JP2011099630A - Heat exchanger, and refrigerator and air conditioner using the same - Google Patents

Heat exchanger, and refrigerator and air conditioner using the same Download PDF

Info

Publication number
JP2011099630A
JP2011099630A JP2009254939A JP2009254939A JP2011099630A JP 2011099630 A JP2011099630 A JP 2011099630A JP 2009254939 A JP2009254939 A JP 2009254939A JP 2009254939 A JP2009254939 A JP 2009254939A JP 2011099630 A JP2011099630 A JP 2011099630A
Authority
JP
Japan
Prior art keywords
heat transfer
heat
flat
heat exchanger
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009254939A
Other languages
Japanese (ja)
Inventor
Soubu Ri
相武 李
Takuya Matsuda
拓也 松田
Akira Ishibashi
晃 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009254939A priority Critical patent/JP2011099630A/en
Publication of JP2011099630A publication Critical patent/JP2011099630A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent, even if heat transfer tubes are flattened, the flattened heat transfer tubes from being deformed by tube internal pressure, provide excellent heat transfer performance, reduce draft resistance and increase heat exchange capacity. <P>SOLUTION: A heat exchanger includes the flattened heat transfer tubes 3A each having first and second refrigerant flow passages 31a, 31b defined by an internal partition wall 32, and a plurality of heat resistant fins 2 having heat transfer characteristics and provided side by side on the outer peripheries of the flattened heat transfer tubes to form air flow passages. The flattened heat transfer tubes are applied with low-temperature brazing material on the outer surfaces and are inserted in mounting holes 21 provided in the heat resistant fins so that the longitudinal direction of their flat shape is parallel to the inflow direction A of air. The flattened heat transfer tubes and the heat resistant fins are joined by blazing in a furnace of 150 to 350 degrees and are fixed integrally. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、例えば冷蔵庫用熱交換器や空気調和機用熱交換器として好適な熱交換器に関する。   The present invention relates to a heat exchanger suitable as a heat exchanger for a refrigerator or a heat exchanger for an air conditioner, for example.

従来の冷蔵庫、空気調和機を構成する熱交換器に、耐熱フィンチューブ型熱交換器と呼ばれるものがある。この耐熱フィンチューブ型熱交換器は、一定の間隔で配置されてその間を気体(空気)が流れる板状フィンと、この板状フィンに直交して挿入され、内部に冷媒が流れる伝熱管とにより構成されている。   Conventional heat exchangers constituting refrigerators and air conditioners include what are called heat-resistant finned tube heat exchangers. This heat-resistant finned tube heat exchanger is composed of plate-like fins that are arranged at regular intervals and through which gas (air) flows, and heat transfer tubes that are inserted perpendicularly to the plate-like fins and into which refrigerant flows. It is configured.

フィンチューブ型熱交換器の伝熱性能に影響を与える因子としては、冷媒と伝熱管との間の冷媒側熱伝達率、伝熱管とフィンとの間の接触熱伝達率、及び空気とフィンとの間の空気側熱伝達率が知られている。   Factors affecting the heat transfer performance of the finned tube heat exchanger include the refrigerant side heat transfer coefficient between the refrigerant and the heat transfer tube, the contact heat transfer coefficient between the heat transfer tube and the fin, and the air and fin The air side heat transfer coefficient between is known.

冷媒と伝熱管との間の冷媒側熱伝達率を向上させるためには、伝熱面積拡大と冷媒の攪拌効果が得られる内面溝付伝熱管とする。これにより、管内性能を促進することができるとされている。   In order to improve the refrigerant-side heat transfer coefficient between the refrigerant and the heat transfer tube, the inner surface grooved heat transfer tube is provided that can expand the heat transfer area and obtain the refrigerant stirring effect. Thereby, it is supposed that the in-pipe performance can be promoted.

また、空気とフィンとの間の空気側熱伝達率を促進する方法としては、隣接する伝熱管の間に、板状フィンの切り起こしによるスリット群を設ける。このスリット群は、スリットの切り起こし部が風向きに対して対向するように設けられ、その切り起こし部において空気流の速度境界層および温度境界層を薄くして、乱流による攪拌効果を発現させる。これにより、伝熱促進が行われ、熱交換能力が増大するとされている。   Moreover, as a method of promoting the air side heat transfer coefficient between air and a fin, a slit group by cutting and raising a plate-like fin is provided between adjacent heat transfer tubes. This slit group is provided so that the cut-and-raised portion of the slit is opposed to the wind direction. . As a result, heat transfer is promoted and heat exchange capacity is increased.

伝熱管とフィンとの間の接触熱伝達率は、伝熱管とフィンとの接触状態に影響される。例えば、伝熱管を拡管してフィンに固定する際、伝熱管の外面とフィンとの間に、伝熱管外面のうねりによる隙間とフィンカラー変形による隙間が発生する。これらの隙間による接触熱伝達率低下は、熱交換器全体の伝熱性能の5%程度であると考えられている(例えば、非特許文献1参照)。   The contact heat transfer coefficient between the heat transfer tube and the fin is affected by the contact state between the heat transfer tube and the fin. For example, when the heat transfer tube is expanded and fixed to the fin, a gap due to the undulation of the heat transfer tube outer surface and a gap due to fin collar deformation are generated between the outer surface of the heat transfer tube and the fin. It is considered that the contact heat transfer rate decrease due to these gaps is about 5% of the heat transfer performance of the entire heat exchanger (see, for example, Non-Patent Document 1).

ところで、フィンと伝熱管との接合部となるフィンカラー内面に、金属粉末などの熱伝導性微粉末を油などに混入したペーストを介在させることで、前述のような隙間が形成されるのを最小限にして、接触熱伝達率を向上させることができるようにしたものがある(例えば、特許文献1参照)。   By the way, the gap as described above is formed by interposing a paste in which heat conductive fine powder such as metal powder is mixed with oil on the inner surface of the fin collar that becomes the joint between the fin and the heat transfer tube. There is one that can minimize and improve the contact heat transfer coefficient (see, for example, Patent Document 1).

また、伝熱管として内面に凹凸形状を有する偏平チューブを用いることで、熱交換効率を向上させることができるようにしたものがある(例えば、特許文献2参照)。   In addition, there is a heat transfer tube that can improve heat exchange efficiency by using a flat tube having an uneven shape on the inner surface (see, for example, Patent Document 2).

また、Fe2P、CO2P、Mg3P2、Cu3Zr、Cr、Co、Fe、NiB、Ni2Si、TiFe2の1種または複数種により析出硬化された耐熱銅合金からなるプレートチューブ及びコルゲートフィンを積層し、それらを融点が450℃〜650℃の低温りん入りロウ材によりロウ付け接合することで、熱伝導率、機械的強度、耐熱性、耐食性に優れた特性をを向上させることができるようにしたものがある(例えば、特許文献3参照)。 A plate made of a heat-resistant copper alloy precipitated and hardened by one or more of Fe 2 P, CO 2 P, Mg 3 P 2 , Cu 3 Zr, Cr, Co, Fe, NiB, Ni 2 Si, TiFe 2 Laminating tubes and corrugated fins, and brazing them with low-temperature phosphorus-containing brazing material having a melting point of 450 ° C. to 650 ° C., thereby improving characteristics excellent in thermal conductivity, mechanical strength, heat resistance, and corrosion resistance (For example, see Patent Document 3).

特開昭58−158493号(図2,図3)Japanese Patent Laid-Open No. 58-158493 (FIGS. 2 and 3) 特開平11−94481号公報(図1,図2)JP-A-11-94481 (FIGS. 1 and 2) 特開2000−135558(図1)JP 2000-135558 (FIG. 1)

中田、「空調用熱交換器における最適設計と経済性」、機械の研究、1989、第41巻、第9号、p.1005〜1011Nakata, “Optimum Design and Economics in Air-Conditioning Heat Exchangers”, Research on Machines, 1989, Vol. 41, No. 9, pp. 1005-1101

しかしながら、フィンと伝熱管との接合部となるフィンカラー内面に、金属粉末などの熱伝導性微粉末を油などに混入したペーストを介在させるようにしたものにあっては、フィンカラー内面に金属粉末を隙間無く、塗布するのが難しく、製造コストも増加する。   However, in the case where a paste in which heat conductive fine powder such as metal powder is mixed with oil is interposed on the inner surface of the fin collar that becomes the joint between the fin and the heat transfer tube, the metal on the inner surface of the fin collar It is difficult to apply the powder without gaps, and the manufacturing cost increases.

また、伝熱管として偏平チューブを用いたものにあっては、冷凍システム運転中、管内圧力により偏平チューブが変形し易く、この場合には偏平チューブと板状フィンとの密着性が悪化する。   Further, in the case of using a flat tube as the heat transfer tube, the flat tube is easily deformed by the pressure in the tube during the operation of the refrigeration system, and in this case, the adhesion between the flat tube and the plate fin is deteriorated.

また、耐熱銅合金からなるプレートチューブ及びコルゲートフィンを積層し、それらを融点が450℃〜650℃の低温りん入りロウ材によりロウ付け接合するようにしたものにあっては、高温の加熱工程が必要になるため、製造コストが増加する。更に、コルゲートフィンを使用すると、フィン表面に凝縮液が常時存在し易くなり、露跳びおよび腐食の問題が発生する可能性があった。   Moreover, in the case of laminating plate tubes and corrugated fins made of a heat-resistant copper alloy and brazing them with a low-temperature phosphorus brazing material having a melting point of 450 ° C. to 650 ° C., a high-temperature heating step is performed. This increases the manufacturing cost. Furthermore, when corrugated fins are used, the condensate tends to always be present on the fin surface, and there is a possibility that the problem of jumping out and corrosion may occur.

ところで、熱交換器の高性能化を目的として、伝熱管を細径化することが考えられる。しかし、この場合には、伝熱管を細径化することによる管内熱伝達率の増大に伴い、圧力損失も増大するため、これらを最適化することが必要になる。また、細径伝熱管は、伝熱性能的には有利であるが、伝熱管の製作費用が増大するという難点がある。   By the way, it is conceivable to reduce the diameter of the heat transfer tube for the purpose of improving the performance of the heat exchanger. However, in this case, pressure loss also increases as the heat transfer coefficient in the tube increases by reducing the diameter of the heat transfer tube, so it is necessary to optimize them. In addition, the small-diameter heat transfer tube is advantageous in terms of heat transfer performance, but has a drawback that the manufacturing cost of the heat transfer tube increases.

本発明の技術的課題は、伝熱管を扁平化しても、管内圧力によってこの扁平伝熱管が変形することがなく、伝熱性能に優れ、通風抵抗が減少し、熱交換能力を増大させることができるようにすることにある。   The technical problem of the present invention is that even if the heat transfer tube is flattened, the flat heat transfer tube is not deformed by the pressure in the tube, and the heat transfer performance is excellent, the ventilation resistance is reduced, and the heat exchange capacity is increased. There is to be able to do it.

本発明に係る熱交換器は、下記の構成からなるものである。すなわち、中隔の壁により画成された第1及び第2の冷媒流路を有する扁平伝熱管と、伝熱特性を有しかつ扁平伝熱管の外周に複数並設されて空気流路を形成する耐熱フィンとを備え、扁平伝熱管は、その外表面に低温ロウ材が塗布されて、その扁平形状の長手方向が空気の流入方向と平行となるように耐熱フィンに設けた取付穴に挿入され、これら扁平伝熱管と耐熱フィンが150〜350度の炉中でロウ付けされることで、接合され、一体的に固定されているものである。   The heat exchanger according to the present invention has the following configuration. That is, a flat heat transfer tube having first and second refrigerant flow paths defined by a septum wall and a plurality of heat transfer characteristics arranged in parallel on the outer periphery of the flat heat transfer pipe to form an air flow path The flat heat transfer tube is inserted into a mounting hole provided in the heat-resistant fin so that the low-temperature brazing material is applied to the outer surface of the flat heat-transfer tube and the flat shape has a longitudinal direction parallel to the air inflow direction. These flat heat transfer tubes and heat-resistant fins are joined and fixed integrally by brazing in a furnace at 150 to 350 degrees.

本発明の熱交換器によれば、扁平伝熱管と耐熱フィンがロウ付けにより一体的に固定されているので、扁平伝熱管と耐熱フィンとの接触熱抵抗をほぼゼロにできる。
また、扁平伝熱管には、中隔の壁により画成された第1と第2の冷媒流路を設けているので、冷媒流路が細径化され、伝熱性能が向上する。
さらに、扁平伝熱管はその扁平形状の長手方向が空気の流入方向と平行となるように前記耐熱フィンに設けた取付穴に挿入されて設けられているので、通風抵抗が減少し、熱交換能力を増大させることができ、延いてはこの熱交換器を用いた冷蔵庫、空気調和機の高効率な運転を実現することができる。
According to the heat exchanger of the present invention, since the flat heat transfer tube and the heat-resistant fin are integrally fixed by brazing, the contact heat resistance between the flat heat transfer tube and the heat-resistant fin can be made substantially zero.
Further, since the flat heat transfer tube is provided with the first and second refrigerant channels defined by the septum wall, the refrigerant channel is reduced in diameter and the heat transfer performance is improved.
Furthermore, since the flat heat transfer tube is inserted into the mounting hole provided in the heat-resistant fin so that the longitudinal direction of the flat shape is parallel to the air inflow direction, the ventilation resistance is reduced, and the heat exchange capability Therefore, highly efficient operation of a refrigerator and an air conditioner using this heat exchanger can be realized.

本発明の実施の形態1に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の要部である扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which is the principal part of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の扁平伝熱管と耐熱フィンの接合部を拡大して示す断面図である。It is sectional drawing which expands and shows the junction part of the flat heat exchanger tube and heat resistant fin of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る熱交換器の要部である扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which is the principal part of the heat exchanger which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る熱交換器の扁平伝熱管の拡管後の突条の高さと熱交換率との関係を示すグラフである。It is a graph which shows the relationship between the height of the protrusion after the expansion of the flat heat exchanger tube of the heat exchanger which concerns on Embodiment 2 of this invention, and a heat exchange rate. 本発明の実施の形態3に係る熱交換器を示す正面図である。It is a front view which shows the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器の要部である扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which is the principal part of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の要部である扁平伝熱管を示す断面図である。It is sectional drawing which shows the flat heat exchanger tube which is the principal part of the heat exchanger which concerns on Embodiment 4 of this invention.

実施の形態1.
以下、図示実施形態により本発明を説明する。
図1は本発明の実施形態1に係る熱交換器を示す正面図、図2はその要部である扁平伝熱管を示す断面図、図3はその扁平伝熱管と耐熱フィンの接合部を拡大して示す断面図である。
Embodiment 1 FIG.
The present invention will be described below with reference to illustrated embodiments.
FIG. 1 is a front view showing a heat exchanger according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view showing a flat heat transfer tube as the main part, and FIG. 3 is an enlarged view of a joint between the flat heat transfer tube and heat-resistant fins. It is sectional drawing shown.

本実施の形態の熱交換器すなわちフィンチューブ型熱交換器1は、図1乃至図3のようにフィンが耐熱性及び伝熱特性を有する銅合金またはアルミニウム合金などの金属板で構成されている(後述の他の実施の形態においても同様である)。また、この耐熱フィン2は、空気の流入方向Aと平行に、かつ図1で見て紙面直交方向に所定の間隔で複数並設されている。耐熱フィン2の上下方向には、耐熱フィン2と直交して貫通する複数の扁平伝熱管3Aが設けられている。なお、耐熱フィン2の厚さは20〜40μmに形成することが望ましい。これにより、耐熱フィン2の通風抵抗が減少できる。   The heat exchanger, that is, the fin tube type heat exchanger 1 according to the present embodiment is configured by a metal plate such as a copper alloy or an aluminum alloy in which fins have heat resistance and heat transfer characteristics as shown in FIGS. (The same applies to other embodiments described later). A plurality of the heat-resistant fins 2 are arranged in parallel at a predetermined interval in the direction perpendicular to the paper surface as viewed in FIG. A plurality of flat heat transfer tubes 3 </ b> A penetrating perpendicularly to the heat-resistant fins 2 are provided in the vertical direction of the heat-resistant fins 2. In addition, it is desirable to form the thickness of the heat-resistant fin 2 to 20 to 40 μm. Thereby, the ventilation resistance of the heat-resistant fin 2 can be reduced.

扁平伝熱管3Aは、銅もしくは銅合金、またはアルミニウムもしくはアルミニウム合金などの金属材料で構成されている(後述の他の実施の形態においても同様である)。また扁平伝熱管3Aは、その断面の輪郭形状が、図1及び図2のように空気の流入方向Aに沿って細長くかつ上下の辺がストレート状(扁平伝熱管3Aの上下面が平坦である)に形成された小判状を呈している。そして、図2で見てこの横長の輪郭内の左右に、断面半円状の第1及び第2の冷媒流路31a,31bが設けられ、軸方向に平行に延設されている。また、第1及び第2の冷媒流路31a,31bの間に中隔の壁32が形成されていて、上下の平坦面が中隔の壁32により接続されている。したがって、中隔の壁32は、扁平伝熱管3Aの内圧に対する上下平坦面の補強リブとして作用し、扁平伝熱管3Aが内圧によって変形するのを防止する機能を有する。   The flat heat transfer tube 3A is made of a metal material such as copper or a copper alloy, or aluminum or an aluminum alloy (the same applies to other embodiments described later). Further, the flat heat transfer tube 3A has a cross-sectional contour shape that is elongated along the air inflow direction A as shown in FIGS. 1 and 2 and whose upper and lower sides are straight (the upper and lower surfaces of the flat heat transfer tube 3A are flat. ). Then, first and second refrigerant flow paths 31a and 31b having a semicircular cross section are provided on the left and right sides of the horizontally long contour as viewed in FIG. 2, and extend in parallel to the axial direction. A septum wall 32 is formed between the first and second refrigerant flow paths 31 a and 31 b, and the upper and lower flat surfaces are connected by the septum wall 32. Therefore, the septum wall 32 acts as a reinforcing rib on the upper and lower flat surfaces against the internal pressure of the flat heat transfer tube 3A, and has a function of preventing the flat heat transfer tube 3A from being deformed by the internal pressure.

第1及び第2の冷媒流路31a,31bは、半径rが1〜3mmとなるように、例えば流路内部に液圧(高圧)をかけることで拡径されている。半径rを1〜3mmとした理由は次の通りである。
すなわち、半径rが1mm未満であると、熱伝達率の増加量よりも圧力損失の増加量の方が大きくなり、結果として熱交換性能が低下する。
また、半径rが3mmを超えると、管内冷媒流速が遅くなり熱交換性能が低下するばかりでなく、扁平伝熱管3Aの幅が大きくなって、空気流の圧力損失が増大する。
よって、本実施の形態における第1、第2冷媒流路31a,31bの拡径後の半径rを、1〜3mmとしたものである(後述の他の実施の形態における冷媒流路の半径rも同様である)。
The first and second refrigerant flow paths 31a and 31b are expanded in diameter, for example, by applying a hydraulic pressure (high pressure) inside the flow path so that the radius r is 1 to 3 mm. The reason why the radius r is set to 1 to 3 mm is as follows.
That is, when the radius r is less than 1 mm, the amount of increase in pressure loss is larger than the amount of increase in heat transfer coefficient, resulting in a decrease in heat exchange performance.
On the other hand, when the radius r exceeds 3 mm, not only the flow rate of refrigerant in the tube is slowed and the heat exchange performance is lowered, but also the width of the flat heat transfer tube 3A is increased and the pressure loss of the air flow is increased.
Therefore, the radius r after diameter expansion of the first and second refrigerant flow paths 31a and 31b in the present embodiment is 1 to 3 mm (the radius r of the refrigerant flow path in other embodiments described later). Is the same).

次に、前記のような第1及び第2の冷媒流路31a,31bを有する扁平伝熱管3Aと耐熱フィン2の取付穴21との接合の一例について説明する。扁平伝熱管3Aは、その外表面に低温ロウ材4が塗布されており、図3のように耐熱フィン2に設けた取付穴21に挿入されている。そして、これら耐熱フィン2と予め低温ロウ材4が塗布された扁平伝熱管3Aは、低温150〜350度の炉中で低温ロウ材4によりロウ付けすることで、完全に接合され、一体的に固定されている。   Next, an example of joining of the flat heat transfer tube 3A having the first and second refrigerant flow paths 31a and 31b as described above and the mounting hole 21 of the heat-resistant fin 2 will be described. The flat heat transfer tube 3A is coated with a low-temperature brazing material 4 on its outer surface, and is inserted into a mounting hole 21 provided in the heat-resistant fin 2 as shown in FIG. The flat heat transfer tubes 3A, to which the heat-resistant fins 2 and the low-temperature brazing material 4 have been applied in advance, are completely joined together by brazing with the low-temperature brazing material 4 in a furnace at a low temperature of 150 to 350 degrees. It is fixed.

この場合、第1及び第2の冷媒流路31a,31bの中隔の壁32の最薄肉部の肉厚t2を、第1及び第2の冷媒流路31a,31bの他の部位の壁の肉厚t1の1.5倍の肉厚とすることが望ましい。これにより、中隔の壁32のリブ機能を強化でき、扁平伝熱管3Aの耐圧強度を高めることができる。このため、伝熱管の外形を扁平化しても管内圧力による扁平伝熱管3Aの変形が発生せず、扁平伝熱管3Aと耐熱フィン2との密着性を悪化させることなく、熱交換効率を向上させることができる高能率の熱交換器を得ることができ、延いてはこの熱交換器を用いた冷蔵庫、空気調和機の高効率な運転を実現することができる。   In this case, the thickness t2 of the thinnest wall portion of the septum wall 32 of the first and second refrigerant flow paths 31a and 31b is set to the wall of the other part of the first and second refrigerant flow paths 31a and 31b. The wall thickness is desirably 1.5 times the wall thickness t1. Thereby, the rib function of the septum wall 32 can be strengthened, and the pressure resistance of the flat heat transfer tube 3A can be increased. For this reason, even if the outer shape of the heat transfer tube is flattened, the deformation of the flat heat transfer tube 3A due to the pressure in the tube does not occur, and the heat exchange efficiency is improved without deteriorating the adhesion between the flat heat transfer tube 3A and the heat-resistant fin 2. Therefore, it is possible to obtain a highly efficient heat exchanger that can perform high-efficiency operation of a refrigerator and an air conditioner using the heat exchanger.

実施の形態2.
図4は本発明の実施の形態2に係る熱交換器の要部である扁平伝熱管を示す断面図、図5はその扁平伝熱管拡管後の突条の高さと熱交換率との関係を示すグラフであり、図4中、前述の実施の形態1のものに相当する部分には同一符号を付してある。なお、説明にあたっては前述の図1及び図3を参照するものとする。
Embodiment 2. FIG.
FIG. 4 is a cross-sectional view showing a flat heat transfer tube that is a main part of the heat exchanger according to Embodiment 2 of the present invention, and FIG. 5 shows the relationship between the height of the ridge after the flat heat transfer tube expansion and the heat exchange rate. In FIG. 4, the same reference numerals are given to the portions corresponding to those in the first embodiment described above. In the description, reference is made to FIG. 1 and FIG. 3 described above.

本実施の形態の熱交換器すなわちフィンチューブ型熱交換器1は、扁平伝熱管3Bが、銅もしくは銅合金、またはアルミニウムもしくはアルミニウム合金などの金属材料で構成されている。また、扁平伝熱管3Bの横長の輪郭内の左右に設けた断面半円状の第1及び第2の冷媒流路31a,31bの内壁面に、周方向に所定の間隔で配置されて管軸方向にスパイラル状に延びる断面ほぼ四角形状の突条(または溝)33を設けたものである。それ以外の構成は、全て前述の実施の形態1と同一である。   In the heat exchanger of the present embodiment, that is, the finned tube heat exchanger 1, the flat heat transfer tube 3B is made of a metal material such as copper or copper alloy, or aluminum or aluminum alloy. Further, the pipe shaft is arranged at predetermined intervals in the circumferential direction on the inner wall surfaces of the first and second refrigerant flow paths 31a and 31b having a semicircular cross section provided on the left and right in the horizontally long outline of the flat heat transfer tube 3B. A protrusion (or groove) 33 having a substantially square cross section extending in a spiral shape in the direction is provided. Other configurations are the same as those in the first embodiment.

本実施の形態のフィンチューブ型熱交換器において、扁平伝熱管3Bは、前述の要領により、耐熱フィン2の取付穴21に挿入され、(第1及び第2の冷媒流路31a,31bを)前述と同じ低温の炉中で耐熱フィン2と扁平伝熱管3Bを低温ロウ材で完全に接合して、一体的に固定する。   In the finned-tube heat exchanger of the present embodiment, the flat heat transfer tube 3B is inserted into the mounting hole 21 of the heat-resistant fin 2 in the manner described above (with the first and second refrigerant flow paths 31a and 31b). The heat-resistant fins 2 and the flat heat transfer tubes 3B are completely joined together with a low-temperature brazing material in the same low-temperature furnace as described above and fixed integrally.

本実施の形態の扁平伝熱管3Bにおいては、基本的に拡管後の突条33の高さh(突出長)が高い程、その熱伝達率も高くなる。これは、突条33の存在により冷媒との接触面積が増大するからである。なお、突条33を溝に代えても同様に冷媒との接触面積は増大する。   In the flat heat transfer tube 3B of the present embodiment, basically, the higher the height h (projection length) of the ridge 33 after tube expansion, the higher the heat transfer coefficient. This is because the contact area with the refrigerant increases due to the presence of the protrusions 33. In addition, even if it replaces the protrusion 33 with a groove | channel, the contact area with a refrigerant | coolant similarly increases.

しかし、図5のように拡管後の突条33の高さhが0.3mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。一方、拡管後の突条33の高さhが0.1mm未満の場合、熱伝達率が向上しない。   However, if the height h of the ridge 33 after tube expansion exceeds 0.3 mm as shown in FIG. 5, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, resulting in a heat exchange rate. Decreases. On the other hand, when the height h of the ridge 33 after the pipe expansion is less than 0.1 mm, the heat transfer coefficient is not improved.

よって、本実施の形態における扁平伝熱管3Bの第1及び第2の冷媒流路31a,31bの拡管後の突条33の高さh(突出長)を、0.1〜0.3mmとしたものである。これにより、流路内圧力を増大させることなく、伝熱性能をより向上させることができる高能率の熱交換器を得ることができ、延いてはこの熱交換器を用いた冷蔵庫、空気調和機の高効率な運転を実現することができる。   Therefore, the height h (projection length) of the protrusion 33 after the expansion of the first and second refrigerant flow paths 31a and 31b of the flat heat transfer tube 3B in the present embodiment is set to 0.1 to 0.3 mm. Is. As a result, it is possible to obtain a highly efficient heat exchanger that can further improve the heat transfer performance without increasing the pressure in the flow path. As a result, a refrigerator and an air conditioner using this heat exchanger Highly efficient operation can be realized.

なお、突条33の断面形状は四角形状に限定されるものでなく、例えば三角形状、台形状、半円形状等、適宜選択すればよく、いずれの断面形状も採用可能である。更に、既述したように突条33でなく、溝を形成しても同等の作用、効果を奏する。   Note that the cross-sectional shape of the protrusion 33 is not limited to a square shape, and may be appropriately selected from, for example, a triangular shape, a trapezoidal shape, and a semicircular shape, and any cross-sectional shape can be employed. Furthermore, as described above, even if the groove is formed instead of the protrusion 33, the same operation and effect can be obtained.

実施の形態3.
図6は本発明の実施の形態3に係る熱交換器を示す正面図、図7はその要部である扁平伝熱管を示す断面図であり、各図中、前述の実施の形態1のものに相当する部分には同一符号を付してある。なお、説明にあたっては前述の図3を参照するものとする。
Embodiment 3 FIG.
FIG. 6 is a front view showing a heat exchanger according to Embodiment 3 of the present invention, and FIG. 7 is a cross-sectional view showing a flat heat transfer tube which is a main part of the heat exchanger. The parts corresponding to are given the same reference numerals. In the description, reference is made to FIG.

本実施の形態の熱交換器すなわちフィンチューブ型熱交換器1は、耐熱フィン2が銅合金またはアルミニウム合金などの耐熱性金属板で構成されている。また耐熱フィン2は、空気の流入方向Aと平行に、かつ図6で見て紙面直交方向に所定の間隔で複数並設されている。耐熱フィン2の上下方向には、耐熱フィン2と直交して貫通する複数の扁平伝熱管3Cが設けられている。   In the heat exchanger, that is, the fin tube type heat exchanger 1 according to the present embodiment, the heat-resistant fins 2 are made of a heat-resistant metal plate such as a copper alloy or an aluminum alloy. Further, a plurality of heat-resistant fins 2 are arranged in parallel with the air inflow direction A at a predetermined interval in the direction perpendicular to the paper surface as viewed in FIG. A plurality of flat heat transfer tubes 3 </ b> C penetrating perpendicularly to the heat-resistant fins 2 are provided in the vertical direction of the heat-resistant fins 2.

扁平伝熱管3Cは、銅もしくは銅合金、またはアルミニウムもしくはアルミニウム合金などの金属材料で構成されている。また扁平伝熱管3Cは、その断面の輪郭形状が、図6及び図7のように空気の流入方向Aに沿って細長くかつ外周面が左右対称の凹凸状に形成されている。そして、図7で見てこの横長の輪郭内の左右に、断面円形の第1及び第2の冷媒流路31c,31dが設けられ、軸方向に平行に延設されている。また、第1及び第2の冷媒流路31c,31dの間に中隔の壁32が形成されていて、上下の凹面が中隔の壁32により接続されている。したがって、中隔の壁32は、扁平伝熱管3Cの内圧に対する上下凹面の補強リブとして作用し、扁平伝熱管3Cが内圧によって変形するのを防止する機能を有する。   The flat heat transfer tube 3C is made of a metal material such as copper or a copper alloy, or aluminum or an aluminum alloy. Further, the flat heat transfer tube 3C has a cross-sectional contour shape that is elongated along the air inflow direction A as shown in FIGS. Then, first and second refrigerant flow paths 31c and 31d having a circular cross section are provided on the left and right sides of the horizontally long outline as viewed in FIG. 7, and extend parallel to the axial direction. A septum wall 32 is formed between the first and second refrigerant flow paths 31 c and 31 d, and the upper and lower concave surfaces are connected by the septum wall 32. Therefore, the septum wall 32 acts as a reinforcing rib having upper and lower concave surfaces against the internal pressure of the flat heat transfer tube 3C, and has a function of preventing the flat heat transfer tube 3C from being deformed by the internal pressure.

次に、前記のような第1及び第2の冷媒流路31c,31dを有する扁平伝熱管3Cと耐熱フィン2の取付穴21(図3)との接合の一例について説明する。扁平伝熱管3Cは、その外表面に低温ロウ材4が塗布されており、図3のように耐熱フィン2に設けた取付穴21に挿入されている。そして、これら耐熱フィン2と扁平伝熱管3Cは、低温150〜350度の炉中で低温ロウ材4によりロウ付けすることで、完全に接合され、一体的に固定されている。   Next, an example of joining of the flat heat transfer tube 3C having the first and second refrigerant flow paths 31c and 31d as described above and the mounting hole 21 (FIG. 3) of the heat-resistant fin 2 will be described. The flat heat transfer tube 3C is coated with a low-temperature brazing material 4 on the outer surface thereof, and is inserted into a mounting hole 21 provided in the heat-resistant fin 2 as shown in FIG. The heat-resistant fins 2 and the flat heat transfer tubes 3C are completely joined and fixed integrally by brazing with a low-temperature brazing material 4 in a furnace having a low temperature of 150 to 350 degrees.

この場合、第1及び第2の冷媒流路31c,31dの中隔の壁32の最薄肉部の肉厚t2を、第1及び第2の冷媒流路31c,31dの他の部位の壁の肉厚t1の1.5倍の肉厚とすることが望ましい。これにより、中隔の壁32のリブ機能を強化でき、扁平伝熱管3Cの耐圧強度を高めることができる。このため、伝熱管の外形を扁平化しても管内圧力による扁平伝熱管3Cの変形が発生せず、扁平伝熱管3Cと耐熱フィン2との密着性を悪化させることなく、熱交換効率を向上させることができる高能率の熱交換器を得ることができ、延いてはこの熱交換器を用いた冷蔵庫、空気調和機の高効率な運転を実現することができる。   In this case, the thickness t2 of the thinnest wall portion 32 of the septum wall 32 of the first and second refrigerant flow paths 31c and 31d is set to the wall of the other part of the first and second refrigerant flow paths 31c and 31d. The wall thickness is desirably 1.5 times the wall thickness t1. Thereby, the rib function of the septum wall 32 can be strengthened, and the pressure resistance of the flat heat transfer tube 3C can be increased. For this reason, even if the outer shape of the heat transfer tube is flattened, the deformation of the flat heat transfer tube 3C due to the pressure in the tube does not occur, and the heat exchange efficiency is improved without deteriorating the adhesion between the flat heat transfer tube 3C and the heat-resistant fin 2. Therefore, it is possible to obtain a highly efficient heat exchanger that can perform high-efficiency operation of a refrigerator and an air conditioner using the heat exchanger.

実施の形態4.
図8は本発明の実施の形態4に係る熱交換器の要部である扁平伝熱管を示す断面図であり、図中、前述の実施の形態2,3のものに相当する部分には同一符号を付してある。なお、説明にあたっては前述の図3及び図6を参照するものとする。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view showing a flat heat transfer tube, which is a main part of a heat exchanger according to Embodiment 4 of the present invention, in which the same parts as those in Embodiments 2 and 3 are the same The code | symbol is attached | subjected. In the description, reference is made to FIG. 3 and FIG.

本実施の形態の熱交換器すなわちフィンチューブ型熱交換器1は、扁平伝熱管3Dが、銅もしくは銅合金、またはアルミニウムもしくはアルミニウム合金などの金属材料で構成されている。また、扁平伝熱管3Dは、その断面の輪郭形状が、図6及び図8のように空気の流入方向Aに沿って細長くかつ外周面が左右対称の凹凸状に形成されている。そして、図8で見てこの横長の輪郭内の左右に、断面円形の第1及び第2の冷媒流路31c,31dが設けられ、軸方向に平行に延設されている。また、第1及び第2の冷媒流路31c,31dの間に中隔の壁32が形成されていて、上下の凹面が中隔の壁32により接続されている。また、第1及び第2の冷媒流路31c,31dの内壁面に、周方向に所定の間隔で配置されて軸方向にスパイラル状に延びる断面ほぼ四角形状の突条33を設けたものである。それ以外の構成は、全て前述の実施の形態3と同一である。   In the heat exchanger, that is, the finned tube heat exchanger 1 according to the present embodiment, the flat heat transfer tube 3D is made of a metal material such as copper or a copper alloy, or aluminum or an aluminum alloy. Further, the flat heat transfer tube 3D has a cross-sectional contour shape that is elongated along the air inflow direction A as shown in FIGS. Then, first and second refrigerant flow paths 31c and 31d having a circular cross section are provided on the left and right sides of the horizontally long outline as viewed in FIG. 8, and extend in parallel to the axial direction. A septum wall 32 is formed between the first and second refrigerant flow paths 31 c and 31 d, and the upper and lower concave surfaces are connected by the septum wall 32. The first and second refrigerant flow paths 31c and 31d are provided with protrusions 33 having a substantially rectangular cross section that are arranged at predetermined intervals in the circumferential direction and extend in a spiral shape in the axial direction on the inner wall surfaces. . All other configurations are the same as those of the third embodiment.

次に、前記のような第1及び第2の冷媒流路31c,31dを有する扁平伝熱管3Dと耐熱フィン2の取付穴21(図3)との接合の一例について説明する。扁平伝熱管3Dは、その外表面に低温ロウ材4が塗布されており、図3のように耐熱フィン2に設けた取付穴21に挿入されている。そして、これら耐熱フィン2と扁平伝熱管3Dは、低温150〜350度の炉中で低温ロウ材4によりロウ付けすることで、完全に接合され、一体的に固定されている。   Next, an example of joining of the flat heat transfer tube 3D having the first and second refrigerant flow paths 31c and 31d as described above and the attachment hole 21 (FIG. 3) of the heat-resistant fin 2 will be described. The flat heat transfer tube 3D is coated with a low-temperature brazing material 4 on the outer surface thereof, and is inserted into a mounting hole 21 provided in the heat-resistant fin 2 as shown in FIG. The heat-resistant fins 2 and the flat heat transfer tubes 3D are completely joined and fixed integrally by brazing with a low-temperature brazing material 4 in a furnace having a low temperature of 150 to 350 degrees.

本実施の形態の扁平伝熱管3Dにおいても、基本的に拡管後の突条33の高さh(突出長)が高い程、その熱伝達率も高くなる。しかし、既述したように拡管後の突条33の高さhが0.3mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。一方、拡管後の突条33の高さhが0.1mm未満の場合、熱伝達率が向上しない。   Also in the flat heat transfer tube 3D of the present embodiment, basically, the higher the height h (projection length) of the ridge 33 after tube expansion, the higher the heat transfer coefficient. However, as described above, when the height h of the protruding ridge 33 after the tube expansion exceeds 0.3 mm, the amount of increase in pressure loss is larger than the amount of increase in heat transfer coefficient. As a result, the heat exchange rate is increased. Decreases. On the other hand, when the height h of the ridge 33 after the pipe expansion is less than 0.1 mm, the heat transfer coefficient is not improved.

よって、ここでも扁平伝熱管3Dの第1及び第2の冷媒流路31c,31dの拡管後の突条33の高さh(突出長)を、0.1〜0.3mmとする。これにより、流路内圧力を増大させることなく、伝熱性能をより向上させることができる高能率の熱交換器を得ることができ、延いてはこの熱交換器を用いた冷蔵庫、空気調和機の高効率な運転を実現することができる。   Therefore, the height h (projection length) of the protrusion 33 after the expansion of the first and second refrigerant flow paths 31c and 31d of the flat heat transfer tube 3D is also set to 0.1 to 0.3 mm. As a result, it is possible to obtain a highly efficient heat exchanger that can further improve the heat transfer performance without increasing the pressure in the flow path. As a result, a refrigerator and an air conditioner using this heat exchanger Highly efficient operation can be realized.

なお、ここでも突条33の断面形状は四角形状に限定されるものでなく、例えば三角形状、台形状、半円形状等、適宜選択すればよく、いずれの断面形状も採用可能であることは言うまでもない。更に突条33でなく、溝を形成しても同等の作用、効果を奏する。   Here, the cross-sectional shape of the ridge 33 is not limited to a quadrangular shape, and may be selected as appropriate, for example, a triangular shape, a trapezoidal shape, a semicircular shape, and any cross-sectional shape can be adopted. Needless to say. Further, even if a groove is formed instead of the protrusion 33, the same operation and effect can be obtained.

以上説明したフィンチューブ型熱交換器1は、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペンと、このテトラフルオロプロペンよりも沸点の低いHFC系冷媒とからなる非共沸混合冷媒または二酸化炭素等のいずれかの冷媒を使用する熱交換器として、冷蔵庫や空気調和機の蒸発器や凝縮器などに用いられる。   The fin tube type heat exchanger 1 described above includes an HC single refrigerant or a mixed refrigerant containing HC, R32, R410A, R407C, tetrafluoropropene, and an HFC refrigerant having a boiling point lower than that of tetrafluoropropene. As a heat exchanger using any one of non-azeotropic refrigerants or carbon dioxide, it is used for an evaporator or a condenser of a refrigerator or an air conditioner.

1 フィンチューブ型熱交換器(熱交換器)、2 耐熱フィン、3A〜3D 扁平伝熱管、21 取付穴、31a,31c 第1の冷媒流路、31b,31d 第2の冷媒流路、32 中隔の壁、33 突条。   DESCRIPTION OF SYMBOLS 1 Fin tube type heat exchanger (heat exchanger), 2 Heat resistant fin, 3A-3D flat heat exchanger tube, 21 Mounting hole, 31a, 31c 1st refrigerant | coolant flow path, 31b, 31d 2nd refrigerant | coolant flow path, 32 Separation wall, 33 ridges.

Claims (8)

中隔の壁により画成された第1及び第2の冷媒流路を有する扁平伝熱管と、
伝熱特性を有しかつ前記扁平伝熱管の外周に複数並設されて空気流路を形成する耐熱フィンとを備え、
前記扁平伝熱管は、その外表面に低温ロウ材が塗布されて、その扁平形状の長手方向が空気の流入方向と平行となるように前記耐熱フィンに設けた取付穴に挿入され、これら扁平伝熱管と耐熱フィンがロウ付けされることで、接合され、一体的に固定されていることを特徴とする熱交換器。
A flat heat transfer tube having first and second refrigerant channels defined by a septum wall;
A plurality of heat-resistant fins having heat transfer characteristics and arranged in parallel on the outer periphery of the flat heat transfer tube to form an air flow path;
The flat heat transfer tube is coated with a low-temperature brazing material on the outer surface thereof, and is inserted into a mounting hole provided in the heat-resistant fin so that the longitudinal direction of the flat shape is parallel to the air inflow direction. A heat exchanger characterized in that a heat tube and a heat-resistant fin are brazed to be joined and fixed integrally.
前記扁平伝熱管の前記第1及び第2の冷媒流路の内面には、それぞれ管軸方向にスパイラル状に延びる突条または溝が形成されていることを特徴とする請求項1記載の熱交換器。   2. The heat exchange according to claim 1, wherein ridges or grooves extending spirally in the tube axis direction are formed on the inner surfaces of the first and second refrigerant flow paths of the flat heat transfer tube. vessel. 前記扁平伝熱管は、その扁平形状の長軸を挟む両側の外周面が平坦、又は前記中隔の壁を挟む両側の外周面が線対称の凹凸状に形成されていることを特徴とする請求項1又は請求項2記載の熱交換器。   The flat heat transfer tube is characterized in that the outer peripheral surfaces on both sides sandwiching the long axis of the flat shape are flat, or the outer peripheral surfaces on both sides sandwiching the septal wall are formed in a symmetric uneven shape. Item 3. The heat exchanger according to item 1 or 2. 第1及び第2の冷媒流路は、半径rが1〜3mmとなるように拡径されていることを特徴とする請求項1乃至請求項3のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 3, wherein the first and second refrigerant channels are expanded so that the radius r is 1 to 3 mm. 前記耐熱フィンの厚さを20〜40μmとしたことを特徴とする請求項1乃至請求項4のいずれかに記載の熱交換器。   The heat exchanger according to any one of claims 1 to 4, wherein the heat-resistant fin has a thickness of 20 to 40 µm. 請求項1乃至請求項5のいずれかに記載の熱交換器を用いた冷蔵庫。   A refrigerator using the heat exchanger according to any one of claims 1 to 5. 請求項1乃至請求項5のいずれかに記載の熱交換器を用いた空気調和機。   An air conditioner using the heat exchanger according to any one of claims 1 to 5. 冷媒として、HC単一冷媒、またはHCを含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペンとこのテトラフルオロプロペンよりも沸点の低いHFC系冷媒とを含む非共沸混合冷媒、または二酸化炭素のいずれかを用いることを特徴とする請求項7記載の空気調和機。   As a refrigerant, HC single refrigerant, a mixed refrigerant containing HC, R32, R410A, R407C, a non-azeotropic mixed refrigerant containing tetrafluoropropene and an HFC refrigerant having a boiling point lower than that of tetrafluoropropene, or carbon dioxide Any one of them is used, The air conditioner of Claim 7 characterized by the above-mentioned.
JP2009254939A 2009-11-06 2009-11-06 Heat exchanger, and refrigerator and air conditioner using the same Pending JP2011099630A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009254939A JP2011099630A (en) 2009-11-06 2009-11-06 Heat exchanger, and refrigerator and air conditioner using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009254939A JP2011099630A (en) 2009-11-06 2009-11-06 Heat exchanger, and refrigerator and air conditioner using the same

Publications (1)

Publication Number Publication Date
JP2011099630A true JP2011099630A (en) 2011-05-19

Family

ID=44190951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009254939A Pending JP2011099630A (en) 2009-11-06 2009-11-06 Heat exchanger, and refrigerator and air conditioner using the same

Country Status (1)

Country Link
JP (1) JP2011099630A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093053A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268985A (en) * 1985-05-24 1986-11-28 Matsushita Refrig Co Heat exchanger
JPH01184289A (en) * 1988-01-19 1989-07-21 Sumitomo Metal Mining Co Ltd Production of member for heat exchanger fin
JPH02299827A (en) * 1989-05-16 1990-12-12 Sumitomo Metal Mining Co Ltd Heat exchanger fin material
JPH05368A (en) * 1991-06-26 1993-01-08 Furukawa Alum Co Ltd Heat exchanger made of low-temperature brazed aluminum alloy
JPH07234085A (en) * 1994-02-24 1995-09-05 Toshiba Corp Method for manufacturing heat transfer pipe
JP2002520570A (en) * 1998-07-10 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Flat tube with transversely offset inverted bend and heat exchanger assembled therefrom
JP2005026315A (en) * 2003-06-30 2005-01-27 Fasl Japan 株式会社 Aligner, exposure method, and program
JP2005510688A (en) * 2001-11-26 2005-04-21 ヴァレオ クリマチザション Tube profile for heat exchanger
JP2007192441A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Radiator, its manufacturing method, and cooling device comprising the same
JP2008516177A (en) * 2004-10-12 2008-05-15 ベール ゲーエムベーハー ウント コー カーゲー Flat tube for heat exchanger
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61268985A (en) * 1985-05-24 1986-11-28 Matsushita Refrig Co Heat exchanger
JPH01184289A (en) * 1988-01-19 1989-07-21 Sumitomo Metal Mining Co Ltd Production of member for heat exchanger fin
JPH02299827A (en) * 1989-05-16 1990-12-12 Sumitomo Metal Mining Co Ltd Heat exchanger fin material
JPH05368A (en) * 1991-06-26 1993-01-08 Furukawa Alum Co Ltd Heat exchanger made of low-temperature brazed aluminum alloy
JPH07234085A (en) * 1994-02-24 1995-09-05 Toshiba Corp Method for manufacturing heat transfer pipe
JP2002520570A (en) * 1998-07-10 2002-07-09 フォード ヴェルケ アクツィエンゲゼルシャフト Flat tube with transversely offset inverted bend and heat exchanger assembled therefrom
JP2005510688A (en) * 2001-11-26 2005-04-21 ヴァレオ クリマチザション Tube profile for heat exchanger
JP2005026315A (en) * 2003-06-30 2005-01-27 Fasl Japan 株式会社 Aligner, exposure method, and program
JP2008516177A (en) * 2004-10-12 2008-05-15 ベール ゲーエムベーハー ウント コー カーゲー Flat tube for heat exchanger
JP2007192441A (en) * 2006-01-18 2007-08-02 Matsushita Electric Ind Co Ltd Radiator, its manufacturing method, and cooling device comprising the same
JP2008261518A (en) * 2007-04-10 2008-10-30 Mitsubishi Electric Corp Heat exchanger and air conditioner comprising the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093053A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner

Similar Documents

Publication Publication Date Title
EP2312254B1 (en) Heat exchanger and air conditioner having the heat exchanger
JP4738401B2 (en) Air conditioner
JP5649715B2 (en) Heat exchanger, refrigerator equipped with this heat exchanger, and air conditioner
JP2006071270A (en) Heat exchanger, intermediate heat exchanger, and refrigeration cycle
WO2014147919A1 (en) Heat exchanger, refrigeration cycle device, and production method for heat exchanger
JP5988177B2 (en) Finned tube heat exchanger
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2009109183A (en) Tube for heat exchanger
JP2012137251A (en) Multitubular heat exchanger
JP2014169851A (en) Heat exchanger
JP5591285B2 (en) Heat exchanger and air conditioner
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
WO2019167840A1 (en) Heat exchanger
JP2014105951A (en) Heat exchanger
JP5595343B2 (en) Heat exchanger, refrigeration cycle circuit using the same, refrigerator using the refrigeration cycle circuit, and air conditioner
WO2013118762A1 (en) Fin tube-type heat exchanger
JP2011099630A (en) Heat exchanger, and refrigerator and air conditioner using the same
CN111556950A (en) Heat exchanger for refrigerator
JP2009121738A (en) Air-cooled heat exchanger
JP2010230300A (en) Heat exchanger and air conditioner having the same
JP5072983B2 (en) Fin tube type heat exchanger and air conditioner using the same
JP5540409B2 (en) Linked pressure heat exchanger and manufacturing method thereof
JP7100242B2 (en) Heat exchanger
JP5476080B2 (en) Aluminum inner surface grooved heat transfer tube
JP4874320B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121016