JP2012093053A - Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner - Google Patents

Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner Download PDF

Info

Publication number
JP2012093053A
JP2012093053A JP2010242327A JP2010242327A JP2012093053A JP 2012093053 A JP2012093053 A JP 2012093053A JP 2010242327 A JP2010242327 A JP 2010242327A JP 2010242327 A JP2010242327 A JP 2010242327A JP 2012093053 A JP2012093053 A JP 2012093053A
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
wall
heat exchanger
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010242327A
Other languages
Japanese (ja)
Other versions
JP5063765B2 (en
Inventor
Soubu Ri
相武 李
Takuya Matsuda
拓也 松田
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010242327A priority Critical patent/JP5063765B2/en
Publication of JP2012093053A publication Critical patent/JP2012093053A/en
Application granted granted Critical
Publication of JP5063765B2 publication Critical patent/JP5063765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger that reduces a contact thermal resistance between a heat transfer tube and a plate fin and improves the heat transfer performance, and to provide a method for manufacturing the same, a refrigerator, and an air conditioner.SOLUTION: The heat transfer tube 3 has an outer form whose cross section is substantially elliptical, and a major axis of the ellipse is arranged along an airflow direction. In the heat transfer tube, the tube has a first and second refrigerant channel 31a and 31b formed of two symmetric substantially-D-shaped through-holes, with a partition formed along a short axis direction of the ellipse therebetween. The thickness of major axis walls 3a and 3b facing the major axis of the ellipse is formed thicker than that of short axis walls 3c and 3d facing the short axis of the ellipse. The diameters of the first and second refrigerant channels 31a and 31b are expanded using a tube-expansion buret ball 100, and thereby the heat transfer tube is joined to the plate fin 2.

Description

本発明は、熱交換器、その製造方法、並びに熱交換器を備えた冷蔵庫および空気調和機に関するものである。   The present invention relates to a heat exchanger, a manufacturing method thereof, and a refrigerator and an air conditioner equipped with the heat exchanger.

従来の冷蔵庫や空気調和機等を構成する熱交換器に、フィンチューブ型熱交換器と呼ばれるものがある。この熱交換器は、一定の間隔で配置されてその間を気体(空気)が流れる板状フィンと、この板状フィンに直交して挿入され、内部に冷媒が流れる多数の断面円形の伝熱管とにより構成されている。
このようなフィンチューブ型熱交換器の伝熱性能に影響を与える因子としては、冷媒と伝熱管との間の冷媒側熱伝達率、伝熱管と板状フィンとの間の接触熱伝達率、および空気と板状フィンとの間の空気側熱伝達率が知られている。
冷媒と伝熱管との間の冷媒側熱伝達率は、伝熱管内の面積に影響される。伝熱管と板状フィンとの間の接触熱伝達率は、伝熱管と板状フィンとの接触状態に影響される。空気と板状フィンとの間の空気側熱伝達率は、外面側を流通する空気の圧力損失に影響される。
A heat exchanger constituting a conventional refrigerator, air conditioner, or the like includes a so-called fin tube heat exchanger. The heat exchanger includes plate-like fins arranged at regular intervals and through which gas (air) flows, and a plurality of circular heat transfer tubes inserted perpendicular to the plate-like fins and through which refrigerant flows. It is comprised by.
Factors affecting the heat transfer performance of such a finned tube heat exchanger include the refrigerant side heat transfer coefficient between the refrigerant and the heat transfer tube, the contact heat transfer coefficient between the heat transfer tube and the plate fin, And the air side heat transfer coefficient between air and a plate-like fin is known.
The refrigerant side heat transfer coefficient between the refrigerant and the heat transfer tube is affected by the area in the heat transfer tube. The contact heat transfer coefficient between the heat transfer tube and the plate fin is affected by the contact state between the heat transfer tube and the plate fin. The air-side heat transfer coefficient between the air and the plate-like fins is affected by the pressure loss of the air flowing on the outer surface side.

そこで、伝熱管内の面積拡大と空気側の圧力損失を低減するため、以下に示すような検討がなされている。
例えば、「前記チューブ2が断面楕円に形成されると共に、その長軸a上およびその近傍の肉厚T1が短軸b上およびその近傍の肉厚T2よりも厚く形成され、その長軸aが前記空気の流通方向に向けて配置された熱交換器」が提案されている(例えば、特許文献1参照)。
Therefore, in order to reduce the area expansion in the heat transfer tube and the pressure loss on the air side, the following studies have been made.
For example, “The tube 2 is formed in an elliptical cross section, and the thickness T1 on and near the major axis a is thicker than the thickness T2 on and near the minor axis b. There has been proposed a “heat exchanger disposed in the direction of air flow” (see, for example, Patent Document 1).

また例えば、「扁平断面の内部に作動流体が流通する複数の流路を設けたU字形状に曲げられた伝熱管」を備えたものが提案されている(例えば、特許文献2参照)。   In addition, for example, a pipe provided with “a heat transfer tube bent into a U shape provided with a plurality of flow paths through which a working fluid flows inside a flat cross section” has been proposed (for example, see Patent Document 2).

また例えば、「前記伝熱管は、空気の流れ方向に沿って配置される外面が平坦で、断面がほぼ小判型状の外形形状を有し、内部には隔壁を間にして2つの対称な略D字状の貫通穴からなる第1および第2の冷媒流路を有し、前記第1および第2の冷媒流路を拡管ビュレット玉を用いて拡径することにより前記板状フィンに接合されている熱交換器」が提案されている(例えば、特許文献3参照)。   For example, “The heat transfer tube has a flat outer surface arranged along the air flow direction, and has a substantially oval outer shape in cross section, and has two symmetrical substantially symmetrical shapes with a partition wall in between. It has the 1st and 2nd refrigerant | coolant flow path which consists of a D-shaped through-hole, and it joins to the said plate-shaped fin by expanding the said 1st and 2nd refrigerant | coolant flow path using a tube expansion bullet ball. Has been proposed (see, for example, Patent Document 3).

また例えば、「銅または銅合金製帯状平板部材を、該平板部材の一側端部が片面中央部に当接するように曲げ成形して該一側端部を溶着するとともに、他側端部が他面中央部に当接するように曲げ成形して該他側端部を溶着し長手方向に略眼鏡状の断面形状が形成されるようにし、さらに外形を所定形状となるように成形して長手方向に2つの媒体通路が形成されるようにしたことを特徴とする伝熱管の製造方法」が提案されている(例えば、特許文献4参照)。   Also, for example, “a copper or copper alloy belt-shaped flat plate member is bent and formed so that one side end portion of the flat plate member abuts on the center portion of one surface, and the one side end portion is welded, and the other side end portion is It is bent so that it comes into contact with the center of the other surface, and the other end is welded to form a substantially glasses-like cross-sectional shape in the longitudinal direction. There has been proposed a “method of manufacturing a heat transfer tube characterized in that two medium passages are formed in the direction” (see, for example, Patent Document 4).

特開2000−283677号公報(請求項1)JP 2000-283777 A (Claim 1) 特許第4055449号公報(請求項1)Japanese Patent No. 40555449 (Claim 1) 特開2010−002093号公報(請求項1)JP 2010-002093 A (Claim 1) 特許第3318096号公報(請求項1)Japanese Patent No. 3318096 (Claim 1)

しかしながら、上述の従来技術には以下に示すような問題点がある。
特許文献1に記載の熱交換器においては、伝熱管は内部を冷媒が流れる1つの貫通穴を有する楕円形状にて形成されているため、伝熱管内圧力により伝熱管が変形し易く伝熱管と板状フィンとの密着性が悪化し、接触熱抵抗が増加し、接触熱伝達率が低下する、という問題点があった。
However, the above-described prior art has the following problems.
In the heat exchanger described in Patent Document 1, since the heat transfer tube is formed in an elliptical shape having one through hole through which the refrigerant flows, the heat transfer tube is easily deformed by the pressure in the heat transfer tube. There was a problem that the adhesion with the plate-like fins deteriorated, the contact thermal resistance increased, and the contact heat transfer rate decreased.

特許文献2に記載の熱交換器においては、伝熱管の製作や伝熱管と板状フィンとの取付が炉中ロウ付け溶着によるため、製造コストが上昇する、という問題点があった。   The heat exchanger described in Patent Document 2 has a problem in that the manufacturing cost increases because the manufacture of the heat transfer tubes and the attachment of the heat transfer tubes and the plate fins are performed by brazing in the furnace.

特許文献3および4に記載の熱交換器においては、伝熱管が扁平形状を有し、内部の隔壁付近の外面が平坦であるため、伝熱管内に拡管ビュレット玉を挿入して管を広げて板状フィンと密着させる拡管時に、伝熱管の隔壁付近で伝熱管と板状フィンとの間の密着性の悪化や非接触部が生じて、接触熱抵抗が増加し、接触熱伝達率が低下する、という問題点があった。   In the heat exchangers described in Patent Documents 3 and 4, since the heat transfer tube has a flat shape and the outer surface in the vicinity of the inner partition wall is flat, the tube is expanded by inserting a tube expansion bullet into the heat transfer tube. When expanding the tube to be in close contact with the plate fins, the contact between the heat transfer tube and the plate fins deteriorates near the partition wall of the heat transfer tube and non-contact areas occur, increasing the contact thermal resistance and decreasing the contact heat transfer coefficient. There was a problem that.

本発明は、上記のような課題を解決するためになされたもので、伝熱管と板状フィンとの接触熱抵抗を低減することができ、伝熱性能を向上することができる熱交換器、熱交換器の製造方法、冷蔵庫、および空気調和機を提供することを目的としたものである。   The present invention has been made to solve the above-described problems, and can reduce the contact thermal resistance between the heat transfer tube and the plate-like fin, and can improve the heat transfer performance. It aims at providing the manufacturing method of a heat exchanger, a refrigerator, and an air conditioner.

本発明に係る熱交換器は、所定の間隔で並べて配置された複数の板状フィンと、前記板状フィンに直交する方向に挿通され、内部を冷媒が流れる複数の伝熱管とを備え、前記伝熱管は、断面が略楕円状の外形形状を有し、該楕円の長軸が空気の流れ方向に沿って配置され、内部には、前記楕円の短軸方向に沿って形成された隔壁を間にして、2つの対称な略D字状の貫通穴からなる第1および第2の冷媒流路を有し、前記楕円の短軸に対向する短軸壁の肉厚より、前記楕円の長軸に対向する長軸壁の肉厚が厚く形成され、前記第1および第2の冷媒流路が拡管ビュレット玉を用いて拡径されることにより前記板状フィンに接合されたものである。   A heat exchanger according to the present invention includes a plurality of plate-like fins arranged side by side at a predetermined interval, and a plurality of heat transfer tubes that are inserted in a direction orthogonal to the plate-like fins and through which a refrigerant flows, The heat transfer tube has an outer shape with a substantially elliptical cross section, the major axis of the ellipse is disposed along the air flow direction, and a partition formed along the minor axis direction of the ellipse is provided inside. In the meantime, the length of the ellipse is determined by the thickness of the short axis wall having the first and second refrigerant flow paths composed of two symmetrical substantially D-shaped through holes, and facing the short axis of the ellipse. A long wall facing the shaft is formed thick, and the first and second refrigerant channels are joined to the plate fins by expanding the diameter using a tube expansion bullet ball.

本発明は、伝熱管と板状フィンとの接触熱抵抗を低減することができ、伝熱性能を向上することができる。   The present invention can reduce the contact thermal resistance between the heat transfer tube and the plate-like fin, and can improve the heat transfer performance.

実施の形態1に係る熱交換器の概要を示す正面図である。It is a front view which shows the outline | summary of the heat exchanger which concerns on Embodiment 1. FIG. 実施の形態1に係る伝熱管の正面図である。3 is a front view of the heat transfer tube according to Embodiment 1. FIG. 図2の伝熱管の拡管手段の説明図である。It is explanatory drawing of the pipe expansion means of the heat exchanger tube of FIG. 図3の拡管手段のA−A断面図である。It is AA sectional drawing of the pipe expansion means of FIG. 実施の形態2に係る伝熱管の正面図である。6 is a front view of a heat transfer tube according to Embodiment 2. FIG. 拡管後の突条の高さと熱交換率との関係を示す図である。It is a figure which shows the relationship between the height of the protrusion after pipe expansion, and a heat exchange rate. 実施の形態3に係る伝熱管の正面図である。6 is a front view of a heat transfer tube according to Embodiment 3. FIG. 実施の形態4に係る伝熱管の正面図である。It is a front view of the heat exchanger tube which concerns on Embodiment 4. 実施の形態4に係る拡管された後の伝熱管の正面図である。It is a front view of the heat exchanger tube after being expanded according to Embodiment 4. 実施の形態5に係る伝熱管の正面図である。FIG. 9 is a front view of a heat transfer tube according to a fifth embodiment. 実施の形態6に係る拡管ビュレット玉の拡大図である。FIG. 10 is an enlarged view of a tube expansion bullet according to a sixth embodiment. 従来のフィンチューブ型熱交換器の説明図である。It is explanatory drawing of the conventional fin tube type heat exchanger. 実施の形態7に係る熱交換器の概要を示す正面図である。It is a front view which shows the outline | summary of the heat exchanger which concerns on Embodiment 7. FIG. 実施の形態8に係る熱交換器の概要を示す正面図である。FIG. 10 is a front view showing an outline of a heat exchanger according to an eighth embodiment. 従来の伝熱管の拡管前後の形状を説明する図である。It is a figure explaining the shape before and behind the expansion of the conventional heat exchanger tube.

以下、図面を参照して本発明の実施の形態を説明する。なお、以下の図面では各構成部の大きさの関係が実際のものとは異なる場合がある。   Embodiments of the present invention will be described below with reference to the drawings. In the following drawings, the size relationship of each component may be different from the actual one.

実施の形態1.
図1は実施の形態1に係る熱交換器の概要を示す正面図である。
図1において、1は熱交換器で、所定の間隔で並べて配置された複数の板状フィン2と、板状フィン2に直交する方向に挿通され、拡管(拡径ともいう)することにより板状フィン2に接合される複数の楕円形状の伝熱管3とから構成されている。板状フィン2は、銅若しくは銅合金またはアルミニウム若しくはアルミニウム合金などの金属板からなり(他の実施の形態においても同様である)、空気の流れ方向Aと平行に、かつ図の垂直方向(奥行方向)に所定の間隔で並設されている。また、この板状フィン2には、空気の流れ方向Aに垂直な方向(図の上下方向)に後述の楕円形状の伝熱管3が複数段かつ1列以上で設けられている。さらに、各段の楕円形状の伝熱管3の間には切り起こしにより複数のスリット4が板状フィン2に設けられている。このスリット4は、スリット4の側端部が空気の流れ方向Aに対して対向するように設けられており、その側端部において空気流の速度境界層および温度境界層を薄くすることにより、伝熱促進が行われ、熱交換能力が増大する効果がある。
Embodiment 1 FIG.
1 is a front view showing an outline of a heat exchanger according to Embodiment 1. FIG.
In FIG. 1, reference numeral 1 denotes a heat exchanger, a plurality of plate-like fins 2 arranged side by side at a predetermined interval, and a plate that is inserted in a direction orthogonal to the plate-like fins 2 and expanded (also referred to as diameter expansion). And a plurality of elliptical heat transfer tubes 3 joined to the fins 2. The plate-like fin 2 is made of a metal plate such as copper, copper alloy, aluminum, or aluminum alloy (the same applies to other embodiments), and is parallel to the air flow direction A and in the vertical direction (depth) in the figure. Direction) at a predetermined interval. The plate-like fins 2 are provided with an elliptical heat transfer tube 3 described later in a plurality of stages and in one or more rows in a direction perpendicular to the air flow direction A (vertical direction in the figure). Further, a plurality of slits 4 are provided in the plate-like fins 2 by cutting and raising between the elliptical heat transfer tubes 3 at each stage. The slit 4 is provided so that the side end of the slit 4 faces the air flow direction A, and by making the velocity boundary layer and the temperature boundary layer of the air flow thin at the side end, Heat transfer is promoted and the heat exchange capacity is increased.

ここで、従来の技術における伝熱管と板状フィンと密着させる拡管時に生じる密着性の悪化や非接触部の発生について説明する。
図15(a)に示すように、従来の熱交換器においては、伝熱管3は、空気の流れ方向に沿って細長く上下の外面3a、3bが平坦で断面がほぼ小判型状(あるいは偏平長円形状)に形成されている。すなわち、上下の外面3a、3bはフラットで、風上側と風下側の側面3c、3dは半円をなす偏平な外形形状となっている。そして、伝熱管3の内部には、図の左右方向(以下、幅方向という)の両側に隔壁32を間にして2つの対称な略D字状の貫通穴からなる第1、第2の冷媒流路31a、31bが軸方向に平行に設けられている。
このような従来の伝熱管3において、第1、第2の冷媒流路31a、31b内に拡管ビュレット玉(後述)を挿入して拡径し板状フィン2と密着させる場合、図15(b)に示すように、伝熱管3の外面3a、3bの隔壁32付近では拡径によって平坦面に撓み(窪み)が生じ、伝熱管3と板状フィン2との間の密着性の悪化や非接触部が生じることがある。伝熱管3と板状フィン2との間の密着性の悪化や非接触部が生じると、伝熱管3と板状フィン2との間の接触熱抵抗が増加して接触熱伝達率が低下し、伝熱性能が低下することとなる。
次に、このような伝熱管3と板状フィン2との間の密着性の悪化や非接触部の発生を抑制する本実施の形態の伝熱管3について説明する。
Here, the deterioration of the adhesiveness and the occurrence of non-contact portions that occur when the heat transfer tube and the plate-like fin are brought into close contact with each other in the prior art will be described.
As shown in FIG. 15A, in the conventional heat exchanger, the heat transfer tube 3 is elongated along the air flow direction, the upper and lower outer surfaces 3a and 3b are flat, and the cross section is almost oval (or flat). It is formed in a circular shape. That is, the upper and lower outer surfaces 3a and 3b are flat, and the windward and leeward side surfaces 3c and 3d have a flat outer shape forming a semicircle. And inside the heat transfer tube 3, the 1st, 2nd refrigerant | coolant which consists of two symmetrical substantially D-shaped through-holes on both sides of the horizontal direction (henceforth width direction) of a figure on both sides of the partition wall 32 is carried out. The flow paths 31a and 31b are provided in parallel to the axial direction.
In such a conventional heat transfer tube 3, when the expanded burette ball (described later) is inserted into the first and second refrigerant flow paths 31 a and 31 b to expand the diameter so as to be in close contact with the plate-like fin 2, FIG. ), The flat surface is bent (indented) due to the diameter expansion in the vicinity of the partition wall 32 of the outer surfaces 3a and 3b of the heat transfer tube 3, and the adhesion between the heat transfer tube 3 and the plate-like fin 2 is deteriorated or not. Contact may occur. If the adhesion between the heat transfer tube 3 and the plate fin 2 deteriorates or a non-contact portion occurs, the contact heat resistance between the heat transfer tube 3 and the plate fin 2 increases and the contact heat transfer rate decreases. The heat transfer performance will be reduced.
Next, the heat transfer tube 3 of the present embodiment that suppresses the deterioration of the adhesion between the heat transfer tube 3 and the plate-like fin 2 and the generation of non-contact portions will be described.

図2は実施の形態1に係る伝熱管の正面図である。
図2に示すように、伝熱管3は、断面が略楕円状の外形形状を有し、この楕円の長軸が空気の流れ方向Aに沿って配置されている。そして、伝熱管3の内部には、楕円の短軸方向に沿って形成された隔壁32を間にして、図の左右方向(以下、幅方向という)の両側に、2つの対称な略D字状の貫通穴からなる第1、第2の冷媒流路31a、31bが軸方向に平行に設けられている。つまり、この伝熱管3は楕円状の2穴構造となっている。この楕円形状の伝熱管3は、銅若しくは銅合金またはアルミニウム若しくはアルミニウム合金などの金属材料からなり、押し出し材あるいは引抜き材にて形成されている(他の実施の形態においても同様である)。
また、楕円の短軸に対向する短軸壁3c、3dは、内面が半径rの半円状に形成されている。また、楕円の長軸に対向する長軸壁3a、3bは、内面が直線状(隔壁32との境界部は若干丸みを付けた形状となっている)に形成されている。そして、短軸壁3c、3dの内面円周部分の肉厚Tw1より、長軸壁3a、3bの内面直線部分の平均肉厚Tw2が厚く形成されている。ここで、平均肉厚Tw2の定義は、長軸壁3a、3bの全肉厚の平均値である。
FIG. 2 is a front view of the heat transfer tube according to the first embodiment.
As shown in FIG. 2, the heat transfer tube 3 has an outer shape with a substantially elliptical cross section, and the major axis of the ellipse is arranged along the air flow direction A. And in the inside of the heat exchanger tube 3, two symmetrical substantially D-shapes are formed on both sides in the left-right direction (hereinafter referred to as the width direction) in the figure with a partition wall 32 formed along the minor axis direction of the ellipse. 1st, 2nd refrigerant | coolant flow paths 31a and 31b which consist of a through-hole of a shape are provided in parallel with the axial direction. That is, the heat transfer tube 3 has an elliptical two-hole structure. The elliptical heat transfer tube 3 is made of a metal material such as copper, a copper alloy, aluminum, or an aluminum alloy, and is formed of an extruded material or a drawn material (the same applies to other embodiments).
Further, the short axis walls 3c and 3d facing the short axis of the ellipse are formed in a semicircular shape with an inner surface of radius r. Moreover, the long-axis walls 3a and 3b facing the long axis of the ellipse are formed so that the inner surfaces are linear (the boundary with the partition wall 32 has a slightly rounded shape). Further, the average thickness Tw2 of the inner straight portions of the long shaft walls 3a and 3b is formed thicker than the thickness Tw1 of the inner circumferential portion of the short shaft walls 3c and 3d. Here, the definition of the average thickness Tw2 is an average value of the total thickness of the long-axis walls 3a and 3b.

また、長軸壁3a、3bの平均肉厚Tw2は、短軸壁3c、3dの肉厚Tw1の1.04〜1.25倍である。これは、長軸壁3a、3bの平均肉厚Tw2が短軸壁3c、3dの肉厚Tw1の1.04未満であると、隔壁32付近の伝熱管3の外面と板状フィンとの密着性が低下して、結果として熱交換性能が低下するからである。また、長軸壁3a、3bの平均肉厚Tw2が短軸壁3c、3dの肉厚Tw1の1.25倍を超えると、短軸壁3c、3d部分での伝熱管3の外面と板状フィン2との密着性が低下して、結果として熱交換性能が低下するからである。よって、本実施の形態における長軸壁3a、3bの平均肉厚Tw2は、短軸壁の肉厚Tw1の1.04〜1.25倍とした。   Further, the average wall thickness Tw2 of the long-axis walls 3a and 3b is 1.04 to 1.25 times the wall thickness Tw1 of the short-axis walls 3c and 3d. This is because when the average wall thickness Tw2 of the long axis walls 3a and 3b is less than 1.04 of the wall thickness Tw1 of the short axis walls 3c and 3d, the outer surface of the heat transfer tube 3 in the vicinity of the partition wall 32 and the plate fin are in close contact with each other. This is because the heat exchange performance is lowered as a result. Further, when the average thickness Tw2 of the long axis walls 3a and 3b exceeds 1.25 times the thickness Tw1 of the short axis walls 3c and 3d, the outer surface of the heat transfer tube 3 and the plate shape at the short axis walls 3c and 3d portions. This is because the adhesiveness with the fins 2 is lowered, and as a result, the heat exchange performance is lowered. Therefore, the average wall thickness Tw2 of the long axis walls 3a and 3b in the present embodiment is set to 1.04 to 1.25 times the wall thickness Tw1 of the short axis wall.

なお、ここでは長軸壁3a、3bの肉厚の平均値を用いたが、本発明はこれに限るものではなく、短軸壁3c、3dの肉厚Tw1より、長軸壁3a、3bの肉厚が厚く形成されていれば良い。例えば、長軸壁3a、3bの肉厚の最大値または最小値を短軸壁3c、3dの肉厚Tw1より厚くするようにしても良い。   Although the average value of the wall thickness of the long axis walls 3a and 3b is used here, the present invention is not limited to this, and the wall thickness Tw1 of the short axis walls 3c and 3d is used to determine the length of the long axis walls 3a and 3b. It is sufficient if the wall thickness is formed thick. For example, the maximum value or the minimum value of the wall thickness of the long axis walls 3a and 3b may be made thicker than the wall thickness Tw1 of the short axis walls 3c and 3d.

また、第1、第2の冷媒流路31a、31b間の隔壁32の肉厚Tw3は、短軸壁3c、3dの肉厚Tw1の1.0〜1.4倍である。これは、隔壁32の肉厚Tw3が短軸壁3c、3dの肉厚Tw1の1.0未満であると、伝熱管3の耐圧強度が低下する。また、隔壁32の肉厚Tw3が短軸壁3c、3dの肉厚Tw1の1.4倍を超えると、隔壁32の肉厚が厚くなり、隔壁32付近の伝熱管3の外面と板状フィン2との密着性が低下して、結果として熱交換性能が低下するからである。よって、本実施の形態における第1、第2の冷媒流路31a、31b間の隔壁32の肉厚Tw3を、短軸壁3c、3dの肉厚Tw1の1.0〜1.4倍とした。   The wall thickness Tw3 of the partition wall 32 between the first and second refrigerant channels 31a and 31b is 1.0 to 1.4 times the wall thickness Tw1 of the short shaft walls 3c and 3d. This is because if the wall thickness Tw3 of the partition wall 32 is less than 1.0 of the wall thickness Tw1 of the short shaft walls 3c and 3d, the pressure resistance of the heat transfer tube 3 is lowered. When the wall thickness Tw3 of the partition wall 32 exceeds 1.4 times the wall thickness Tw1 of the short shaft walls 3c and 3d, the wall thickness of the partition wall 32 increases, and the outer surface of the heat transfer tube 3 near the partition wall 32 and the plate fins This is because the adhesiveness to 2 is lowered, and as a result, the heat exchange performance is lowered. Therefore, the wall thickness Tw3 of the partition wall 32 between the first and second refrigerant channels 31a and 31b in the present embodiment is set to 1.0 to 1.4 times the wall thickness Tw1 of the short shaft walls 3c and 3d. .

次に、上記のような楕円形状の伝熱管3の第1、第2の冷媒流路31a、31bの拡径手順、および板状フィン2に設けられた取付穴(長穴)22への取付手順の一例について説明する。
図3に示すように、プレス加工された板状フィン2のフィンカラー部21には長穴の取付穴22が設けられており、各板状フィン2はフィンカラー部21を同じ向きに揃えて治具等で保持されている。そして、各板状フィン2の取付穴22に、前述した楕円形状の伝熱管3を挿入し、その後、第1、第2の冷媒流路31a、31bと相似形の断面形状(略D字形状、図4参照)で超硬合金等の金属材料からなる1対の拡管ビュレット玉100を用いた拡管装置で、1対の拡管ビュレット玉100を機械的な方法または流体圧により第1、第2の冷媒流路31a、31b内に押し込む。そうすると、第1、第2の冷媒流路31a、31bは同時に拡径し、伝熱管3は順次各板状フィン2に接合していき、一体的に固定される。
Next, the procedure for expanding the diameter of the first and second refrigerant flow paths 31a and 31b of the elliptical heat transfer tube 3 as described above, and the mounting to the mounting holes (long holes) 22 provided in the plate-like fins 2 are performed. An example of the procedure will be described.
As shown in FIG. 3, the fin collar portion 21 of the pressed plate-like fin 2 is provided with a long mounting hole 22, and each plate-like fin 2 has the fin collar portion 21 aligned in the same direction. It is held with a jig. Then, the above-described elliptical heat transfer tube 3 is inserted into the mounting hole 22 of each plate-like fin 2, and then the cross-sectional shape (substantially D-shaped) similar to the first and second refrigerant flow paths 31a and 31b. 4), a pair of expanded burette balls 100 made of a metal material such as cemented carbide is used to expand the first and second expanded burette balls 100 by a mechanical method or fluid pressure. Are pushed into the refrigerant flow paths 31a and 31b. Then, the first and second refrigerant flow paths 31a and 31b are simultaneously expanded in diameter, and the heat transfer tubes 3 are sequentially joined to the plate-like fins 2 and are fixed integrally.

以上のように本実施の形態においては、伝熱管3は、断面が略楕円状の外形形状を有し、短軸壁3c、3dの肉厚Tw1より、長軸壁3a、3bの平均肉厚Tw2が厚く形成され、第1および第2の冷媒流路31a、31bが拡管ビュレット玉100を用いて拡径されることにより板状フィン2に接合されている。このため、伝熱管3と板状フィン2との密着性を向上させることができ、伝熱管3と板状フィン2との接触熱抵抗を低減することができる。よって、伝熱管3と板状フィン2との間の接触熱伝達率を向上することができ、伝熱性能を向上することができる。
また、第1、第2の冷媒流路31a、31b間に設けられた隔壁32により楕円形状の伝熱管3の耐圧強度を保持することができるため、伝熱管内圧力により楕円形状の伝熱管3が変形することがなく板状フィン2との密着性を良好に保持することができる。そのため、伝熱性能に優れた伝熱管が得られる。
また、楕円形状の伝熱管3を拡管することによって板状フィン2と接合するものであるため、ロウ付けに比べてはるかに組み付けが容易である。従って、製造コストの低減が可能である。
さらに、各板状フィン2は同じ向きのフィンカラー部21によって間隔を一定に保持することができるとともに、楕円形状の伝熱管3と板状フィン2との密着性が良好なため、伝熱管を楕円化・小型細径化しても、通風抵抗が減少し熱交換能力を増大することができる熱交換器が得られる。
As described above, in the present embodiment, the heat transfer tube 3 has an outer shape having a substantially elliptical cross section, and the average thickness of the long-axis walls 3a and 3b from the thickness Tw1 of the short-axis walls 3c and 3d. Tw2 is formed thick, and the first and second refrigerant flow paths 31a and 31b are joined to the plate-like fin 2 by being expanded in diameter using the tube expansion bullet ball 100. For this reason, the adhesiveness of the heat exchanger tube 3 and the plate-like fin 2 can be improved, and the contact thermal resistance between the heat exchanger tube 3 and the plate-like fin 2 can be reduced. Therefore, the contact heat transfer coefficient between the heat transfer tube 3 and the plate fin 2 can be improved, and the heat transfer performance can be improved.
Moreover, since the pressure resistance strength of the elliptical heat transfer tube 3 can be maintained by the partition wall 32 provided between the first and second refrigerant flow paths 31a and 31b, the elliptical heat transfer tube 3 is caused by the pressure in the heat transfer tube. It is possible to maintain good adhesion to the plate-like fins 2 without deformation. Therefore, a heat transfer tube having excellent heat transfer performance can be obtained.
Further, since the elliptical heat transfer tube 3 is expanded and joined to the plate-like fin 2, the assembly is much easier than brazing. Therefore, the manufacturing cost can be reduced.
Furthermore, each plate-like fin 2 can maintain a constant interval by the fin collar portion 21 in the same direction, and the adhesion between the elliptical heat-transfer tube 3 and the plate-like fin 2 is good. Even if the ellipse is made smaller and the diameter is reduced, a heat exchanger capable of reducing the ventilation resistance and increasing the heat exchange capacity can be obtained.

実施の形態2.
図5は実施の形態2に係る伝熱管の正面図である。
本実施の形態の伝熱管3は、図2の場合と同様に、幅方向の両側には断面が略D字状の貫通穴からなる第1、第2の冷媒流路31a、31bが設けられている。そして、この第1、第2の冷媒流路31a、31bの内壁面にはそれぞれ、所定の高さと間隔で断面がほぼ四角形状(先端部は若干丸みを付けた形状となっている)の複数の突条33が軸方向に設けられている。
Embodiment 2. FIG.
FIG. 5 is a front view of the heat transfer tube according to the second embodiment.
As in the case of FIG. 2, the heat transfer tube 3 of the present embodiment is provided with first and second refrigerant flow paths 31a and 31b each having a substantially D-shaped through hole on both sides in the width direction. ing. A plurality of inner wall surfaces of the first and second refrigerant flow paths 31a and 31b each have a substantially quadrangular cross section with a predetermined height and interval (the tip has a slightly rounded shape). The protrusion 33 is provided in the axial direction.

このような楕円形状の伝熱管3は、前述の要領により、板状フィン2の取付穴22に挿入され、第1、第2の冷媒流路31a、31bを前述と同じ断面形状(略D字状)の拡管ビュレット玉100を用いて各突条33を介して拡径することにより板状フィン2に固定する。
図6に示すように、本実施の形態の楕円形状の伝熱管3においては、拡管後の突条33の高さh(突出長)が高い程、接触面積が増大するため熱伝達率も高くなる。しかしながら、拡管後の突条33の高さhが0.3mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。一方、拡管後の突条33の高さhが0.1mm未満の場合、熱伝達率が向上しない。よって、本実施の形態の楕円形状の伝熱管3においては、拡管後の突条33の高さh(突出長)は、0.1〜0.3mm程度とすることが望ましい。なお、突条33の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。
Such an elliptical heat transfer tube 3 is inserted into the mounting hole 22 of the plate-like fin 2 in the above-described manner, and the first and second refrigerant flow paths 31a and 31b have the same cross-sectional shape as described above (substantially D-shaped). Is fixed to the plate-like fins 2 by expanding the diameter via each protrusion 33 using the expanded pipe burette ball 100.
As shown in FIG. 6, in the elliptical heat transfer tube 3 of the present embodiment, the higher the height h (projection length) of the ridge 33 after the tube expansion, the larger the contact area, and thus the higher the heat transfer coefficient. Become. However, if the height h of the ridge 33 after tube expansion exceeds 0.3 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, resulting in a decrease in heat exchange rate. On the other hand, when the height h of the ridge 33 after the tube expansion is less than 0.1 mm, the heat transfer coefficient is not improved. Therefore, in the elliptical heat transfer tube 3 of the present embodiment, it is desirable that the height h (projection length) of the ridge 33 after the tube expansion is about 0.1 to 0.3 mm. In addition, the cross-sectional shape of the protrusion 33 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

以上のように本実施の形態においては、上記実施の形態1と同様の効果を得ることができ、さらに、第1、第2の冷媒流路31a、31bの内壁面に複数の突条33を設けることで冷媒との接触面積が増大し、かつ突条33の高さhを0.1〜0.3mm程度としたので、流路内圧力が増大することなく、伝熱性能をより向上することができる。   As described above, in the present embodiment, the same effect as in the first embodiment can be obtained, and a plurality of protrusions 33 are provided on the inner wall surfaces of the first and second refrigerant flow paths 31a and 31b. By providing, the contact area with the refrigerant increases and the height h of the protrusion 33 is about 0.1 to 0.3 mm, so that the heat transfer performance is further improved without increasing the pressure in the flow path. be able to.

実施の形態3.
図7は実施の形態3に係る伝熱管の正面図である。
本実施の形態の伝熱管3は、例えば、第1の冷媒流路31aを実施の形態1と同じ形状とし、第2の冷媒流路31bを実施の形態2と同じ形状とするものである。もちろん、この逆の組み合わせであってもよい。
Embodiment 3 FIG.
FIG. 7 is a front view of the heat transfer tube according to the third embodiment.
In the heat transfer tube 3 of the present embodiment, for example, the first refrigerant flow path 31a has the same shape as that of the first embodiment, and the second refrigerant flow path 31b has the same shape as that of the second embodiment. Of course, the reverse combination may be used.

このような楕円形状の伝熱管3は、前述の要領により、板状フィン2の取付穴22に挿入され、第1の冷媒流路31aを略D字状断面の拡管ビュレット玉100を用い、第2の冷媒流路31bを略D字状断面の拡管ビュレット玉100を用いて拡径して板状フィン2に固定する。この場合、突条33の高さh(突出長)は、0.1〜0.3mm程度とすることが望ましい。なお、突条33の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。   Such an elliptical heat transfer tube 3 is inserted into the mounting hole 22 of the plate-like fin 2 in the above-described manner, and the first refrigerant flow path 31a is used with the expanded burette ball 100 having a substantially D-shaped cross section. The diameter of the second refrigerant flow path 31b is expanded using the expanded burette ball 100 having a substantially D-shaped cross section, and is fixed to the plate fin 2. In this case, the height h (projection length) of the ridge 33 is desirably about 0.1 to 0.3 mm. In addition, the cross-sectional shape of the protrusion 33 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

本実施の形態によれば、第1、第2の冷媒流路31a、31bについて実施の形態1と実施の形態2を組み合わせて適用したものであり、これらの実施の形態とほぼ同様の効果を得ることができる。すなわち、伝熱管3と板状フィン2との密着性を向上させることができ、伝熱管3と板状フィン2との接触熱抵抗を低減することができる。よって、伝熱管3と板状フィン2との間の接触熱伝達率を向上することができ、伝熱性能を向上することができる。
また、伝熱管内圧力により楕円形状の伝熱管3が変形することがなく板状フィン2との密着性を良好に保持することができる。そのため、伝熱性能に優れた伝熱管が得られる。
また、楕円形状の伝熱管3を拡管することによって板状フィン2と接合するものであるため、ロウ付けに比べてはるかに組み付けが容易である。従って、製造コストの低減が可能である。
さらに、各板状フィン2は同じ向きのフィンカラー部21によって間隔を一定に保持することができるとともに、楕円形状の伝熱管3と板状フィン2との密着性が良好なため、伝熱管を楕円化・小型細径化しても、通風抵抗が減少し熱交換能力を増大することができる熱交換器が得られる。
According to the present embodiment, the first and second refrigerant flow paths 31a and 31b are applied in combination with the first embodiment and the second embodiment, and substantially the same effects as those of the embodiments are obtained. Obtainable. That is, the adhesion between the heat transfer tube 3 and the plate-like fin 2 can be improved, and the contact thermal resistance between the heat transfer tube 3 and the plate-like fin 2 can be reduced. Therefore, the contact heat transfer coefficient between the heat transfer tube 3 and the plate fin 2 can be improved, and the heat transfer performance can be improved.
In addition, the elliptical heat transfer tube 3 is not deformed by the pressure in the heat transfer tube, and the adhesiveness with the plate-like fins 2 can be maintained well. Therefore, a heat transfer tube having excellent heat transfer performance can be obtained.
Further, since the elliptical heat transfer tube 3 is expanded and joined to the plate-like fin 2, the assembly is much easier than brazing. Therefore, the manufacturing cost can be reduced.
Furthermore, each plate-like fin 2 can maintain a constant interval by the fin collar portion 21 in the same direction, and the adhesion between the elliptical heat-transfer tube 3 and the plate-like fin 2 is good. Even if the ellipse is made smaller and the diameter is reduced, a heat exchanger capable of reducing the ventilation resistance and increasing the heat exchange capacity can be obtained.

また、どちらか一方の冷媒流路31bの内壁面に複数の突条33を設ける場合は、冷媒との接触面積が増大し、かつ突条33の高さhを0.1〜0.3mm程度としたので、流路内圧力が増大することなく、伝熱性能をより向上することができる。   Moreover, when providing the some protrusion 33 on the inner wall surface of either one of the refrigerant flow paths 31b, the contact area with a refrigerant | coolant increases and the height h of the protrusion 33 is about 0.1-0.3 mm. Therefore, the heat transfer performance can be further improved without increasing the pressure in the flow path.

実施の形態4.
図8は実施の形態4に係る伝熱管の正面図である。
図9は実施の形態4に係る拡管された後の伝熱管の正面図である。
本実施の形態の伝熱管3は、図2の場合と同様に、幅方向の両側には断面が略D字状の貫通穴からなる第1、第2の冷媒流路31a、31bが設けられている。そして、この第1、第2の冷媒流路31a、31bの内壁面には、所定の高さと間隔で断面が略四角形状(先端部は若干丸みを付けた形状となっている)の複数の突条33、34、35が軸方向に設けられている。
Embodiment 4 FIG.
FIG. 8 is a front view of a heat transfer tube according to the fourth embodiment.
FIG. 9 is a front view of the heat transfer tube after being expanded according to the fourth embodiment.
As in the case of FIG. 2, the heat transfer tube 3 of the present embodiment is provided with first and second refrigerant flow paths 31a and 31b each having a substantially D-shaped through hole on both sides in the width direction. ing. The inner wall surfaces of the first and second refrigerant flow paths 31a and 31b have a plurality of cross sections having a substantially square shape with a predetermined height and interval (the tip portion has a slightly rounded shape). The ridges 33, 34, and 35 are provided in the axial direction.

長軸壁3a、3bの内壁面に設けられた突条34、35の高さh2、h3は、短軸壁3c、3dの内壁面に設けられた突条33の高さh1よりも高く形成されている。また、長軸壁3a、3bの内壁面に設けられた突条35の高さh3は、突条34の高さh2より高く形成されている。すなわち、長軸壁3a、3bの内壁面に設けられた複数の突条34、35の高さは、隔壁32に近いほど高さが高く形成されている。これら複数の突条33、34、35の高さh1、h2、h3は、拡管ビュレット玉100の略D字状の外周面(図4参照)に接するように所要の高さで設けられている。また、突条33の高さh(突出長)は、0.1〜0.3mm程度とすることが望ましい。なお、突条33、34、35の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。   The heights h2 and h3 of the ridges 34 and 35 provided on the inner wall surfaces of the long shaft walls 3a and 3b are formed higher than the height h1 of the ridge 33 provided on the inner wall surfaces of the short shaft walls 3c and 3d. Has been. Moreover, the height h3 of the protrusion 35 provided on the inner wall surface of the long-axis walls 3a and 3b is formed higher than the height h2 of the protrusion 34. That is, the heights of the plurality of protrusions 34 and 35 provided on the inner wall surfaces of the long-axis walls 3 a and 3 b are formed so as to be closer to the partition wall 32. The heights h1, h2, and h3 of the plurality of protrusions 33, 34, and 35 are provided at a required height so as to be in contact with the substantially D-shaped outer peripheral surface (see FIG. 4) of the expanded bullet ball 100. . The height h (projection length) of the protrusion 33 is preferably about 0.1 to 0.3 mm. In addition, the cross-sectional shape of the protrusions 33, 34, and 35 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

このような楕円形状の伝熱管3は、前述の要領により、板状フィン2の取付穴22に挿入され、第1、第2の冷媒流路31a、31bをD字形状断面の拡管ビュレット玉100を用いて突条33、34、35を介して拡径することにより板状フィン2に固定する。
図9に示すように、本実施の形態の伝熱管3においては、複数の突条の高さが隔壁32に近いほど高さが高く形成されているので、第1、第2の冷媒流路31a、31bの拡径量が隔壁32に近いほど大きくなる。これにより、拡管後の伝熱管3の外面と板状フィン2との密着性を、より向上させることができ、伝熱管3と板状フィン2との接触熱抵抗を低減することができる。よって、伝熱管3と板状フィン2との間の接触熱伝達率を向上することができ、伝熱性能を向上することができる。
Such an elliptical heat transfer tube 3 is inserted into the mounting hole 22 of the plate-like fin 2 in the manner described above, and the first and second refrigerant flow paths 31a and 31b are expanded in a D-shaped cross section. Is fixed to the plate-like fin 2 by expanding the diameter via the ridges 33, 34 and 35.
As shown in FIG. 9, in the heat transfer tube 3 of the present embodiment, the heights of the plurality of protrusions are formed so that the height is closer to the partition wall 32, so the first and second refrigerant flow paths are formed. The closer the partition wall 32 is, the larger the diameter expansion of 31a, 31b. Thereby, the adhesiveness of the outer surface of the heat exchanger tube 3 after pipe expansion and the plate-shaped fin 2 can be improved more, and the contact thermal resistance of the heat exchanger tube 3 and the plate-shaped fin 2 can be reduced. Therefore, the contact heat transfer coefficient between the heat transfer tube 3 and the plate fin 2 can be improved, and the heat transfer performance can be improved.

実施の形態5.
図10は実施の形態5に係る伝熱管の正面図である。
本実施の形態の伝熱管3は、例えば、第1の冷媒流路31aを実施の形態1と同じ形状とし、第2の冷媒流路31bを実施の形態4と同じ形状とするものである。もちろん、この逆の組み合わせであってもよい。
Embodiment 5 FIG.
FIG. 10 is a front view of a heat transfer tube according to the fifth embodiment.
In the heat transfer tube 3 of the present embodiment, for example, the first refrigerant flow path 31a has the same shape as that of the first embodiment, and the second refrigerant flow path 31b has the same shape as that of the fourth embodiment. Of course, the reverse combination may be used.

このような楕円形状の伝熱管3は、前述の要領により、板状フィン2の取付穴22に挿入され、第1の冷媒流路31aを略D字状断面の拡管ビュレット玉100を用い、第2の冷媒流路31bを略D字状断面の拡管ビュレット玉100を用いて拡径して板状フィン2に固定する。この場合、突条33の高さh(突出長)は、0.1〜0.3mm程度とすることが望ましい。なお、突条33の断面形状は四角形状に限定するものではなく、三角形状、台形状、半円形状等、適宜の断面形状とすることができる。   Such an elliptical heat transfer tube 3 is inserted into the mounting hole 22 of the plate-like fin 2 in the above-described manner, and the first refrigerant flow path 31a is used with the expanded burette ball 100 having a substantially D-shaped cross section. The diameter of the second refrigerant flow path 31b is expanded using the expanded burette ball 100 having a substantially D-shaped cross section, and is fixed to the plate fin 2. In this case, the height h (projection length) of the ridge 33 is desirably about 0.1 to 0.3 mm. In addition, the cross-sectional shape of the protrusion 33 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

本実施の形態によれば、第1、第2の冷媒流路31a、31bについて実施の形態1と実施の形態4を組み合わせて適用したものであり、これらの実施の形態とほぼ同様の効果を得ることができる。すなわち、伝熱管3と板状フィン2との密着性を向上させることができ、伝熱管3と板状フィン2との接触熱抵抗を低減することができる。よって、伝熱管3と板状フィン2との間の接触熱伝達率を向上することができ、伝熱性能を向上することができる。
また、伝熱管内圧力により楕円形状の伝熱管3が変形することがなく板状フィン2との密着性を良好に保持することができる。そのため、伝熱性能に優れた伝熱管が得られる。
また、楕円形状の伝熱管3を拡管することによって板状フィン2と接合するものであるため、ロウ付けに比べてはるかに組み付けが容易である。従って、製造コストの低減が可能である。
さらに、各板状フィン2は同じ向きのフィンカラー部21によって間隔を一定に保持することができるとともに、楕円形状の伝熱管3と板状フィン2との密着性が良好なため、伝熱管を楕円化・小型細径化しても、通風抵抗が減少し熱交換能力を増大することができる熱交換器が得られる。
According to the present embodiment, the first and second refrigerant flow paths 31a and 31b are applied by combining the first embodiment and the fourth embodiment, and substantially the same effects as those of these embodiments are obtained. Obtainable. That is, the adhesion between the heat transfer tube 3 and the plate-like fin 2 can be improved, and the contact thermal resistance between the heat transfer tube 3 and the plate-like fin 2 can be reduced. Therefore, the contact heat transfer coefficient between the heat transfer tube 3 and the plate fin 2 can be improved, and the heat transfer performance can be improved.
In addition, the elliptical heat transfer tube 3 is not deformed by the pressure in the heat transfer tube, and the adhesiveness with the plate-like fins 2 can be maintained well. Therefore, a heat transfer tube having excellent heat transfer performance can be obtained.
Further, since the elliptical heat transfer tube 3 is expanded and joined to the plate-like fin 2, the assembly is much easier than brazing. Therefore, the manufacturing cost can be reduced.
Furthermore, each plate-like fin 2 can maintain a constant interval by the fin collar portion 21 in the same direction, and the adhesion between the elliptical heat-transfer tube 3 and the plate-like fin 2 is good. Even if the ellipse is made smaller and the diameter is reduced, a heat exchanger capable of reducing the ventilation resistance and increasing the heat exchange capacity can be obtained.

また、どちらか一方の冷媒流路31bの内壁面に複数の突条33、34、35を設ける場合は、冷媒との接触面積が増大し、かつ突条33の高さhを0.1〜0.3mm程度としたので、流路内圧力が増大することなく、伝熱性能をより向上することができる。   Moreover, when providing the some protrusion 33,34,35 in the inner wall face of any one refrigerant flow path 31b, the contact area with a refrigerant | coolant increases and height h of the protrusion 33 is 0.1-0.1. Since the thickness is about 0.3 mm, the heat transfer performance can be further improved without increasing the pressure in the flow path.

実施の形態6.
図11は実施の形態6に係る拡管ビュレット玉の拡大図である。
図11に示すように、本実施の形態において第1および第2の冷媒流路31a、31bが拡径に用いられる拡管ビュレット玉100は、第1および第2の冷媒流路31a、31bと相似の断面形状(2つの対称な略D字状)で、第1および第2の冷媒流路31a、31bの内壁面に接する面部101が設けられている。また、面部101より外径が小さい挿入部102が先端側に設けられている。本実施の形態の伝熱管3は、このような拡管ビュレット玉100を用いて、第1および第2の冷媒流路31a、31bが拡径される。
この拡管ビュレット玉100は、前述の要領により、機械的な方法または流体圧により第1および第2の冷媒流路31a、31bに押し込まれる。このとき挿入部102が設けられた拡管ビュレット玉100を用いることで、拡管ビュレット玉100の位置決めが容易にできる。
また、この場合、第1および第2の冷媒流路31a、31bの内壁面に接する面部101の軸方向の長さLが、拡管ビュレット玉100の外径Dの1.0〜1.05倍程度とすることが望ましい。これは、拡管ビュレット玉100の面部101の軸方向の長さLが外径Dの1.0倍未満の場合、拡管する時、拡管ビュレット玉100の回転移動により、伝熱管3の外面に段差が発生し、伝熱管3の外面と板状フィン2との密着性が低下するからである。また、拡管ビュレット玉100の面部101の軸方向の長さLが外径Dの1.05倍以上の場合、拡管する時、拡管ビュレット玉100と伝熱管3との内面接触面積が増加し、挿入力が増大し、設備コストが増大するからである。
Embodiment 6 FIG.
FIG. 11 is an enlarged view of the expanded burette ball according to the sixth embodiment.
As shown in FIG. 11, the expanded burette ball 100 in which the first and second refrigerant flow paths 31a and 31b are used for expanding the diameter in the present embodiment is similar to the first and second refrigerant flow paths 31a and 31b. The cross-sectional shape (two symmetrical substantially D-shapes) is provided with a surface portion 101 in contact with the inner wall surfaces of the first and second refrigerant channels 31a and 31b. An insertion portion 102 having an outer diameter smaller than that of the surface portion 101 is provided on the distal end side. In the heat transfer tube 3 of the present embodiment, the diameter of the first and second refrigerant flow paths 31a and 31b is expanded using such a tube expansion bullet ball 100.
This expanded burette ball 100 is pushed into the first and second refrigerant flow paths 31a and 31b by a mechanical method or fluid pressure in the manner described above. At this time, by using the expanded burette ball 100 provided with the insertion portion 102, the expanded burette ball 100 can be easily positioned.
In this case, the axial length L of the surface portion 101 in contact with the inner wall surfaces of the first and second refrigerant flow paths 31 a and 31 b is 1.0 to 1.05 times the outer diameter D of the expanded burette ball 100. It is desirable to set the degree. This is because, when the axial length L of the surface portion 101 of the expanded bullet ball 100 is less than 1.0 times the outer diameter D, a step is formed on the outer surface of the heat transfer tube 3 by the rotational movement of the expanded bullet ball 100 when expanding. This is because the adhesion between the outer surface of the heat transfer tube 3 and the plate-like fins 2 is reduced. Further, when the axial length L of the surface portion 101 of the expanded burette ball 100 is 1.05 times or more of the outer diameter D, when the tube is expanded, the inner surface contact area between the expanded burette ball 100 and the heat transfer tube 3 increases. This is because the insertion force increases and the equipment cost increases.

実施の形態7.
図12は従来のフィンチューブ型熱交換器の説明図であり、図12(a)は正面側、図12(b)は背面側の伝熱管接続状態を示すものである。
図13は実施の形態7に係る熱交換器の概要を示す正面図である。
まず、図12について説明すると、伝熱管をその中間部で所定の曲げピッチでヘアピン状に曲げ加工して複数のヘアピン管51を作製し、次に、複数のヘアピン管51を、所定の間隔をおいて相互に平行に配置された板状フィン2に背面側から挿通する。そして、この伝熱管を機械方式あるいは液圧拡管方式で拡管して板状フィン2と伝熱管を接合する。次に、所定の長さおよびピッチで曲げ加工された複数のリターンベンド管5を用いて、隣接する拡管後のヘアピン管51の管端に、その外面にロウのリングを付けたリターンベンド管5を装着し、バーナーにより、両者の管を加熱ロウ付けして熱交換器50を製造する。
Embodiment 7 FIG.
FIG. 12 is an explanatory view of a conventional fin tube heat exchanger, in which FIG. 12 (a) shows a heat transfer tube connection state on the front side, and FIG.
FIG. 13 is a front view showing an outline of a heat exchanger according to the seventh embodiment.
First, FIG. 12 will be described. A plurality of hairpin tubes 51 are produced by bending a heat transfer tube into a hairpin shape at a predetermined bending pitch at an intermediate portion thereof, and then the plurality of hairpin tubes 51 are spaced at a predetermined interval. Then, the plate-like fins 2 arranged parallel to each other are inserted from the back side. Then, the heat transfer tube is expanded by a mechanical method or a hydraulic expansion method to join the plate-like fins 2 and the heat transfer tube. Next, by using a plurality of return bend pipes 5 bent at a predetermined length and pitch, the return bend pipe 5 in which a wax ring is attached to the outer surface of the adjacent pipe end of the hairpin pipe 51 after the pipe expansion. The heat exchanger 50 is manufactured by brazing both the tubes with a burner.

次に、この従来のフィンチューブ型熱交換器50の冷媒の流れについて説明すると、冷媒は入口管52から入り、正面側のaから背面側のbへ流出し、ヘアピン管51を通りcから流入して正面側のdへ流出し、正面側のリターンベンド管5を通り、次段のヘアピン管51にeから流入する。このように、冷媒はa→b→c→d→e→f→g・・・のように伝熱管内を下へ流動していき、最後に下段の流出管53から冷媒は流出する。その間、板状フィン2間を通過する空気との間で熱交換が行われる。   Next, the flow of the refrigerant in the conventional fin tube type heat exchanger 50 will be described. The refrigerant enters from the inlet pipe 52, flows out from the front side a to b on the back side, and flows in from the c through the hairpin pipe 51. Then, it flows out to d on the front side, passes through the return bend pipe 5 on the front side, and flows into the hairpin pipe 51 of the next stage from e. In this way, the refrigerant flows downward in the heat transfer tube as a → b → c → d → e → f → g... Finally, the refrigerant flows out from the lower outflow pipe 53. Meanwhile, heat exchange is performed with the air passing between the plate-like fins 2.

一方、本実施の形態の熱交換器1は、図13に示すように、例えば同図の右側の伝熱管3の配列について説明すると(なお、左右の伝熱管3の配列は中間の一部が示されているものとする)、伝熱管3を中間部で所定の曲げピッチで曲げ加工して複数のヘアピン管30を作製し、次に、複数のヘアピン管30を、所定の間隔をおいて相互に平行に配置された板状フィン2に背面側から挿通する。そして、この伝熱管3を前述したように機械方式あるいは液圧拡管方式で拡管して板状フィン2と伝熱管3を接合する。さらに、隣接するヘアピン管30において、2段目の伝熱管3と3段目の伝熱管3の管端を、銅または銅合金、アルミまたはアルミ合金等の金属材料からなる2本のリターンベンド管5a、5bでクロス状に接続する。すなわち、2段目の伝熱管3の風上側の第1の冷媒流路31aと3段目の伝熱管3の風下側の第2の冷媒流路31bとをリターンベンド管5aで接続し、2段目の伝熱管3の風下側の第2の冷媒流路31bと3段目の伝熱管3の風上側の第1の冷媒流路31aとをリターンベンド管5bで接続する。なお、3段目と図示しない4段目の伝熱管3はヘアピン管30として構成されており、図示しない4段目と5段目の伝熱管は上記同様にリターンベンド管でクロス状に接続されている。本実施の形態の熱交換器1は、このようにして列方向に複数の冷媒回路が構成されている。   On the other hand, the heat exchanger 1 of the present embodiment will be described with reference to the arrangement of the heat transfer tubes 3 on the right side of the drawing, as shown in FIG. 13 (note that the arrangement of the left and right heat transfer tubes 3 is partly in the middle) The heat transfer tubes 3 are bent at a predetermined bending pitch at the intermediate portion to produce a plurality of hairpin tubes 30, and then the plurality of hairpin tubes 30 are spaced at a predetermined interval. The plate-like fins 2 arranged parallel to each other are inserted from the back side. Then, as described above, the heat transfer tube 3 is expanded by a mechanical method or a hydraulic pressure expansion method, and the plate fin 2 and the heat transfer tube 3 are joined. Further, in the adjacent hairpin tube 30, two return bend tubes made of a metal material such as copper or copper alloy, aluminum or aluminum alloy are provided at the tube ends of the second heat transfer tube 3 and the third heat transfer tube 3. Connect in a cross shape with 5a and 5b. That is, the first refrigerant flow path 31a on the windward side of the second-stage heat transfer tube 3 and the second refrigerant flow path 31b on the leeward side of the third-stage heat transfer pipe 3 are connected by the return bend pipe 5a. The second refrigerant flow path 31b on the leeward side of the heat transfer pipe 3 at the stage and the first refrigerant flow path 31a on the upwind side of the heat transfer pipe 3 at the third stage are connected by a return bend pipe 5b. The third and fourth heat transfer tubes 3 (not shown) are configured as hairpin tubes 30, and the fourth and fifth heat transfer tubes (not shown) are connected in a cross shape with return bend tubes as described above. ing. In the heat exchanger 1 of the present embodiment, a plurality of refrigerant circuits are configured in the column direction in this way.

本実施の形態の熱交換器1では、冷媒は1段目の伝熱管3の第1、第2の冷媒流路31a、31bにそれぞれ別々に同時に流入する。1段目の伝熱管3の第1の冷媒流路31aに流入した冷媒はヘアピン管30を経由して2段目の伝熱管3の第1の冷媒流路31aから流出し、さらにリターンベンド管5aを経由して3段目の伝熱管3の第2の冷媒流路31bに流入する。一方、1段目の伝熱管3の第2の冷媒流路31bに流入した冷媒はヘアピン管30を経由して2段目の伝熱管3の第2の冷媒流路31bから流出し、さらにリターンベンド管5bを経由して3段目の伝熱管3の第1の冷媒流路31aに流入する。
従って、本実施の形態の熱交換器1によれば、リターンベンド管5a、5bにより冷媒が交互にクロス状に流動するので、風上側の熱交換能力と風下側の熱交換能力とのバランスをとることができるため、高効率の熱交換器を得ることができる。
In the heat exchanger 1 of the present embodiment, the refrigerant flows into the first and second refrigerant flow paths 31a and 31b of the first stage heat transfer tube 3 separately and simultaneously. The refrigerant that has flowed into the first refrigerant flow path 31a of the first stage heat transfer pipe 3 flows out of the first refrigerant flow path 31a of the second stage heat transfer pipe 3 via the hairpin pipe 30, and is further a return bend pipe. It flows into the 2nd refrigerant | coolant flow path 31b of the 3rd-stage heat exchanger tube 3 via 5a. On the other hand, the refrigerant that has flowed into the second refrigerant flow path 31b of the first-stage heat transfer tube 3 flows out of the second refrigerant flow path 31b of the second-stage heat transfer pipe 3 via the hairpin tube 30, and then returns. It flows into the first refrigerant flow path 31a of the third-stage heat transfer tube 3 via the bend tube 5b.
Therefore, according to the heat exchanger 1 of the present embodiment, the refrigerant flows alternately in a cross shape by the return bend pipes 5a and 5b, so that the balance between the heat exchange capacity on the windward side and the heat exchange capacity on the leeward side is balanced. Therefore, a highly efficient heat exchanger can be obtained.

実施の形態8.
図14は実施の形態8に係る熱交換器の概要を示す正面図である。
本実施の形態は、隣接するヘアピン管30における2段目と3段目の伝熱管3の管端を、冷媒が混合されるように1つの流路を有するリターンベンド管5cで接続した点だけが実施の形態7と相違するものである。
これにより、伝熱管の複数の冷媒回路の出口側における気相と液相との質量比率が同じになり、次段の伝熱管の冷媒入口部に入るので、風上側の熱交換能力と風下側の熱交換能力とのバランスをとることができるため、高効率の熱交換器を得ることができる。
Embodiment 8 FIG.
FIG. 14 is a front view showing an outline of a heat exchanger according to the eighth embodiment.
In the present embodiment, only the ends of the second and third heat transfer tubes 3 in the adjacent hairpin tubes 30 are connected by the return bend tube 5c having one flow path so that the refrigerant is mixed. However, this is different from the seventh embodiment.
As a result, the mass ratio of the gas phase and the liquid phase at the outlet side of the plurality of refrigerant circuits of the heat transfer tubes becomes the same, and enters the refrigerant inlet portion of the next stage heat transfer tube, so that the heat exchange capacity on the windward side and the leeward side Therefore, a highly efficient heat exchanger can be obtained.

なお、以上の各実施の形態の伝熱管3を用いて構成される熱交換器1は、圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続してなる冷凍サイクル回路において、作動流体として、HC単一冷媒またはHCを含む混合冷媒、あるいは、R32、R410A、R407C、テトラフルオロプロペンと、このテトラフルオロプロペンよりも沸点の低いHFC系冷媒とからなる非共沸混合冷媒または二酸化炭素のいずれかの冷媒を使用し、上記凝縮器または蒸発器として使用することができる。
また、上記冷凍サイクル回路を備えた冷蔵庫において、以上の各実施の形態の伝熱管3を用いて構成される熱交換器1を、前記蒸発器および前記凝縮器の少なくとも一方として用いることができる。
また、上記冷凍サイクル回路を備えた空気調和機において、以上の各実施の形態の伝熱管3を用いて構成される熱交換器1を、前記蒸発器および前記凝縮器の少なくとも一方として用いることができる。
In addition, the heat exchanger 1 comprised using the heat exchanger tube 3 of each above-mentioned embodiment is a working fluid in the refrigeration cycle circuit formed by connecting a compressor, a condenser, a throttling device, and an evaporator sequentially by piping. As an HC single refrigerant or a mixed refrigerant containing HC, or a non-azeotropic mixed refrigerant consisting of R32, R410A, R407C, tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of tetrafluoropropene or carbon dioxide Any refrigerant can be used as the condenser or evaporator.
Moreover, in the refrigerator provided with the said refrigerating cycle circuit, the heat exchanger 1 comprised using the heat exchanger tube 3 of each above embodiment can be used as at least one of the said evaporator and the said condenser.
Moreover, in the air conditioner provided with the said refrigerating cycle circuit, using the heat exchanger 1 comprised using the heat exchanger tube 3 of each above embodiment as at least one of the said evaporator and the said condenser. it can.

1 熱交換器、2 板状フィン、3 伝熱管、3a 長軸壁、3b 長軸壁、3c 短軸壁、3d 短軸壁、4 スリット、5 リターンベンド管、5a リターンベンド管、5b リターンベンド管、5c リターンベンド管、21 フィンカラー部、22 取付穴、30 ヘアピン管、31a 第1の冷媒流路、31b 第2の冷媒流路、32 隔壁、33 突条、34 突条、35 突条、100 拡管ビュレット玉、101 面部、102 挿入部。   1 heat exchanger, 2 plate fin, 3 heat transfer tube, 3a long shaft wall, 3b long shaft wall, 3c short shaft wall, 3d short shaft wall, 4 slit, 5 return bend tube, 5a return bend tube, 5b return bend Pipe, 5c return bend pipe, 21 fin collar part, 22 mounting hole, 30 hairpin pipe, 31a first refrigerant flow path, 31b second refrigerant flow path, 32 partition, 33 ridge, 34 ridge, 35 ridge , 100 Expanded burette ball, 101 surface portion, 102 insertion portion.

Claims (17)

所定の間隔で並べて配置された複数の板状フィンと、
前記板状フィンに直交する方向に挿通され、内部を冷媒が流れる複数の伝熱管とを備え、
前記伝熱管は、
断面が略楕円状の外形形状を有し、該楕円の長軸が空気の流れ方向に沿って配置され、
内部には、前記楕円の短軸方向に沿って形成された隔壁を間にして、2つの対称な略D字状の貫通穴からなる第1および第2の冷媒流路を有し、
前記楕円の短軸に対向する短軸壁の肉厚より、前記楕円の長軸に対向する長軸壁の肉厚が厚く形成され、
前記第1および第2の冷媒流路が拡管ビュレット玉を用いて拡径されることにより前記板状フィンに接合された
ことを特徴とする熱交換器。
A plurality of plate-like fins arranged side by side at a predetermined interval;
A plurality of heat transfer tubes that are inserted in a direction orthogonal to the plate-like fins and in which a refrigerant flows,
The heat transfer tube is
The cross section has a substantially elliptical outer shape, the long axis of the ellipse is arranged along the air flow direction,
Inside, there are first and second refrigerant flow paths consisting of two symmetrical substantially D-shaped through holes with a partition wall formed along the minor axis direction of the ellipse in between,
The wall thickness of the long axis wall opposed to the long axis of the ellipse is formed thicker than the wall thickness of the short axis wall facing the short axis of the ellipse,
The heat exchanger according to claim 1, wherein the first and second refrigerant flow paths are joined to the plate-like fins by being expanded in diameter using an expanded burette ball.
前記短軸壁の内面は半円状に形成され、
前記長軸壁の内面は直線状に形成され、
前記短軸壁の内面円周部分の肉厚より、前記長軸壁の内面直線部分の平均肉厚が厚く形成された
ことを特徴とする請求項1記載の熱交換器。
The inner surface of the short shaft wall is formed in a semicircular shape,
The inner surface of the long wall is formed in a straight line,
The heat exchanger according to claim 1, wherein an average thickness of an inner straight line portion of the major axis wall is formed thicker than a thickness of an inner circumferential portion of the minor axis wall.
前記長軸壁の平均肉厚は、前記短軸壁の内面円周部分の肉厚の1.04〜1.25倍である
ことを特徴とする請求項2記載の熱交換器。
The heat exchanger according to claim 2, wherein an average thickness of the long axis wall is 1.04 to 1.25 times a thickness of an inner circumferential portion of the short axis wall.
前記隔壁の肉厚は、前記短軸壁の内面円周部分の肉厚の1.0〜1.4倍である
ことを特徴とする請求項2または3記載の熱交換器。
4. The heat exchanger according to claim 2, wherein a thickness of the partition wall is 1.0 to 1.4 times a thickness of an inner circumferential portion of the short shaft wall.
前記第1および第2の冷媒流路の両方の流路が、内壁面に軸方向に延びる複数の突条を有する
ことを特徴とする請求項1〜4の何れか1項に記載の熱交換器。
5. The heat exchange according to claim 1, wherein both of the first and second refrigerant channels have a plurality of ridges extending in an axial direction on an inner wall surface. 6. vessel.
前記第1および第2の冷媒流路のうち一方の流路が、内壁面に軸方向に延びる複数の突条を有する
ことを特徴とする請求項1〜4の何れか1項に記載の熱交換器。
5. The heat according to claim 1, wherein one of the first and second refrigerant channels has a plurality of protrusions extending in an axial direction on an inner wall surface. 6. Exchanger.
拡径後の前記突条の高さは、0.1〜0.3mmである
ことを特徴とする請求項5または6記載の熱交換器。
The heat exchanger according to claim 5 or 6, wherein the height of the protrusion after the diameter expansion is 0.1 to 0.3 mm.
前記長軸壁の内壁面に設けられた前記突条の高さは、前記短軸壁の内壁面に設けられた前記突条の高さより高い
ことを特徴とする請求項5〜7の何れか1項に記載の熱交換器。
8. The height of the ridge provided on the inner wall surface of the long-axis wall is higher than the height of the ridge provided on the inner wall surface of the short-axis wall. The heat exchanger according to item 1.
前記長軸壁の内壁面に設けられた複数の前記突条は、前記隔壁に近いほど高さが高い
ことを特徴とする請求項5〜8の何れか1項に記載の熱交換器。
The heat exchanger according to any one of claims 5 to 8, wherein the plurality of protrusions provided on the inner wall surface of the long-axis wall have a height that is higher as the protrusion is closer.
前記伝熱管は、
前記第1および第2の冷媒流路と相似の断面形状で、前記第1および第2の冷媒流路の内壁面に接する面部が設けられた拡管ビュレット玉を用いて、前記第1および第2の冷媒流路が拡径されることにより前記板状フィンに接合された
ことを特徴とする請求項1〜9の何れか1項に記載の熱交換器。
The heat transfer tube is
Using the expanded burette ball having a cross-sectional shape similar to the first and second refrigerant flow paths and having a surface portion in contact with the inner wall surface of the first and second refrigerant flow paths, the first and second The heat exchanger according to claim 1, wherein the refrigerant flow passage is joined to the plate-like fins by expanding the diameter of the refrigerant flow path.
前記拡管ビュレット玉の前記面部は、軸方向の長さが外径の1.0〜1.05倍である
ことを特徴とする請求項10記載の熱交換器。
The heat exchanger according to claim 10, wherein the surface portion of the expanded burette ball has an axial length of 1.0 to 1.05 times the outer diameter.
中間部を曲げ加工された前記伝熱管を用いて列方向に複数の冷媒回路を構成するとともに、隣接する一方の伝熱管の前記第1および第2の冷媒流路の冷媒出口部と、他方の伝熱管の前記第1および第2の冷媒流路の冷媒入口部とを、2本のリターンベンド管でクロス状に接続してなる
ことを特徴とする請求項1〜11の何れか1項に記載の熱交換器。
A plurality of refrigerant circuits are configured in the column direction using the heat transfer tubes whose intermediate portions are bent, and the refrigerant outlet portions of the first and second refrigerant channels of one adjacent heat transfer tube and the other The refrigerant inlet part of the said 1st and 2nd refrigerant flow path of a heat exchanger tube is connected in a cross shape with two return bend pipes, The any one of Claims 1-11 characterized by the above-mentioned. The described heat exchanger.
中間部を曲げ加工された前記伝熱管を用いて列方向に複数の冷媒回路を構成するとともに、隣接する一方の伝熱管の前記第1および第2の冷媒流路の冷媒出口部と、他方の伝熱管の前記第1および第2の冷媒流路の冷媒入口部とを、冷媒が混合するように1本のリターンベンド管で接続してなる
ことを特徴とする請求項1〜11の何れか1項に記載の熱交換器。
A plurality of refrigerant circuits are configured in the column direction using the heat transfer tubes whose intermediate portions are bent, and the refrigerant outlet portions of the first and second refrigerant channels of one adjacent heat transfer tube and the other The refrigerant inlet part of the said 1st and 2nd refrigerant | coolant flow path of a heat exchanger tube is connected with one return bend pipe | tube so that a refrigerant | coolant may mix. The heat exchanger according to item 1.
所定の間隔で並べて配置された複数の板状フィンと、前記板状フィンに直交する方向に挿通され、内部を冷媒が流れる複数の伝熱管とを備えた熱交換器の製造方法であって、
断面が略楕円状の外形形状を有し、内部には、前記楕円の短軸方向に沿って形成された隔壁を間にして、2つの対称な略D字状の貫通穴からなる第1および第2の冷媒流路を有し、前記楕円の短軸に対向する短軸壁の肉厚より、前記楕円の長軸に対向する長軸壁の肉厚が厚く形成された前記伝熱管を、前記板状フィンに設けられた取付穴に、前記楕円の長軸が空気の流れ方向に沿うように配置する工程と、
前記伝熱管の前記第1および第2の冷媒流路を拡管ビュレット玉を用いて拡径し、前記伝熱管を前記板状フィンに接合する工程と
を有することを特徴とする熱交換器の製造方法。
A heat exchanger manufacturing method comprising a plurality of plate-like fins arranged side by side at a predetermined interval, and a plurality of heat transfer tubes that are inserted in a direction orthogonal to the plate-like fins and in which a refrigerant flows,
The cross section has a substantially elliptical outer shape, and the inside includes a first partition formed of two symmetrical substantially D-shaped through holes with a partition wall formed along the minor axis direction of the ellipse in between. The heat transfer tube having a second refrigerant flow path and having a long axis wall opposed to the major axis of the ellipse thicker than a thickness of the minor axis wall facing the minor axis of the ellipse, In the mounting hole provided in the plate fin, the step of arranging the long axis of the ellipse along the air flow direction;
And a step of expanding the diameter of the first and second refrigerant channels of the heat transfer tube using a tube expansion bullet and joining the heat transfer tube to the plate fin. Method.
前記伝熱管の前記短軸壁の内面は半円状に形成され、
前記伝熱管の前記長軸壁の内面は直線状に形成され、
前記短軸壁の内面円周部分の肉厚より、前記長軸壁の内面直線部分の平均肉厚が厚く形成された
ことを特徴とする請求項14記載の熱交換器の製造方法。
The inner surface of the short shaft wall of the heat transfer tube is formed in a semicircular shape,
The inner surface of the long wall of the heat transfer tube is formed in a straight line,
15. The method of manufacturing a heat exchanger according to claim 14, wherein an average thickness of the inner straight line portion of the major axis wall is formed thicker than a thickness of the inner circumferential portion of the minor axis wall.
圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続した冷凍サイクルを備え、作動流体として冷媒を用いるとともに、請求項1〜13の何れか1項に記載の熱交換器を、前記蒸発器および前記凝縮器の少なくとも一方として用いた
ことを特徴とする冷蔵庫。
A compressor, a condenser, a throttling device, and an evaporator are provided with a refrigeration cycle sequentially connected by piping, and a refrigerant is used as a working fluid, and the heat exchanger according to any one of claims 1 to 13 is used for the evaporation. And a refrigerator used as at least one of the condenser and the condenser.
圧縮機、凝縮器、絞り装置、蒸発器を順次配管で接続した冷凍サイクルを備え、作動流体として冷媒を用いるとともに、請求項1〜13の何れか1項に記載の熱交換器を、前記蒸発器および前記凝縮器の少なくとも一方として用いた
ことを特徴とする空気調和機。
A compressor, a condenser, a throttling device, and an evaporator are provided with a refrigeration cycle sequentially connected by piping, and a refrigerant is used as a working fluid, and the heat exchanger according to any one of claims 1 to 13 is used for the evaporation. An air conditioner used as at least one of a condenser and the condenser.
JP2010242327A 2010-10-28 2010-10-28 Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner Active JP5063765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010242327A JP5063765B2 (en) 2010-10-28 2010-10-28 Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010242327A JP5063765B2 (en) 2010-10-28 2010-10-28 Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner

Publications (2)

Publication Number Publication Date
JP2012093053A true JP2012093053A (en) 2012-05-17
JP5063765B2 JP5063765B2 (en) 2012-10-31

Family

ID=46386573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010242327A Active JP5063765B2 (en) 2010-10-28 2010-10-28 Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner

Country Status (1)

Country Link
JP (1) JP5063765B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187435A1 (en) * 2012-06-15 2013-12-19 サンデン株式会社 Heat exchanger
CN107351646A (en) * 2017-08-17 2017-11-17 上海加冷松芝汽车空调股份有限公司 Outdoor heat exchanger for automobile heat pump air-conditioning system
JP2018112363A (en) * 2017-01-13 2018-07-19 三菱電機株式会社 Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107182U (en) * 1980-01-21 1981-08-20
JPS6288179U (en) * 1985-11-22 1987-06-05
JP2000283677A (en) * 1999-03-30 2000-10-13 Toyo Radiator Co Ltd Heat exchanger
JP3318096B2 (en) * 1994-02-24 2002-08-26 東芝キヤリア株式会社 Heat transfer tube manufacturing method
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2010214404A (en) * 2009-03-16 2010-09-30 Mitsubishi Electric Corp Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2010230300A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Heat exchanger and air conditioner having the same
JP2011099630A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Heat exchanger, and refrigerator and air conditioner using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56107182U (en) * 1980-01-21 1981-08-20
JPS6288179U (en) * 1985-11-22 1987-06-05
JP3318096B2 (en) * 1994-02-24 2002-08-26 東芝キヤリア株式会社 Heat transfer tube manufacturing method
JP2000283677A (en) * 1999-03-30 2000-10-13 Toyo Radiator Co Ltd Heat exchanger
JP2010002093A (en) * 2008-06-19 2010-01-07 Mitsubishi Electric Corp Heat exchanger and air conditioner equipped with the heat exchanger
JP2010214404A (en) * 2009-03-16 2010-09-30 Mitsubishi Electric Corp Method for manufacturing heat exchanger, and air-conditioner using the heat exchanger
JP2010230300A (en) * 2009-03-30 2010-10-14 Mitsubishi Electric Corp Heat exchanger and air conditioner having the same
JP2011099630A (en) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp Heat exchanger, and refrigerator and air conditioner using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013187435A1 (en) * 2012-06-15 2013-12-19 サンデン株式会社 Heat exchanger
JP2018112363A (en) * 2017-01-13 2018-07-19 三菱電機株式会社 Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger
CN107351646A (en) * 2017-08-17 2017-11-17 上海加冷松芝汽车空调股份有限公司 Outdoor heat exchanger for automobile heat pump air-conditioning system

Also Published As

Publication number Publication date
JP5063765B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
US20050155750A1 (en) Brazed plate fin heat exchanger
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2011153823A (en) Heat exchanger and air conditioner using the same
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
JP5545160B2 (en) Heat exchanger
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP2012247091A (en) Fin and tube type heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
KR20150030201A (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP5595343B2 (en) Heat exchanger, refrigeration cycle circuit using the same, refrigerator using the refrigeration cycle circuit, and air conditioner
JP6826133B2 (en) Heat exchanger and refrigeration cycle equipment
JP5138408B2 (en) Fin and tube heat exchanger
JP6415976B2 (en) Heat transfer tube for fin-and-tube heat exchanger and fin-and-tube heat exchanger using the same
WO2013094084A1 (en) Air conditioner
JP5591285B2 (en) Heat exchanger and air conditioner
JPWO2017208419A1 (en) Fin tube type heat exchanger and heat pump device provided with the fin tube type heat exchanger
JP5958917B2 (en) Finned tube heat exchanger
JP2010203726A (en) Heat exchanger and air conditioner
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP2009250600A (en) Copper flat heat-transfer pipe
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
JP5476080B2 (en) Aluminum inner surface grooved heat transfer tube
JP7012351B2 (en) Double tube heat exchanger
JP2011099630A (en) Heat exchanger, and refrigerator and air conditioner using the same

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

R150 Certificate of patent or registration of utility model

Ref document number: 5063765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150817

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250