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube is generated, and the outside of the tube
  • the heat exchange becomes unstable and the evaporation performance tends to decrease.
  • phosphorous deoxidized copper is often used as the material for the hairpin tube and the return bend tube 1 (tube body la). Then, when splicing, the ends of both pipes are heated to about 800-900 ° C with a gas burner or the like. At this time, if phosphorus deoxidized copper is used for the return bend pipe 1 (pipe main body la), the strength of the return bend pipe 1 (heat affected zone) is reduced by this heating, and the pressure inside the pipe during use is reduced. This makes it easier to break the tube. In order to avoid this point, it is necessary to increase the first pipe wall thickness (T1) (see Fig. 4) of the return bend pipe 1 (the pipe body la).
  • T1 first pipe wall thickness
  • the return bend tube 1 (pipe main body la) can be reduced in weight.
  • the heat-resistant copper alloy for example, Cu-Sn-P and Cu-Sn-Zn-P based copper alloys having a pressure strength of 10 MPa or more at room temperature even after heating at 850 ° C are preferable.
  • the hairpin tube a heat-resistant copper alloy tube made of the same material as the return bend tube 1 may be used.
  • the first maximum inner diameter (ID1) of the return bend tube 1 (tube main body la) is (ID1) ⁇ () in relation to the second maximum inner diameter (ID2) of the hairpin tube 11. ID2) is preferred. If (ID1) ⁇ (ID2), the force of the "annular flow" of the refrigerant liquid film formed in the pipe of the return bend pipe 1 is expanded when the liquid refrigerant flows into the hairpin pipe 11, and the lower part in the pipe As a result, the refrigerant liquid film accumulates, and the thickness of the refrigerant liquid film becomes non-uniform, thereby disturbing the refrigerant liquid film.
  • the refrigerant liquid film near the inlet of the next-stage hairpin tube flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film, which makes the heat exchange with the outside of the tube unstable and reduces the evaporation performance.
  • the refrigerant liquid film near the inlet of the next-stage hairpin tube flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film, which makes the heat exchange with the outside of the tube unstable and reduces the evaporation performance.
  • the hairpin tube 11 constituting a heat exchanger 20 together with the return bend tube 1 of the present invention
  • the hairpin tube 11 has a plurality of spiral second grooves 12 formed on the inner surface of the tube, and the inner surface groove shape of the second groove 12 is regulated as follows. Power to control S is preferable.
  • the hairpin tube 11 is mainly a 3 to 10 mm tube as a heat transfer tube for air conditioning equipment, the outer diameter of the tube (second tube outer diameter OD2) is the same as that of the hairpin tube 3 to; It is preferable to use a 10 mm tube.
  • a heat-resistant copper alloy having higher heat resistance than phosphorus-deoxidized copper which is preferably phosphorous-deoxidized copper having excellent forming processability, may be used.
  • Second groove pitch (P2) (p 0.37-0.42mm, second cross section (S2) (p 0.04—0.06mm 2 ).
  • Second groove pitch (P2) Is less than 0.37 mm and the second groove cross-sectional area (S2) is less than 0.04 mm 2 when forming the second groove 12 on the inner surface of the pipe (eg, grooved plug)
  • the groove forming tool breaks and immediately forms the second groove 12 on the tube inner surface stably.
  • the refrigerant liquid is inserted between the second grooves 12 inside the pipe. Since the film is hard to be formed thinly, the refrigerant liquid film inside the pipe becomes a thermal resistance, and the evaporation performance is likely to deteriorate.
  • the second groove lead angle ( ⁇ 2) is preferably 15 ° or more.
  • the second groove lead angle ( ⁇ 2) is less than 15 °, the formation of the “swirl flow” of the refrigerant liquid film in the pipe is insufficient, and the evaporation performance tends to be lowered.
  • the formation of a uniform “annular flow” of the refrigerant liquid film in the second groove 12 decreases, and the straight pipe portion of the hairpin pipe 11 As a result, the liquid film of the refrigerant becomes uneven, heat exchange with the outside of the tube becomes unstable, and evaporation performance tends to deteriorate.
  • the second groove lead angle ( ⁇ 2) force exceeds 5 °, the speed when forming the second groove 12 on the inner surface of the tube by rolling will become extremely slow and will soon stabilize and become long. Since the hairpin tube 11 is difficult to manufacture, the second groove lead angle ( ⁇ 2) is more preferably 45 ° or less.
  • the second groove depth (h2) is preferably 0.10-0.28 mm. If the second groove depth (h2) is less than 0.10 mm, the second fin 13 formed between the second grooves 12 on the inner surface of the pipe It becomes lower than the liquid level of the refrigerant and is buried in the refrigerant liquid film. For this reason, the effective heat transfer area inside the pipe is remarkably reduced, and the evaporation performance tends to be lowered. Also, if the second groove depth (h2) exceeds 0.28 mm, the groove forming tool (for example, grooved plug) will be damaged immediately when forming the second groove 12 on the pipe inner surface. It is difficult to form the second groove 12 stably on the inner surface of the tube.
  • the groove forming tool for example, grooved plug
  • the second fin peak angle ( ⁇ 2) is preferably 5 to 45 °! /. If the peak angle ( ⁇ 2) of the second fin is less than 5 °, the second fin 13 may fall over when the hairpin tube 11 is expanded (not shown) when the hairpin tube 11 is installed in the heat exchanger 20 for an air conditioner. Crushing tends to occur. Further, when forming the second groove 12 on the inner surface of the tube for forming the second fin 13, the groove forming tool is easily damaged, and it is difficult to stably form the second groove 12 on the inner surface of the tube. In addition, when the peak angle ( ⁇ 2) of the second fin exceeds 45 °, the cross-sectional area of the second groove 12 is remarkably reduced, and the heat transfer performance is likely to deteriorate. In addition, the cross-sectional area of the second fin 13 (the second tube thickness ( ⁇ 2) of the hairpin tube 11) is increased, the mass of the hairpin tube 11 is increased, and the weight reduction of the heat exchanger 20 is difficult.
  • the second fin root radius (r2) is preferably 1/10 to 1/3 of the second groove depth (h2).
  • the second fin root radius (r2) is less than 1/10 of the groove depth (h2), the formability of the second fin 13 (second groove 12) is increased when the second fin 13 becomes higher. It becomes difficult to obtain the second fin 13 having a predetermined shape, and the groove forming tool that comes into contact with the root of the second groove 12 on the inner surface of the pipe is easily damaged. If the ratio exceeds 1/3, the cross-sectional area of the second fin 13 increases, the second tube thickness (T2) of the hairpin tube 11 increases, and the mass of the hairpin tube 11 increases.
  • the second maximum inner diameter (ID2) of the hairpin tube 11 is 0.80 to 0.96 of the outer diameter (OD2) of the hairpin tube 11. If the second maximum inner diameter (ID2) is less than 0.80 of the outer diameter (OD2) of the hairpin tube 11, the thickness of the second tube (T2) is increased, the mass of the hairpin tube 11 is increased, and heat exchange is performed. It becomes difficult to reduce the weight of the vessel 20 (see Fig. 2 and Fig. 3). In addition, when the second maximum inner diameter (ID2) exceeds 0.96 of the outer diameter (OD2) of the hairpin tube 11, the second tube wall thickness (T2) is reduced and the tube strength of the hairpin tube 11 is reduced. Tube breakage is likely to occur during use of the low heat exchanger 20. [0067] (3) Manufacturing method of return bend tube and hairpin tube
  • Both the return bend tube and the hairpin tube are manufactured, for example, by the following known manufacturing method.
  • a soft material is used for the raw tube to which the following first step is applied.
  • the first to third steps described below are continuously performed using a rolling device provided with a diameter reducing device at the former stage and the latter stage.
  • the inner grooved tube is usually rolled up on a level wound coil and annealed in an annealing furnace to form a soft material, and the fourth step is applied.
  • the raw pipe made of a material such as phosphorous deoxidized copper or heat-resistant copper alloy is pulled out so as to pass between the reduced diameter die and the reduced diameter plug, so that the first reduced diameter processing is performed on the raw pipe. .
  • the grooved plug Inserting a grooved plug into the element pipe reduced in diameter in the first step and pressing the grooved plug inserted into the element pipe with a plurality of rolling balls or rolling rolls.
  • the second diameter reduction process is applied to the base tube.
  • the groove shape of the grooved plug is transferred to the inner surface of the reduced diameter pipe, and the first groove 2 or the second groove 12 (see FIG. 4) is formed.
  • the grooved plug has a groove shape corresponding to the above-described inner surface groove shape (see FIGS. 5 and 6).
  • the third diameter reduction processing is performed, and the first tube outer diameter (OD1) Alternatively, a heat transfer tube with an inner groove with the second tube outer diameter (OD 2) is manufactured.
  • the inner grooved tube manufactured in the third step is bent with a predetermined jig to manufacture a return bend tube 1 and a hairpin tube 11 (see FIGS. 1 and 2) having a predetermined shape.
  • the heat exchanger 20 is supplied with a refrigerant inside the tube, and a large number of hairpin tubes 11, 11,...
  • the hairpin portions 23 arranged in parallel, and the hairpin tubes 11 of each of the hairpin portions 23, 11 '''' Tube end 1, lb (see Fig. 1) joined to many return bend pipes 1, 1 ...
  • a fin portion 21 composed of a large number of fins 21a, 21a '... Arranged in parallel at a constant interval (fin pitch Pb).
  • the hairpin tubes 11 may be arranged in a plurality of rows at a predetermined row direction pitch Pc.
  • the refrigerant supplied into the pipe of the heat exchanger 20 is in the same direction when the refrigerant is condensed with respect to the air flow blown to the heat exchanger 20, and when the refrigerant is evaporated. Flowed in the opposite direction.
  • At least a partial force of the return bend portion 22 is constituted by a return bend pipe 1 in which a large number of first grooves 2 (see Fig. 5) are formed on the inner surface of the pipe.
  • a return bend pipe 1 in which a large number of first grooves 2 (see Fig. 5) are formed on the inner surface of the pipe.
  • the inner surface groove shape of the return bend pipe 1, for example, groove pitch ratio (Pl / P2), groove cross-sectional area ratio (S1 / S 2), groove depth ratio (hl / h2) (see Fig. 5 and Fig. 6)
  • the difference in groove lead angle ( ⁇ 1- ⁇ 2) see Fig.
  • a return bend section 22 may be used as a return bend section 22 made of a smooth pipe.
  • the heat exchanger of the present invention may be one in which at least a part of the refrigerant flow path constituted by the hairpin tube and the return bend pipe is branched to form a plurality of refrigerant flow paths.
  • a two-pass heat exchanger 20A in which the entire refrigerant flow path is branched
  • a partial two-pass heat exchanger 20B in which a part of the refrigerant flow path is branched.
  • the refrigerant flow path is branched into two flow paths (refrigerant flow path A and refrigerant flow path B).
  • the branched refrigerant flow paths may be further branched into a plurality of refrigerant flow paths.
  • the number of branches is one, but it may be two or more, that is, the refrigerant flow path shown in FIG. 3 (c). Is not branched 1-pass heat exchanger 20 is connected to multiple 2-pass heat exchangers 20A It may be a combination.
  • the one-pass heat exchanger 20 (see FIG. 3 (c)) is used.
  • the evaporation performance is improved by maintaining the swirling flow of the refrigerant.
  • the refrigerant mass velocity per branch is lowered, particularly the refrigerant velocity at the return bend pipe inlet side is lowered, and the refrigerant liquid film formed inside the pipe is reduced. The “annular flow” becomes more stable.
  • the refrigerant used in the heat exchanger 20 of the present invention is a hydrated fluorocarbon (HFC) -based refrigerant, which is a non-azeotropic refrigerant mixture, for example, difluoromethane (R410) which is preferred.
  • R410A in which 50% of R32) and pentafluoroethane (R125) are mixed is more preferable.
  • HFC non-azeotropic refrigerant mixture By using an HFC non-azeotropic refrigerant mixture, the evaporation performance of the heat exchanger 20 is improved, and the pressure loss of the refrigerant is also reduced.
  • the R410 system has excellent heat transfer performance, but the compressor tends to be large due to the high operating pressure. Therefore, the R407 system in which the evaporation performance is slightly lower than the R410 system and the operating pressure force is lower than the 410 system may be used as the refrigerant of the present invention.
  • Examples 8 to 20 are phosphorus deoxidized copper of alloy number C1220 or oxygen-free copper of alloy number C1020 specified in JISH3300
  • Example 7 is Cu-Sn-P (0.65 (Mass%, 0.03 mass%, Cu balance heat-resistant copper alloy) is melted, forged, hot extruded, cold pressure It was extended and cold drawn to give a blank tube.
  • the first diameter reduction processing is performed, and the inner diameter groove-shaped spiral grooves or parallel grooves shown in Tables 1 and 2 are formed on the diameter-reduced element pipe.
  • test tube for return bend pipe
  • a first pipe outer diameter (OD 1) of 7 mm was prepared by subjecting the grooved tube to the third diameter reduction and annealing.
  • a test tube (for hairpin tube) with a second tube outer diameter (OD2) of 7 mm was prepared in the same manner using phosphorous deoxidized copper with alloy number C 1220 specified in JISH3300.
  • a fin-and-tube heat exchanger (one-pass heat exchanger) 20 shown in FIG. 2, FIG. 3 (a), (b) was produced using each of the test tubes.
  • a plurality of hairpin tubes 11 were prepared by bending a test tube (for hairpin tubes) into a hairpin shape at a predetermined bending pitch (Pa) at the center thereof.
  • a plurality of hairpin tubes 11 were passed through a plurality of fins 21a arranged in parallel with each other at a predetermined interval (fin pitch (Pb)).
  • a bullet having a tube expansion rate of 105.5% based on the outer diameter standard of the copper tube (hairpin tube 11) is inserted into the heavy tube 11 and a contraction type tube expander (tube expander), and fin 2 la and hepin tube 1 1 were joined.
  • a plurality of return bend pipes 1 were produced by bending a test pipe (for return bend pipes) with a predetermined foot length and pitch (P) (see Fig. 1). Then, as shown in Fig.
  • Heat exchanger 20 was produced by flowing both tubes with a burner while heating them with nitrogen gas to prevent oxidation (850 ° C, 1 minute).
  • the specifications of the heat exchanger 20 are as follows. (Heat exchanger 20)
  • the opening $ is 500mm long x 250mm high x 25.4mm wide.
  • Foot length (U 20. Omm, 21.2 mm, 22.5 mm, 31.4 mm,
  • the thickness of the fin 21a was l lO ⁇ m.
  • 4 10 fins 21a were arranged in parallel with a fin pitch (Pb) of 1.25 mm.
  • Example 9 the same test tube (hairpin tube, return bend tube) as in Example 1 was used, and in the same manner as in Example 1, the fin-and-tube type thermal tube shown in Fig. 7 (a) was used. Exchanger (2-pass heat exchanger) 20A was produced. The number of stages of the hairpin tubes 11 in the refrigerant flow paths A and B is 6 in 2 rows.
  • Comparative Example 1 was the same as Example 1 except that a smooth tube with no grooves formed on the inner surface was used as the test tube (return bend tube).
  • Comparative Examples 2 to 5 except that at least one of the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S 1 / S2) uses an internally grooved tube that is outside the scope of the claims of the present invention, Same as Example 1. Then, a heat exchanger (one-pass heat exchanger) 20 was produced in the same manner as in Example 1.
  • Fig. 8 (a) shows a schematic diagram of a measuring apparatus for measuring the evaporation performance.
  • the measuring device includes a suction type wind tunnel 100 having a constant temperature and humidity function, a refrigerant supply device 110 (see FIG. 8 (b)), and an air conditioner (not shown).
  • the heat exchanger 20 (20A) is arranged in the flow path of the air flowing in from the air inlet 108 and discharged from the air outlet 109, and upstream of the heat exchanger 20 (20A).
  • Air samplers 101 and 102 are arranged on the side and downstream, respectively.
  • the air samplers 101 and 102 are connected to temperature and humidity measuring boxes 103 and 104, respectively.
  • the temperature and humidity measuring boxes 103 and 104 measure the temperature and humidity of the air by measuring the dry bulb temperature and wet bulb temperature of the air sampled by the air samplers 101 and 102, respectively.
  • An induction fan 105 is provided downstream of the air sampler 102 and discharges air to the air discharge port 109. Also, between the heat exchanger 20 (20A) and the air sampler 102, and the air Rectifiers 106 and 106 for rectifying the air that has passed through the heat exchanger 20 (20A) are provided between the sambra 102 and the induction fan 105.
  • FIG. 8 (b) shows a schematic diagram of the refrigerant supply device 110.
  • 107 is a refrigerant pipe
  • 111 is a sight glass
  • 112 is a liquid (refrigerant) heating and cooling heat exchanger
  • 113 is a dryer
  • 114 is a liquid receiver (refrigerant)
  • 115 is a solution.
  • Plug, 116 is a condenser
  • 117 is an oil separator
  • 118 is a compressor
  • 119 is an accumulator
  • 120 is an evaporator
  • 121 is an expansion valve
  • 122 is a flow meter.
  • the refrigerant whose pressure and temperature are adjusted is supplied through the refrigerant pipe 107 into the hairpin pipe 11 (see FIG. 2) of the heat exchanger 20 (20A) provided in the suction type wind tunnel 100.
  • pressure gauges 123 (the temperature is a saturation temperature corresponding to the measurement pressure) for measuring the temperature and pressure of the refrigerant are provided at the inlet and outlet of the heat exchanger 20 (20A).
  • the air conditioner (not shown) supplies air having a controlled temperature and humidity to the air inlet 108 of the suction type wind tunnel 100.
  • the heat exchanger of Comparative Example 2 has a groove cross-sectional area ratio (S 1 / S2) that is less than the lower limit
  • the heat exchanger of Comparative Example 3 has a groove pitch ratio (P1 / P2) and a groove cross-sectional area ratio (S1 / S2).
  • S 1 / S2 the heat exchanger of Comparative Example 2
  • P1 / P2 the heat exchanger of Comparative Example 4
  • S1 / S2 a groove cross-sectional area ratio
  • Example 21 uses the material Cu-S as the test tube (return bend tube).
  • Example 1 except that a pipe with a first tube thickness (T1) 0.20mm made of nP (0.65% by mass, 0.03% by mass ?, the balance being Cu heat-resistant copper alloy) is used. And the same.
  • Example 22 was the same as Example 1 except that an inner grooved tube having a first tube thickness (T1) of 0.34 mm was used as the test tube (return bend tube). Then, a heat exchanger (1-pass heat exchanger) was produced in the same manner as in Example 1. Next, using the heat exchangers of Example 1, Example 21, and Example 22, a pressure resistance test by water pressure was performed. The pressure when breakage occurred in the return bend section (return bend pipe) of the heat exchanger was measured with a Bourdon tube pressure gauge to determine the pressure resistance. The results are shown in Table 4.
  • the heat exchanger of Example 21 has a small decrease in strength due to brazing even if the first pipe wall thickness (T1) of the return bend pipe is thinner than Example 1. It was confirmed that the pressure strength was higher than Further, in the heat exchanger of Example 22 in which the material of the return bend pipe is the same as that of Example 1, the pressure strength is the same as that of Example 21.
  • the first pipe thickness (T1) of the return bend pipe is It was 1.7 times that of Example 1 and it was confirmed that the amount of material used increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Provided is a fin-and-tube type heat exchanger using a return bend pipe capable of improving the evaporation performance of the heat exchanger still better. This heat exchanger comprises a hair pin unit having a multiplicity of hair pin pipes arranged in parallel, a return bend unit having a multiplicity of such return bend pipes arranged in parallel as are jointed to the individual hair pin pipe end portions of the hair pin portions, and a fin portion having a multiplicity of fins arranged in parallel at a constant spacing on the outer surfaces of the hair pin pipes. The pipe insides are fed with a coolant. The heat exchanger has first grooves formed in the inner faces of the return bend pipes. The groove pitch ratio (P1/P2) between a first groove pitch (P1), as taken in the section normal to the pipe axis, of the first grooves, and a second groove pitch (P2), as taken in the section normal to the pipe axis, of second grooves of a helical shape formed in the pipe inner faces of the hair pin pipes satisfies 0.65 to 2.2. At the same time, the groove sectional area ratio (S1/S2) between a first groove sectional area (S1) per groove, as taken in the section normal to the pipe axis, of the first grooves and a second groove sectional area (S2) per groove, as taken in the section normal to the pipe axis, of the second grooves satisfies 0.3 to 3.6.

Description

明 細 書  Specification
フィンアンドチューブ型熱交換器及びそのリターンベンド管  Fin-and-tube heat exchanger and its return bend pipe
技術分野  Technical field
[0001] 本発明は、空調機器等の熱交換器で、特に、管内部にフロン系冷媒、自然冷媒等 の冷媒を流し、アルミ製等で形成された多数のフィンを管外面に並列に設置したフィ ンアンドチューブ型熱交換器、及びそのヘアピン管に接続するリターンベンド管に関 する。  [0001] The present invention is a heat exchanger such as an air conditioner, and in particular, a refrigerant such as a chlorofluorocarbon refrigerant or a natural refrigerant is allowed to flow inside the pipe, and a large number of fins formed of aluminum or the like are installed in parallel on the outer surface of the pipe. The fin-and-tube heat exchanger and the return bend pipe connected to the hairpin pipe.
背景技術  Background art
[0002] 従来、リターンベンド管として管内面が平滑な平滑管、ヘアピン管として内面溝付 管を用いたフィンアンドチューブ型熱交換器が、特許文献 1または特許文献 2に提案 されている。なお、特許文献 1ではリターンベンド管は Uベンド管、ヘアピン管は電縫 管と記載され、特許文献 2ではリターンベンド管は Uベンド、ヘアピン管は伝熱管と記 載されている。  [0002] Conventionally, Patent Document 1 or Patent Document 2 proposes a fin-and-tube heat exchanger using a smooth tube having a smooth inner surface as a return bend tube and an inner grooved tube as a hairpin tube. In Patent Document 1, the return bend pipe is described as a U-bend pipe, and the hairpin pipe is described as an electric sewing pipe. In Patent Document 2, the return bend pipe is described as a U-bend pipe, and the hairpin pipe is described as a heat transfer pipe.
[0003] また、リターンベンド管として内面溝付管、ヘアピン管として平滑管を用いたエバポ レータ (蒸発器)用フィンアンドチューブ型熱交換器も特許文献 3に提案されている。 なお、特許文献 3ではリターンベンド管は Uベンド管、ヘアピン管はチューブと記載さ れている。さらに、リターンベンド管およびヘアピン管の両者に内面溝付管を用いた フィンアンドチューブ型熱交換器が特許文献 4に記載されている。  [0003] Further, Patent Document 3 proposes a fin-and-tube heat exchanger for an evaporator (evaporator) using an internally grooved tube as a return bend tube and a smooth tube as a hairpin tube. In Patent Document 3, a return bend pipe is described as a U-bend pipe, and a hairpin pipe is described as a tube. Furthermore, Patent Document 4 discloses a fin-and-tube heat exchanger using inner grooved tubes for both the return bend tube and the hairpin tube.
[0004] 一方、フィンアンドチューブ型熱交換器用の冷媒として従来用いられていた R22 (ク ロロジフルォロメタン)などのハイド口クロ口フルォロカーボン系冷媒は、オゾン層を破 棄するため、地球環境保護の点から用いることができなくなり、含有する塩素の全部 を水素で置換した R410Aなどのハイド口フルォロカーボン系冷媒が空調機器用冷 媒として本格的に採用されはじめている。  [0004] On the other hand, hide-mouthed fluorocarbon refrigerants such as R22 (chlorofluoromethane), which has been used as a refrigerant for fin-and-tube heat exchangers, protect the global environment by destroying the ozone layer. In view of this point, it is no longer possible to use it, and a high-mouth fluorocarbon refrigerant such as R410A in which all of the contained chlorine is replaced with hydrogen has begun to be used in earnest as a cooling medium for air conditioning equipment.
特許文献 1 :実開昭 63-154986号公報(実施例、図 1〜図 4)  Patent Document 1: Japanese Utility Model Publication No. 63-154986 (Example, FIGS. 1 to 4)
特許文献 2 :特開平 11-190597号公報(段落 0022〜0026、図 1)  Patent Document 2: JP-A-11-190597 (paragraphs 0022 to 0026, FIG. 1)
特許文献 3 :実開平 4-122986号公報(段落0007〜0008、図 1)  Patent Document 3: Japanese Utility Model Publication No. 4-122986 (paragraphs 0007 to 0008, FIG. 1)
特許文献 4:特開 2006-98033号公報 (請求項 1、図 4) 発明の開示 Patent Document 4: Japanese Unexamined Patent Publication No. 2006-98033 (Claim 1, FIG. 4) Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0005] しかしながら、特許文献 1、 2の熱交換器においては、ヘアピン管内を流れる冷媒は 、管内面に形成された溝に沿って旋回流となり、リターンベンド管に流れ込み、しばら くは旋回流が維持される。し力、しながら、リターンベンド管の管内面が平滑であるため 、その出口側では旋回流が維持されに《なると共に、リターンベンド管の曲げ部に おいては、液滴(冷媒液膜)の飛沫が発生し、液膜流動が不安定になる。そのため、 次段のヘアピン管流入後、しばらくの間は冷媒に旋回流を再度付与するのに費やさ れ、この区間では冷媒の流動が不安定であり、更に冷媒液膜の厚い部分が形成され るため、管内熱伝達率が低下しやすぐ十分な蒸発性能が得られないという問題があ つた。 [0005] However, in the heat exchangers of Patent Documents 1 and 2, the refrigerant flowing in the hairpin tube becomes a swirl flow along the groove formed on the inner surface of the tube, flows into the return bend tube, and the swirl flow for a while. Maintained. However, since the inner surface of the return bend pipe is smooth, the swirling flow is maintained at the outlet side of the return bend pipe, and at the bent portion of the return bend pipe, a droplet (refrigerant liquid film) is maintained. The liquid film flow becomes unstable. Therefore, after the next hairpin tube flow, it is spent for a while to re-apply the swirl flow to the refrigerant. In this section, the flow of the refrigerant is unstable, and a thick part of the refrigerant liquid film is formed. As a result, the heat transfer coefficient in the pipe decreased and sufficient evaporation performance could not be obtained immediately.
[0006] また、特許文献 3の熱交換器においては、リターンベンド管内に溝が形成され、へ ァピン管内には溝が形成されていないため、両者の管内形状が大きく異なることとな る。そのため、熱交換器は、内部を循環する冷媒の圧力損失が大きくなり、それにより 冷媒流量が減少するため、却って熱交換器の伝熱性能、特に蒸発性能の低下が著 しくなるという問題があった。  [0006] Further, in the heat exchanger of Patent Document 3, since a groove is formed in the return bend pipe and no groove is formed in the hairpin pipe, the shapes of both pipes are greatly different. For this reason, the heat exchanger has a problem in that the pressure loss of the refrigerant circulating inside increases, thereby reducing the flow rate of the refrigerant, so that the heat transfer performance of the heat exchanger, in particular, the evaporation performance decreases. It was.
[0007] そして、特許文献 3のように、リターンベンド管の溝形成による強度低下を考慮して 、管肉厚を厚肉化すると、リターンベンド管とヘアピン管の接合部の内面に冷媒の流 通の障害となる段差が生じ、冷媒の圧力損失が大きくなりやす!/、。  [0007] Then, as described in Patent Document 3, if the thickness of the pipe is increased in consideration of the strength reduction due to the formation of the groove in the return bend pipe, the flow of the refrigerant to the inner surface of the joint between the return bend pipe and the hairpin pipe is increased. A step that becomes a common obstacle occurs, and the pressure loss of the refrigerant is likely to increase! /.
[0008] また、特許文献 4の熱交換器においては、リターンベンド管およびヘアピン管に形 成された溝と管軸とがなす溝リード角を所定のものに限定した力、溝ピッチおよび溝 断面積についての検討がなされていな力、つたため、管内での冷媒液膜に乱れが生じ 、ヘアピン管の直管部分での冷媒液膜が不均一になり、冷媒液膜の厚い部分が生じ ることがあった。その結果、十分な蒸発性能が得られないという問題があった。  [0008] In addition, in the heat exchanger of Patent Document 4, the force, groove pitch, and groove breakage in which the groove lead angle formed by the groove formed on the return bend tube and the hairpin tube and the tube shaft is limited to a predetermined one. Because the area has not been studied, the refrigerant liquid film in the pipe is disturbed, the liquid film in the straight portion of the hairpin tube becomes non-uniform, and the refrigerant liquid film is thick. There was a thing. As a result, there is a problem that sufficient evaporation performance cannot be obtained.
[0009] 更に詳細に説明すると、冷媒液膜が不均一になることは、液膜厚さが不均一になる ことを意味し、液膜厚さが不均一になると、液膜の厚い部分と薄い部分での状態差( 冷媒液膜の表面張力と液膜の曲率との関数)が生じる。この状態差が生じると、原理 的には冷媒液膜厚さが薄い液膜は、冷媒液膜が厚い方に引っ張られ、その結果、冷 媒液膜が薄い部分が更に薄くなり、この部分で蒸発が促進され、一方、冷媒液膜が 厚い部分は残存することとなる。この冷媒液膜が残存することは、結果的に残存部以 外はドライアウト状態となり、有効伝熱面積が減少し、蒸発性能が低下することとなるMore specifically, the non-uniform refrigerant liquid film means that the liquid film thickness becomes non-uniform, and if the liquid film thickness is non-uniform, the thick part of the liquid film A state difference (a function of the surface tension of the refrigerant liquid film and the curvature of the liquid film) occurs in the thin part. When this state difference occurs, in principle, a liquid film with a thin refrigerant liquid film is pulled in a direction where the refrigerant liquid film is thicker. The thin part of the liquid film becomes thinner, and evaporation is promoted in this part, while the thick part of the refrigerant liquid film remains. The remaining refrigerant liquid film results in a dry-out state except for the remaining portion, which reduces the effective heat transfer area and lowers the evaporation performance.
Yes
[0010] 本発明は前記の問題を鑑みてなされたもので、熱交換器の蒸発性能を更に向上さ せることが可能なフィンアンドチューブ型熱交換器及びそのリターンベンド管を提供 することを目白勺とする。  The present invention has been made in view of the above problems, and it is an object of the present invention to provide a fin-and-tube heat exchanger that can further improve the evaporation performance of the heat exchanger and its return bend pipe. Say it.
課題を解決するための手段  Means for solving the problem
[0011] 本発明の第 1の局面は、多数のヘアピン管が並列されたヘアピン部と、前記へアビ ン部の各々のヘアピン管端部に接合された多数のリターンベンド管が並列されたリタ ーンベンド部と、前記ヘアピン管の外表面に一定間隔で並列された多数のフィンから なるフィン部とを有し、管内部に冷媒が供給されるフィンアンドチューブ型熱交換器 であって、  [0011] A first aspect of the present invention provides a hairpin portion in which a large number of hairpin tubes are arranged in parallel, and a retarder in which a large number of return bend tubes joined to the hairpin tube ends of the hairbin portions are arranged in parallel. A fin-and-tube heat exchanger having a bent portion and a fin portion composed of a large number of fins arranged in parallel at regular intervals on the outer surface of the hairpin tube, wherein a refrigerant is supplied into the tube,
前記リターンベンド管の管内面に形成された第 1溝を備え、  A first groove formed on the inner surface of the return bend pipe;
前記第 1溝の管軸直交断面における第 1溝ピッチ (P1)と、前記ヘアピン管の管内 面に形成されたらせん状の第 2溝の管軸直交断面における第 2溝ピッチ(P2)との溝 ピッチ比(P1/P2)が 0. 65—2. 2を満足し、かつ  The first groove pitch (P1) in the cross section perpendicular to the tube axis of the first groove and the second groove pitch (P2) in the cross section perpendicular to the tube axis of the spiral second groove formed on the tube inner surface of the hairpin tube. Groove pitch ratio (P1 / P2) satisfies 0.665-2.
前記第 1溝の管軸直交断面における溝 1個あたりの第 1溝断面積(S1)と、前記第 2 溝の管軸直交断面における溝 1個あたりの第 2溝断面積(S2)との溝断面積比(S1 The first groove cross-sectional area (S1) per groove in the cross section perpendicular to the tube axis of the first groove and the second cross-sectional area (S2) per groove in the cross section perpendicular to the tube axis of the second groove Groove cross-sectional area ratio (S1
/S2)が 0. 3〜3. 6を満足するフィンアンドチューブ型熱交換器として構成したもの である。 / S2) is configured as a fin-and-tube heat exchanger satisfying 0.3 to 3.6.
[0012] 前記の構成によれば、フィンアンドチューブ熱交換器のリターンベンド管の管内面 に所定の第 1溝が形成されていることにより、リターンベンド管入口側にて冷媒液膜 の平坦化を図ることができ、更に管内部の冷媒液膜に「環状流」を形成することがで き、リターンベンド管での冷媒液膜の乱れが低減する。そして、リターンベンド管出口 側から次段のヘアピン管に液冷媒が流入する際、管内部により均一な「環状流」が形 成され、ヘアピン管の直管部分での冷媒液膜が均一になり、管外との熱交換が安定 化し、蒸発性能が向上する。 [0013] 前記ヘアピン管の第 2溝と管軸とがなす第 2溝リード角(θ 2)が 15° 以上であること が好ましい。 [0012] According to the above configuration, the predetermined first groove is formed on the inner surface of the return bend pipe of the fin-and-tube heat exchanger, so that the refrigerant liquid film is flattened on the return bend pipe inlet side. Furthermore, an “annular flow” can be formed in the refrigerant liquid film inside the pipe, and the disturbance of the refrigerant liquid film in the return bend pipe can be reduced. When the liquid refrigerant flows into the next hairpin tube from the return bend tube outlet side, a uniform “annular flow” is formed inside the tube, and the liquid film in the straight portion of the hairpin tube becomes uniform. In addition, heat exchange with the outside of the tube is stabilized and evaporation performance is improved. [0013] It is preferable that a second groove lead angle (θ2) formed by the second groove of the hairpin tube and the tube axis is 15 ° or more.
[0014] 前記の構成によれば、リターンベンド管出口から次段のヘアピン管に液冷媒が流 入する際、管内部により均一な「環状流」が形成され、ヘアピン管の直管部分で冷媒 液膜が均一になり、管外との熱交換が安定化し、蒸発性能がより一層向上する。  [0014] According to the above configuration, when the liquid refrigerant flows into the next hairpin tube from the return bend tube outlet, a uniform "annular flow" is formed inside the tube, and the refrigerant is generated in the straight tube portion of the hairpin tube. The liquid film becomes uniform, heat exchange with the outside of the tube is stabilized, and evaporation performance is further improved.
[0015] また、前記ヘアピン管および前記リターンベンド管から構成された冷媒流路は、そ の少なくとも一部が分岐され、複数の冷媒流路を形成することが好ましい。  [0015] Further, it is preferable that at least a part of the refrigerant flow path constituted by the hairpin tube and the return bend pipe is branched to form a plurality of refrigerant flow paths.
[0016] 前記の構成によれば、フィンアンドチューブ熱交換器の冷媒流路が分岐されている ことにより、分岐あたりの冷媒質量速度が下がり、特にリターンベンド管入口側での冷 媒速度が低下し、管内部に形成された冷媒液膜の「環状流」がより安定化する。そし て、リターンベンド管出口側から次段のヘアピン管に液冷媒が流入する際、管内部に より均一な「環状流」が形成され、ヘアピン管の直管部分で冷媒液膜が均一になり、 管外との熱交換が安定化し、蒸発性能がより一層向上する。  [0016] According to the above configuration, the refrigerant flow rate of the fin-and-tube heat exchanger is branched, so that the refrigerant mass velocity per branch is lowered, and in particular, the refrigerant velocity at the return bend pipe inlet side is lowered. In addition, the “annular flow” of the refrigerant liquid film formed inside the pipe is further stabilized. When the liquid refrigerant flows into the next hairpin tube from the return bend tube outlet side, a uniform “annular flow” is formed inside the tube, and the liquid film of the refrigerant becomes uniform in the straight portion of the hairpin tube. The heat exchange with the outside of the tube is stabilized and the evaporation performance is further improved.
[0017] また、前記冷媒は、ハイド口フルォロカーボン系の非共沸混合冷媒であることが好ま しい。  [0017] Further, it is preferable that the refrigerant is a hydrated fluorocarbon non-azeotropic refrigerant mixture.
前記の構成によれば、熱交換器の蒸発性能がより一層向上すると共に、冷媒の圧 力損失が小さくなる。  According to the above configuration, the evaporation performance of the heat exchanger is further improved, and the pressure loss of the refrigerant is reduced.
[0018] 本発明の第 2の局面は、外表面に一定間隔で並列された多数のフィンを備えたへ ァピン管の管端に接合され、管内に冷媒が供給されるフィンアンドチューブ型熱交換 器において使用されるリターンベンド管において、  [0018] A second aspect of the present invention is a fin-and-tube heat exchange which is joined to a tube end of a hepin tube provided with a large number of fins arranged in parallel at regular intervals on an outer surface, and a refrigerant is supplied into the tube. In return bend pipes used in
前記リターンベンド管の管内面に形成された第 1溝を備え、  A first groove formed on the inner surface of the return bend pipe;
前記第 1溝の管軸直交断面における第 1溝ピッチ (P1)と、前記ヘアピン管の管内 面に形成されたらせん状の第 2溝の管軸直交断面における第 2溝ピッチ(Ρ2)との溝 ピッチ比(P1/P2)が 0. 65—2. 2を満足し、かつ  The first groove pitch (P1) in the tube axis orthogonal cross section of the first groove and the second groove pitch (Ρ2) in the tube axis orthogonal cross section of the spiral second groove formed on the tube inner surface of the hairpin tube. Groove pitch ratio (P1 / P2) satisfies 0.665-2.
前記第 1溝の管軸直交断面における溝 1個あたりの第 1溝断面積(S1)と、前記第 2 溝の管軸直交断面における溝 1個あたりの第 2溝断面積(S2)との溝断面積比(S1 /S2)が 0. 3〜3. 6を満足するリターンベンド管として構成したものである。  The first groove cross-sectional area (S1) per groove in the cross section perpendicular to the tube axis of the first groove and the second cross-sectional area (S2) per groove in the cross section perpendicular to the tube axis of the second groove It is constructed as a return bend pipe that satisfies the groove cross-sectional area ratio (S1 / S2) of 0.3 to 3.6.
[0019] 前記の構成によれば、溝ピッチ比(P1/P2)および溝断面積比(S 1/S2)を所定 範囲にすることによって、リターンベンド管内においてもヘアピン管内で形成された液 冷媒の「旋回流」が維持される。それと共に、ヘアピン管からリターンベンド管に液冷 媒が流入する際、リターンベンド管入口側にて冷媒液膜の平坦化を図ることができ、 更に管内部の冷媒液膜が均一になる「環状流」を形成することができる。その結果、リ ターンベンド管内部での冷媒液膜の乱れが低減する。そして、リターンベンド管出口 側から次段のヘアピン管に液冷媒が流入する際、管内部により均一な「環状流」が形 成され、ヘアピン管の直管部分での冷媒液膜が均一になり、管外 (空気)との熱交換 が安定化し、蒸発性能が向上する。 [0019] According to the above configuration, the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S1 / S2) are predetermined. By setting the range, the “swirl flow” of the liquid refrigerant formed in the hairpin tube is maintained even in the return bend tube. At the same time, when the liquid coolant flows from the hairpin tube into the return bend tube, the coolant liquid film can be flattened on the return bend tube inlet side, and the coolant liquid film inside the tube becomes uniform. Flow "can be formed. As a result, the disturbance of the refrigerant liquid film inside the return bend pipe is reduced. When liquid refrigerant flows into the next hairpin tube from the return bend tube outlet side, a uniform "annular flow" is formed inside the tube, and the liquid film in the straight tube portion of the hairpin tube becomes uniform. , Heat exchange with the outside of the tube (air) is stabilized, and evaporation performance is improved.
[0020] 前記第 1溝と管軸とがなす第 1溝リード角( θ 1)と、前記第 2溝と管軸とがなす第 2 溝リード角(Θ 2)との角度差(Θ;!- θ 2)が- 15〜+ 15° を満足し、かつ前記第 1溝 の管軸直交断面における第 1溝深さ (hi)と、前記第 2溝の管軸直交断面における第 2溝深さ(h2)との溝深さ比(hl/h2)が 0. 47〜; 1. 5を満足することが好ましい。  [0020] An angle difference (Θ;) between a first groove lead angle (θ1) formed by the first groove and the tube axis and a second groove lead angle (Θ2) formed by the second groove and the tube shaft. -Θ 2) satisfies -15 to + 15 °, and the first groove depth (hi) in the cross section perpendicular to the tube axis of the first groove and the second groove in the cross section perpendicular to the tube axis of the second groove It is preferable that the groove depth ratio (hl / h2) to the depth (h2) satisfies 0.47 to 1.5.
[0021] 前記の構成によれば、溝リード角の角度差( θ 1- Θ 2)を所定範囲にすることによつ て、ヘアピン管からリターンベンド管に液冷媒が流入する際、冷媒液膜の飛沫を抑え ること力 Sできる。そして、リターンベンド管出口側から次段のヘアピン管に液冷媒が流 入する際、管内部により均一な「環状流」が形成され、ヘアピン管の直管部分での冷 媒液膜が均一になり、管外との熱交換が安定化し、蒸発性能がより一層向上する。 また、溝深さ比 (hl/h2)を所定範囲にすることによって、管内部での冷媒の離脱 が生じ難ぐ冷媒液膜が乱れ難くなる。そして、リターンベンド管出口側から次段のへ ァピン管に液冷媒が流入する際、管内部により均一な「環状流」が形成され、ヘアピ ン管の直管部分での冷媒液膜が均一になり、管外との熱交換が安定化し、蒸発性能 がより一層向上する。  [0021] According to the above configuration, when the liquid refrigerant flows from the hairpin tube into the return bend tube by setting the angle difference (θ 1-Θ 2) of the groove lead angle to a predetermined range, Suppresses the splashing of the film. When the liquid refrigerant flows into the next hairpin tube from the return bend tube outlet side, a uniform “annular flow” is formed inside the tube, and the coolant liquid film is evenly distributed in the straight portion of the hairpin tube. Thus, heat exchange with the outside of the tube is stabilized, and the evaporation performance is further improved. Further, by setting the groove depth ratio (hl / h2) within a predetermined range, it is difficult for the refrigerant liquid film to be disturbed, which makes it difficult for the refrigerant to detach inside the pipe. When liquid refrigerant flows from the return bend pipe outlet side into the next-stage hepin pipe, a uniform “annular flow” is formed inside the pipe, and the liquid film of the refrigerant in the straight pipe portion of the hairpin pipe is uniform. Therefore, heat exchange with the outside of the tube is stabilized, and the evaporation performance is further improved.
[0022] また、前記リターンベンド管の足長さ(Uがピッチ(P)の 1. 0〜; 1. 5倍であることが 好ましい。  [0022] Further, the foot length of the return bend pipe (U is preferably 1.0 to 1.5 times the pitch (P)).
[0023] 前記の構成によれば、ヘアピン管の直管部分とリターンベンド管とを接合して使用 する際、リターンベンド管の足長さ(Uを曲げピッチ(P)の所定倍にすることにより、リ ターンベンド管入口力、ら曲げ部分までの直管部分の冷媒液膜に「環状流」が十分形 成される。その結果、リターンベンド管の曲げ部分での冷媒液膜に乱れ (剥離流)が 発生しない。そして、次段のヘアピン管に液冷媒が流入する際に、「環状流」が形成 されたまま流入し、ヘアピン管の直管部分での冷媒液膜が均一になり、管外との熱交 換が安定化し、蒸発性能がより一層向上する。 [0023] According to the above configuration, when the straight pipe portion of the hairpin tube and the return bend tube are joined and used, the leg length of the return bend tube (U is set to a predetermined multiple of the bending pitch (P). As a result, the “circular flow” is sufficiently formed in the refrigerant liquid film in the straight pipe part up to the bent part, and the refrigerant liquid film in the bent part of the return bend pipe is disturbed ( Peeling flow) Does not occur. Then, when the liquid refrigerant flows into the hairpin tube in the next stage, the “annular flow” flows in, forming a uniform liquid film in the straight portion of the hairpin tube, and heat exchange with the outside of the tube. The conversion is stabilized and the evaporation performance is further improved.
[0024] また、前記リターンベンド管の材質は、前記ヘアピン管の材質より熱伝導率が低!/、 材質からなることが好ましい。  [0024] The material of the return bend tube is preferably made of a material having a lower thermal conductivity than the material of the hairpin tube.
[0025] 前記の構成によれば、管本体部(リターンベンド管)の熱伝導率がヘアピン管より低 くなることによって、リターンベンド管での熱損失が抑制される。リターンベンド管での 熱損失が抑制されることにより、リターンベンド管内部で冷媒蒸発が生じたり、冷媒液 膜の「環状流」が崩れることがなぐ冷媒液膜の飛沫が生じることによる冷媒液膜の乱 れ (剥離流)が発生しない。その結果、次段のヘアピン管に液冷媒が流入する際、「 環状流」が形成されたまま流入し、ヘアピン管の直管部分での冷媒液膜が均一にな り、管外との熱交換が安定し、蒸発性能がより一層向上する。  [0025] According to the above configuration, the heat conductivity of the tube main body (return bend tube) is lower than that of the hairpin tube, thereby suppressing heat loss in the return bend tube. Reducing the heat loss in the return bend pipe causes the refrigerant liquid film to splash due to the evaporation of the refrigerant inside the return bend pipe or the collapse of the “annular flow” of the refrigerant liquid film. Disturbance (separated flow) does not occur. As a result, when the liquid refrigerant flows into the hairpin tube in the next stage, the “annular flow” flows in, forming a uniform liquid film in the straight tube portion of the hairpin tube, and heat from the outside of the tube. Exchange is stabilized and evaporation performance is further improved.
[0026] また、前記リターンベンド管の材質は、前記ヘアピン管の材質より耐熱性のある銅 合金からなることが好ましい。  [0026] The material of the return bend tube is preferably made of a copper alloy that is more heat resistant than the material of the hairpin tube.
[0027] 前記の構成によれば、リターンベンド管が耐熱性銅合金からなることによって、リタ ーンベンド管とヘアピン管とを接合(ろう付)した際、リターンベンド管のろう付後の管 強度の低下が小さくなるため、熱交換器使用中の管内部の圧力によって、リターンべ ンド管の接合部、例えば、ろう付けの温度影響部に管破壊が生じない。  [0027] According to the above configuration, when the return bend pipe is made of a heat resistant copper alloy, when the return bend pipe and the hairpin pipe are joined (brazed), the strength of the return bend pipe after brazing is increased. Since the decrease is small, the pressure inside the pipe during use of the heat exchanger does not cause pipe breakage at the junction of the return bend pipe, for example, the temperature-affected zone of brazing.
また、リターンベンド管の管肉厚を厚肉化する必要がなくなる。  Further, it is not necessary to increase the wall thickness of the return bend pipe.
[0028] また、前記リターンベンド管の第 1最大内径 (ID1)が、前記ヘアピン管の第 2最大 内径(ID2)との関係において(ID1)≥ (ID2)であることが好ましい。  [0028] Further, the first maximum inner diameter (ID1) of the return bend tube is preferably (ID1) ≥ (ID2) in relation to the second maximum inner diameter (ID2) of the hairpin tube.
[0029] 前記の構成によれば、リターンベンド管からヘアピン管に液冷媒が流入する際に、「 環状流」の形成状態をより均一に維持して、更に、ヘアピン管入口側付近の冷媒液 膜が円周方向に広がり、冷媒液膜を薄くすることができる。その結果、ヘアピンの直 管部分での蒸発性能がより一層向上する。  [0029] According to the above configuration, when the liquid refrigerant flows from the return bend pipe into the hairpin pipe, the formation state of the "annular flow" is maintained more uniformly, and further, the refrigerant liquid near the hairpin pipe inlet side is maintained. The film spreads in the circumferential direction, and the refrigerant liquid film can be thinned. As a result, the evaporation performance in the straight tube portion of the hairpin is further improved.
発明の効果  The invention's effect
[0030] 本発明の第 1の局面のフィンアンドチューブ型熱交換器によれば、前記のリターン ベンド管を使用することによって、熱交換器の蒸発性能を向上させることが可能とな る。また、所定範囲の溝リード角を有するヘアピン管、分岐された冷媒流路、所定の 冷媒を使用することによって、熱交換器の蒸発性能をより一層向上させることが可能 となる。 [0030] According to the fin-and-tube heat exchanger of the first aspect of the present invention, it is possible to improve the evaporation performance of the heat exchanger by using the return bend pipe. The Further, by using a hairpin tube having a groove lead angle within a predetermined range, a branched refrigerant flow path, and a predetermined refrigerant, it is possible to further improve the evaporation performance of the heat exchanger.
[0031] 本発明の第 2の局面のリターンベンド管によれば、リターンベンド管の第 1溝の溝ピ ツチおよび溝断面積を所定範囲とすることによって、管内部の冷媒液膜に「環状流」 が形成され、ヘアピン管の直管部分での冷媒液膜が均一となり、熱交換器の蒸発性 能を向上させることが可能となる。また、リターンベンド管の第 1溝の溝リード角、溝深 さ、足長さ、熱伝導率および最大内径を所定範囲とすることによって、熱交換器の蒸 発性能をより一層向上させることが可能となる。そして、リターンベンド管を耐熱性銅 合金から構成することによって、ヘアピン管との接合部の信頼性が高くなると共に、軽 量化を達成できる構成とすることが可能となる。  [0031] According to the return bend pipe of the second aspect of the present invention, by setting the groove pitch and the groove cross-sectional area of the first groove of the return bend pipe within a predetermined range, the ring is formed on the refrigerant liquid film inside the pipe. As a result, the refrigerant liquid film in the straight portion of the hairpin tube becomes uniform, and the evaporation performance of the heat exchanger can be improved. In addition, by setting the groove lead angle, groove depth, foot length, thermal conductivity, and maximum inner diameter of the first groove of the return bend pipe within predetermined ranges, the evaporation performance of the heat exchanger can be further improved. It becomes possible. By configuring the return bend tube from a heat-resistant copper alloy, it is possible to increase the reliability of the joint with the hairpin tube and achieve a weight reduction.
図面の簡単な説明  Brief Description of Drawings
[0032] [図 1]本発明に係るリターンベンド管の構成を示す斜視図である。  FIG. 1 is a perspective view showing a configuration of a return bend pipe according to the present invention.
[図 2]本発明に係るリターンベンド管を組み込んだフィンアンドチューブ型熱交換器 の一例を示す一部破断正面図である。  FIG. 2 is a partially broken front view showing an example of a fin-and-tube heat exchanger incorporating a return bend pipe according to the present invention.
[図 3] (a)は図 2の熱交換器をリターンベンド管側から見た斜視図、 (b)は熱交換器を ヘアピン管側から見た斜視図、(c)は熱交換器内の冷媒の流れを概略的に示す模 式図である。  [FIG. 3] (a) is a perspective view of the heat exchanger of FIG. 2 as viewed from the return bend tube side, (b) is a perspective view of the heat exchanger as viewed from the hairpin tube side, and (c) is the inside of the heat exchanger. FIG. 6 is a schematic diagram schematically showing the flow of the refrigerant.
[図 4]ヘアピン管とリターンベンド管との接合部の一例を示す管軸方向に切断したとき の拡大端面図である。  FIG. 4 is an enlarged end view when cut in the tube axis direction showing an example of a joint portion between a hairpin tube and a return bend tube.
[図 5] (a)はリターンベンド管の管軸直交端面図、 (b)は(a)の一部拡大端面図である [Fig. 5] (a) is an end view perpendicular to the axis of the return bend pipe, and (b) is a partially enlarged end view of (a).
Yes
[図 6] (a)はヘアピン管の管軸直交端面図、(b)は (a)の一部拡大端面図である。  [Fig. 6] (a) is an end view of the hairpin tube perpendicular to the tube axis, and (b) is a partially enlarged end view of (a).
[図 7] (a)、 (b)は本発明に係る他の実施形態の熱交換器内の冷媒の流れを概略的 に示す模式図である。  [FIG. 7] (a) and (b) are schematic views schematically showing the flow of refrigerant in a heat exchanger according to another embodiment of the present invention.
[図 8] (a)は熱交換器の蒸発性能を測定する際に使用する吸引型風洞の模式図、(b )は (a)の吸引型風洞に冷媒を供給する冷媒供給装置の模式図である。  [Fig. 8] (a) is a schematic diagram of a suction type wind tunnel used for measuring the evaporation performance of a heat exchanger, and (b) is a schematic diagram of a refrigerant supply device for supplying refrigerant to the suction type wind tunnel of (a). It is.
符号の説明 [0033] 1リターンベンド管 Explanation of symbols [0033] 1 return bend pipe
la管本体部  la tube body
2第 1溝  2 1st groove
3第 1フィン  3 First fin
1 1ヘアピン管  1 1 hairpin tube
12第 2溝  12 Second groove
13第 2フィン  13 2nd fin
20、 20A、 20B熱交換器  20, 20A, 20B heat exchanger
21フィン ¾  21 fin ¾
21 aフィン  21 a fin
22リターンベンド部  22 Return bend section
23ヘアピン部  23 hairpin part
P1第 1溝ピッチ  P1 1st groove pitch
P2第 2溝ピッチ  P2 2nd groove pitch
S 1第 1溝断面積  S 1 Groove cross section
S2第 2溝断面積  S2 Second groove cross-sectional area
Θ 1第 1溝リード角  Θ 1 1st groove lead angle
Θ 2第 2溝リード角  Θ2 2nd groove lead angle
hi第 1溝深さ  hi 1st groove depth
h2第 2溝深さ  h2 2nd groove depth
L足長さ  L foot length
Pピッチ  P pitch
ID1第 1最大内径  ID1 1st maximum inner diameter
ID2第 2最大内径  ID2 2nd maximum inner diameter
OD1第 1管外径  OD1 1st pipe outer diameter
OD2第 2管外径  OD2 second pipe outer diameter
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0034] 以下、本発明について図面を参照して具体的に説明する。図 1はリターンベンド管 の構成を示す斜視図、図 2はリターンベンド管を組み込んだフィンアンドチューブ型 熱交換器の一例を示す一部破断正面図、図 3 (a)は図 2の熱交換器をリターンベンド 管側から見た斜視図、(b)は熱交換器をヘアピン管側から見た斜視図、(c)は熱交 換器内の冷媒の流れを概略的に示す模式図、図 4はヘアピン管とリターンベンド管と の接合部の一例を示す管軸方向に切断したときの拡大端面図、図 5 (a)はリターンべ ンド管の管軸直交端面図、(b)は(a)の一部拡大端面図、図 6 (a)はヘアピン管の管 軸直交端面図、(b)は(a)の一部拡大端面図、図 7 (a)、(b)は他の実施形態の熱交 換器内の冷媒の流れを概略的に示す模式図、図 8 (a)は熱交換器の蒸発性能を測 定する際に使用する吸引型風洞の模式図、(b)は(a)の吸引型風洞に冷媒を供給 する冷媒供給装置の模式図である。 Hereinafter, the present invention will be specifically described with reference to the drawings. Figure 1 shows the return bend pipe Fig. 2 is a partially broken front view showing an example of a fin-and-tube heat exchanger incorporating a return bend tube. Fig. 3 (a) shows the heat exchanger of Fig. 2 on the return bend tube side. (B) is a perspective view of the heat exchanger as viewed from the hairpin tube side, (c) is a schematic diagram schematically showing the flow of refrigerant in the heat exchanger, and FIG. Fig. 5 (a) is an enlarged end view when cut in the tube axis direction showing an example of a joint with the return bend pipe, Fig. 5 (a) is a pipe bend orthogonal end view of the return bend pipe, and (b) is a part of (a). Fig. 6 (a) is an end view orthogonal to the axis of the hairpin tube, (b) is a partially enlarged end view of (a), and Figs. 7 (a) and (b) are heat exchanges of other embodiments. Fig. 8 (a) is a schematic diagram of the refrigerant flow in the exchanger. Fig. 8 (a) is a schematic diagram of a suction wind tunnel used to measure the evaporation performance of the heat exchanger. (B) is a schematic diagram of (a). Supply refrigerant to suction type wind tunnel It is a schematic diagram of a medium supply device.
[0035] (1)リターンベンド管  [0035] (1) Return bend pipe
まず、本発明のリターンベンド管について説明する。図 1〜図 3に示すように、本発 明のリターンベンド管 1は、フィンアンドチューブ型熱交換器 (以下、熱交換器と称す) 20に使用され、管内部に冷媒が供給されるヘアピン管 11の管端に接合されるもので ある。このリターンベンド管 1は、 U字状に形成された管本体部 laと、この管本体部 la の管端にヘアピン管 11と接続する管端 lbと、管本体部 laの内面に形成された多数 の第 1溝 2とを備える(図 4参照、図 1においては第 1溝の記載を省略した)。このリタ ーンベンド管 1が 2本のヘアピン管 11、 11の間に介在して、ヘアピン管 11同士を接 続するため、図 2に示すように、複数のヘアピン管 11、 11 · · ·を直列に接続すること によって、距離の長い冷媒流路が構成される。  First, the return bend pipe of the present invention will be described. As shown in FIGS. 1 to 3, the return bend pipe 1 of the present invention is used in a fin-and-tube heat exchanger (hereinafter referred to as a heat exchanger) 20 and a hairpin for supplying refrigerant to the inside of the pipe. It is joined to the pipe end of the pipe 11. This return bend pipe 1 is formed on a pipe body la formed in a U-shape, a pipe end lb connected to the hairpin pipe 11 at the pipe end of the pipe body la, and an inner surface of the pipe body la. A number of first grooves 2 are provided (see FIG. 4; the description of the first groove is omitted in FIG. 1). Since the return bend tube 1 is interposed between the two hairpin tubes 11 and 11 and connects the hairpin tubes 11 to each other, as shown in FIG. 2, a plurality of hairpin tubes 11 and 11 are connected in series. By connecting to, a long-distance refrigerant flow path is formed.
[0036] リターンベンド管 1は、図 5、 6に示すように、管内面に多数形成された第 1溝 2の内 面溝形状を以下のように規制することによって、リターンベンド管 1が組み込まれる熱 交換器 20 (図 2、図 3参照)としての蒸発性能を向上させることができる。また、リタ一 ンベンド管 1は、接合するヘアピン管 11の管外径(第 2管外径 OD2)として 3〜; 10m mが用いられるため、その管外径(第 1管外径 OD1)がヘアピン管と同じである 3〜1 Ommの管を用いることが好まし!/、。  [0036] As shown in Figs. 5 and 6, the return bend pipe 1 incorporates the return bend pipe 1 by restricting the inner groove shape of the first groove 2 formed on the inner surface of the pipe as follows. The evaporation performance of the heat exchanger 20 (see Fig. 2 and Fig. 3) can be improved. In addition, since the return bend pipe 1 uses 3 to 10 mm as the outer diameter of the hairpin pipe 11 to be joined (second outer diameter OD2), the outer diameter of the pipe (first outer diameter OD1) is It is preferable to use a 3 to 1 Omm tube that is the same as a hairpin tube!
[0037] <内面溝形状〉  [0037] <Inner groove shape>
リターンベンド管 1の第 1溝 2は、その管軸直交断面における第 1溝ピッチ(P1 )と、 ヘアピン管 11の管内面に形成されたらせん状の第 2溝 12の管軸直交断面における 第 2溝ピッチ(P2)との溝ピッチ比(P1/P2)が 0. 65-2. 2を満足し、かつ、第 1溝 2 の管軸直交断面における溝 1個あたりの第 1溝断面積(S1)と、第 2溝 12の管軸直交 断面における溝 1個あたりの第 2溝断面積(S2)との溝断面積比(S1/S2)が 0. 3〜 3. 6を満足する必要がある。なお、溝断面積比(S1/S2)は 0. 54-2. 7とするのが より好ましい。以下に、溝ピッチ比 (P1/P2)および溝断面積比(S1/S2)の数値限 定理由について説明する。 The first groove 2 of the return bend pipe 1 has the first groove pitch (P1) in the cross section perpendicular to the pipe axis, The groove pitch ratio (P1 / P2) to the second groove pitch (P2) in the cross section perpendicular to the tube axis of the spiral second groove 12 formed on the inner surface of the hairpin tube 11 satisfies 0.665-2. In addition, the first groove cross-sectional area (S1) per groove in the cross section perpendicular to the pipe axis of the first groove 2 and the second cross-sectional area per groove in the cross section perpendicular to the pipe axis of the second groove 12 ( The groove cross-sectional area ratio (S1 / S2) with S2) must satisfy 0.3 to 3.6. The groove cross-sectional area ratio (S1 / S2) is more preferably 0.54-2.7. The reason for limiting the numerical values of the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S1 / S2) will be described below.
[0038] (溝ピッチ比(P1/P2) : 0. 65—2. 2)  [0038] (Groove pitch ratio (P1 / P2): 0.65-2. 2)
溝ピッチ比(P1/P2)が 0. 65未満の場合、ヘアピン管 11の溝 1つあたりに占める リターンベンド管 1の溝数が増加することにより、ヘアピン管 11からリターンベンド管 1 に液冷媒が流入する際、リターンベンド管入口側にて管内部(第 1溝 2)の冷媒液膜 に縮流が起こり、冷媒液膜が乱れる。そして、次段のヘアピン管 11に液冷媒が流入 する際、冷媒液膜が乱れたまま流入し、ヘアピン管の直管部分での冷媒液膜に厚い 部分が生じ、管外との熱交換が不安定となり、蒸発性能が低下する。  When the groove pitch ratio (P1 / P2) is less than 0.65, the number of grooves in the return bend pipe 1 that occupy one groove in the hairpin pipe 11 increases, so that the liquid refrigerant flows from the hairpin pipe 11 to the return bend pipe 1. Flows into the refrigerant liquid film inside the pipe (first groove 2) on the return bend pipe inlet side, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the hairpin tube 11 at the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is formed in the refrigerant liquid film at the straight tube portion of the hairpin tube, and heat exchange with the outside of the tube is performed. It becomes unstable and the evaporation performance decreases.
[0039] 溝ピッチ比(P1/P2)が 2· 2を超える場合、ヘアピン管 11からリターンベンド管 1に 液冷媒が流入する際、ヘアピン管 11の溝 1つあたりに占めるリターンベンド管 1の溝 数が減少することにより、リターンベンド管 1の第 1溝 2で冷媒液膜の保持性が大幅に 低下し、「環状流」の形成が崩れて、冷媒液膜が乱れる。そして、次段のヘアピン管 1 1に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 11の直管部分 での冷媒液膜に厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能が低下 する。  [0039] When the groove pitch ratio (P1 / P2) exceeds 2.2, when the liquid refrigerant flows into the return bend pipe 1 from the hairpin pipe 11, the return bend pipe 1 occupying one groove in the hairpin pipe 11 By reducing the number of grooves, the retention of the refrigerant liquid film in the first groove 2 of the return bend pipe 1 is greatly reduced, the formation of the “annular flow” is disrupted, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is formed in the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat from the outside of the tube is generated. Exchange becomes unstable and evaporation performance decreases.
[0040] (溝断面積比(S 1/S2) : 0. 3〜3· 6)  [0040] (Groove cross-sectional area ratio (S 1 / S2): 0.3-3 · 6)
溝断面積比(S1/S2)が 0. 3未満の場合、ヘアピン管 11からリターンベンド管 1に 液冷媒が流入する際、第 1溝 2の断面積が大幅に減少することにより、リターンベンド 管入口側にて冷媒液膜の縮流が起こり、冷媒液膜が乱れる。そして、次段のへアビ ン管 11に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 11の直 管部分での冷媒液膜に厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能 が低下する。 [0041] 溝断面積比(S1/S2)が 3. 6を超える場合、ヘアピン管 11からリターンベンド管 1 に液冷媒が流入する際、第 1溝 2の断面積増加により抵抗が減少するものの、逆に第 1溝 2で冷媒液膜の保持性が低下することにより、「環状流」を形成が崩れて、冷媒液 膜が乱れる。そして、次段のヘアピン管 11に液冷媒が流入する際、冷媒液膜が乱れ たまま流入し、ヘアピン管 11の直管部分での冷媒液膜に厚い部分が生じ、管外との 熱交換が不安定になり、蒸発性能が低下する。 When the groove cross-sectional area ratio (S1 / S2) is less than 0.3, when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1, the cross-sectional area of the first groove 2 is greatly reduced, so that the return bend The refrigerant liquid film contracts on the pipe inlet side, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the next-stage air pipe 11, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube. Heat exchange becomes unstable and evaporation performance decreases. [0041] When the groove sectional area ratio (S1 / S2) exceeds 3.6, when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1, the resistance decreases due to the increase in the sectional area of the first groove 2. Conversely, the retention of the refrigerant liquid film in the first groove 2 decreases, so that the “annular flow” is lost and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat exchange with the outside of the tube Becomes unstable and the evaporation performance decreases.
[0042] また、図 4〜図 6に示すように、リターンベンド管 1の第 1溝 2は、第 1溝 2と管軸とが なす第 1溝リード角(θ 1)と、ヘアピン管 11の管内面に形成された第 2溝 12と管軸と がなす第 2溝リード角(Θ 2)との角度差(θ :ΐ_ θ 2)が- 15〜+ 15° を満足し、かつ、 第 1溝 2の管軸直交断面における第 1溝深さ (hi)と、第 2溝 12の管軸直交断面にお ける第 2溝深さ (h2)との溝深さ比 (hl/h2)が 0. 47〜; 1. 5を満足することが好まし い。また、第 1溝 2は、第 1溝リード角( θ 1)が 0° 、すなわち、第 1溝 2が管軸と平行な 場合も含むものとする。以下に、角度差( θ 1- Θ 2)および溝深さ比 (hl/h2)の数値 限定理由について説明する。  Further, as shown in FIGS. 4 to 6, the first groove 2 of the return bend tube 1 has a first groove lead angle (θ 1) formed by the first groove 2 and the tube axis, and a hairpin tube 11 The angle difference (θ: ΐ_θ 2) between the second groove 12 formed on the inner surface of the tube and the second groove lead angle (Θ 2) formed by the tube axis satisfies −15 to + 15 °, and Groove depth ratio (hl / h2) between the first groove depth (hi) in the cross section perpendicular to the pipe axis of the first groove 2 and the second groove depth (h2) in the cross section perpendicular to the pipe axis of the second groove 12 ) Is preferably between 0.47 and 1.5; Further, the first groove 2 includes the case where the first groove lead angle (θ1) is 0 °, that is, the first groove 2 is parallel to the tube axis. The reason for limiting the numerical values of the angle difference (θ 1-Θ 2) and the groove depth ratio (hl / h2) will be described below.
[0043] (角度差(θ 1- Θ 2) : -15〜+ 15° )  [0043] (Angle difference (θ 1- Θ 2): -15 to + 15 °)
角度差( θ 1- Θ 2)が- 15° 未満、すなわち、第 1溝リード角( θ 1)が(第 2溝リード 角( Θ 2) -15° )より小さい場合、リターンベンド管入口側にて、第 1溝 2の間に形成さ れる第 1フィン 3の山頂を基点に冷媒液膜の飛沫が生じ、冷媒液膜に乱れ (剥離流) が発生する。そして、次段のヘアピン管 11に液冷媒が流入する際、冷媒液膜が乱れ たまま流入し、ヘアピン管 11の直管部分での冷媒液膜に厚い部分が生じ、管外との 熱交換が不安定になり、蒸発性能が低下しやすい。  If the angle difference (θ 1- Θ 2) is less than -15 °, that is, the first groove lead angle (θ 1) is smaller than (second groove lead angle (Θ 2) -15 °), the return bend pipe inlet side Thus, the coolant liquid film splashes from the peak of the first fin 3 formed between the first grooves 2, and turbulence (separation flow) occurs in the coolant liquid film. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat exchange with the outside of the tube Becomes unstable and the evaporation performance tends to decrease.
[0044] 角度差(Θ卜 Θ 2)が + 15° を超える、すなわち、第 1溝リード角(θ 1)が(第 2溝リ ード角(Θ 2) + 15° )より大きい場合、ヘアピン管 11からリターンベンド管 1に液冷媒 が流入する際、リターンベンド管側の圧力損失が増加することにより、リターンベンド 管入口側にて冷媒液膜の縮流が起こり、冷媒液膜が乱れる。そして、次段のへアビ ン管 11に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 11の直 管部分での冷媒液膜に厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能 が低下しやすい。 [0045] なお、第 1溝 2と管軸とがなす第 1溝リード角( θ 1)の方向は、ヘアピン管 11の管内 面に形成された第 2溝 12と管軸とがなす第 2溝リード角(Θ 2)の方向と同一方向に形 成されていることが好ましい。第 1溝リード角(θ 1)の方向と第 2溝リード角(Θ 2)の方 向が異なると、リターンベンド管 1で冷媒の圧力損失が大きくなり、蒸発性能が低下し やすい。 [0044] When the angle difference (Θ 卜 Θ 2) exceeds + 15 °, ie, the first groove lead angle (θ 1) is larger than (second groove lead angle (Θ 2) + 15 °), When liquid refrigerant flows into the return bend pipe 1 from the hairpin pipe 11, the pressure loss on the return bend pipe side increases, causing a contraction of the refrigerant liquid film on the return bend pipe inlet side, thereby disturbing the refrigerant liquid film. . Then, when the liquid refrigerant flows into the next-stage air pipe 11, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight pipe portion of the hairpin tube 11, and Heat exchange becomes unstable and evaporation performance tends to decrease. Note that the direction of the first groove lead angle (θ 1) formed by the first groove 2 and the tube axis is the second groove formed by the second groove 12 formed on the tube inner surface of the hairpin tube 11 and the tube axis. It is preferably formed in the same direction as the direction of the groove lead angle (Θ 2). If the direction of the first groove lead angle (θ 1) and the direction of the second groove lead angle (Θ 2) are different, the pressure loss of the refrigerant in the return bend pipe 1 becomes large, and the evaporation performance tends to deteriorate.
[0046] (溝深さ比(hl/h2) : 0. 47- 1. 5)  [0046] (Groove depth ratio (hl / h2): 0.47-1.5)
溝深さ比 (hl/h2)が 0. 47よりも小さい場合、リターンベンド管入口側にて第 1溝 2 の冷媒液膜が離脱しやすぐ冷媒液膜の飛沫が生じ、冷媒液膜の乱れ (剥離流)が 発生する。そして、次段のヘアピン管 11に液冷媒が流入する際、冷媒液膜が乱れた まま流入し、ヘアピン管 11の直管部分での冷媒液膜に厚い部分が生じ、管外との熱 交換が不安定になり、蒸発性能が低下しやすい。  When the groove depth ratio (hl / h2) is smaller than 0.47, the refrigerant liquid film in the first groove 2 is released immediately on the return bend pipe inlet side, and the liquid droplet of the refrigerant liquid film is formed immediately. Disturbance (separated flow) occurs. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is formed in the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and heat exchange with the outside of the tube Becomes unstable and the evaporation performance tends to decrease.
[0047] 溝深さ比(hl/h2)が 1. 5よりも大きい場合、ヘアピン管 11からリターンベンド管 1 に液冷媒が流入する際、リターンベンド管 1の第 1フィン 3が抵抗となり、リターンベン ド管入口側にて冷媒液膜の縮流が起こり、冷媒液膜が乱れる。そして、次段のへアビ ン管に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 1 1の直管部 分で冷媒液膜の厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能が低下 しゃすい。  [0047] When the groove depth ratio (hl / h2) is greater than 1.5, when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1, the first fin 3 of the return bend tube 1 becomes a resistance, The refrigerant liquid film contracts at the return bend pipe inlet side, and the refrigerant liquid film is disturbed. Then, when the liquid refrigerant flows into the next-stage heat sink pipe, the refrigerant liquid film flows in a turbulent state, and a thick portion of the refrigerant liquid film is generated in the straight pipe portion of the hairpin tube 11, which Heat exchange becomes unstable and evaporation performance decreases.
[0048] また、リターンベンド管 1の第 1溝 2は、第 1溝 2間に形成された第 1フィン 3の第 1フィ ン山頂角(δ 1)、第 1フィン根元半径 (rl)力 S、ヘアピン管 11の第 2溝 12間に形成さ れた第 2フィン 13の第 2フィン山頂角(δ 2)、第 2フィン根元半径 (r2)と同一となるよう に形成することがより好ましい。また、第 1フィン山頂角(δ 1)が 4. 5〜45° 、第 1フィ ン根元半径 (rl)が第 1溝深さ (hi)の 1/12〜; 1/2がさらに好ましい。さらに、第 1フ イン山頂角(δ ΐ)が 4. 5〜28. 5° 、第 1フィン根元半径 (rl)が第 1溝深さ(hi )の 1 /12〜; 1/4が最適である。このことにより、リターンベンド管 1において、冷媒液膜の 「環状流」の形成がより一層維持される。  [0048] In addition, the first groove 2 of the return bend pipe 1 includes the first fin peak angle (δ 1) and the first fin root radius (rl) force of the first fin 3 formed between the first grooves 2. S, more preferably formed so as to be the same as the second fin peak angle (δ 2) and the second fin root radius (r2) of the second fin 13 formed between the second grooves 12 of the hairpin tube 11. preferable. More preferably, the first fin peak angle (δ 1) is 4.5 to 45 °, and the first fin root radius (rl) is 1/12 to 1/2 of the first groove depth (hi). Furthermore, the first fin peak angle (δ ΐ) is 4.5 to 28.5 °, and the first fin root radius (rl) is 1/12 to the first groove depth (hi); 1/4 is optimal. It is. This further maintains the formation of the “annular flow” of the refrigerant liquid film in the return bend pipe 1.
その結果、熱交換器 20 (図 2、図 3参照)の蒸発性能がより一層向上する。以下に、 第 1フィン山頂角( δ 1)および第 1フィン根元半径 (rl)の数値限定理由について説 明する。 [0049] (第 1フィン山頂角(δ 1) : 4· 5〜45° ) As a result, the evaporation performance of the heat exchanger 20 (see FIGS. 2 and 3) is further improved. The reason for limiting the numerical values of the first fin peak angle (δ 1) and the first fin root radius (rl) is explained below. [0049] (1st fin peak angle (δ 1): 4 · 5 ~ 45 °)
第 1フィン山頂角(δ 1)が 4. 5° 未満の場合には、ヘアピン管 11からリターンベン ド管 1に液冷媒が流入する際、第 1溝 2の断面積増加により抵抗が減少するものの、 逆に、第 1溝 2の溝底幅が広がることで冷媒液膜の保持性が低下しやすぐ「環状流」 の形成が崩れやすくなり、冷媒液膜が乱れる。そして、次段のヘアピン管 11に液冷 媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 11の直管部分での冷 媒液膜に厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能が低下しやす くなる。  When the first fin peak angle (δ 1) is less than 4.5 °, the resistance decreases due to the increase in the cross-sectional area of the first groove 2 when the liquid refrigerant flows into the return bend pipe 1 from the hairpin pipe 11. However, conversely, when the groove bottom width of the first groove 2 is widened, the retention of the refrigerant liquid film is deteriorated, and the formation of the “annular flow” is easily broken, and the refrigerant liquid film is disturbed. Then, when the liquid cooling medium flows into the hairpin tube 11 in the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion is generated in the cooling liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube is disconnected. Heat exchange becomes unstable and evaporation performance tends to decrease.
[0050] また、第 1フィン山頂角(δ 1)が 45° を超えた場合には、ヘアピン管 11からリターン ベンド管 1に液冷媒が流入する際、第 1溝 2の断面積が減少することにより、リターン ベンド管入口側にて冷媒液膜の縮流が起こりやすぐ冷媒液膜が乱れる。そして、次 段のヘアピン管 11に液冷媒が流入する際、冷媒液膜が乱れたまま流入しやすくなり 、ヘアピン管 11の直管部分での冷媒液膜に厚い部分が生じ、管外との熱交換が不 安定になり、蒸発性能が低下しやすくなる。  [0050] When the first fin peak angle (δ 1) exceeds 45 °, the cross-sectional area of the first groove 2 decreases when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1. As a result, the refrigerant liquid film contracts immediately on the return bend pipe inlet side, and the refrigerant liquid film is disturbed immediately. Then, when the liquid refrigerant flows into the hairpin tube 11 at the next stage, the refrigerant liquid film is likely to flow in a turbulent state, and a thick portion is formed in the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube is Heat exchange becomes unstable, and evaporation performance tends to decrease.
[0051] (第 1フィン根元半径 (rl):第 1溝深さ(hi)の 1/12〜; 1/2)  [0051] (First fin root radius (rl): 1/12 to 1st groove depth (hi); 1/2)
第 1フィン根元半径 (rl)が第 1溝深さ (hi)の 1/12未満になると、ヘアピン管 11か らリターンベンド管 1に液冷媒が流入する際、第 1溝 2の断面積増加により抵抗が減 少するものの、逆に、第 1溝 2の溝底幅が広がることで冷媒液膜の保持性が低下しや すぐ「環状流」の形成が崩れやすくなり、冷媒液膜が乱れる。そして、次段のへアビ ン管 11に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、ヘアピン管 11の直 管部分での冷媒液膜に厚い部分が生じ、管外との熱交換が不安定になり、蒸発性能 が低下しやすくなる。  When the first fin root radius (rl) is less than 1/12 of the first groove depth (hi), the cross-sectional area of the first groove 2 increases when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1. Although the resistance is reduced by the above, conversely, because the groove bottom width of the first groove 2 widens, the retention of the refrigerant liquid film decreases, and the formation of the "annular flow" tends to collapse, and the refrigerant liquid film is disturbed. . Then, when the liquid refrigerant flows into the next-stage air pipe 11, the refrigerant liquid film flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11, and the outside of the tube. Heat exchange becomes unstable and evaporation performance tends to decrease.
[0052] また、第 1フィン根元半径 (rl)が第 1溝深さ(hi)の 1/2を超える場合は、ヘアピン 管 11からリターンベンド管 1に液冷媒が流入する際、第 1溝 2の断面積が減少するこ とにより、リターンベンド管入口側にて冷媒液膜の縮流が起こりやすぐ冷媒液膜が 乱れる。そして、次段のヘアピン管 11に液冷媒が流入する際、冷媒液膜が乱れたま ま流入しやすくなり、ヘアピン管 11の直管部分での冷媒液膜に厚い部分が生じ、管 外との熱交換が不安定になり、蒸発性能が低下しやすくなる。 [0053] また、図 1に示すように、リターンベンド管 1の管本体部 laを以下のように規制するこ とによっても、リターンベンド管 1が組み込まれる熱交換器としての蒸発性能を向上さ せること力 Sでさる。 [0052] When the first fin root radius (rl) exceeds 1/2 of the first groove depth (hi), when the liquid refrigerant flows from the hairpin tube 11 into the return bend tube 1, the first groove As the cross-sectional area of 2 decreases, the refrigerant liquid film contracts immediately on the return bend pipe inlet side, and the refrigerant liquid film is immediately disturbed. Then, when the liquid refrigerant flows into the hairpin tube 11 in the next stage, the refrigerant liquid film tends to flow in a turbulent state, resulting in a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube 11 and the outside of the tube. Heat exchange becomes unstable, and evaporation performance tends to decrease. Further, as shown in FIG. 1, the evaporation performance as a heat exchanger in which the return bend pipe 1 is incorporated is also improved by restricting the pipe body la of the return bend pipe 1 as follows. Use force S.
[0054] <管本体部〉  [0054] <Tube body part>
(足長さ(L):ピッチ(P)の 1 · 0〜; ! · 5倍)  (Foot length (L): 1 · 0 ~ of pitch (P);! · 5 times)
リターンベンド管 1 (管本体部 la)は、その足長さ(Uがピッチ(P)の 1 · 0〜; ! · 5倍 であることが好ましい。なお、足長さ(Uは、 U字形状の管本体部 laにおいて、管端 1 bと曲げ先端部の管外面との距離である。また、ピッチ(P)は、 U字形状の管本体部 1 aにおいて、両管端中心間の距離である。  The return bend pipe 1 (pipe body la) preferably has a foot length (U is 1 · 0 to; 5 times the pitch (P). Note that the foot length (U is U-shaped) In the pipe-shaped main part la, the distance between the pipe end 1 b and the outer surface of the bent tip part, and the pitch (P) is the distance between the center of both pipe ends in the U-shaped pipe main part 1 a. Distance.
[0055] 足長さ(Uが曲げピッチ(P)の 1 · 0倍よりも小さくなると、リターンベンド管入口側か ら曲げ開始部までの長さが短いことにより、「環状流」の形成が十分ではなぐ曲げ内 側での冷媒液膜の飛沫が生じることによる冷媒液膜の乱れ (剥離流)が発生する。そ して、次段のヘアピン管に液冷媒が流入する際、冷媒液膜が乱れたまま流入し、へ ァピン管の直管部分での冷媒液膜に厚レ、部分が生じ、管外との熱交換が不安定に なり、蒸発性能が低下しやすい。  [0055] When the foot length (U is smaller than 1 · 0 times the bending pitch (P), the length from the inlet side of the return bend pipe to the bending start portion is short, so that an “annular flow” is formed. If the refrigerant liquid film splashes on the inner side of the bending, the refrigerant liquid film is disturbed (separated flow), and when the liquid refrigerant flows into the next hairpin tube, the refrigerant liquid film The liquid flows in a turbulent state, and a thick layer of liquid is formed in the refrigerant liquid film in the straight part of the hepin tube, making the heat exchange with the outside of the tube unstable, and the evaporation performance tends to deteriorate.
[0056] 足長さ(Uが曲げピッチ(P)の 1 · 5倍よりも大きくなると、リターンベンド管入口側か ら曲げ開始部までの長さが長くなり、「環状流」の形成が容易になる一方、リターンべ ンド管 1での圧力損失が増加することにより、蒸発性能が低下しやすい。  [0056] If the foot length (U is larger than 1 · 5 times the bending pitch (P), the length from the return bend pipe inlet side to the bending start part becomes longer, and the formation of “annular flow” is easy. On the other hand, the evaporation loss tends to decrease due to the increased pressure loss in the return bend pipe 1.
[0057] (材質)  [0057] (Material)
リターンベンド管 1 (管本体部 la)の材質は、ヘアピン管の材質より熱伝導率が低い 材質からなることが好ましい。熱交換器 20 (図 2、 3参照)、特に空気熱交換器にリタ ーンベンド管 1を使用した場合、リターンベンド管 1は熱交換部以外で使用される。し たがって、リターンベンド管 1の材質がヘアピン管の材質より熱伝導率が高い場合に は、リターンベンド管 1の部分で熱損失が発生する。リターンベンド管 1の部分で熱損 失が発生すると、リターンベンド管 1の部分で冷媒の蒸発が起こり、冷媒液膜の「環状 流」の形成が崩れてしまレ、、冷媒液膜の飛沫が生じることによる冷媒液膜の乱れ(剥 離流)が発生する。そして、次段のヘアピン管に液冷媒が流入する際、冷媒液膜が 乱れたまま流入し、ヘアピン管の直管部分での冷媒液膜に厚い部分が生じ、管外と の熱交換が不安定になり、蒸発性能が低下しやすい。 The material of the return bend tube 1 (tube body portion la) is preferably made of a material having a lower thermal conductivity than the material of the hairpin tube. When the return bend pipe 1 is used in the heat exchanger 20 (see Figs. 2 and 3), especially in the air heat exchanger, the return bend pipe 1 is used outside the heat exchange section. Therefore, when the material of the return bend pipe 1 has higher thermal conductivity than the material of the hairpin pipe, heat loss occurs in the return bend pipe 1 portion. When heat loss occurs in the return bend pipe 1, the refrigerant evaporates in the return bend pipe 1, and the formation of the "annular flow" of the refrigerant liquid film breaks down. Disturbance (separated flow) of the refrigerant liquid film due to the occurrence occurs. When the liquid refrigerant flows into the hairpin tube in the next stage, the refrigerant liquid film flows in a turbulent state, and a thick portion of the refrigerant liquid film in the straight tube portion of the hairpin tube is generated, and the outside of the tube The heat exchange becomes unstable and the evaporation performance tends to decrease.
[0058] 従来、ヘアピン管およびリターンベンド管 1 (管本体部 la)の材質には、りん脱酸銅 が用いられることが多ぐ両管の接続には、ロウ付けによる方法が取られる。そして、口 ゥ付けする際には、ガスバーナー等にて両管の管端部を 800〜900°C程度に加熱 する。その際、リターンベンド管 1 (管本体部 la)にりん脱酸銅を使用した場合、この 加熱によりリターンベンド管 1 (熱影響部)の強度が低下し、使用の際の管内部の圧 力により管が破壊しやすくなる。この点を回避するには、リターンベンド管 1 (管本体 部 la)の第 1管肉厚 (T1) (図 4参照)を厚くする必要が生じる。しかし、リターンベンド 管 1 (管本体部 la)の材質として、ヘアピン管より耐熱性のある耐熱銅合金を使用す ることにより、加熱による強度低下が回避でき、更に耐圧強度が向上するとともに、肉 厚の増肉化を抑えることができる。その結果、リターンベンド管 1 (管本体部 la)の軽 量化が可能となる。耐熱銅合金としては、例えば、 850°C加熱後も室温において 10 MPa以上の耐圧強度を有する Cu-Sn-P系、 Cu-Sn-Zn-P系等の銅合金が好まし い。なお、ヘアピン管としてもリターンベンド管 1と同一材質の耐熱銅合金管を用いて あよい。 [0058] Conventionally, phosphorous deoxidized copper is often used as the material for the hairpin tube and the return bend tube 1 (tube body la). Then, when splicing, the ends of both pipes are heated to about 800-900 ° C with a gas burner or the like. At this time, if phosphorus deoxidized copper is used for the return bend pipe 1 (pipe main body la), the strength of the return bend pipe 1 (heat affected zone) is reduced by this heating, and the pressure inside the pipe during use is reduced. This makes it easier to break the tube. In order to avoid this point, it is necessary to increase the first pipe wall thickness (T1) (see Fig. 4) of the return bend pipe 1 (the pipe body la). However, by using a heat-resistant copper alloy that is more heat resistant than the hairpin tube as the material of the return bend tube 1 (tube main body la), strength reduction due to heating can be avoided, pressure resistance strength can be further improved, and meat Thickening of the thickness can be suppressed. As a result, the return bend pipe 1 (pipe main body la) can be reduced in weight. As the heat-resistant copper alloy, for example, Cu-Sn-P and Cu-Sn-Zn-P based copper alloys having a pressure strength of 10 MPa or more at room temperature even after heating at 850 ° C are preferable. As the hairpin tube, a heat-resistant copper alloy tube made of the same material as the return bend tube 1 may be used.
[0059] (第 1最大内径 (ID1)  [0059] (First maximum inner diameter (ID1)
図 5、図 6に示すように、リターンベンド管 1 (管本体部 la)の第 1最大内径 (ID1)は 、ヘアピン管 11の第 2最大内径 (ID2)との関係において (ID1)≥(ID2)であることが 好ましい。 (ID1) < (ID2)とすると、リターンベンド管 1の管内で冷媒液膜の「環状流」 が形成されていたの力 ヘアピン管 11に液冷媒が流入する際に拡流が起こり、管内 下部に冷媒液膜が溜り、更には冷媒液膜の厚さが不均一になって、冷媒液膜が乱 れる。そして、次段のヘアピン管入口付近の冷媒液膜が乱れたまま流入することによ り冷媒液膜に厚い部分が生じて、管外との熱交換が不安定になり、蒸発性能が低下 しゃすい。  As shown in FIGS. 5 and 6, the first maximum inner diameter (ID1) of the return bend tube 1 (tube main body la) is (ID1) ≥ () in relation to the second maximum inner diameter (ID2) of the hairpin tube 11. ID2) is preferred. If (ID1) <(ID2), the force of the "annular flow" of the refrigerant liquid film formed in the pipe of the return bend pipe 1 is expanded when the liquid refrigerant flows into the hairpin pipe 11, and the lower part in the pipe As a result, the refrigerant liquid film accumulates, and the thickness of the refrigerant liquid film becomes non-uniform, thereby disturbing the refrigerant liquid film. Then, the refrigerant liquid film near the inlet of the next-stage hairpin tube flows in a turbulent state, resulting in a thick portion of the refrigerant liquid film, which makes the heat exchange with the outside of the tube unstable and reduces the evaporation performance. Wow.
[0060] (2)ヘアピン管  [0060] (2) Hairpin tube
次に、図 2、図 3に示すように、本発明のリターンベンド管 1と共に、熱交換器 20を構 成するヘアピン管 11について説明する。図 6に示すように、ヘアピン管 11は、管内面 に多数のらせん状の第 2溝 12が形成され、第 2溝 12の内面溝形状を以下のように規 制すること力 S好ましい。また、ヘアピン管 11は、空調機器用の伝熱管としては 3〜10 mmの管が主流であるため、その管外径(第 2管外径 OD2)がヘアピン管と同じであ る 3〜; 10mmの管を用いることが好ましい。さらに、ヘアピン管 11の材質としては、成 形加工性が優れたりん脱酸銅が好ましぐりん脱酸銅よりも耐熱性に優れた耐熱銅合 金を用いてもよい。 Next, as shown in FIGS. 2 and 3, a hairpin tube 11 constituting a heat exchanger 20 together with the return bend tube 1 of the present invention will be described. As shown in FIG. 6, the hairpin tube 11 has a plurality of spiral second grooves 12 formed on the inner surface of the tube, and the inner surface groove shape of the second groove 12 is regulated as follows. Power to control S is preferable. In addition, since the hairpin tube 11 is mainly a 3 to 10 mm tube as a heat transfer tube for air conditioning equipment, the outer diameter of the tube (second tube outer diameter OD2) is the same as that of the hairpin tube 3 to; It is preferable to use a 10 mm tube. Further, as the material of the hairpin tube 11, a heat-resistant copper alloy having higher heat resistance than phosphorus-deoxidized copper, which is preferably phosphorous-deoxidized copper having excellent forming processability, may be used.
[0061] (第 2溝ピッチ(P2)、第 2溝断面積(S2) ) [0061] (Second groove pitch (P2), second groove cross-sectional area (S2))
第 2?冓ピッチ(P2) (ま 0. 37—0. 42mm,第 2?冓断面積(S2) (ま 0. 04—0. 06mm2 であることが好ましい。第 2溝ピッチ(P2)が 0. 37mm未満、第 2溝断面積(S2)が 0. 04mm2未満の場合には、管内面に第 2溝 12を成形する際に、溝成形用工具 (例え ば、溝付プラグ)の溝部への材料の流動性が低下することにより管外側からの押し込 み力が増大し、その結果、溝成型用工具が破損しやすぐ管内面に安定して第 2溝 1 2を成形しにくい。また、第 2溝ピッチ(P2)が 0. 42mmを超える、第 2溝断面積(S2) が 0. 06mm2を超える場合には、管内部の第 2溝 12間に冷媒の液膜が薄く形成され にくい。そのため、管内部の冷媒液膜が逆に熱抵抗となり、蒸発性能が低下しやす い。 2nd pitch (P2) (p 0.37-0.42mm, second cross section (S2) (p 0.04—0.06mm 2 ). Second groove pitch (P2) Is less than 0.37 mm and the second groove cross-sectional area (S2) is less than 0.04 mm 2 when forming the second groove 12 on the inner surface of the pipe (eg, grooved plug) As the fluidity of the material into the groove of the tube decreases, the pushing force from the outside of the tube increases, and as a result, the groove forming tool breaks and immediately forms the second groove 12 on the tube inner surface stably. In addition, if the second groove pitch (P2) exceeds 0.42 mm and the second groove cross-sectional area (S2) exceeds 0.06 mm 2 , the refrigerant liquid is inserted between the second grooves 12 inside the pipe. Since the film is hard to be formed thinly, the refrigerant liquid film inside the pipe becomes a thermal resistance, and the evaporation performance is likely to deteriorate.
[0062] (第 2溝リード角(Θ 2) :図 4参照)  [0062] (Second groove lead angle (Θ 2): See Fig. 4)
第 2溝リード角( Θ 2)は、 15° 以上であることが好ましい。第 2溝リード角( Θ 2)が 1 5° 未満の場合には、管内部における冷媒液膜の「旋回流」の形成が不十分なため 、蒸発性能が低下しやすい。リターンベンド管出口側から次段のヘアピン管 11に液 冷媒が流入する際、第 2溝 12での冷媒液膜の均一な「環状流」の形成が低下し、へ ァピン管 11の直管部分での冷媒液膜が不均一になり、管外との熱交換が不安定化 し、蒸発性能が低下しやすい。また、第 2溝リード角( Θ 2)力 5° を超える場合には 、転造加工により管内面に第 2溝 12を形成する際の速度が極端に低下しやすぐ安 定して長尺のヘアピン管 11の製造がしにくいため、第 2溝リード角(Θ 2)は 45° 以 下がより好ましい。  The second groove lead angle (Θ 2) is preferably 15 ° or more. When the second groove lead angle (Θ2) is less than 15 °, the formation of the “swirl flow” of the refrigerant liquid film in the pipe is insufficient, and the evaporation performance tends to be lowered. When liquid refrigerant flows from the return bend pipe outlet side into the hairpin pipe 11 of the next stage, the formation of a uniform “annular flow” of the refrigerant liquid film in the second groove 12 decreases, and the straight pipe portion of the hairpin pipe 11 As a result, the liquid film of the refrigerant becomes uneven, heat exchange with the outside of the tube becomes unstable, and evaporation performance tends to deteriorate. Also, if the second groove lead angle (Θ 2) force exceeds 5 °, the speed when forming the second groove 12 on the inner surface of the tube by rolling will become extremely slow and will soon stabilize and become long. Since the hairpin tube 11 is difficult to manufacture, the second groove lead angle (Θ 2) is more preferably 45 ° or less.
[0063] (第 2溝深さ(h2) )  [0063] (2nd groove depth (h2))
第 2溝深さ(h2)は、 0. 10-0. 28mmであることが好ましい。第 2溝深さ(h2)が 0. 10mm未満の場合には、管内面の第 2溝 12間に形成された第 2フィン 13が、管内部 における冷媒の液面より低くなり、冷媒液膜に埋没する。そのため、管内部の有効伝 熱面積が著しく減少し、蒸発性能が低下しやすい。また、第 2溝深さ(h2)が 0. 28m mを超える場合には、管内面に第 2溝 12を成形する際に、溝成形用工具 (例えば、 溝付プラグ)が破損しやすぐ管内面に安定して第 2溝 12を成形しにくい。 The second groove depth (h2) is preferably 0.10-0.28 mm. If the second groove depth (h2) is less than 0.10 mm, the second fin 13 formed between the second grooves 12 on the inner surface of the pipe It becomes lower than the liquid level of the refrigerant and is buried in the refrigerant liquid film. For this reason, the effective heat transfer area inside the pipe is remarkably reduced, and the evaporation performance tends to be lowered. Also, if the second groove depth (h2) exceeds 0.28 mm, the groove forming tool (for example, grooved plug) will be damaged immediately when forming the second groove 12 on the pipe inner surface. It is difficult to form the second groove 12 stably on the inner surface of the tube.
[0064] (第 2フィン山頂角( δ 2) )  [0064] (2nd fin peak angle (δ 2))
第 2フィン山頂角( δ 2)は、 5〜45° であることが好まし!/、。第 2フィン山頂角( δ 2) が 5° 未満の場合には、ヘアピン管 11を空調機器用の熱交換器 20に組み込む際の 拡管時(図示せず)に、第 2フィン 13の倒れやつぶれが生じやすい。また、第 2フィン 13形成のために管内面に第 2溝 12を成形する際に、溝成形用工具が破損しやすく 、管内面に安定して第 2溝 12を成形しにくい。また、第 2フィン山頂角(δ 2)が 45° を超えた場合には、第 2溝 12の断面積が著しく小さくなり伝熱性能が低下しやすい。 また、第 2フィン 13の断面積 (ヘアピン管 11の第 2管肉厚 (Τ2) )が大きくなり、ヘアピ ン管 11の質量が増加し、熱交換器 20の軽量化が難しくなる。  The second fin peak angle (δ 2) is preferably 5 to 45 °! /. If the peak angle (δ 2) of the second fin is less than 5 °, the second fin 13 may fall over when the hairpin tube 11 is expanded (not shown) when the hairpin tube 11 is installed in the heat exchanger 20 for an air conditioner. Crushing tends to occur. Further, when forming the second groove 12 on the inner surface of the tube for forming the second fin 13, the groove forming tool is easily damaged, and it is difficult to stably form the second groove 12 on the inner surface of the tube. In addition, when the peak angle (δ 2) of the second fin exceeds 45 °, the cross-sectional area of the second groove 12 is remarkably reduced, and the heat transfer performance is likely to deteriorate. In addition, the cross-sectional area of the second fin 13 (the second tube thickness (Τ2) of the hairpin tube 11) is increased, the mass of the hairpin tube 11 is increased, and the weight reduction of the heat exchanger 20 is difficult.
[0065] (第 2フィン根元半径 (r2) )  [0065] (2nd fin root radius (r2))
第 2フィン根元半径 (r2)は、第 2溝深さ (h2)の 1/10〜1/3とすることが好ましい 。第 2フィン根元半径 (r2)が溝深さ (h2)の 1/10未満である場合には、第 2フィン 13 が高くなつた場合に第 2フィン 13 (第 2溝 12)の成形性が悪くなり、所定形状の第 2フ イン 13が得られ難ぐまた管内面の第 2溝 12の根元に当接する溝成形用工具に破損 が発生しやすくなる。また、 1/3を超える場合には、第 2フィン 13の断面積が大きく なり、ヘアピン管 11の第 2管肉厚 (T2)が増加して、ヘアピン管 11の質量が増加する The second fin root radius (r2) is preferably 1/10 to 1/3 of the second groove depth (h2). When the second fin root radius (r2) is less than 1/10 of the groove depth (h2), the formability of the second fin 13 (second groove 12) is increased when the second fin 13 becomes higher. It becomes difficult to obtain the second fin 13 having a predetermined shape, and the groove forming tool that comes into contact with the root of the second groove 12 on the inner surface of the pipe is easily damaged. If the ratio exceeds 1/3, the cross-sectional area of the second fin 13 increases, the second tube thickness (T2) of the hairpin tube 11 increases, and the mass of the hairpin tube 11 increases.
Yes
[0066] (第 2最大内径(ID2) )  [0066] (2nd maximum inner diameter (ID2))
ヘアピン管 11の第 2最大内径 (ID2)は、ヘアピン管 11の外径(OD2)の 0. 80〜0 . 96であること力 S好ましい。第 2最大内径(ID2)がヘアピン管 11の外径(OD2)の 0. 80未満の場合には、第 2管肉厚 (T2)が厚くなり、ヘアピン管 11の質量が増加し、熱 交換器 20 (図 2、図 3参照)の軽量化が難しくなる。また、第 2最大内径 (ID2)がヘア ピン管 11の外径(OD2)の 0. 96を超える場合には、第 2管肉厚 (T2)が薄くなり、へ ァピン管 11の管強度が低ぐ熱交換器 20の使用中に管破壊を生じやすくなる。 [0067] (3)リターンベンド管およびヘアピン管の製造方法 It is preferable that the second maximum inner diameter (ID2) of the hairpin tube 11 is 0.80 to 0.96 of the outer diameter (OD2) of the hairpin tube 11. If the second maximum inner diameter (ID2) is less than 0.80 of the outer diameter (OD2) of the hairpin tube 11, the thickness of the second tube (T2) is increased, the mass of the hairpin tube 11 is increased, and heat exchange is performed. It becomes difficult to reduce the weight of the vessel 20 (see Fig. 2 and Fig. 3). In addition, when the second maximum inner diameter (ID2) exceeds 0.96 of the outer diameter (OD2) of the hairpin tube 11, the second tube wall thickness (T2) is reduced and the tube strength of the hairpin tube 11 is reduced. Tube breakage is likely to occur during use of the low heat exchanger 20. [0067] (3) Manufacturing method of return bend tube and hairpin tube
次に、リターンベンド管およびヘアピン管の製造方法について説明する。リターンべ ンド管およびヘアピン管の両管は、例えば、従来公知の以下の製造方法によって製 造される。下記の第 1の工程を適用する素管には、通常、軟質材を用いる。また、下 記の第 1〜第 3の工程は、前段および後段に縮径装置を備えた転造装置を用いて連 続して行う。第 3の工程の第 3の縮径加工後、通常、内面溝付管をレベルワウンドコィ ル(Level Wound Coil)に巻き上げ、焼鈍炉で焼鈍して軟質材とし、第 4の工程を適 用してリターンベンド管およびヘアピン管を製造する。  Next, a method for manufacturing a return bend tube and a hairpin tube will be described. Both the return bend tube and the hairpin tube are manufactured, for example, by the following known manufacturing method. Usually, a soft material is used for the raw tube to which the following first step is applied. Further, the first to third steps described below are continuously performed using a rolling device provided with a diameter reducing device at the former stage and the latter stage. After the third diameter reduction in the third step, the inner grooved tube is usually rolled up on a level wound coil and annealed in an annealing furnace to form a soft material, and the fourth step is applied. To produce return bend tubes and hairpin tubes.
[0068] (第 1の工程)  [0068] (First step)
りん脱酸銅または耐熱銅合金等の素材で構成された素管を、縮径ダイスと縮径プラ グの間を通過するように引抜くことにより、素管に第 1の縮径加工を施す。  The raw pipe made of a material such as phosphorous deoxidized copper or heat-resistant copper alloy is pulled out so as to pass between the reduced diameter die and the reduced diameter plug, so that the first reduced diameter processing is performed on the raw pipe. .
(第 2の工程)  (Second process)
第 1の工程で縮径された前記素管の内部に溝付プラグを揷入し、複数個の転造ボ ールまたは転造ロールで素管内に揷入された溝付プラグを押圧することにより、素管 に第 2の縮径加工を施す。同時に、縮径された素管の管内面に、溝付プラグの溝形 状が転写され、第 1溝 2または第 2溝 12 (図 4参照)が形成される。ここで、溝付プラグ は、前記した内面溝形状(図 5、図 6参照)に対応した溝形状を有する。  Inserting a grooved plug into the element pipe reduced in diameter in the first step and pressing the grooved plug inserted into the element pipe with a plurality of rolling balls or rolling rolls. The second diameter reduction process is applied to the base tube. At the same time, the groove shape of the grooved plug is transferred to the inner surface of the reduced diameter pipe, and the first groove 2 or the second groove 12 (see FIG. 4) is formed. Here, the grooved plug has a groove shape corresponding to the above-described inner surface groove shape (see FIGS. 5 and 6).
(第 3の工程)  (Third process)
第 2の工程で管内面に第 1溝 2または第 2溝 12が形成された素管を、整形ダイスで 引抜くことにより、第 3の縮径加工を施し、第 1管外径(OD1)または第 2管外径(OD 2)の内面溝付伝熱管を製造する。  By pulling out the raw tube in which the first groove 2 or the second groove 12 is formed on the inner surface of the tube in the second step with a shaping die, the third diameter reduction processing is performed, and the first tube outer diameter (OD1) Alternatively, a heat transfer tube with an inner groove with the second tube outer diameter (OD 2) is manufactured.
(第 4の工程)  (4th process)
第 3の工程で製造された内面溝付管に、所定治具で曲げ加工を施し、所定形状の リターンベンド管 1およびヘアピン管 11 (図 1、図 2参照)を製造する。  The inner grooved tube manufactured in the third step is bent with a predetermined jig to manufacture a return bend tube 1 and a hairpin tube 11 (see FIGS. 1 and 2) having a predetermined shape.
[0069] (4)フィンアンドチューブ型熱交換器 [0069] (4) Fin and tube heat exchanger
次に、本発明の熱交換器について説明する。図 2、図 3 (a)、(b)、(c)に示すように 、熱交換器 20は、管内部に冷媒が供給され、多数のヘアピン管 11、 11…が所定の 曲げピッチ Paで並列されたヘアピン部 23と、ヘアピン部 23の各々のヘアピン管 11、 11 ' ' 'の管端部に管端1 、 lb (図 1参照)を接合した多数のリターンベンド管 1、 1 · · 'が並列されたリターンベンド部 22と、ヘアピン管 11の外表面に一定間隔(フィンピッ チ Pb)で並列された多数のフィン 21a、 21a' · ·からなるフィン部 21とを有する。このよ うな構成により、多数のヘアピン管 11、 11 ' ' 'がリターンべンド管1、 1 · · ·を介して複 数段に直列に連結され、熱交換器 20が長!/、有効伝熱管長 (冷媒流路)を有すること となる。また、図 3 (b)に示すように、ヘアピン管 11を所定の列方向ピッチ Pcで複数列 に配置してもよい。さらに、図 3 (c)に示すように、熱交換器 20の管内部に供給される 冷媒は、熱交換器 20に送風される空気の流れに対して、冷媒凝縮時には同一方向 、冷媒蒸発時には逆方向に流される。 Next, the heat exchanger of the present invention will be described. As shown in FIGS. 2 and 3 (a), (b), and (c), the heat exchanger 20 is supplied with a refrigerant inside the tube, and a large number of hairpin tubes 11, 11,... The hairpin portions 23 arranged in parallel, and the hairpin tubes 11 of each of the hairpin portions 23, 11 '''' Tube end 1, lb (see Fig. 1) joined to many return bend pipes 1, 1 ... And a fin portion 21 composed of a large number of fins 21a, 21a '... Arranged in parallel at a constant interval (fin pitch Pb). With such a configuration, a large number of hairpin tubes 11, 11 '''are connected in series in a plurality of stages through the return bend tubes 1, 1, ..., and the heat exchanger 20 is long! / It has a heat pipe length (refrigerant flow path). Further, as shown in FIG. 3 (b), the hairpin tubes 11 may be arranged in a plurality of rows at a predetermined row direction pitch Pc. Further, as shown in FIG. 3 (c), the refrigerant supplied into the pipe of the heat exchanger 20 is in the same direction when the refrigerant is condensed with respect to the air flow blown to the heat exchanger 20, and when the refrigerant is evaporated. Flowed in the opposite direction.
[0070] そして、リターンベンド部 22の少なくとも一部力 前記した管内面に多数の第 1溝 2 ( 第 5図参照)が形成されたリターンベンド管 1で構成されている。このように構成するこ とにより、熱交換器 20での蒸発性能の低下を小さくすることが可能となる。また、リタ ーンベンド管 1の内面溝形状、例えば、溝ピッチ比(Pl/P2)、溝断面積比(S1/S 2)、溝深さ比 (hl/h2) (図 5、図 6参照)、溝リード角の角度差( Θ 1- Θ 2) (図 4参照 )等、または、第 1最大内径 (ID1)を、熱交換器 20の冷媒の流れ(上流または下流) を考慮して、リターンベンド部 22の場所により変化させてもよい。さらに、冷媒の圧力 損失を考慮して、リターンベンド部 22の少なくとも一部に、平滑管で構成されたリタ一 ンベンド管を用いてもよい。  [0070] At least a partial force of the return bend portion 22 is constituted by a return bend pipe 1 in which a large number of first grooves 2 (see Fig. 5) are formed on the inner surface of the pipe. With this configuration, it is possible to reduce a decrease in evaporation performance in the heat exchanger 20. Also, the inner surface groove shape of the return bend pipe 1, for example, groove pitch ratio (Pl / P2), groove cross-sectional area ratio (S1 / S 2), groove depth ratio (hl / h2) (see Fig. 5 and Fig. 6) In consideration of the refrigerant flow (upstream or downstream) of the heat exchanger 20, the difference in groove lead angle (Θ1-Θ2) (see Fig. 4), etc., or the first maximum inner diameter (ID1) It may be changed depending on the location of the return bend section 22. Furthermore, in consideration of the pressure loss of the refrigerant, a return bend section 22 may be used as a return bend section 22 made of a smooth pipe.
[0071] また、本発明の熱交換器は、ヘアピン管およびリターンベンド管から構成された冷 媒流路の少なくとも一部が分岐され、複数の冷媒流路を形成するものであってもよい 。例えば、図 7 (a)、 (b)に示すように、冷媒流路全体が分岐された 2パス型熱交換器 20A、冷媒流路の一部が分岐された部分 2パス型熱交換器 20Bが挙げられる。ここ で、図 7 (a)、(b)では、冷媒流路が 2流路 (冷媒流路 Aおよび冷媒流路 B)に分岐さ れているが、 2流路に限定されず、 3流路以上に分岐されたものであってもよい。また 、分岐された冷媒流路 (冷媒流路 Aおよび冷媒流路 B)が、さらに複数の冷媒流路に 分岐されるものであってもよい。さらに、図 7 (b)の部分 2パス型熱交換器 20Bでは、 分岐部が 1箇所であるが、 2箇所以上であってもよい、すなわち、図 3 (c)に示した冷 媒流路が分岐されない 1パス型熱交換器 20に、複数の 2パス型熱交換器 20Aを結 合したものであってもよい。 [0071] In addition, the heat exchanger of the present invention may be one in which at least a part of the refrigerant flow path constituted by the hairpin tube and the return bend pipe is branched to form a plurality of refrigerant flow paths. For example, as shown in FIGS. 7 (a) and 7 (b), a two-pass heat exchanger 20A in which the entire refrigerant flow path is branched, and a partial two-pass heat exchanger 20B in which a part of the refrigerant flow path is branched. Is mentioned. Here, in FIGS. 7 (a) and 7 (b), the refrigerant flow path is branched into two flow paths (refrigerant flow path A and refrigerant flow path B). It may be branched more than the road. Further, the branched refrigerant flow paths (refrigerant flow path A and refrigerant flow path B) may be further branched into a plurality of refrigerant flow paths. Further, in the partial two-pass heat exchanger 20B in FIG. 7 (b), the number of branches is one, but it may be two or more, that is, the refrigerant flow path shown in FIG. 3 (c). Is not branched 1-pass heat exchanger 20 is connected to multiple 2-pass heat exchangers 20A It may be a combination.
[0072] 図 7に示すような熱交換器 20A (2パス型熱交換器)、 20B (部分 2パス型熱交換器 )では、前記の 1パス型熱交換器 20 (図 3 (c)参照)と同様に、冷媒の旋回流の維持 により蒸発性能が向上する。また、冷媒流路が分岐された熱交換器 20A、 20Bでは 、分岐あたりの冷媒質量速度が下がり、特にリターンベンド管入口側での冷媒速度が 低下し、管内部に形成された冷媒液膜の「環状流」がより安定化する。そして、リタ一 ンベンド管出口側から次段のヘアピン管に液冷媒が流入する際、管内部により均一 な「環状流」が形成され、ヘアピン管の直管部分での冷媒液膜が均一になり、管外側 (空気側)との熱交換が安定化し、蒸発性能がより一層向上する。さらに、複数の冷媒 流路 (冷媒流路 Aおよび冷媒流路 B)が形成されることによって、冷媒流路 (冷媒流路 Aまたは冷媒流路 B)を構成する並列されたヘアピン管およびリターンベンド管の段 数力 前記の 1パス型熱交換器 20と比べると減少する(図 3 (c)、図 7では 11段から 6 段に減少している)。  [0072] In the heat exchangers 20A (two-pass heat exchanger) and 20B (partial two-pass heat exchanger) as shown in FIG. 7, the one-pass heat exchanger 20 (see FIG. 3 (c)) is used. As with), the evaporation performance is improved by maintaining the swirling flow of the refrigerant. Further, in the heat exchangers 20A and 20B in which the refrigerant flow path is branched, the refrigerant mass velocity per branch is lowered, particularly the refrigerant velocity at the return bend pipe inlet side is lowered, and the refrigerant liquid film formed inside the pipe is reduced. The “annular flow” becomes more stable. When the liquid refrigerant flows into the next hairpin tube from the outlet side of the return bend tube, a uniform “annular flow” is formed inside the tube, and the liquid film in the straight tube portion of the hairpin tube becomes uniform. , Heat exchange with the outside of the tube (air side) is stabilized, and the evaporation performance is further improved. Further, by forming a plurality of refrigerant channels (refrigerant channel A and refrigerant channel B), the parallel hairpin tubes and return bends that form the refrigerant channel (refrigerant channel A or refrigerant channel B) are formed. The number of tube stages is reduced compared to the one-pass heat exchanger 20 (Fig. 3 (c), it is reduced from 11 to 6 in Fig. 7).
これにより、冷媒の圧力損失が小さくなり、蒸発性能がより一層向上する。  Thereby, the pressure loss of the refrigerant is reduced, and the evaporation performance is further improved.
[0073] また、本発明の熱交換器 20に使用される冷媒は、ハイド口フルォロカーボン (HFC )系冷媒であって、非共沸混合冷媒である、例えば、 R410系が好ましぐジフルォロ メタン(R32)およびペンタフルォロェタン(R125)を 50%づっ混合した R410Aがよ り好ましい。 HFC系の非共沸混合冷媒の使用により、熱交換器 20の蒸発性能が向 上し、また、冷媒の圧力損失も小さくなる。さらに、 R410系は伝熱性能に優れるが、 運転圧力が高いため、コンプレッサーが大型化しやすい。したがって、蒸発性能は R 410系より少し低下する力 S、運転圧力力 ¾410系よりも低い、 R407系を、本発明の冷 媒として使用してもよい。  [0073] The refrigerant used in the heat exchanger 20 of the present invention is a hydrated fluorocarbon (HFC) -based refrigerant, which is a non-azeotropic refrigerant mixture, for example, difluoromethane (R410) which is preferred. R410A in which 50% of R32) and pentafluoroethane (R125) are mixed is more preferable. By using an HFC non-azeotropic refrigerant mixture, the evaporation performance of the heat exchanger 20 is improved, and the pressure loss of the refrigerant is also reduced. In addition, the R410 system has excellent heat transfer performance, but the compressor tends to be large due to the high operating pressure. Therefore, the R407 system in which the evaporation performance is slightly lower than the R410 system and the operating pressure force is lower than the 410 system may be used as the refrigerant of the present invention.
実施例  Example
[0074] <実施例;!〜 20 (実施例 9を除く)〉  [0074] <Examples !! to 20 (except Example 9)>
以下、本発明の実施例について、具体的に説明する。  Examples of the present invention will be specifically described below.
先ず、実施例;!〜 6、実施例 8〜20は JISH3300に規定された合金番号 C1220の りん脱酸銅または合金番号 C1020の無酸素銅、実施例 7は Cu-Sn-P (0. 65質量 %、 0. 03質量%、残部が Cuの耐熱銅合金)を溶解し、铸造し、熱間押出し、冷間圧 延し、冷間抽伸加工を施して素管を作製した。次に、前記素管を焼鈍後、第 1の縮径 加工を施し、縮径された素管に表 1、表 2に示す内面溝形状のらせん溝ほたは平行 溝)を形成しながら第 2の縮径加工を施し、溝形成された素管に第 3の縮径加工、焼 鈍を施して、第 1管外径(OD 1 ) 7mmの供試管(リターンベンド管用)を作製した。ま た、 JISH3300に規定された合金番号 C 1220のりん脱酸銅を用いて、同様な作製 方法で第 2管外径(OD2) 7mmの供試管(ヘアピン管用)を作製した。 First, Examples;! To 6, Examples 8 to 20 are phosphorus deoxidized copper of alloy number C1220 or oxygen-free copper of alloy number C1020 specified in JISH3300, Example 7 is Cu-Sn-P (0.65 (Mass%, 0.03 mass%, Cu balance heat-resistant copper alloy) is melted, forged, hot extruded, cold pressure It was extended and cold drawn to give a blank tube. Next, after annealing the element pipe, the first diameter reduction processing is performed, and the inner diameter groove-shaped spiral grooves or parallel grooves shown in Tables 1 and 2 are formed on the diameter-reduced element pipe. The test tube (for return bend pipe) with a first pipe outer diameter (OD 1) of 7 mm was prepared by subjecting the grooved tube to the third diameter reduction and annealing. In addition, a test tube (for hairpin tube) with a second tube outer diameter (OD2) of 7 mm was prepared in the same manner using phosphorous deoxidized copper with alloy number C 1220 specified in JISH3300.
次に、前記各供試管を用いて、図 2、図 3 (a)、 (b)に示すフィンアンドチューブ型熱 交換器(1パス型熱交換器) 20を作製した。まず、供試管 (ヘアピン管用)を、その中 央部で所定の曲げピッチ(Pa)でヘアピン状に曲げ加工して複数のヘアピン管 1 1を 作製した。つぎに、複数本のヘアピン管 1 1を、所定の間隔 (フィンピッチ(Pb) )をお いて相互に平行に配置された複数枚のフィン 21 aに揷通した。そして、銅管(ヘアピ ン管 1 1 )の外径基準による拡管率が 105. 5%となるようなビュレット (bullet)をへアビ ン管 1 1内に挿入して、縮み方式拡管機(tube expander)で拡管して、フィン 2 l aとへ ァピン管 1 1を接合した。つぎに、供試管(リターンベンド管用)を、所定の足長さしお よびピッチ(P) (図 1参照)で曲げ加工して複数のリターンベンド管 1を作製した。そし て、図 4に示すように、隣接するヘアピン管 1 1の管端部を更に拡管し、りん銅ろう(B CuP-2)のリングを付けたリターンベンド管 1を装着し、両者の管内に酸化防止のた めの窒素ガスを流しながら、バーナーにより、両者の管を加熱ろう付け(850°C、 1分 間)して熱交換器 20を作製した。なお、熱交換器 20の仕様は以下の通りとした。 (熱交換器 20)  Next, a fin-and-tube heat exchanger (one-pass heat exchanger) 20 shown in FIG. 2, FIG. 3 (a), (b) was produced using each of the test tubes. First, a plurality of hairpin tubes 11 were prepared by bending a test tube (for hairpin tubes) into a hairpin shape at a predetermined bending pitch (Pa) at the center thereof. Next, a plurality of hairpin tubes 11 were passed through a plurality of fins 21a arranged in parallel with each other at a predetermined interval (fin pitch (Pb)). Then, a bullet having a tube expansion rate of 105.5% based on the outer diameter standard of the copper tube (hairpin tube 11) is inserted into the heavy tube 11 and a contraction type tube expander (tube expander), and fin 2 la and hepin tube 1 1 were joined. Next, a plurality of return bend pipes 1 were produced by bending a test pipe (for return bend pipes) with a predetermined foot length and pitch (P) (see Fig. 1). Then, as shown in Fig. 4, the tube end of the adjacent hairpin tube 11 is further expanded, and a return bend tube 1 with a ring of phosphor copper brazing (B CuP-2) is attached, Heat exchanger 20 was produced by flowing both tubes with a burner while heating them with nitrogen gas to prevent oxidation (850 ° C, 1 minute). The specifications of the heat exchanger 20 are as follows. (Heat exchanger 20)
外开$は、長さ 500mm X高さ 250mm X幅 25. 4mmとした。  The opening $ is 500mm long x 250mm high x 25.4mm wide.
(ヘアピン管 1 1 ) (Hairpin tube 1 1)
2列 12段(曲げピッチ(Pa) 21mm、列方向ピッチ(Pc) 13· 4mm)に配置した(拡 管前の足長さ(La)は約 535mmであった)。  They were arranged in two rows and 12 steps (bending pitch (Pa) 21 mm, row direction pitch (Pc) 13.4 mm) (foot length (La) before tube expansion was about 535 mm).
(リターンベンド管 1 ) (Return bend pipe 1)
足長さ(U = 20. Omm、 21. 2mm、 22. 5mm、 31. 4mm、 Foot length (U = 20. Omm, 21.2 mm, 22.5 mm, 31.4 mm,
3. Omm  3. Omm
ピッチ(Ρ) = 21 · Ommとした(図 1参照)。 (フィン 21a) Pitch (Ρ) = 21 · Omm (see Fig. 1). (Fin 21a)
JISH4000に規定された合金番号 1N30のアルミニウム力、らなる板材で、板材の表 面を樹脂で被覆したものである。また、フィン 21aの厚さは l lO ^ mとした。そして、 4 10枚のフィン 21aをフィンピッチ(Pb) 1. 25mmで平行に配置した。  This is a plate material made of aluminum with alloy number 1N30 specified in JISH4000, and the surface of the plate material is coated with resin. The thickness of the fin 21a was l lO ^ m. Then, 4 10 fins 21a were arranged in parallel with a fin pitch (Pb) of 1.25 mm.
[0076] なお、実施例 9は、実施例 1と同様な供試管(ヘアピン管、リターンベンド管)を使用 し、実施例 1と同様にして、図 7 (a)に示すフィンアンドチューブ型熱交換器(2パス型 熱交換器) 20Aを作製した。なお、冷媒流路 A、 Bのヘアピン管 11の段数は 2列 6段 とした。 [0076] In Example 9, the same test tube (hairpin tube, return bend tube) as in Example 1 was used, and in the same manner as in Example 1, the fin-and-tube type thermal tube shown in Fig. 7 (a) was used. Exchanger (2-pass heat exchanger) 20A was produced. The number of stages of the hairpin tubes 11 in the refrigerant flow paths A and B is 6 in 2 rows.
[0077] <比較例;!〜 5〉  [0077] <Comparative Example;! ~ 5>
表 3に示すように、比較例 1は、前記供試管(リターンベンド管)として、管内面に溝 が形成されていない平滑管を使用したこと以外は実施例 1と同様とした。比較例 2〜 5は、溝ピッチ比 (P1/P2)および溝断面積比(S 1/S2)の少なくとも一方が本発明 の特許請求の範囲から外れた内面溝付管を使用したこと以外は実施例 1と同様とし た。そして、実施例 1と同様にして熱交換器(1パス型熱交換器) 20を作製した。  As shown in Table 3, Comparative Example 1 was the same as Example 1 except that a smooth tube with no grooves formed on the inner surface was used as the test tube (return bend tube). In Comparative Examples 2 to 5, except that at least one of the groove pitch ratio (P1 / P2) and the groove cross-sectional area ratio (S 1 / S2) uses an internally grooved tube that is outside the scope of the claims of the present invention, Same as Example 1. Then, a heat exchanger (one-pass heat exchanger) 20 was produced in the same manner as in Example 1.
[0078] 実施例 1〜20および比較例 1〜5の熱交換器を用いて、蒸発性能を JIS C 9612に 基いて測定し、その結果を表 1、表 2、表 3に示した。なお、蒸発性能は、各熱交換器 の蒸発伝熱量を測定し、比較例 1を 1とした場合の比率として記載した。  [0078] Using the heat exchangers of Examples 1 to 20 and Comparative Examples 1 to 5, the evaporation performance was measured based on JIS C 9612. The results are shown in Table 1, Table 2, and Table 3. The evaporation performance was described as a ratio when the heat transfer amount of each heat exchanger was measured and Comparative Example 1 was set to 1.
[0079] また、図 8 (a)に蒸発性能を測定する測定装置の模式図を示す。図 8 (a)に示すよう に、測定装置は、恒温恒湿機能付きの吸引型風洞 100、冷媒供給装置 110 (図 8 (b )参照)および空調機(図示せず)からなる。この吸引型風洞 100においては、空気流 入口 108から流入されて空気排出口 109から排出される空気の流通経路に熱交換 器 20 (20A)が配置され、この熱交換器 20 (20A)の上流側および下流側に夫々ェ アーサンプラ(air sampler) 101、 102が配置されている。このエアーサンプラ 101、 1 02には夫々温湿度計測箱 103、 104が連結されている。この温湿度計測箱 103、 1 04は夫々エアーサンプラ 101、 102により採取された空気の乾球温度および湿球温 度を測定することにより、この空気の温度および湿度を測定するものである。また、ェ アーサンプラ 102の下流側には誘引ファン 105が設けられ、空気排出口 109に空気 を排出している。また、熱交換器 20 (20A)とエアーサンプラ 102との間、およびエア 一サンブラ 102と誘引ファン 105との間には、熱交換器 20 (20A)を通過した空気を 整流する整流器 106、 106が設けられている。 [0079] Fig. 8 (a) shows a schematic diagram of a measuring apparatus for measuring the evaporation performance. As shown in FIG. 8 (a), the measuring device includes a suction type wind tunnel 100 having a constant temperature and humidity function, a refrigerant supply device 110 (see FIG. 8 (b)), and an air conditioner (not shown). In the suction type wind tunnel 100, the heat exchanger 20 (20A) is arranged in the flow path of the air flowing in from the air inlet 108 and discharged from the air outlet 109, and upstream of the heat exchanger 20 (20A). Air samplers 101 and 102 are arranged on the side and downstream, respectively. The air samplers 101 and 102 are connected to temperature and humidity measuring boxes 103 and 104, respectively. The temperature and humidity measuring boxes 103 and 104 measure the temperature and humidity of the air by measuring the dry bulb temperature and wet bulb temperature of the air sampled by the air samplers 101 and 102, respectively. An induction fan 105 is provided downstream of the air sampler 102 and discharges air to the air discharge port 109. Also, between the heat exchanger 20 (20A) and the air sampler 102, and the air Rectifiers 106 and 106 for rectifying the air that has passed through the heat exchanger 20 (20A) are provided between the sambra 102 and the induction fan 105.
[0080] また、図 8 (b)に冷媒供給装置 110の模式図を示す。図 8 (b)において、 107は冷 媒配管、 111はサイトグラス、 112は液 (冷媒)加熱および冷却用熱交換器、 113はド ライヤ一、 114は受液 (冷媒)器、 115は溶栓、 116は凝縮器、 117はオイルセパレー タ、 118はコンプレッサー、 119はアキュームレータ、 120は蒸発器、 121は膨張弁、 122は流量計である。そして、冷媒配管 107を通じて、吸引型風洞 100内に備えられ た熱交換器 20 (20A)のヘアピン管 11 (図 2参照)の内部に、圧力および温度を調節 した冷媒が供給される。また、熱交換器 20(20A)の入口および出口には、冷媒の温 度および圧力を測定する圧力計 123 (温度は測定圧力相当飽和温度とする)が設け られている。さらに、空調機(図示せず)は、吸引型風洞 100の空気流入口 108に温 度および湿度が制御された空気を供給するものである。  FIG. 8 (b) shows a schematic diagram of the refrigerant supply device 110. In Fig. 8 (b), 107 is a refrigerant pipe, 111 is a sight glass, 112 is a liquid (refrigerant) heating and cooling heat exchanger, 113 is a dryer, 114 is a liquid receiver (refrigerant), and 115 is a solution. Plug, 116 is a condenser, 117 is an oil separator, 118 is a compressor, 119 is an accumulator, 120 is an evaporator, 121 is an expansion valve, and 122 is a flow meter. Then, the refrigerant whose pressure and temperature are adjusted is supplied through the refrigerant pipe 107 into the hairpin pipe 11 (see FIG. 2) of the heat exchanger 20 (20A) provided in the suction type wind tunnel 100. In addition, pressure gauges 123 (the temperature is a saturation temperature corresponding to the measurement pressure) for measuring the temperature and pressure of the refrigerant are provided at the inlet and outlet of the heat exchanger 20 (20A). Further, the air conditioner (not shown) supplies air having a controlled temperature and humidity to the air inlet 108 of the suction type wind tunnel 100.
[0081] そして、測定条件は以下の通りとした。  [0081] The measurement conditions were as follows.
く冷媒〉 R22、 R410A  <Refrigerant> R22, R410A
<空気側〉乾球温度 27. 0°C、湿球温度 19. 0°C  <Air side> Dry bulb temperature 27.0 ° C, wet bulb temperature 19.0 ° C
熱交換器の前面風速 0. 8m/s  Front wind speed of heat exchanger 0.8m / s
<冷媒側〉蒸発温度(出口基準) 7. 5°C、入口乾き度 0. 2°C、出口過熱度 5. 0°C [0082] [表 1] <Refrigerant side> Evaporation temperature (outlet reference) 7.5 ° C, inlet dryness 0.2 ° C, outlet superheat 5.0 ° C [0082] [Table 1]
Figure imgf000026_0001
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000027_0001
Figure imgf000027_0002
Figure imgf000027_0002
^00832
Figure imgf000028_0001
^ 00832
Figure imgf000028_0001
[0085] 表 1、表 2、表 3の結果より、実施例;!〜 20の熱交換器は、リターンベンド管として平 滑管を使用した比較例 1の熱交換器に比べて、蒸発性能が優れてレ、ることが確認さ れた。  [0085] From the results of Table 1, Table 2, and Table 3, the heat exchangers of Examples;! -20 were compared to the heat exchanger of Comparative Example 1 using a smooth tube as the return bend tube, and the evaporation performance. Was confirmed to be excellent.
また、比較例 2の熱交換器は溝断面積比(S 1/S2)が下限値未満、比較例 3の熱 交換器は溝ピッチ比(P1/P2)および溝断面積比(S1/S2)が上限値を超え、比較 例 4の熱交換器は溝ピッチ比(P1/P2)が上限値を超え、比較例 5の熱交換器は溝 ピッチ比(P1/P2)が下限値未満であるため、実施例 1 20の熱交換器に比べて、 蒸発性能が劣ることが確認された。  The heat exchanger of Comparative Example 2 has a groove cross-sectional area ratio (S 1 / S2) that is less than the lower limit, and the heat exchanger of Comparative Example 3 has a groove pitch ratio (P1 / P2) and a groove cross-sectional area ratio (S1 / S2). ) Exceeds the upper limit, the groove pitch ratio (P1 / P2) of the heat exchanger of Comparative Example 4 exceeds the upper limit, and the groove pitch ratio (P1 / P2) of the heat exchanger of Comparative Example 5 is less than the lower limit. Therefore, it was confirmed that the evaporation performance was inferior to that of the heat exchanger of Example 120.
[0086] <実施例 21 22〉 <Example 21 22>
表 4に示すように、実施例 21は、前記供試管(リターンベンド管)として、材質 Cu-S n-P (0. 65質量%、0. 03質量%?、残部が Cuの耐熱銅合金)からなる第 1管肉厚( T1) 0. 20mmの内面溝付管を使用したこと以外は実施例 1と同様とした。 As shown in Table 4, Example 21 uses the material Cu-S as the test tube (return bend tube). Example 1 except that a pipe with a first tube thickness (T1) 0.20mm made of nP (0.65% by mass, 0.03% by mass ?, the balance being Cu heat-resistant copper alloy) is used. And the same.
実施例 22は、前記供試管(リターンベンド管)として、第 1管肉厚 (T1) 0. 34mmの 内面溝付管を使用したこと以外は実施例 1と同様とした。そして、実施例 1と同様にし て熱交換器(1パス型熱交換器)を作製した。次に、実施例 1、実施例 21および実施 例 22の熱交換器を用いて、水圧による耐圧試験を行った。熱交換器のリターンベン ド部(リターンベンド管)に破壊が生じた際の圧力をブルドン管圧力計にて測定し、耐 圧強度とした。その結果を表 4に示した。  Example 22 was the same as Example 1 except that an inner grooved tube having a first tube thickness (T1) of 0.34 mm was used as the test tube (return bend tube). Then, a heat exchanger (1-pass heat exchanger) was produced in the same manner as in Example 1. Next, using the heat exchangers of Example 1, Example 21, and Example 22, a pressure resistance test by water pressure was performed. The pressure when breakage occurred in the return bend section (return bend pipe) of the heat exchanger was measured with a Bourdon tube pressure gauge to determine the pressure resistance. The results are shown in Table 4.
[表 4] [Table 4]
Figure imgf000029_0001
Figure imgf000029_0001
表 4の結果より、実施例 21の熱交換器は、リターンベンド管の第 1管肉厚 (T1)が実 施例 1より薄くても、ろう付けによる強度低下が小さいことから、実施例 1に比べて耐圧 強度が高いことが確認された。また、リターンベンド管の材質が実施例 1と同一の実 施例 22の熱交換器においては、耐圧強度は実施例 21と同等であった力 リターン ベンド管の第 1管肉厚 (T1)が実施例 1の 1. 7倍となり、材料の使用量が増加すること が確認された。  From the results in Table 4, the heat exchanger of Example 21 has a small decrease in strength due to brazing even if the first pipe wall thickness (T1) of the return bend pipe is thinner than Example 1. It was confirmed that the pressure strength was higher than Further, in the heat exchanger of Example 22 in which the material of the return bend pipe is the same as that of Example 1, the pressure strength is the same as that of Example 21. The first pipe thickness (T1) of the return bend pipe is It was 1.7 times that of Example 1 and it was confirmed that the amount of material used increased.

Claims

請求の範囲 The scope of the claims
[1] 多数のヘアピン管が並列されたヘアピン部と、前記ヘアピン部の各々のヘアピン管 端部に接合された多数のリターンベンド管が並列されたリターンベンド部と、前記へ ァピン管の外表面に一定間隔で並列された多数のフィンからなるフィン部とを有し、 管内部に冷媒が供給されるフィンアンドチューブ型熱交換器であって、  [1] A hairpin portion in which a large number of hairpin tubes are arranged in parallel, a return bend portion in which a large number of return bend tubes joined to the hairpin tube ends of the hairpin portions are arranged in parallel, and an outer surface of the hairpin tube And a fin-and-tube heat exchanger in which a refrigerant is supplied to the inside of the pipe.
前記リターンベンド管の管内面に形成された第 1溝を備え、  A first groove formed on the inner surface of the return bend pipe;
前記第 1溝の管軸直交断面における第 1溝ピッチ (P1)と、前記ヘアピン管の管内 面に形成されたらせん状の第 2溝の管軸直交断面における第 2溝ピッチ(P2)との溝 ピッチ比(P1/P2)が 0. 65—2. 2を満足し、かつ  The first groove pitch (P1) in the cross section perpendicular to the tube axis of the first groove and the second groove pitch (P2) in the cross section perpendicular to the tube axis of the spiral second groove formed on the tube inner surface of the hairpin tube. Groove pitch ratio (P1 / P2) satisfies 0.665-2.
前記第 1溝の管軸直交断面における溝 1個あたりの第 1溝断面積(S1)と、前記第 2 溝の管軸直交断面における溝 1個あたりの第 2溝断面積(S2)との溝断面積比(S1 The first groove cross-sectional area (S1) per groove in the cross section perpendicular to the tube axis of the first groove and the second cross-sectional area (S2) per groove in the cross section perpendicular to the tube axis of the second groove Groove cross-sectional area ratio (S1
/S2)が 0. 3〜3. 6を満足することを特徴とするフィンアンドチューブ型熱交換器。 / S2) satisfies 0.3 to 3.6, and is a fin-and-tube heat exchanger.
[2] 前記ヘアピン管の第 2溝と管軸とがなす第 2溝リード角( Θ 2)が 15° 以上であること を特徴とする請求項 1に記載のフィンアンドチューブ型熱交換器。 [2] The fin-and-tube heat exchanger according to claim 1, wherein the second groove lead angle (Θ2) formed by the second groove of the hairpin tube and the tube axis is 15 ° or more.
[3] 前記ヘアピン管および前記リターンベンド管から構成された冷媒流路は、その少な くとも一部が分岐され、複数の冷媒流路を形成することを特徴とする請求項 1に記載 のフィンアンドチューブ型熱交換器。 [3] The fin according to claim 1, wherein at least a part of the refrigerant flow path constituted by the hairpin tube and the return bend pipe is branched to form a plurality of refrigerant flow paths. And tube type heat exchanger.
[4] 前記冷媒は、ハイド口フルォロカーボン系の非共沸混合冷媒であることを特徴とす る請求項 1に記載のフィンアンドチューブ型熱交換器。 4. The fin-and-tube heat exchanger according to claim 1, wherein the refrigerant is a hydrated fluorocarbon non-azeotropic refrigerant mixture.
[5] 外表面に一定間隔で並列された多数のフィンを備えたヘアピン管の管端に接合さ れ、管内に冷媒が供給されるフィンアンドチューブ型熱交換器において使用されるリ ターンベンド管において、 [5] Return bend pipes used in fin-and-tube heat exchangers that are joined to the ends of hairpin pipes with a large number of fins arranged in parallel at regular intervals on the outer surface, and in which refrigerant is supplied into the pipes In
前記リターンベンド管の管内面に形成された第 1溝を備え、  A first groove formed on the inner surface of the return bend pipe;
前記第 1溝の管軸直交断面における第 1溝ピッチ (P1)と、前記ヘアピン管の管内 面に形成されたらせん状の第 2溝の管軸直交断面における第 2溝ピッチ(P2)との溝 ピッチ比(P1/P2)が 0. 65—2. 2を満足し、かつ  The first groove pitch (P1) in the cross section perpendicular to the tube axis of the first groove and the second groove pitch (P2) in the cross section perpendicular to the tube axis of the spiral second groove formed on the tube inner surface of the hairpin tube. Groove pitch ratio (P1 / P2) satisfies 0.665-2.
前記第 1溝の管軸直交断面における溝 1個あたりの第 1溝断面積(S1)と、前記第 2 溝の管軸直交断面における溝 1個あたりの第 2溝断面積(S2)との溝断面積比(S1 /S2)が 0· 3〜3· 6を満足することを特徴とするリターンベンド管。 The first groove cross-sectional area (S1) per groove in the cross section perpendicular to the tube axis of the first groove and the second cross-sectional area (S2) per groove in the cross section perpendicular to the tube axis of the second groove Groove cross-sectional area ratio (S1 A return bend pipe characterized by / S2) satisfying 0 · 3 to 3 · 6.
[6] 前記第 1溝と管軸とがなす第 1溝リード角( θ 1)と、前記第 2溝と管軸とがなす第 2 溝リード角(Θ 2)との角度差(θ 1- Θ 2)が- 15〜+ 15° を満足し、かつ [6] The angle difference (θ 1) between the first groove lead angle (θ 1) formed by the first groove and the tube axis and the second groove lead angle (Θ 2) formed by the second groove and the tube axis. -Θ 2) satisfies -15 to + 15 °, and
前記第 1溝の管軸直交断面における第 1溝深さ (hi)と、前記第 2溝の管軸直交断 面における第 2溝深さ(h2)との溝深さ比 (hl/h2)が 0. 47〜; 1. 5を満足することを 特徴とする請求項 5に記載のリターンベンド管。  Groove depth ratio (hl / h2) between the first groove depth (hi) in the cross section perpendicular to the tube axis of the first groove and the second groove depth (h2) in the cross section perpendicular to the tube axis of the second groove The return bend pipe according to claim 5, characterized in that: 0.47 to 1.5 is satisfied.
[7] 前記リターンベンド管の足長さ(Uがピッチ(P)の 1. 0〜; 1. 5倍であることを特徴と する請求項 5に記載のリターンベンド管。 7. The return bend pipe according to claim 5, wherein a foot length of the return bend pipe (U is 1.0 to 1.5 times a pitch (P); 1.5 times).
[8] 前記リターンベンド管の材質は、前記ヘアピン管の材質より熱伝導率が低い材質か らなることを特徴とする請求項 5に記載のリターンベンド管。 8. The return bend pipe according to claim 5, wherein the return bend pipe is made of a material having a lower thermal conductivity than the hairpin pipe.
[9] 前記リターンベンド管の材質は、前記ヘアピン管の材質より耐熱性のある銅合金か らなることを特徴とする請求項 5に記載のリターンベンド管。 9. The return bend pipe according to claim 5, wherein the material of the return bend pipe is made of a copper alloy that is more heat resistant than the material of the hairpin pipe.
[10] 前記リターンベンド管の第 1最大内径 (ID1)が、前記ヘアピン管の第 2最大内径 (I[10] The first maximum inner diameter (ID1) of the return bend tube is the second maximum inner diameter (I
D2)との関係において (IDl)≥ (ID2)であることを特徴とする請求項 5に記載のリタ ーンベンド管。 The return bend pipe according to claim 5, wherein (IDl) ≥ (ID2) in relation to D2).
PCT/JP2007/063807 2006-07-14 2007-07-11 Fin-and-tube type heat exchanger, and its return bend pipe WO2008007694A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07790611.3A EP2042825B1 (en) 2006-07-14 2007-07-11 Fin-and-tube type heat exchanger, and its return bend pipe
CN2007800213773A CN101466992B (en) 2006-07-14 2007-07-11 Fin-and-tube type heat exchanger, and its return bend pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006193721A JP4728897B2 (en) 2006-07-14 2006-07-14 Return bend and fin-and-tube heat exchangers
JP2006-193721 2006-07-14

Publications (1)

Publication Number Publication Date
WO2008007694A1 true WO2008007694A1 (en) 2008-01-17

Family

ID=38923250

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/063807 WO2008007694A1 (en) 2006-07-14 2007-07-11 Fin-and-tube type heat exchanger, and its return bend pipe

Country Status (6)

Country Link
EP (1) EP2042825B1 (en)
JP (1) JP4728897B2 (en)
KR (1) KR20080108620A (en)
CN (1) CN101466992B (en)
MY (1) MY144548A (en)
WO (1) WO2008007694A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123998A2 (en) * 2008-05-21 2009-11-25 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101829827B (en) * 2010-06-12 2012-02-01 西安交通大学 High temperature vacuum brazing clamp for internally finned tube
CN102235779B (en) * 2011-07-19 2013-07-24 海信科龙电器股份有限公司 Air-conditioning heat exchanger
CN103998891B (en) * 2011-12-07 2016-04-20 松下电器产业株式会社 Fin tube type heat exchanger
JP2013134024A (en) * 2011-12-27 2013-07-08 Panasonic Corp Refrigeration cycle device
DE102012005513A1 (en) * 2012-03-19 2013-09-19 Bundy Refrigeration Gmbh Heat exchanger, process for its preparation and various systems with such a heat exchanger
CN105026869B (en) * 2013-02-21 2017-09-12 开利公司 Pipeline configuration for heat exchanger
CN103307919A (en) * 2013-06-24 2013-09-18 苏州市金翔钛设备有限公司 Titanium coiled pipe
CN104279910A (en) * 2013-07-11 2015-01-14 上海林内有限公司 Pipe joint for heat exchanger
ITMI20131684A1 (en) * 2013-10-11 2015-04-12 Frimont Spa CONDENSER FOR ICE MAKING MACHINE, METHOD FOR ITS REALIZATION, AND ICE MAKING MACHINE THAT INCORPORATES SUCH CONDENSER
JPWO2016009565A1 (en) * 2014-07-18 2017-04-27 三菱電機株式会社 Refrigeration cycle equipment
WO2016032759A1 (en) * 2014-08-25 2016-03-03 J R Thermal LLC Temperature glide thermosyphon and heat pipe
JP6357178B2 (en) 2015-07-30 2018-07-11 株式会社デンソーエアクール Heat exchanger and manufacturing method thereof
US10520255B2 (en) 2016-11-11 2019-12-31 Johnson Controls Technology Company Finned heat exchanger U-bends, manifolds, and distributor tubes
CN109751750A (en) * 2017-11-08 2019-05-14 开利公司 The heat exchanger tube and its manufacturing method of end prod for air-conditioning system
KR102097462B1 (en) 2019-05-09 2020-04-06 (주)에프원공조 A return-bend for a heat exchanger and the manufacturing method of it
KR102186154B1 (en) * 2019-07-09 2020-12-03 엘지전자 주식회사 Heat exchanger and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154986A (en) 1986-12-18 1988-06-28 Seiko Instr & Electronics Ltd Fixing of protective covering part for timepiece
JPH04122986A (en) 1990-09-13 1992-04-23 Fujitsu Ltd Image data dma transfer control system
JPH10292992A (en) * 1997-04-18 1998-11-04 Toshiba Corp Manufacture of heat exchanger
JPH11190597A (en) 1997-12-26 1999-07-13 Hitachi Cable Ltd Method for connecting heat transfer pipe of heat exchanger
JP2006098033A (en) 2004-09-02 2006-04-13 Kobelco & Materials Copper Tube Inc Return bent tube, and fin and tube type heat exchanger

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0926280A (en) * 1995-07-12 1997-01-28 Sanyo Electric Co Ltd Refrigerant piping with internal surface groove
JP4300013B2 (en) * 2001-10-22 2009-07-22 昭和電工株式会社 Finned tube for heat exchanger, heat exchanger, method for producing finned tube for heat exchanger, and method for producing heat exchanger
JP4119836B2 (en) * 2003-12-26 2008-07-16 株式会社コベルコ マテリアル銅管 Internal grooved heat transfer tube

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63154986A (en) 1986-12-18 1988-06-28 Seiko Instr & Electronics Ltd Fixing of protective covering part for timepiece
JPH04122986A (en) 1990-09-13 1992-04-23 Fujitsu Ltd Image data dma transfer control system
JPH10292992A (en) * 1997-04-18 1998-11-04 Toshiba Corp Manufacture of heat exchanger
JPH11190597A (en) 1997-12-26 1999-07-13 Hitachi Cable Ltd Method for connecting heat transfer pipe of heat exchanger
JP2006098033A (en) 2004-09-02 2006-04-13 Kobelco & Materials Copper Tube Inc Return bent tube, and fin and tube type heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2042825A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123998A2 (en) * 2008-05-21 2009-11-25 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator
EP2123998A3 (en) * 2008-05-21 2014-12-03 STIEBEL ELTRON GmbH & Co. KG Heat pump device with a lamella tube heat exchanger as evaporator

Also Published As

Publication number Publication date
EP2042825A1 (en) 2009-04-01
CN101466992B (en) 2010-12-22
CN101466992A (en) 2009-06-24
EP2042825A4 (en) 2010-06-16
JP4728897B2 (en) 2011-07-20
EP2042825B1 (en) 2018-10-03
KR20080108620A (en) 2008-12-15
MY144548A (en) 2011-09-30
JP2008020150A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
WO2008007694A1 (en) Fin-and-tube type heat exchanger, and its return bend pipe
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP2008215733A (en) Fin and tube type heat exchanger
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2008164245A (en) Heat exchanger
JP2007271123A (en) Inner face-grooved heat transfer tube
JP4119836B2 (en) Internal grooved heat transfer tube
JPWO2013084508A1 (en) Finned tube heat exchanger
KR101200597B1 (en) A complex pipe for transferring heat, heat exchanging system and heat exchanger using the same
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
JP6053693B2 (en) Air conditioner
JP2006194476A (en) Outdoor heat exchanger
WO2017208419A1 (en) Fin-tube type heat exchanger, heat pump apparatus provided with fin-tube type heat exchanger, and method for manufacturing fin-tube type heat exchanger
JP2011021844A (en) Inner face grooved heat transfer tube and cross fin tube type heat exchanger for evaporator
JP6802697B2 (en) Inner surface grooved pipe
JP2007271238A (en) Heat exchanger
JP2013096651A (en) Heat transfer tube with inner surface groove, heat exchanger including heat transfer tube with inner surface groove, and method of manufacturing the same
JP2012093053A (en) Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
JP2010019489A (en) Heat transfer pipe with inner helical groove for evaporator
JP4119765B2 (en) Internal grooved heat transfer tube
JP7290396B2 (en) Heat exchanger
JP2011033239A (en) Heat transfer pipe, air conditioner and method for manufacturing the heat transfer pipe
JP2010139233A (en) Cross fin tube type heat exchanger for evaporator
JP2003287383A (en) Inside surface groove pipe

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200780021377.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07790611

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 1020087027945

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007790611

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU