JP2018112363A - Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger - Google Patents

Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger Download PDF

Info

Publication number
JP2018112363A
JP2018112363A JP2017003800A JP2017003800A JP2018112363A JP 2018112363 A JP2018112363 A JP 2018112363A JP 2017003800 A JP2017003800 A JP 2017003800A JP 2017003800 A JP2017003800 A JP 2017003800A JP 2018112363 A JP2018112363 A JP 2018112363A
Authority
JP
Japan
Prior art keywords
tube
axis direction
heat exchanger
flat tube
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017003800A
Other languages
Japanese (ja)
Other versions
JP2018112363A5 (en
JP6815205B2 (en
Inventor
加藤 貴士
Takashi Kato
貴士 加藤
和義 高山
Kazuyoshi Takayama
和義 高山
亮一 池田
Ryoichi Ikeda
亮一 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017003800A priority Critical patent/JP6815205B2/en
Publication of JP2018112363A publication Critical patent/JP2018112363A/en
Publication of JP2018112363A5 publication Critical patent/JP2018112363A5/en
Application granted granted Critical
Publication of JP6815205B2 publication Critical patent/JP6815205B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a flat tube capable of suppressing a reduction in wall thickness due to tube expansion so as to enable stable tube expansion, and a fin tube type heat exchanger using the flat tube, and a manufacturing method for the fin tube type heat exchanger.SOLUTION: A flat tube 1 of a fin tube type heat exchanger is configured such that a tube expansion component is inserted for tube expansion, into a central flow passage 11 positioned at a central part out of a plurality of flow passages whose transverse sections are formed into flat shapes and which are provided side-by-side in a long axis direction. At a tube thickness portion in a short axis direction where the center flow passage is formed, a tube thickness material accumulation part 13 is provided in a longitudinal direction of the tube, in which a tube thickness material suitable to the volume of a tube material extending in the long axis direction with the tube expansion is accumulated.SELECTED DRAWING: Figure 2

Description

この発明は、複数の流路を有する扁平管、その扁平管を用いたフィンチューブ式熱交換器、及びフィンチューブ式熱交換器の製造方法に関するものである。   The present invention relates to a flat tube having a plurality of flow paths, a fin tube heat exchanger using the flat tube, and a method of manufacturing the fin tube heat exchanger.

従来の複数の流路を有する扁平管を用いたフィンチューブ式熱交換器として、扁平管とフィンを強固に一体化するため、フィンと扁平管を組立後、管を拡管する、もしくは扁平管形状より一回り小さい透孔(挿通孔)を持ったフィンと管を組付けるようにしたものがある(例えば特許文献1参照)。   As a fin-tube heat exchanger using a flat tube with a plurality of conventional channels, the flat tube and fins are tightly integrated, so the fin and flat tube are assembled and then the tube is expanded, or the flat tube shape There is one in which a fin and a tube having a smaller through hole (insertion hole) are assembled (for example, see Patent Document 1).

特開平2005−164221号公報Japanese Patent Laid-Open No. 2005-164221

扁平管の内部には奇数個の冷媒流路が形成され、流路の内最大の流路が扁平管断面の長軸方向、短軸方向の中心に設けられている。その中心に設けられている流路のみに拡管ビレットを挿入し、拡管することで、扁平管全体(長軸、単軸両方向)を拡管する。このような扁平管の拡管方法にあっては、拡管された流路周辺では扁平管の板厚(肉厚)が減少する。その結果、当初想定していた板厚を確保出来ず、耐圧が低下するといった問題点があった。さらに、耐圧を低下させないため、全体的に板厚を増した場合、熱交換器が大型化するといった問題があった。また、熱交換器の耐圧を低下させないため、拡管した流路に冷媒等を流さないといった対処法もあるが、その場合は熱交換器に流れる流量が低下することで熱交換器の性能が低下するといった問題があった。   An odd number of refrigerant flow paths are formed inside the flat tube, and the largest of the flow paths is provided at the center in the major axis direction and minor axis direction of the flat tube cross section. By inserting a pipe expansion billet into only the flow path provided at the center and expanding the pipe, the entire flat pipe (both in the long axis and the single axis) is expanded. In such a flat tube expanding method, the plate thickness (thickness) of the flat tube decreases around the expanded flow path. As a result, there was a problem that the initially assumed plate thickness could not be ensured and the pressure resistance decreased. Furthermore, since the pressure resistance is not lowered, there is a problem that the heat exchanger is enlarged when the plate thickness is increased as a whole. In addition, there is a countermeasure to prevent the refrigerant from flowing in the expanded flow path so as not to reduce the pressure resistance of the heat exchanger, but in that case, the flow rate of the heat exchanger decreases, so the performance of the heat exchanger decreases. There was a problem such as.

この発明は、上記のような問題点を解決するためになされたものであり、拡管による肉厚の減少が抑制され、安定した拡管ができる扁平管、その扁平管を用いたフィンチューブ式熱交換器、及びフィンチューブ式熱交換器の製造方法を得ることを目的としている。   The present invention has been made to solve the above-described problems, and is a flat tube capable of stably expanding the fin tube by suppressing a reduction in wall thickness due to the tube expansion, and a finned tube heat exchange using the flat tube. It aims at obtaining the manufacturing method of a heat exchanger and a fin tube type heat exchanger.

この発明に係る扁平管は、横断面が扁平に形成され長軸方向に並設された複数の流路の内、中心部に位置する中央部流路内に拡管部品を挿入して拡管し得るようにしたフィンチューブ式熱交換器用の扁平管において、前記中央部流路を形成している短軸方向の管肉部分に、前記拡管によって前記長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部を管の長手方向に沿って設けたものである。
また、この発明に係るフィンチューブ式熱交換器は、複数のフィンを貫通するように係合され、内部に冷媒を通流する流路が設けられた伝熱管として、横断面が扁平に形成され長軸方向に並設された複数の流路の内、中心部に位置する中央部流路内に拡管部品を挿入して拡管し得るようにしたフィンチューブ式熱交換器用の扁平管において、前記中央部流路を形成している短軸方向の管肉部分に、前記拡管によって前記長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部を管の長手方向に沿って設けた扁平管を用いたことを特徴とするものである。
また、この発明に係るフィンチューブ式熱交換器の製造方法は、フィンチューブ式熱交換器用の伝熱管として、横断面が扁平に形成され長軸方向に並設された複数の流路の内、中心部に位置する中央部流路を形成している短軸方向の管肉部分に、拡管によって前記長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部が管の長手方向に沿って設けられた扁平管を用い、該扁平管をフィンの挿通孔に挿通し拡管させる際に、最大径部分の断面が楕円形状でその長軸方向を前記扁平管の長軸方向に合致させた拡管部品を前記中央部流路に挿通させるようにしたものである。
The flat tube according to the present invention can be expanded by inserting a tube expansion component into a central flow channel located in the central portion of a plurality of flow channels having a flat cross section and arranged in parallel in the longitudinal direction. In a flat tube for a finned tube heat exchanger, the tube thickness corresponding to the volume of the tube material extending in the long axis direction by the tube expansion is added to the tube axis portion in the short axis direction forming the central channel. A tube meat material reservoir portion in which the material is accumulated is provided along the longitudinal direction of the tube.
The finned tube heat exchanger according to the present invention has a flat cross section as a heat transfer tube that is engaged so as to pass through a plurality of fins and that has a flow passage through which a refrigerant flows. In the flat tube for a finned tube heat exchanger that can be expanded by inserting a tube expansion component into a central channel located in the central portion among a plurality of channels arranged in parallel in the long axis direction, In the longitudinal direction of the tube, the tubular material reservoir portion in which the tubular material corresponding to the volume of the tubular material extending in the major axis direction by the expansion is stored in the tubular portion in the short axis direction forming the central channel. A flat tube provided along the line is used.
Further, the manufacturing method of the finned tube heat exchanger according to the present invention is a heat transfer tube for the finned tube heat exchanger, wherein the transverse cross section is formed flat and arranged in parallel in the major axis direction, A tubular material reservoir portion in which a tubular material corresponding to the volume of the tubular material extending in the major axis direction by expansion is stored in a tubular portion of the short axis direction forming a central channel located in the central portion. When a flat tube provided along the longitudinal direction of the tube is used, and the flat tube is inserted through the insertion hole of the fin and expanded, the cross section of the maximum diameter portion is elliptical and the long axis direction is the length of the flat tube. A pipe expansion component matched with the axial direction is inserted through the central channel.

この発明の扁平管によれば、中央部流路を形成している短軸方向の管肉部分に、拡管によって長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部を管の長手方向に沿って設けたことにより、扁平管の中央部流路を拡管しても、管肉材溜め部に設けられた管肉材が長軸方向に伸びることで伸長部分の肉厚が薄くなることが抑制され、流路の耐圧特性の低下を防止できる。
また、この発明のフィンチューブ式熱交換器によれば、伝熱管として用いた扁平管の流路の耐圧特性が毀損されることなく保持されていることにより、熱交換器としての耐圧上の信頼性が高められると共に、扁平管の外周面をフィンの挿通孔に確実に接触させ得るものであるため、優れた熱交換効率が得られる。
また、この発明のフィンチューブ式熱交換器の製造方法によれば、扁平管を拡管させるときに扁平管の肉厚の減少が抑制され、安定した拡管ができる。
According to the flat tube of this invention, the tubular material in which the tubular material corresponding to the volume of the tubular material that extends in the major axis direction by expansion is stored in the tubular portion of the short axis that forms the central channel. By providing the reservoir part along the longitudinal direction of the pipe, the pipe material provided in the pipe material reservoir part extends in the long axis direction even if the central channel of the flat tube is expanded, and the elongated part It is possible to prevent the wall thickness from being reduced, and to prevent a decrease in pressure resistance of the flow path.
Moreover, according to the finned tube heat exchanger of the present invention, the pressure resistance characteristics of the flow path of the flat tube used as the heat transfer tube are maintained without being damaged, so that the reliability in terms of pressure resistance as the heat exchanger is maintained. In addition to improving the performance, the outer peripheral surface of the flat tube can be reliably brought into contact with the insertion hole of the fin, so that excellent heat exchange efficiency can be obtained.
Moreover, according to the manufacturing method of the fin tube type heat exchanger of this invention, when expanding a flat tube, the reduction | decrease of the thickness of a flat tube is suppressed and stable tube expansion can be performed.

本発明の実施の形態1によるフィンチューブ式熱交換器の要部を概念的に示す斜視図である。It is a perspective view which shows notionally the principal part of the finned-tube heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態1による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図である。It is sectional drawing which illustrates notionally the penetration part of the flat tube with respect to the fin in the manufacturing method of the flat tube and fin tube type heat exchanger by Embodiment 1 of this invention. 本発明の実施の形態2による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図である。It is sectional drawing which illustrates notionally the penetration part of the flat tube with respect to the fin in the manufacturing method of the flat tube and fin tube type heat exchanger by Embodiment 2 of this invention. 本発明の実施の形態3による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図である。It is sectional drawing which illustrates notionally the penetration part of the flat tube with respect to the fin in the manufacturing method of the flat tube and fin tube type heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態3によるフィンチューブ式熱交換器の変形例を概念的に示す要部斜視図である。It is a principal part perspective view which shows notionally the modification of the finned-tube type heat exchanger by Embodiment 3 of this invention. 本発明の実施の形態4による扁平管及びその扁平管を用いたフィンチューブ式熱交換器の要部を概念的に示す斜視図である。It is a perspective view which shows notionally the principal part of the flat tube by Embodiment 4 of this invention, and the fin tube type heat exchanger using the flat tube.

実施の形態1.
図1は本発明の実施の形態1によるフィンチューブ式熱交換器の要部を概念的に示す斜視図、図2は本発明の実施の形態1による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図であり、(a)は拡管前、(b)は拡管後を示している。図において、実施の形態1に係る扁平管1は、図2(a)に示すように、拡管前においては横断面が扁平な大略楕円形に形成され、冷媒を通流するための流路が長軸方向に複数並設されている。流路の数は奇数個で、中心部に位置する中央部流路11は、扁平管1を拡管するための拡管ビレット等の拡管部品(図示省略)を挿入する際にも用いられるもので、円形状で断面積が最も大きく形成されている。一方、長軸方向(図2の左右方向)に連なる複数の他の流路12は、中央部流路11よりも断面積が小さい楕円形状で、しかも扁平管1の長軸方向の端に向かうに従って、小さいサイズの楕円形状になっているが、他の流路12は互いに同サイズでも問題ないし、途中から形状とサイズが変更されていても問題なく、流路の数も特に限定されない。
Embodiment 1 FIG.
FIG. 1 is a perspective view conceptually showing the main part of a finned tube heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a production of flat tubes and finned tube heat exchangers according to Embodiment 1 of the present invention. It is sectional drawing which illustrates notionally the insertion part of the flat tube with respect to the fin in a method, (a) is before pipe expansion, (b) has shown after pipe expansion. In the figure, as shown in FIG. 2A, the flat tube 1 according to Embodiment 1 is formed in a substantially oval shape with a flat cross section before pipe expansion, and has a flow path for flowing refrigerant. A plurality are arranged side by side in the long axis direction. The number of the flow paths is an odd number, and the central flow path 11 located at the center is also used when inserting a tube expansion component (not shown) such as a tube expansion billet for expanding the flat tube 1. It is circular and has the largest cross-sectional area. On the other hand, a plurality of other flow paths 12 connected in the long axis direction (left and right direction in FIG. 2) have an elliptical shape with a smaller cross-sectional area than the central flow path 11, and are directed toward the long axis direction end of the flat tube 1. Accordingly, the other flow paths 12 have the same size as each other, and there is no problem even if the shape and size are changed from the middle, and the number of flow paths is not particularly limited.

また、扁平管1の外観は横断面が楕円形状を基礎としており、実施の形態1では、その楕円と、楕円の長軸と短軸の交点を中心とし外径が楕円の短軸方向の寸法よりも大きい円とが組み合わされた如き形状であり、中央部流路11を形成している短軸方向(図2の上下方向)の管肉部分を短軸方向の外側方向に膨らませた断面円弧状の突条部13Aをもつ異形形状となっている。突条部13Aは中央部流路11を形成している短軸方向の管肉部分によって形成されており、拡管によって長軸方向に伸長する管材の容積に見合う管肉材を予め溜めておく如く形成された管肉材溜め部13の一形態を構成している。なお、管肉材溜め部13は扁平管1の長手方向、即ち、図2の紙面の前後方向に沿って形成されており、最大外径部分が楕円形状の拡管部品を中央部流路11に挿入し拡管させる際に、円弧状の管肉材溜め部13が長軸方向に伸長され曲率が小さくなる変形を主体として伸長することで伸長部分の肉厚が薄くなることが抑制され、流路の耐圧特性の低下を防止する役割を担うものである。   Further, the external appearance of the flat tube 1 is based on an elliptical cross section. In the first embodiment, the dimension of the minor axis direction of the ellipse and the outer diameter of the ellipse is centered on the intersection of the major axis and the minor axis of the ellipse. And a cross-sectional circle in which the tubular portion in the short axis direction (vertical direction in FIG. 2) forming the central channel 11 is expanded outward in the short axis direction. It has an irregular shape with an arc-shaped protrusion 13A. The protruding portion 13A is formed by a short-axis direction tubular portion that forms the central channel 11, and a tubular material corresponding to the volume of the tubular material that extends in the long-axis direction by expanding the tube is stored in advance. One form of the formed tube material storage part 13 is comprised. The tube material reservoir 13 is formed along the longitudinal direction of the flat tube 1, that is, the front-rear direction of the paper surface of FIG. When the tube is inserted and expanded, the arcuate tubular material reservoir portion 13 is elongated mainly in a deformation in which the curvature is reduced by extending in the major axis direction, and the thickness of the elongated portion is suppressed from being reduced. It plays the role which prevents the fall of the proof pressure characteristic of this.

なお、図2では横断面における外周面の形状が楕円形と円形を組み合わせた如き形状としているが、楕円形の基礎形状部分は、例えば半円形と直線で構成される長円形状(レーストラック形状)や、長軸方向と短軸方向の交点を通る短軸方向の線を中心線として、対称にならない卵型などのオーバル形状や、扁平な菱形状で対向された角部双方を対称的な例えば円弧状の曲面で形成したもの等に置き代えても良い。また、図2では、扁平管1の外周面における楕円形状と円弧形状の突条部13Aとの繋ぎ目部分の隅部Sは、両曲線の単純な交点として角張った形状で示しているが、その隅部Sはなだらかな曲線で繋がる滑らかな隅部としてもよい。   In FIG. 2, the shape of the outer peripheral surface in the cross section is a shape such as a combination of an ellipse and a circle. However, the basic shape of the ellipse is, for example, an ellipse (race track shape) composed of a semicircle and a straight line. ), The oval shape such as an egg shape that is not symmetrical, and the corners facing each other with a flat rhombus shape are symmetrical with respect to the short axis direction line passing through the intersection of the long axis direction and the short axis direction. For example, it may be replaced with one formed with an arcuate curved surface. In FIG. 2, the corner portion S of the joint portion between the elliptical shape and the arc-shaped protruding portion 13 </ b> A on the outer peripheral surface of the flat tube 1 is shown as an angular shape as a simple intersection of both curves. The corner S may be a smooth corner connected by a gentle curve.

また、扁平管1の外形と流路形状は、扁平管1内に形成される隣り合う冷媒流路相互間の最小肉厚T1や、他の流路12における扁平管1の外周面との最小肉厚、即ち他の流路12の短軸方向の最小肉厚T2は、最大冷媒流路である中央部流路11の短軸方向の最小肉厚T0と同等になるように決定される。また、中央部流路11と他の流路12などの冷媒流路の内周面は何れも平滑状に示しているが、通流される冷媒との接触面積を増やすため、内周面に凹凸や突起物が設けられていても差し支えない。また、ここでは長軸または短軸に対して対称的に構成されている。また、扁平管として用いることができる材料は特に限定されるものではなく、伝熱管として一般的に使用されている銅またはその合金類、アルミニウムまたはその合金類などは適宜選択して用いることができる。また、扁平管1は、それらの金属材料を従来の一般的ないしは公知の加工方法である押出成形、あるいは引抜き成形により容易に得ることができる。   Further, the outer shape and the flow path shape of the flat tube 1 are the minimum thickness T1 between adjacent refrigerant flow channels formed in the flat tube 1 and the minimum of the outer peripheral surface of the flat tube 1 in the other flow channels 12. The wall thickness, that is, the minimum thickness T2 in the minor axis direction of the other channel 12 is determined to be equal to the minimum thickness T0 in the minor axis direction of the central channel 11 which is the maximum refrigerant channel. Further, the inner peripheral surfaces of the refrigerant flow paths such as the central flow path 11 and the other flow paths 12 are all shown in a smooth shape. However, in order to increase the contact area with the flowing refrigerant, the inner peripheral surface is uneven. Or protrusions may be provided. Further, here, it is configured symmetrically with respect to the long axis or the short axis. Further, the material that can be used as the flat tube is not particularly limited, and copper or its alloys generally used as a heat transfer tube, aluminum or its alloys can be appropriately selected and used. . Further, the flat tube 1 can be easily obtained by extrusion molding or pultrusion which is a conventional general or known processing method.

次に、フィンチューブ式熱交換器(以下、単に熱交換器ということがある)について、図1、図2を参照して説明する。熱交換器3は、フィンカラー21を有する挿通孔22が複数形成された薄板状の複数のフィン2が所定間隔で積層された積層体の挿通孔22に前述の扁平管1を挿通させた後、後述するフィンチューブ式熱交換器の製造方法によって、扁平管1の円形状の中央部流路11に、最大外径部分の横断面が楕円形状の拡管部品(図示省略)を、その長軸方向を扁平管1の長軸と合致させて挿入、拡管させ、扁平管1の外周面、特に長軸方向の中央部に設けられた突条部13Aを除く図の左右両端部外周面とフィン2に形成されているフィンカラー21とを密に接触させることで得ることができるものである。なお、図2(b)に示す拡管後中央流路11Zの形状、サイズは、前述の楕円形状の拡管部品における最大外径部分の横断面に略等しい。なお、前記楕円形状の拡管部品の最大外径部分における短軸方向の径は拡管前の中央部流路11の短軸方向の径よりも小さく、長軸方向の径は拡管前の中央部流路11の長軸方向の径よりも予め設定された所定寸法大きく形成される。   Next, a fin tube type heat exchanger (hereinafter sometimes simply referred to as a heat exchanger) will be described with reference to FIGS. After the heat exchanger 3 has inserted the flat tube 1 into the insertion hole 22 of a laminate in which a plurality of thin plate-like fins 2 in which a plurality of insertion holes 22 having fin collars 21 are formed are laminated at a predetermined interval. In the manufacturing method of the fin tube type heat exchanger, which will be described later, the expanded pipe part (not shown) whose cross section of the maximum outer diameter portion is elliptical in the circular central channel 11 of the flat tube 1 has its long axis The outer peripheral surface of the flat tube 1 is inserted and expanded in conformity with the long axis of the flat tube 1, and the outer peripheral surface and fins of the left and right ends of the drawing excluding the protrusion 13A provided at the outer peripheral surface of the flat tube 1, particularly the central portion in the long axis direction. 2 can be obtained by bringing the fin collar 21 formed in the shape 2 into close contact. Note that the shape and the size of the post-expansion central flow path 11Z shown in FIG. 2B are substantially equal to the cross section of the maximum outer diameter portion in the above-described elliptical pipe expansion component. The diameter in the short axis direction at the maximum outer diameter portion of the elliptical pipe expansion component is smaller than the diameter in the short axis direction of the central channel 11 before the pipe expansion, and the diameter in the long axis direction is the central flow before the pipe expansion. The path 11 is formed larger than the diameter in the major axis direction by a predetermined dimension.

フィン2に扁平管1を挿通させるための挿通孔22は、用いる扁平管1の外周面の形状に合わせて形成され、フィンカラー21は、その挿通孔22の周縁部に沿ってフィン2の板面に垂直方向に立ち上がるように形成される。フィンカラー21と挿通孔22の内周面の形状は、拡管される前の扁平管1の外周面よりも大きい形状をしており、拡管される前の扁平管1をフィン2の挿通孔22に挿入する際に、接触しないサイズ、もしくは接触してもフィン形状を変形させる力がかからないサイズになっている。挿通孔22は楕円形状を基礎形状とし、長軸方向の中央部に扁平管1の突条部13Aを挿通させるための円弧状凹所22aが形成されている。なお、フィンカラー21も挿通孔22の形状に倣うように円弧状凹所22aの部分では円弧状に湾曲形成されている。なお、図2における、扁平管1の外周面とフィンカラー21または挿通孔22の内周面の間の隙間は、両者の間に間隙が存在していることを模式的に示しているに過ぎず、図中の間隙の広狭は本発明を実施する上での要素事項とは直接関係がない。   The insertion hole 22 for inserting the flat tube 1 into the fin 2 is formed according to the shape of the outer peripheral surface of the flat tube 1 to be used, and the fin collar 21 is a plate of the fin 2 along the peripheral portion of the insertion hole 22. It is formed to rise in a direction perpendicular to the surface. The shape of the inner peripheral surface of the fin collar 21 and the insertion hole 22 is larger than the outer peripheral surface of the flat tube 1 before being expanded, and the flat tube 1 before being expanded is inserted into the insertion hole 22 of the fin 2. When inserted into the housing, it is a size that does not contact, or a size that does not apply a force to deform the fin shape even if contacted. The insertion hole 22 has an elliptical shape as a basic shape, and an arcuate recess 22a for allowing the protrusion 13A of the flat tube 1 to pass through is formed at the center in the long axis direction. Note that the fin collar 21 is also curved in an arc shape at the arc-shaped recess 22 a so as to follow the shape of the insertion hole 22. Note that the gap between the outer peripheral surface of the flat tube 1 and the inner peripheral surface of the fin collar 21 or the insertion hole 22 in FIG. 2 only schematically shows that there is a gap between them. In addition, the width of the gap in the figure is not directly related to the elemental matters in carrying out the present invention.

また、図1の熱交換器3における扁平管1は、フィン2の挿通孔22に扁平管1を挿入した後、拡管工程を行った後の状態を図示している。挿通孔22の縁部に沿って立ち上がるように形成されたフィンカラー21の内周面の形状は、拡管後の扁平管1の全外周面の内、楕円形状部分の外周面と、対向されたフィンカラー21の内周面とが面接触するように決められている。フィンカラー21のフィン2からの立ち上がり部分の断面図は示していないが、板状のフィン2の延在面とフィンカラー21の立ち上がり方向の角度は挿通孔22側に90度以下となるようになっていればよい。これにより、扁平管1を拡管した時に、扁平管1とフィンカラー21が線接触でなく面接触となり、接触面積を大きくすることが出来る。   Moreover, the flat tube 1 in the heat exchanger 3 of FIG. 1 has illustrated the state after performing the pipe expansion process, after inserting the flat tube 1 in the insertion hole 22 of the fin 2. As shown in FIG. The shape of the inner peripheral surface of the fin collar 21 formed so as to rise along the edge of the insertion hole 22 is opposed to the outer peripheral surface of the elliptical portion of the entire outer peripheral surface of the flat tube 1 after the expansion. It is determined so that the inner peripheral surface of the fin collar 21 is in surface contact. Although the sectional view of the rising portion of the fin collar 21 from the fin 2 is not shown, the angle of the extending direction of the plate-like fin 2 and the rising direction of the fin collar 21 is 90 degrees or less on the insertion hole 22 side. It only has to be. Thereby, when the flat tube 1 is expanded, the flat tube 1 and the fin collar 21 are not in line contact but in surface contact, and the contact area can be increased.

また、図2(b)に示すように、フィンカラー21を有する挿通孔22に挿通された扁平管1が拡管された状態における楕円形状部分の断面構成は、扁平管1を中心として、その上下部に位置するフィンカラー21が、扁平管1を挟み込むような状態、ないしは扁平管1がくさび状態で挿通孔22のフィンカラー21にかみ合うような形状であり、扁平管1の拡管によって、扁平管1と挿通孔22、すなわちフィン2との位置が固定され、一体化される。なお、扁平管1の拡管を完了したときに、扁平管1とフィンカラー21とのかみ合い量が小さい場合、あるいはかみ合い量が小さい部分が存在する場合、例えば図示していない治具を用いて、フィン2と扁平管1の位置を決めて、ろう付けや接着材によって固定するようにしても良い。   In addition, as shown in FIG. 2B, the cross-sectional configuration of the oval-shaped portion in a state where the flat tube 1 inserted through the insertion hole 22 having the fin collar 21 is expanded is centered on the flat tube 1. The fin collar 21 located in the section is in a state in which the flat tube 1 is sandwiched, or the flat tube 1 is in a wedge shape and meshes with the fin collar 21 of the insertion hole 22. The positions of 1 and the insertion holes 22, that is, the fins 2, are fixed and integrated. When the expansion of the flat tube 1 is completed, if the amount of engagement between the flat tube 1 and the fin collar 21 is small, or if there is a portion with a small amount of engagement, for example, using a jig not shown, The positions of the fins 2 and the flat tubes 1 may be determined and fixed by brazing or an adhesive.

なお、扁平管1の突条部13Aは拡管によって長軸方向に延ばされるので、その外周面の短軸方向の外寸は伸長された量に応じて小さくなる。そのため、円弧状凹所22aの部分におけるフィンカラー21の内周面と突条部13Aの外周面との隙間は、図2(a)に示すように拡管前に隙間が形成されるようにした場合、拡管後も隙間が生じた状態となるが、突条部13Aを除く楕円形状の部分では扁平管1とフィンカラー21とが密着されるので、接触していなくても必ずしも問題はない。しかし、例えば、拡管前の扁平管1を挿通孔22へ挿入する際に、突条部13Aの外周面がフィン2自体の形状を変形させるまでの力がかからず、円弧状凹所22aの部分のフィンカラー21の内周面に弾性変形の範囲内で接触し、扁平管1の拡管後においても、短軸方向の寸法が縮小された突条部13Aとフィンカラー21の内周面における例えば突出端部近傍などが接触状態を保持し得るように、扁平管1の長軸方向と短軸方向への変形量、フィンカラー21と挿通孔22のサイズ、フィンカラー21の弾性変形の許容範囲、などのサイズ、形状の最適化を図ることによって、ばね弾性による接触状態を保持することは可能であり、熱交換効率の更なる向上を図ることもできる。   In addition, since the protrusion 13A of the flat tube 1 is extended in the major axis direction by the pipe expansion, the outer dimension in the minor axis direction of the outer peripheral surface becomes smaller according to the amount of extension. Therefore, the gap between the inner peripheral surface of the fin collar 21 and the outer peripheral surface of the protrusion 13A in the arc-shaped recess 22a is formed before the pipe expansion as shown in FIG. 2 (a). In this case, a gap is generated after the tube expansion, but the flat tube 1 and the fin collar 21 are in close contact with each other in the elliptical portion excluding the protruding portion 13A. However, for example, when the flat tube 1 before being expanded is inserted into the insertion hole 22, no force is applied until the outer peripheral surface of the protrusion 13A deforms the shape of the fin 2 itself, and the arc-shaped recess 22a Even after the expansion of the flat tube 1, the protrusion 13 </ b> A whose dimension in the short axis direction is reduced and the inner surface of the fin collar 21 are in contact with the inner peripheral surface of the partial fin collar 21. For example, the deformation amount in the major axis direction and the minor axis direction of the flat tube 1, the size of the fin collar 21 and the insertion hole 22, and the elastic deformation of the fin collar 21 are allowed so that the vicinity of the protruding end portion can maintain the contact state. By optimizing the size and shape of the range, etc., it is possible to maintain the contact state by spring elasticity, and it is possible to further improve the heat exchange efficiency.

次に、実施の形態1によるフィンチューブ式熱交換器の製造方法について具体的に説明する。扁平管1を拡管するためには、図示していないが、拡管部品としての拡管ビレットで拡管する。この拡管部品は、拡管に寄与する外周面における最大外径部が、扁平管1の長軸方向を短軸方向よりも優先して拡管する形状である必要があり、例えば、図2(b)に示す拡管後の扁平管1における拡管後中央流路11Zと略同一の楕円形状でもよく、また、拡管後中央流路11Zの形状に近くはないが、その拡管後中央流路11Zの長軸方向とは接触し、短軸方向とは拡管前から拡管終了もしくは直前まで接触しない楕円形状であっても良い。他にも、拡管後中央流路11Zの長軸方向とは接触し、短軸方向と接触しない楕円形状と直線で構成される長円形状でも問題ない。   Next, the manufacturing method of the finned tube heat exchanger according to Embodiment 1 will be specifically described. In order to expand the flat tube 1, although not shown, the tube is expanded with a tube expansion billet as a tube expansion component. In this pipe expansion component, the maximum outer diameter portion on the outer peripheral surface that contributes to pipe expansion needs to have a shape in which the long axis direction of the flat tube 1 is expanded with priority over the short axis direction. For example, FIG. May be substantially the same elliptical shape as the post-expansion central flow path 11Z in the flat pipe 1 after the expansion, and is not close to the shape of the post-expansion central flow path 11Z, but the long axis of the post-expansion central flow path 11Z The elliptical shape may be in contact with the direction, and the short axis direction may not be in contact from before the tube expansion to the end of the tube expansion or just before the tube expansion. In addition, there is no problem with an elliptical shape that is formed by an elliptical shape and a straight line that are in contact with the major axis direction of the central flow path 11Z after the tube expansion and are not in contact with the minor axis direction.

また、この拡管部品の材料は扁平管1が拡管する時の荷重に対して、座屈などにより破壊しない材料であればよい。また、一般的に扁平管1はアルミや銅を材料とする場合が多く、拡管用部品で扁平管1の拡管を繰り返していくと、アルミや銅の凝着や摩耗が生じるため、それを防ぐために表面にメッキなどをしても問題ない。   Moreover, the material of this pipe expansion part should just be a material which is not destroyed by buckling etc. with respect to the load when the flat pipe 1 expands. Also, in general, the flat tube 1 is often made of aluminum or copper, and repeated expansion of the flat tube 1 with pipe expansion parts will cause adhesion and wear of aluminum and copper, thus preventing this. Therefore, there is no problem even if the surface is plated.

このような拡管用部品で扁平管1を拡管した場合、扁平管1の短軸方向よりも長軸方向に優先的に拡管される力が作用して、扁平管1の中央部流路11を形成している短軸方向の管肉部分によって形成された突条部13Aが長軸方向へ延ばされて、図2(b)に示しているような拡管後の扁平管1になる。この場合、長軸方向への伸長に伴う管肉材の長軸方向への移動は、管肉材溜め部13を構成する突条部13Aの曲率が小さくなる方向の塑性変形によるため、拡管されることで、扁平管1の長軸と単軸の交点を中心とする中央部流路11の周辺の肉厚はもとより、他の流路12の肉厚の変化も小さく、拡管できる。つまり、このような構成になる実施の形態1の製造方法によれば、扁平管1を拡管しても、扁平管としての耐圧が低下しない熱交換器を製造できる。   When the flat tube 1 is expanded with such a pipe expansion component, a force preferentially expanded in the long axis direction rather than the short axis direction of the flat tube 1 acts, and the central channel 11 of the flat tube 1 is The protruding portion 13A formed by the formed thin tube portion in the short-axis direction is extended in the long-axis direction to form a flat tube 1 after tube expansion as shown in FIG. In this case, the movement in the long axis direction of the tube material along with the extension in the long axis direction is due to plastic deformation in the direction in which the curvature of the protruding portion 13A constituting the tube material reservoir portion 13 is reduced, so that the pipe is expanded. As a result, not only the thickness of the periphery of the central channel 11 centering on the intersection of the long axis and the single axis of the flat tube 1 but also the change in the thickness of the other channels 12 is small, and the tube can be expanded. That is, according to the manufacturing method of Embodiment 1 having such a configuration, even if the flat tube 1 is expanded, it is possible to manufacture a heat exchanger in which the pressure resistance as the flat tube does not decrease.

前記のように、実施の形態1に係る扁平管によれば、中央部流路11を形成している短軸方向の管肉部分に、拡管によって長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部13として、中央部流路11を形成している短軸方向の管肉部分を短軸方向の外方向に膨らませることにより形成された断面円弧状の突条部13Aを管の長手方向に沿って形設したことにより、扁平管1の中央部流路11を拡管しても、管肉材溜め部13に設けられた管肉材が長軸方向に伸ばされることによって伸長部分の肉厚が薄くなることが抑制され、流路の耐圧特性の低下を防止できる効果が得られる。   As described above, according to the flat tube according to the first embodiment, the tube corresponding to the volume of the tube material that extends in the long axis direction by expanding the tube is formed in the tube portion in the short axis direction forming the central channel 11. As the tube material storage part 13 in which the meat material is stored, the tubular portion in the short axis direction forming the central channel 11 is formed in an arc-shaped cross section formed by expanding outward in the short axis direction. By forming the protruding portion 13A along the longitudinal direction of the tube, the tube material provided in the tube material reservoir 13 is in the long axis direction even if the central channel 11 of the flat tube 1 is expanded. It is suppressed that the thickness of the elongated portion is reduced by being stretched, so that an effect of preventing a decrease in pressure resistance of the flow path can be obtained.

また、実施の形態1に係るフィンチューブ式の熱交換器3によれば、伝熱管として用いた扁平管1の流路の耐圧特性が拡管によって毀損されることなく保持されていることにより、熱交換器としての耐圧上の信頼性が高められると共に、構造的に扁平管1の特に長軸方向の両端部を含む楕円形状の外周面部分がフィン2の挿通孔22に確実に接触させ得るものであるため、熱交換効率を向上させることができる。また、同一性能の熱交換器では、熱交換器のサイズを小さくすることによるコスト低減が可能である。また、熱交換器のサイズを小さくした場合、熱交換器を製造する装置も小さくすることができ、装置コストを削減することもできる。   Further, according to the finned tube heat exchanger 3 according to the first embodiment, the pressure resistance characteristic of the flow path of the flat tube 1 used as the heat transfer tube is maintained without being damaged by the expansion, so that the heat The pressure resistance of the exchanger is improved, and the outer peripheral surface of the elliptical shape including both ends of the flat tube 1 in particular in the long axis direction can be reliably brought into contact with the insertion hole 22 of the fin 2 Therefore, the heat exchange efficiency can be improved. In the heat exchanger having the same performance, the cost can be reduced by reducing the size of the heat exchanger. Further, when the size of the heat exchanger is reduced, the apparatus for manufacturing the heat exchanger can also be reduced, and the apparatus cost can be reduced.

また、実施の形態1に係るフィンチューブ式熱交換器の製造方法によれば、扁平管1を拡管させるときに扁平管1の中央部流路11と他の流路12を形成している管肉材の肉厚の減少が抑制され、安定した拡管ができる。そのため、扁平管1の耐圧性が確保されると共に、扁平管1の外周面を確実にフィンカラー21に密着させることができるので、熱交換効率や信頼性に優れた熱交換器を提供できる。   Moreover, according to the manufacturing method of the fin tube type heat exchanger which concerns on Embodiment 1, when expanding the flat tube 1, the pipe | tube which forms the center part flow path 11 and the other flow path 12 of the flat tube 1 Reduction of the thickness of the meat material is suppressed, and stable tube expansion is possible. Therefore, the pressure resistance of the flat tube 1 is ensured, and the outer peripheral surface of the flat tube 1 can be securely brought into close contact with the fin collar 21, so that a heat exchanger excellent in heat exchange efficiency and reliability can be provided.

実施の形態2.
図3は本発明の実施の形態2による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図であり、(a)は拡管前、(b)は拡管後を示している。図において、実施の形態2の扁平管1Aは、図3(a)に示すように、内部に奇数個の冷媒流路が長軸方向に並ぶように設けられている。冷媒流路の内、拡管に用いる中央部流路11Aは楕円形状でその長軸は扁平管1Aの長軸に合致され、短軸は扁平管1Aの短軸に合致するように形成されている。一方、中央部流路11Aの左右方向に連なる複数の他の流路12は、実施の形態1と略同様である。扁平管1Aの外形形状は、楕円形状を基礎としており、その楕円形状の中心を通る短軸方向の軸上が中心となる円形状を、長軸を軸に図の上下に対称配置し、2つの円形状を楕円形状から引き算した形状になっていて、管肉材溜め部13は、中央部流路11Aを形成している短軸方向の管肉部分の外周面を短軸方向の内側方向に断面円弧状に凹ませた溝状部13Bからなっている。
Embodiment 2. FIG.
FIG. 3 is a cross-sectional view conceptually illustrating an insertion portion of the flat tube with respect to the fin in the manufacturing method of the flat tube and fin tube heat exchanger according to Embodiment 2 of the present invention. b) shows after tube expansion. In the figure, the flat tube 1A of the second embodiment is provided with an odd number of refrigerant channels arranged in the long axis direction inside as shown in FIG. 3 (a). Among the refrigerant flow paths, the central flow path 11A used for expanding the pipe is elliptical and has a long axis that matches the long axis of the flat tube 1A and a short axis that matches the short axis of the flat tube 1A. . On the other hand, a plurality of other channels 12 that are continuous in the left-right direction of the central channel 11A are substantially the same as those in the first embodiment. The outer shape of the flat tube 1A is based on an elliptical shape, and a circular shape centering on the axis in the minor axis direction passing through the center of the elliptical shape is symmetrically arranged on the upper and lower sides of the figure about the major axis. Two circular shapes are subtracted from an elliptical shape, and the tubular material reservoir 13 has an inner peripheral surface in the minor axis direction of the outer peripheral surface of the minor axis direction tubular portion forming the central channel 11A. It consists of a groove-like portion 13B that is recessed in a circular arc shape.

また、外周面側が溝状部13Bからなる管肉材溜め部13は、中央部流路11Aの楕円形状よりも長軸方向及び短軸方向の何れにもサイズが大きい楕円形状の図示省略している拡管部品を、その長軸方向が扁平管1Aの長軸に合致するように配設して中央部流路11Aに挿入し拡管させると、管肉材溜め部13を構成する溝状部13Bの管肉が長軸方向に伸長されると同時に、短軸方向にも、外周面を断面円弧状に凹ませた溝状部13Bの曲率が小さくなる向きに塑性変形して延ばされることで、溝状部13Bの管肉部分が主に長軸方向に移動、供給されるので、伸長に伴う他の流路12を含む各流路の肉厚が薄くなることが抑制され、流路の耐圧特性の低下を防止する機能を有する。   Further, the tubular material reservoir portion 13 whose outer peripheral surface side is composed of the groove-shaped portion 13B is not shown in an elliptical shape whose size is larger in both the major axis direction and the minor axis direction than the elliptical shape of the central channel 11A. When the expanded pipe component is disposed so that the major axis direction thereof matches the major axis of the flat tube 1A and is inserted into the central channel 11A to be expanded, the groove-like portion 13B constituting the tubular material reservoir 13 is formed. At the same time that the tube wall is elongated in the major axis direction, and also in the minor axis direction, it is extended by plastic deformation in a direction in which the curvature of the groove-like portion 13B having the outer peripheral surface recessed in a circular arc shape decreases, Since the tubular portion of the groove 13B is moved and supplied mainly in the long axis direction, the thickness of each flow path including the other flow paths 12 accompanying expansion is suppressed, and the pressure resistance of the flow path is reduced. It has a function to prevent deterioration of characteristics.

そのため、扁平管1Aの形状や、拡管用の中央部流路11A、及び複数の他の流路12の形状は、扁平管1Aの中央部流路11Aを形成している溝状部13Bの最小肉厚T0が、他の流路12相互間の最小肉厚T1や他の流路12における扁平管1Aの外周面との最小肉厚T2に比べて同等になるように決定される。図3(a)に示すように、拡管前の扁平管1Aの中央部流路11Aの断面積は、他の流路12の最大のものと同程度か、若干小さく形成されている。なお、扁平管1Aの外観形状における楕円形の部分を、例えば長円形状や卵型などのオーバル形状、菱形状等に変更し得る点、各流路の内壁面に凹凸や突起物などを形成しても良い点、異なる曲線の交点部分を滑らかに形成し得る点などは実施の形態1と同様である。   Therefore, the shape of the flat tube 1A, the central flow channel 11A for tube expansion, and the shapes of the plurality of other flow channels 12 are the minimum of the groove-like portion 13B forming the central flow channel 11A of the flat tube 1A. The wall thickness T0 is determined so as to be equal to the minimum wall thickness T1 between the other flow paths 12 and the minimum wall thickness T2 with respect to the outer peripheral surface of the flat tube 1A in the other flow paths 12. As shown in FIG. 3A, the cross-sectional area of the central channel 11 </ b> A of the flat tube 1 </ b> A before expanding is formed to be the same as or slightly smaller than the maximum of the other channels 12. It should be noted that the elliptical portion of the external shape of the flat tube 1A can be changed to, for example, an oval shape such as an oval shape or an oval shape, a rhombus shape, etc., and irregularities or protrusions are formed on the inner wall surface of each flow path. The points that may be formed and the intersections of different curves can be formed smoothly are the same as in the first embodiment.

また、実施の形態2の熱交換器3におけるフィン2は、扁平管1Aの楕円形の基礎形状に合わせて形成された挿通孔22と挿通孔22の周辺に沿って立ち上がるように形成されたフィンカラー21を有している。フィンカラー21と挿通孔22の形状は、拡管される前の扁平管1Aより大きい形状をしており、拡管される前の扁平管1Aをフィン2に挿入する際に、接触しないサイズ、もしくは接触してもフィン形状を変形させる力がかからないサイズになっている。かつ、挿通孔22は溝状部13Bに対向される部分を含めて楕円形状であり、扁平管1Aが拡管された時に、扁平管1Aと挿通孔22の縁部に沿って立ち上がるように形成されたフィンカラー21とがくさび状態で良好にかみ合うような形状である。   Moreover, the fin 2 in the heat exchanger 3 of Embodiment 2 is a fin formed so as to rise along the periphery of the insertion hole 22 formed in accordance with the elliptical basic shape of the flat tube 1 </ b> A and the insertion hole 22. It has a collar 21. The shape of the fin collar 21 and the insertion hole 22 is larger than that of the flat tube 1A before being expanded, and when the flat tube 1A before being expanded is inserted into the fin 2, the size is not in contact or contact Even so, the size is such that the force to deform the fin shape is not applied. The insertion hole 22 has an elliptical shape including a portion facing the groove 13B, and is formed so as to rise along the edge of the flat tube 1A and the insertion hole 22 when the flat tube 1A is expanded. The shape is such that the fin collar 21 meshes well in a wedge state.

前記のような扁平管1Aを断面が楕円形状の拡管部品で拡管した場合、扁平管1Aの楕円形状より凹になっている溝状部13Bが管軸方向に平行に左右に延ばされ、図3(b)に示しているような拡管後の扁平管1Aになる。扁平管1Aの楕円形状より凹になっている溝状部13Bは管肉材溜め部13を構成していることで、拡管部品で延ばされ、拡管される際に、扁平管1Aの長軸と単軸の交点を中心とする中央部流路11Aの周辺の板厚が変化せずに、拡管でき、扁平管1Aを拡管しても、扁平管としての耐圧が低下しない熱交換器を製造できる。   When the flat tube 1A as described above is expanded with a tube expansion component having an elliptical cross section, the groove-shaped portion 13B that is recessed from the elliptical shape of the flat tube 1A is extended to the left and right in parallel with the tube axis direction. It becomes the flat tube 1A after tube expansion as shown to 3 (b). The groove-like portion 13B that is recessed from the elliptical shape of the flat tube 1A constitutes the tube material reservoir portion 13, so that the long axis of the flat tube 1A is extended when expanded and expanded. Manufactures a heat exchanger that can be expanded without changing the thickness of the central channel 11A around the intersection of the axis and the single axis, and the pressure resistance of the flat tube does not decrease even if the flat tube 1A is expanded it can.

上記のように、実施の形態2によれば、実施の形態1の効果に加えて、熱交換器3におけるフィン2の挿通孔22に円弧状凹所22aを設ける必要がないので、フィンカラー21の形成が容易になるなど、フィン2の形状を簡素化できるため、金型等の設備コストの縮小化や生産安定化が得られる。また、拡管部品の短軸方向の寸法を大きくすることによって、フィンカラー21の内周面に扁平管1Aの溝状部13Bの外周面を密接させることも容易になるので、実施の形態1よりも接触面積を大きくすることが容易となるため、熱交換効率の良好な熱交換器を得ることができる。   As described above, according to the second embodiment, in addition to the effects of the first embodiment, it is not necessary to provide the arc-shaped recess 22a in the insertion hole 22 of the fin 2 in the heat exchanger 3, so the fin collar 21 Since the shape of the fin 2 can be simplified, for example, it becomes easy to form a metal mold, the equipment cost such as the mold can be reduced and the production can be stabilized. Further, by increasing the dimension in the minor axis direction of the pipe expansion part, it becomes easy to bring the outer peripheral surface of the groove-like portion 13B of the flat tube 1A into close contact with the inner peripheral surface of the fin collar 21. Since it becomes easy to enlarge a contact area, a heat exchanger with favorable heat exchange efficiency can be obtained.

実施の形態3.
図4は本発明の実施の形態3による扁平管及びフィンチューブ式熱交換器の製造方法におけるフィンに対する扁平管の挿通部分を概念的に説明する断面図であり、(a)は拡管前、(b)は拡管後を示している。図5は本発明の実施の形態3によるフィンチューブ式熱交換器の変形例を概念的に示す要部斜視図である。図4(a)に示すように、拡管前の扁平管1Bは外周面が楕円形状を基礎としており、内部には長軸方向に奇数個の冷媒流路が並設され、長軸方向の中心と短軸方向の中心の交点に位置する中央部流路11Bは円形状に形成されている。なお、中央部流路11Bの左右方向に連なる複数の他の流路12の形状、流路を形成している外周面に凹凸や突起物を形成できる点などは、実施の形態1と同様である。
Embodiment 3 FIG.
FIG. 4 is a cross-sectional view conceptually illustrating the insertion portion of the flat tube with respect to the fin in the manufacturing method of the flat tube and fin tube heat exchanger according to Embodiment 3 of the present invention. b) shows after tube expansion. FIG. 5 is a main part perspective view conceptually showing a modification of the finned tube heat exchanger according to the third embodiment of the present invention. As shown in FIG. 4 (a), the flat tube 1B before the expansion has an outer peripheral surface based on an elliptical shape, and an odd number of refrigerant channels are arranged in parallel in the major axis direction, and the center in the major axis direction The central channel 11B located at the intersection of the center in the short axis direction is formed in a circular shape. It should be noted that the shape of a plurality of other flow paths 12 that are continuous in the left-right direction of the central flow path 11B, and the point that irregularities and protrusions can be formed on the outer peripheral surface forming the flow path are the same as in the first embodiment. is there.

実施の形態3に係る扁平管1Bは、管肉材溜め部13における中央部流路11Bを形成している短軸方向の管肉部分の最小肉厚T3が、他の流路12を形成している、隣り合う冷媒流路相互の間の最小肉厚T1や、各流路における扁平管1Bの外周面との最小肉厚T2の何れよりも大きく形成されている。そして、拡管に有効な最大径部分の断面が楕円形状で、長軸方向の外径が中央部流路11Bの長軸方向の寸法よりも大きく、短軸方向の外径が中央部流路11Bの短軸方向の寸法と同程度の拡管部品(図示省略)の挿通によって長軸方向に拡管される。なお、中央部流路11Bが真円の場合は、中央部流路11Bの長軸方向の寸法と短軸方向の寸法は等しいことは言うまでもない。   In the flat tube 1B according to the third embodiment, the minimum thickness T3 of the tube portion in the short axis direction forming the central channel 11B in the tube material reservoir 13 forms the other channel 12. The minimum thickness T1 between adjacent refrigerant flow paths and the minimum thickness T2 with respect to the outer peripheral surface of the flat tube 1B in each flow path are formed. The cross section of the maximum diameter portion effective for tube expansion is elliptical, the outer diameter in the major axis direction is larger than the dimension in the major axis direction of the central channel 11B, and the outer diameter in the minor axis direction is the central channel 11B. The tube is expanded in the long axis direction by inserting a tube expansion part (not shown) having the same size as the short axis direction. In addition, when the center part flow path 11B is a perfect circle, it cannot be overemphasized that the dimension of the major axis direction and the dimension of a short axis direction of the center part flow path 11B are equal.

管肉材溜め部13は、前記拡管部品によって長軸方向に拡管されたときに、中央部流路11Bを形成している短軸方向の管肉部分が長軸方向に塑性変形して管軸方向に伸長される際に、伸長する管材の容積に見合う管肉材が伸び代として供給されるように管肉材を溜められた、長軸方向の中央部に形成された中央部流路11Bの短軸方向の最小肉厚T3を含む断面部分でなる肉厚増大部13Cからなっている。なお、扁平管1Bの楕円形の外観形状を、例えば長円形状や卵型などのオーバル形状、菱形状等に変更し得る点、各流路の内壁面に凹凸や突起物などを形成しても良い点などについては実施の形態1と同様である。   When the pipe material reservoir 13 is expanded in the long axis direction by the pipe expanding component, the short axis direction flesh portion forming the central channel 11B is plastically deformed in the long axis direction, and the tube axis The central channel 11B formed in the central portion in the long axis direction in which the tubular material is stored so that the tubular material corresponding to the volume of the expanded tubular material is supplied as the expansion allowance when being elongated in the direction. The thickness increasing portion 13C is a cross-sectional portion including the minimum thickness T3 in the minor axis direction. In addition, the oval appearance of the flat tube 1B can be changed to, for example, an oval shape such as an oval shape or an oval shape, a rhombus shape, etc., and irregularities or protrusions are formed on the inner wall surface of each flow path. The other points are the same as in the first embodiment.

また、実施の形態3の熱交換器3におけるフィン2は、扁平管1Bの形状に合わせて形成された挿通孔22と挿通孔22周辺に沿って立ち上がるように形成されたフィンカラー21を有している。フィンカラー21と挿通孔22の形状は、拡管される前の扁平管1Bより大きい形状をしており、拡管される前の扁平管1Bをフィン2に挿入する際に、接触しないサイズ、もしくは接触してもフィン形状を変形させる力がかからないサイズになっている。かつ、挿通孔22は、扁平管1Bが拡管された時に、扁平管1Bとフィンカラー21とがくさび状態でかみ合うような形状である。   Moreover, the fin 2 in the heat exchanger 3 of Embodiment 3 has the fin collar 21 formed so that it may stand along the insertion hole 22 formed according to the shape of the flat tube 1B, and the insertion hole 22 periphery. ing. The shape of the fin collar 21 and the insertion hole 22 is larger than that of the flat tube 1B before being expanded. When the flat tube 1B before being expanded is inserted into the fin 2, the size is not in contact or contact Even so, the size is such that the force to deform the fin shape is not applied. The insertion hole 22 has a shape such that when the flat tube 1B is expanded, the flat tube 1B and the fin collar 21 are engaged in a wedge state.

中央部流路11Bに前述の拡管部品(図示省略)を挿通して拡管を行うと、円形の中央部流路11Bが、図4(b)に示すように、楕円形の流路に拡大され延ばされると共に、扁平管1Bの外周面、特に図示の例では長軸方向の中央部を除く部分の外周面がフィンカラー21の内周面に密着される。なお、長軸方向の中央部についても拡管部品の短軸方向の寸法を、扁平管1Bの短軸方向の寸法よりも大きくすることにより、あるいはフィンカラー21の中心方向への傾斜を大きくすることで、密着性を高めるようにすることも容易である。拡管に伴って中央部流路11Bを形成している短軸方向の最小肉厚T3が低下するが、初期状態で他の流路12の部分の最小肉厚T1、T2よりも厚くしているので、耐圧が低下することなく管肉材が肉厚増大部13Cからなる管肉材溜め部13によって賄われるので長軸方向への中央部流路11B伸長に伴う全ての流路部分の肉厚が薄くなることが抑制され、流路の耐圧特性の低下が防止される。   When the pipe expansion part (not shown) is inserted into the central channel 11B to expand the tube, the circular central channel 11B is expanded into an elliptical channel as shown in FIG. 4B. In addition, the outer peripheral surface of the flat tube 1 </ b> B, in particular, the outer peripheral surface of the portion excluding the central portion in the major axis direction is in close contact with the inner peripheral surface of the fin collar 21. In addition, also about the center part of a major axis direction, making the dimension of the minor axis direction of a pipe expansion part larger than the dimension of the minor axis direction of the flat tube 1B, or making the inclination to the center direction of the fin collar 21 large. Therefore, it is easy to improve the adhesion. As the pipe is expanded, the minimum thickness T3 in the short axis direction forming the central channel 11B decreases, but is thicker than the minimum thicknesses T1 and T2 of the other channels 12 in the initial state. Therefore, since the tube material is covered by the tube material reservoir 13 formed of the wall thickness increasing portion 13C without lowering the pressure resistance, the wall thickness of all the channel portions accompanying the extension of the central channel 11B in the major axis direction. Is suppressed, and the pressure resistance characteristics of the flow path are prevented from being lowered.

図5の変形例は図4に示す扁平管1Bを、横断面が長円形状の扁平管1Cに変更すると共に、その変更に合わせて、拡管前の扁平管1Cの断面寸法よりも大きい、長円形状の挿通孔22及びフィンカラー21(図示省略)が設けられたフィン2を用いて熱交換器3を構成したものである。なお、扁平管1Cには、楕円形状の扁平管1Bの場合と同様に、断面長円形状の長軸方向に奇数個の冷媒を通流するための流路が並設されており、その中の中央部流路は拡管前の形状が円形で、図4に示す管肉材溜め部13の肉厚増大部13Bと同様の機能を有する肉厚増大部が形成されている。そして、最大径部分の断面が楕円形状で、長軸方向の外径が中央部流路の長軸方向の寸法よりも大きく、短軸方向の外径が中央部流路の短軸方向の寸法と同程度の拡管部品(図示省略)の挿通によって主に長軸方向に拡管されるように構成されている。なお、長円形状の扁平管1Cの場合、拡管によって延ばされる方向は長軸方向が主体となるので、挿通孔22の形状もそれに合わせて形成されている。   In the modification of FIG. 5, the flat tube 1B shown in FIG. 4 is changed to a flat tube 1C having an elliptical cross section, and in accordance with the change, the cross-sectional dimension of the flat tube 1C before expansion is longer. The heat exchanger 3 is configured using the fins 2 provided with circular insertion holes 22 and fin collars 21 (not shown). As in the case of the elliptical flat tube 1B, the flat tube 1C is provided with a flow path for allowing an odd number of refrigerants to flow in the major axis direction having an oval cross section. The central channel has a circular shape before pipe expansion, and is formed with a thickened portion having the same function as the thickened portion 13B of the tubular material reservoir 13 shown in FIG. The cross section of the maximum diameter portion is elliptical, the outer diameter in the major axis direction is larger than the dimension in the major axis direction of the central channel, and the outer diameter in the minor axis direction is the minor axis dimension of the central channel. It is configured to be expanded mainly in the long axis direction by inserting a pipe expansion part (not shown) of the same level as the above. In the case of the elliptical flat tube 1 </ b> C, the direction extended by the tube expansion is mainly the long axis direction, and the shape of the insertion hole 22 is accordingly formed.

図5に示すように、変形例における熱交換器3は複数の扁平管1Cに対して、扁平管1Cの形状に合わせて形成された挿通孔22とその挿通孔22の周縁部に沿って立ち上がるように形成されたフィンカラー21(図示省略)を有している薄板状のフィン2を、複数枚整列することで構成されている。複数のフィン2の間隔は性能に大きく寄与することが知られている。複数のフィン2の間隔を保つため、フィン2の板面には隣り合う扁平管1C相互の間に例えば切り起こしなどのプレス成形によって形成された、図の奥行方向に突き出たスリット形状の凸部23が設けられる。   As shown in FIG. 5, the heat exchanger 3 in the modified example rises along a plurality of flat tubes 1 </ b> C along an insertion hole 22 formed in accordance with the shape of the flat tube 1 </ b> C and a peripheral portion of the insertion hole 22. A plurality of thin plate-like fins 2 having fin collars 21 (not shown) formed as described above are arranged. It is known that the interval between the plurality of fins 2 greatly contributes to performance. In order to keep the interval between the plurality of fins 2, slit-shaped protrusions protruding in the depth direction of the figure formed by press molding such as cutting and raising between adjacent flat tubes 1 </ b> C on the plate surface of the fins 2. 23 is provided.

また、凸部23はフィン2の熱交換性を向上するためにも必要である。しかし、凸部23であれば形状に制約はない。また、複数のフィン2の間隔が保てる場合、凸部23がない、もしくは複数のフィン2の間隔未満の凸部でも問題はない。例えば、複数のフィン2を図示しない治工具などで固定し、複数の扁平管1Cとフィン2と固定するものであっても良い。また、図5では、扁平管1Cは1本の扁平管をU字状ないしはヘアピン形状に折り曲げているが、扁平管1Cは直線形状の直管でもよい。その場合は、複数の扁平管と平板状のフィン2を組付ける前後に、直管状の扁平管の端部にU字形状の配管をろう付け等で取付け、図示のようなU字形状に成形できる。   Moreover, the convex part 23 is required in order to improve the heat exchange property of the fin 2. However, if it is the convex part 23, there will be no restriction | limiting in a shape. Moreover, when the space | interval of the several fin 2 can be maintained, there is no problem even if there is no convex part 23 or it is a convex part less than the space | interval of the several fin 2. FIG. For example, the plurality of fins 2 may be fixed with a jig or the like (not shown) and fixed to the plurality of flat tubes 1C and the fins 2. In FIG. 5, the flat tube 1 </ b> C is formed by bending one flat tube into a U shape or a hairpin shape, but the flat tube 1 </ b> C may be a straight straight tube. In that case, before and after assembling a plurality of flat tubes and flat fins 2, U-shaped pipes are attached to the ends of straight tubular flat tubes by brazing, etc., and formed into a U-shape as shown in the figure it can.

上記のように実施の形態3における扁平管1B、または扁平管1Cは、管肉材溜め部13が、中央部流路11Bを形成している短軸方向の管肉部分の最小肉厚T3を、他の流路12を形成している、短軸方向の管肉部分の最小肉厚T2、及び長軸方向に隣り合う流路相互の長軸方向の最小肉厚T1の何れよりも大きくした肉厚増大部13Cによって形成されてなるものである。   As described above, in the flat tube 1B or the flat tube 1C according to the third embodiment, the tube wall material reservoir 13 has the minimum thickness T3 of the tube portion in the short axis direction in which the central channel 11B is formed. The minimum thickness T2 of the tubular portion in the short axis direction forming the other flow path 12 and the minimum thickness T1 in the long axis direction of the flow paths adjacent to each other in the long axis direction are made larger. It is formed by the thickened portion 13C.

このような扁平管1B、または扁平管1Cを拡管した場合、中央部流路11Bの周辺部分が延ばされ、図4(b)に示すような拡管後の扁平管になる。中央部流路11Bの周辺部分が延ばされ、拡管されることで中央部流路11Bの最小肉厚T3が低下するが、初期状態で他の流路12を形成している、短軸方向の管肉部分の最小肉厚T2、及び長軸方向に隣り合う流路相互の長軸方向の最小肉厚T1の何れの肉厚よりも厚くしている分、扁平管としての耐圧が低下しない熱交換器を製造できる。また、扁平管1B、扁平管1Cや、フィン2の形状を簡素にできるため、金型等の設備コストの縮小化や生産安定化が得られるという更なる効果が得られる。   When such a flat tube 1B or flat tube 1C is expanded, the peripheral portion of the central channel 11B is extended to become a flat tube after the expansion as shown in FIG. Although the peripheral portion of the central channel 11B is extended and expanded, the minimum thickness T3 of the central channel 11B is reduced, but the other channel 12 is formed in the initial state in the short axis direction. The pressure resistance of the flat tube does not decrease as much as it is thicker than any of the minimum wall thickness T2 of the tube wall portion and the minimum wall thickness T1 of the flow paths adjacent to each other in the long axis direction. A heat exchanger can be manufactured. Moreover, since the shape of the flat tube 1B, the flat tube 1C, and the fin 2 can be simplified, the further effect that reduction of equipment costs, such as a metal mold | die, and production stabilization are obtained is acquired.

実施の形態4.
図6は本発明の実施の形態4による扁平管及びその扁平管を用いたフィンチューブ式熱交換器の要部を概念的に示す斜視図である。なお、この実施の形態4は、例えば図1に示す実施の形態1と同様の扁平管1を用いた熱交換器3における扁平管1の外周面とフィンカラー21の内周面との拡管後の接触箇所を、フィンカラー21の弾性力による金属表面相互の単純な接触よりも熱抵抗が小さくなる、ろう付け、接着材、または金属粉などが混入されている接着材などで接続し、または繋げることで、扁平管1とフィンカラー21との間の熱抵抗を低下させるようにしたものである。
Embodiment 4 FIG.
FIG. 6 is a perspective view conceptually showing a main part of a flat tube and a finned tube heat exchanger using the flat tube according to Embodiment 4 of the present invention. In the fourth embodiment, for example, after the expansion of the outer peripheral surface of the flat tube 1 and the inner peripheral surface of the fin collar 21 in the heat exchanger 3 using the flat tube 1 similar to the first embodiment shown in FIG. Are connected to each other by a brazing, an adhesive, an adhesive mixed with metal powder, or the like, which has a lower thermal resistance than a simple contact between metal surfaces due to the elastic force of the fin collar 21, or By connecting, the thermal resistance between the flat tube 1 and the fin collar 21 is lowered.

図において、拡管後の扁平管1の外周面とフィンカラー21の上端部との境界部には、太線で概念的に示すように、ろう付け、接着材、または金属粉など熱伝導性の良好な粉末が混入された接着材によって接合された接合部24が設けられている。なお、接合部24に用いられているろう材や接着材などは前述の境界部だけでなく、扁平管1の外周面とフィンカラー21の内周面に浸透されている。また、図2(b)に示すような扁平管1の外周面における突条部13Aの外周面とフィンカラー21の内周面との間の隙間部分にも侵入され、両者間の熱伝導に寄与している。なお、扁平管1は図示のものに限定されるものではなく、例えば図3〜図5のものと置き換えても良い。   In the figure, at the boundary between the outer peripheral surface of the flat tube 1 after the pipe expansion and the upper end of the fin collar 21, good thermal conductivity such as brazing, adhesive, or metal powder, as conceptually indicated by a thick line. There is provided a joining portion 24 joined by an adhesive mixed with various powders. Note that the brazing material, the adhesive, and the like used for the joint portion 24 are permeated not only to the boundary portion described above but also to the outer peripheral surface of the flat tube 1 and the inner peripheral surface of the fin collar 21. Moreover, it penetrate | invades also into the clearance gap between the outer peripheral surface of 13 A of protrusion parts in the outer peripheral surface of the flat tube 1 as shown in FIG.2 (b), and the inner peripheral surface of the fin collar 21, and heat conduction between both is carried out. Has contributed. In addition, the flat tube 1 is not limited to the illustrated thing, For example, you may replace with the thing of FIGS.

上記のように実施の形態4によれば、扁平管1を拡管しても、扁平管としての耐圧が低下しない熱交換器を製造でき、扁平管1を拡管することでフィン2を組付ける熱交換器の熱交換性能が向上する。そのため、同一サイズでも熱交換器の熱交換性能が向上もしくは同一性能の熱交換器では、熱交換器のサイズを小さくすることによるコスト低減が可能である。また、熱交換器のサイズを小さくした場合、熱交換器を製造する装置も小さくすることができ、装置コストを削減することもできる。   As described above, according to the fourth embodiment, even if the flat tube 1 is expanded, it is possible to manufacture a heat exchanger in which the pressure resistance as the flat tube does not decrease, and heat for assembling the fins 2 by expanding the flat tube 1. The heat exchange performance of the exchanger is improved. Therefore, even if the size is the same, the heat exchange performance of the heat exchanger is improved, or in the heat exchanger having the same performance, the cost can be reduced by reducing the size of the heat exchanger. Further, when the size of the heat exchanger is reduced, the apparatus for manufacturing the heat exchanger can also be reduced, and the apparatus cost can be reduced.

なお、本発明は、その発明の範囲内において、実施の形態を自由に組合せたり、各実施の形態を適宜、変形、省略することが可能である。   It should be noted that the present invention can be freely combined with each other within the scope of the invention, and each embodiment can be appropriately modified or omitted.

1、1A、1B、1C 扁平管、11、11A、11B 中央部流路、
11Z 拡管後中央流路、12 他の流路、13 管肉材溜め部、13A 突条部、
13B 溝状部、13C 肉厚増大部、2 フィン、21 フィンカラー、
22 挿通孔、22a 円弧状凹所、23 凸部、24 接合部、3 熱交換器、
S 隅部、T0 最小肉厚(中央部流路11の短軸方向)、
T1 最小肉厚(冷媒流路相互間)、T2 最小肉厚(他の流路12の短軸方向)、
T3 最小肉厚(中央部流路11Bの短軸方向)。
1, 1A, 1B, 1C flat tube, 11, 11A, 11B central channel,
11Z Central channel after pipe expansion, 12 other channels, 13 tube material reservoir, 13A ridge,
13B Groove-shaped portion, 13C Thickness increasing portion, 2 fin, 21 fin collar,
22 insertion hole, 22a arcuate recess, 23 convex part, 24 joint part, 3 heat exchanger,
S corner, T0 minimum thickness (short axis direction of the central channel 11),
T1 minimum wall thickness (between refrigerant flow paths), T2 minimum wall thickness (short axis direction of other flow paths 12),
T3 Minimum wall thickness (short axis direction of the central channel 11B).

Claims (9)

横断面が扁平に形成され長軸方向に並設された複数の流路の内、中心部に位置する中央部流路内に拡管部品を挿入して拡管し得るようにしたフィンチューブ式熱交換器用の扁平管において、前記中央部流路を形成している短軸方向の管肉部分に、前記拡管によって前記長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部を管の長手方向に沿って設けたことを特徴とするフィンチューブ式熱交換器の扁平管。   Fin tube heat exchange that allows tube expansion by inserting a tube expansion component into a central channel located in the center of a plurality of channels that have a flat cross section and are arranged in the longitudinal direction. In a flat tube for dexterity, a tubular material in which a tubular material corresponding to the volume of the tubular material extending in the major axis direction by the expansion is stored in a tubular portion in the short axis direction forming the central channel. A flat tube of a finned tube heat exchanger, characterized in that a reservoir is provided along the longitudinal direction of the tube. 前記管肉材溜め部は、前記中央部流路を形成している短軸方向の管肉部分を前記短軸方向の外方向に膨らませることにより形成された断面円弧状の突条部からなることを特徴とする請求項1記載のフィンチューブ式熱交換器の扁平管。   The tubular material reservoir portion is composed of a protruding portion having an arcuate cross section formed by expanding a tubular portion in the short axis direction forming the central channel in the outward direction in the short axis direction. The flat tube of the finned-tube heat exchanger according to claim 1. 前記管肉材溜め部は、前記中央部流路を形成している短軸方向の管肉部分を前記短軸方向の内側方向に凹ませると共に前記中央部流路の断面積を小さくすることにより前記管肉材が溜められた外周面形状が断面円弧状の溝状部からなることを特徴とする請求項1記載のフィンチューブ式熱交換器の扁平管。   The tubular material reservoir portion is formed by denting a tubular portion in the short axis direction forming the central channel and reducing the cross-sectional area of the central channel in the inner direction in the short axis direction. 2. The flat tube of a finned tube heat exchanger according to claim 1, wherein the outer peripheral surface shape in which the tube material is stored is a groove-shaped portion having an arcuate cross section. 前記管肉材溜め部は、前記中央部流路を形成している短軸方向の管肉部分の肉厚を、他の流路を形成している、短軸方向の管肉部分の最小肉厚、及び長軸方向に隣り合う流路相互の長軸方向の最小肉厚の何れよりも大きく形成した肉厚増大部からなることを特徴とする請求項1記載のフィンチューブ式熱交換器の扁平管。   The tubular material reservoir has a thickness of a tubular portion in the short axis direction that forms the central channel, and a minimum thickness of a tubular portion in the minor axis direction that forms another flow path. 2. The finned tube heat exchanger according to claim 1, wherein the finned tube heat exchanger comprises a thickness increasing portion formed larger than both the thickness and the minimum thickness in the major axis direction between the channels adjacent to each other in the major axis direction. Flat tube. 前記横断面が、楕円形状、菱形状、または長円形状であることを特徴とする請求項1から請求項4までの何れかに記載のフィンチューブ式熱交換器の扁平管。   The flat tube of the finned tube heat exchanger according to any one of claims 1 to 4, wherein the cross section has an elliptical shape, a rhombus shape, or an oval shape. 複数のフィンを貫通するように配設され内部に冷媒を通流する流路が設けられた伝熱管として、請求項1から請求項5までの何れかに記載の扁平管を用いたことを特徴とするフィンチューブ式熱交換器。   The flat tube according to any one of claims 1 to 5 is used as a heat transfer tube disposed so as to penetrate a plurality of fins and provided with a flow path through which a refrigerant flows. Fin tube heat exchanger. 前記扁平管と、前記フィンの挿通孔に形成されたフィンカラーとの間が、ろう材、または接着材によって接合されていることを特徴とする請求項6記載のフィンチューブ式熱交換器。   The fin tube heat exchanger according to claim 6, wherein the flat tube and a fin collar formed in the insertion hole of the fin are joined by a brazing material or an adhesive. フィンチューブ式熱交換器用の伝熱管として、横断面が扁平に形成され長軸方向に並設された複数の流路の内、中心部に位置する中央部流路を形成している短軸方向の管肉部分に、拡管によって前記長軸方向に伸長する管材の容積に見合う管肉材が溜められた管肉材溜め部が管の長手方向に沿って設けられた扁平管を用い、該扁平管をフィンの挿通孔に挿通し拡管させる際に、最大径部分の断面が楕円形状でその長軸方向を前記扁平管の長軸方向に合致させた拡管部品を前記中央部流路に挿通させることを特徴とするフィンチューブ式熱交換器の製造方法。   As a heat transfer tube for a finned tube heat exchanger, a short axis direction that forms a central channel located in the center of a plurality of channels that have a flat cross section and are arranged side by side in the long axis direction A flat tube in which a tube material reservoir portion in which a tube material corresponding to the volume of the tube material extending in the long axis direction is expanded is provided along the longitudinal direction of the tube is used. When the tube is inserted through the insertion hole of the fin and expanded, the expanded part in which the cross section of the maximum diameter portion is elliptical and the long axis direction of the tube matches the long axis direction of the flat tube is inserted into the central channel. A method of manufacturing a finned tube heat exchanger. 前記管肉材溜め部は、前記中央部流路を形成している短軸方向の管肉部分を前記短軸方向の外方向に膨らませた断面円弧状の突条部からなるもの、または、前記中央部流路を形成している短軸方向の管肉部分の外周面を前記短軸方向の内側方向に断面円弧状に凹ませると共に前記中央部流路の断面積を小さくすることにより前記管肉材が溜められた溝状部からなるもの、または、前記中央部流路を形成している短軸方向の管肉部分の肉厚を、他の流路を形成している、短軸方向の管肉部分の最小肉厚、及び長軸方向に隣り合う流路相互の長軸方向の最小肉厚の何れよりも大きく形成してなるもの、であることを特徴とする請求項8記載のフィンチューブ式熱交換器の製造方法。   The tubular material reservoir portion is composed of a protruding portion having an arcuate cross section in which a tubular portion in the short axis direction forming the central channel is expanded outward in the short axis direction, or The outer peripheral surface of the tube portion in the short axis direction forming the central channel is recessed in a circular arc shape in the inner direction in the short axis direction, and the cross sectional area of the central channel is reduced. Thickness of a tube-shaped portion in which the meat material is accumulated, or the thickness of the tube portion in the short axis direction forming the central channel, the short axis direction forming another channel 9. The tube wall portion of claim 8, wherein the tube wall portion is formed larger than both the minimum thickness in the major axis direction of the flow paths adjacent to each other in the major axis direction. Manufacturing method of finned tube heat exchanger.
JP2017003800A 2017-01-13 2017-01-13 Flat tubes, fin tube heat exchangers, and how to make them Active JP6815205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017003800A JP6815205B2 (en) 2017-01-13 2017-01-13 Flat tubes, fin tube heat exchangers, and how to make them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017003800A JP6815205B2 (en) 2017-01-13 2017-01-13 Flat tubes, fin tube heat exchangers, and how to make them

Publications (3)

Publication Number Publication Date
JP2018112363A true JP2018112363A (en) 2018-07-19
JP2018112363A5 JP2018112363A5 (en) 2019-11-14
JP6815205B2 JP6815205B2 (en) 2021-01-20

Family

ID=62912256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017003800A Active JP6815205B2 (en) 2017-01-13 2017-01-13 Flat tubes, fin tube heat exchangers, and how to make them

Country Status (1)

Country Link
JP (1) JP6815205B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072577A (en) * 2018-11-29 2020-06-23 한국생산기술연구원 Heat Exchanger Having Wing-Shaped Tube

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603384A (en) * 1969-04-08 1971-09-07 Modine Mfg Co Expandable tube, and heat exchanger
US5604982A (en) * 1995-06-05 1997-02-25 General Motors Corporation Method for mechanically expanding elliptical tubes
JP2005164221A (en) * 2003-11-12 2005-06-23 Hidaka Seiki Kk Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
JP2012093053A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
JP2013113486A (en) * 2011-11-29 2013-06-10 Fujitsu General Ltd Method of manufacturing heat exchanger
US20140338877A1 (en) * 2011-11-10 2014-11-20 Valeo Systemes Thermiques Method For Producing A Heat Exchanger And Heat Exchanger Obtained By Said Method, Swage and Tube Expansion Device For Implementing Said Method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3603384A (en) * 1969-04-08 1971-09-07 Modine Mfg Co Expandable tube, and heat exchanger
US5604982A (en) * 1995-06-05 1997-02-25 General Motors Corporation Method for mechanically expanding elliptical tubes
JP2005164221A (en) * 2003-11-12 2005-06-23 Hidaka Seiki Kk Multi-bore tube for heat exchanger, and tube expansion method of multi-bore tube for heat exchanger
JP2012093053A (en) * 2010-10-28 2012-05-17 Mitsubishi Electric Corp Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
US20140338877A1 (en) * 2011-11-10 2014-11-20 Valeo Systemes Thermiques Method For Producing A Heat Exchanger And Heat Exchanger Obtained By Said Method, Swage and Tube Expansion Device For Implementing Said Method
JP2013113486A (en) * 2011-11-29 2013-06-10 Fujitsu General Ltd Method of manufacturing heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200072577A (en) * 2018-11-29 2020-06-23 한국생산기술연구원 Heat Exchanger Having Wing-Shaped Tube
KR102130086B1 (en) * 2018-11-29 2020-07-06 한국생산기술연구원 Heat Exchanger Having Wing-Shaped Tube

Also Published As

Publication number Publication date
JP6815205B2 (en) 2021-01-20

Similar Documents

Publication Publication Date Title
JP4836996B2 (en) Heat exchanger and air conditioner equipped with the heat exchanger
US11118847B2 (en) Finned heat exchanger tube
JP5861549B2 (en) Tube and heat exchanger provided with the tube
JP2007139417A (en) Metal plate for producing flat tube, flat tube, and its manufacturing method
JP2007147172A (en) Heat exchanger
JP2007163040A (en) Header tank for heat exchanger and method of manufacturing outer plate for use therein
JP2007155181A (en) Heat exchanger
CN103846638A (en) Heat exchanger and method of manufacturing the same
JP5094771B2 (en) Manufacturing method of heat exchanger and air conditioner using the heat exchanger
JP2016524122A (en) Heat transfer tube
JP2012247091A (en) Fin and tube type heat exchanger
JP5645852B2 (en) Pipe joint, heat exchanger, and heat exchanger manufacturing method
JP2018112363A (en) Flat tube, fin tube type heat exchanger, and manufacturing method for fin tube type heat exchanger
KR20140067868A (en) Method for producing heat exchanger
JP6636110B1 (en) Air conditioner equipped with heat exchanger, pipe expansion member, and heat exchanger
WO2020095797A1 (en) Heat exchanger and method for manufacturing heat exchanger
JP2015150566A (en) Tube expansion plug
WO2019131571A1 (en) Header plateless type heat exchanger
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP5062067B2 (en) Heat exchanger
JPH051893A (en) Heat exchanger
JP2007010280A (en) Fin tube type heat exchanger
JP2018155433A (en) Heat exchanger and manufacturing method of heat exchanger
JP2012200769A (en) Flat tube for heat exchanger and method of manufacture the same
JP2013011401A (en) Heat exchanger, refrigeration cycle circuit using the same, refrigerator and air conditioner using the refrigeration cycle circuit

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201222

R151 Written notification of patent or utility model registration

Ref document number: 6815205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250