JP5094771B2 - Manufacturing method of heat exchanger and air conditioner using the heat exchanger - Google Patents

Manufacturing method of heat exchanger and air conditioner using the heat exchanger Download PDF

Info

Publication number
JP5094771B2
JP5094771B2 JP2009063005A JP2009063005A JP5094771B2 JP 5094771 B2 JP5094771 B2 JP 5094771B2 JP 2009063005 A JP2009063005 A JP 2009063005A JP 2009063005 A JP2009063005 A JP 2009063005A JP 5094771 B2 JP5094771 B2 JP 5094771B2
Authority
JP
Japan
Prior art keywords
tube
heat transfer
jig
heat exchanger
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009063005A
Other languages
Japanese (ja)
Other versions
JP2010214404A (en
Inventor
相武 李
晃 石橋
拓也 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009063005A priority Critical patent/JP5094771B2/en
Publication of JP2010214404A publication Critical patent/JP2010214404A/en
Application granted granted Critical
Publication of JP5094771B2 publication Critical patent/JP5094771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements

Description

本発明は、例えば冷蔵庫用熱交換器、空気調和機用熱交換器等の熱交換器の製造方法に関し、特に複数重合された放熱フィンに挿通された伝熱管を備えた熱交換器の製造方法に関する。   The present invention relates to a method for manufacturing a heat exchanger such as a heat exchanger for a refrigerator, a heat exchanger for an air conditioner, and the like, and in particular, a method for manufacturing a heat exchanger including a heat transfer tube inserted through a plurality of radiating fins. About.

従来、熱交換器の製造方法として例えば「所定間隔を有して複数重合された放熱フィンに一定の長さを有した直管を挿通し、その後該直管の一端側を、少なくとも一対の挟持体で挟持して保持し、その後該一端側と反する他端側の管口部から拡管用マンドレルを所定寸法で圧入して所定長の拡管部を形成し、その後該拡管部の周面部を管口部側から進出する拡縮自在な複数の掴持体によって夫々の掴持体間に所定量の隙間が形成されるべく掴持し、その後前記拡管用マンドレルを前記一端側へと前進させて直管を拡管し熱交換器を製造する…」が提案されている(例えば、特許文献1参照)。   Conventionally, as a method of manufacturing a heat exchanger, for example, “a straight pipe having a certain length is inserted into a plurality of radiating fins that are superposed at a predetermined interval, and then one end side of the straight pipe is sandwiched by at least a pair of Then, a mandrel for tube expansion is press-fitted with a predetermined size from a tube port portion on the other end side opposite to the one end side to form a tube expansion portion of a predetermined length, and then the peripheral surface portion of the tube expansion portion is tubed A plurality of expandable / contractible gripping bodies advancing from the mouth side are gripped so that a predetermined amount of gap is formed between the gripping bodies, and then the tube expansion mandrel is moved forward to the one end side. A pipe is expanded and a heat exchanger is manufactured ... "(for example, refer patent document 1).

特開平9−192766号公報(第8頁、図1−2)Japanese Patent Laid-Open No. 9-192766 (page 8, FIG. 1-2)

特許文献1の熱交換器の製造方法においては、伝熱管が細径化した場合、マンドレルを伝熱管の他端側へと前進させて伝熱管を拡径させると挿入力が増加してマンドレルが変形し、伝熱管を放熱フィンに接合させることが出来ないという問題点があった。   In the heat exchanger manufacturing method of Patent Document 1, when the heat transfer tube is reduced in diameter, if the mandrel is advanced to the other end side of the heat transfer tube to expand the diameter of the heat transfer tube, the insertion force increases and the mandrel is There was a problem that the heat transfer tube could not be joined to the radiating fin due to deformation.

本発明は、上記の課題を解決するためになされたものであり、伝熱管を拡径させてもマンドレルの変形が発生せず、伝熱管を放熱フィンに接合させることにより伝熱管と放熱フィンとの密着性を改善した熱交換器の製造方法を提供することを目的とする。   The present invention has been made to solve the above-described problems. Even if the diameter of the heat transfer tube is increased, the mandrel is not deformed, and the heat transfer tube and the heat dissipation fin are joined by joining the heat transfer tube to the heat dissipation fin. An object of the present invention is to provide a method for producing a heat exchanger with improved adhesion.

本発明に係る熱交換器の製造方法は、円すい台形状からなり頭部にマンドレルが接合された第1の治具と、円筒部と、円筒部の下端に設けられた外方側に開放可能な複数の管当接部材とを有する第2の治具とを備え、伝熱管の一端側の管口から、前記第1の治具と前記第2の治具を分離した状態で挿入する工程と、前記伝熱管の他端側の管終部で、一旦前記マンドレルを引き上げて前記第1の治具を前記第2の治具の中に挿入させ、前記第2の治具の管当接部材が外方側に開放された状態でさらに前記マンドレルを引き上げることで前記伝熱管を拡径させていき、前記伝熱管を放熱フィンに一体に固定する工程とを有し、前記第1の治具の側面には均等な間隔で複数の凹部が設けられ、前記第2の治具の管当接部材内面には前記凹部と係合可能な複数の凸部が設けられ、前記第1の治具の凹部と前記第2の治具の凸部が係合することで、前記第2の治具の管当接部材が管径方向に均等に拡張されることを特徴とする。 The heat exchanger manufacturing method according to the present invention can be opened to the outer side provided at the lower end of the first jig having a conical trapezoidal shape with a mandrel joined to the head, the cylindrical portion, and the lower end of the cylindrical portion. step and a second jig is inserted from one end of the tube inlet of the heat transfer tubes, while separating the second jig between said first jig and a plurality of tubes abutting member such When the other end side of the tube end portion of the heat transfer tube, once said pulling mandrel is inserted the first jig in the second jig, the tube of the second jig abutment member will then expanded the heat transfer tube by pulling further the mandrel while being open to the outer side, have a and fixing together the heat transfer tubes in the heat radiation fins, said first jig A plurality of recesses are provided at equal intervals on the side surface of the tool, and the inner surface of the tube contact member of the second jig can be engaged with the recesses. A plurality of convex portions are provided, and the concave portion of the first jig and the convex portion of the second jig are engaged with each other, so that the pipe contact member of the second jig is arranged in the pipe radial direction. It is characterized by being evenly expanded .

また、本発明に係る空気調和機は、作動流体に冷媒を用い、蒸発器又は凝縮器の両者又はいずれか一方に上記の熱交換器を用いたものである。   Moreover, the air conditioner which concerns on this invention uses a refrigerant | coolant for a working fluid, and uses said heat exchanger for both or one of an evaporator and a condenser.

本発明によれば、伝熱性能が優れた細径化した伝熱管を用いた場合でもマンドレルが変形せず、伝熱管と放熱フィンとの密着性が悪化することなく伝熱管を放熱フィンに接合することができる。   According to the present invention, even when using a heat transfer tube with a reduced diameter and excellent heat transfer performance, the mandrel is not deformed, and the heat transfer tube is joined to the heat dissipation fin without deteriorating the adhesion between the heat transfer tube and the heat dissipation fin. can do.

本発明の実施の形態1に係る熱交換器の断面図である。It is sectional drawing of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る第1の治具(図4(a)参照)と、第2の治具の管当接部材(図4(b)参照)の正面図である。It is a front view of the 1st jig | tool (refer FIG. 4A) which concerns on Embodiment 1 of this invention, and the pipe contact member (refer FIG. 4B) of a 2nd jig | tool. 第1の治具と第2の治具とが係合した状態の正面図及び斜視図である。It is the front view and perspective view of the state which the 1st jig | tool and the 2nd jig | tool engaged. 本発明の実施の形態2に係る第2の治具の管当接部材の正面図である。It is a front view of the pipe contact member of the 2nd jig | tool which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る第2の治具の管当接部材の正面図である。It is a front view of the pipe contact member of the 2nd jig | tool which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る第2の治具の管当接部材の正面図である。It is a front view of the pipe contact member of the 2nd jig | tool which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る熱交換器の正面図である。It is a front view of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る熱交換器の伝熱管の正面図である。It is a front view of the heat exchanger tube of the heat exchanger which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る第2の治具の管当接部材の正面図である。It is a front view of the pipe contact member of the 2nd jig | tool which concerns on Embodiment 4 of this invention. 本発明の実施の形態4に係る第2の治具の管当接部材の正面図である。It is a front view of the pipe contact member of the 2nd jig | tool which concerns on Embodiment 4 of this invention.

実施の形態1.
図1は、本発明の実施の形態1に係る熱交換器の断面図である。図1(a)において、2はフィン及びエンドプレートを示す。上記フィン2は、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金等の金属板からなる(他の実施の形態においても同様である)。フィン2の垂直方向には伝熱管3が設けられており、伝熱管3は図の左右方向(以下、長手方向という。)の中央部で、所定の曲げピッチでヘアピン状に曲げ加工されたものである。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view of a heat exchanger according to Embodiment 1 of the present invention. In FIG. 1 (a), 2 shows a fin and an end plate. The fin 2 is made of a metal plate such as copper, a copper alloy, aluminum, or an aluminum alloy (the same applies to other embodiments). A heat transfer tube 3 is provided in the vertical direction of the fin 2, and the heat transfer tube 3 is bent in a hairpin shape at a predetermined bending pitch at the center in the left-right direction (hereinafter referred to as the longitudinal direction) in the figure. It is.

本発明で伝熱管の拡径に使用する治具は、円すい台形状からなり頭部にマンドレル43が接合された第1の治具41と、円筒部51と円筒部51の下端に設けられた外方側に開放可能な複数の管当接部材52とを有する第2の治具42とである。   The jig used for expanding the diameter of the heat transfer tube in the present invention is provided in the first jig 41 having a conical trapezoidal shape with the mandrel 43 joined to the head, the cylindrical portion 51 and the lower end of the cylindrical portion 51. And a second jig 42 having a plurality of pipe contact members 52 that can be opened outward.

次に、伝熱管の拡径の工程について説明する。
まず、伝熱管3の一端側の管口から、第1の治具41と第2の治具42とを分離した状態で挿入する。拡管を始める際は、伝熱管3の他端側の管終部で一旦マンドレル43を引き上げて、第1の治具41を第2の治具42の中に挿入させ、第2の治具42の管当接部材52が外方側に開放された状態をつくる。この状態でさらにマンドレル43を引き上げることで伝熱管3を徐々に拡径させていき、伝熱管3を放熱フィン2に一体に固定することができる。図1(d)は伝熱管3の拡径が終了し、伝熱管3が前記フィン2に一体に固定された状態を示したものである。
Next, a process for expanding the diameter of the heat transfer tube will be described.
First, the 1st jig | tool 41 and the 2nd jig | tool 42 are inserted in the state isolate | separated from the pipe port of the one end side of the heat exchanger tube 3. FIG. When starting the expansion, the mandrel 43 is once pulled up at the end of the tube on the other end side of the heat transfer tube 3, and the first jig 41 is inserted into the second jig 42. The tube contact member 52 is opened outward. By further pulling up the mandrel 43 in this state, the diameter of the heat transfer tube 3 can be gradually increased, and the heat transfer tube 3 can be fixed integrally to the radiation fins 2. FIG. 1 (d) shows a state where the diameter expansion of the heat transfer tube 3 has been completed and the heat transfer tube 3 is integrally fixed to the fin 2.

伝熱管の拡径後、第1の治具41及び第2の治具42を抜き取る方法について説明する。伝熱管3の最終部の拡径後には、第1の治具41のマンドレル43を引っ張る力を解除することで、第2の治具42の管当接部材52自体が内方側に戻る力を有し、第1の治具41と第2の治具42とが分離される。また、第2の治具42の外表面に適当な径の円筒をかぶせることで第2の治具42の管当接部材52を内方側にたたみ、確実に第1の治具41と第2の治具42とを分離することができる。そして、第1の治具41及び第2の治具42を分離させた状態で、伝熱管の管口から抜き取る。   A method of extracting the first jig 41 and the second jig 42 after expanding the diameter of the heat transfer tube will be described. After the diameter of the final portion of the heat transfer tube 3 is increased, the force that pulls the mandrel 43 of the first jig 41 is released, so that the tube contact member 52 itself of the second jig 42 returns to the inward side. And the first jig 41 and the second jig 42 are separated. Further, by covering the outer surface of the second jig 42 with a cylinder having an appropriate diameter, the tube contact member 52 of the second jig 42 is folded inward, and the first jig 41 and the second jig 42 are surely connected. The two jigs 42 can be separated. And in the state which isolate | separated the 1st jig | tool 41 and the 2nd jig | tool 42, it extracts from the pipe port of a heat exchanger tube.

次に、伝熱管3の配置、材質及び内面形状について説明する。
図2において、伝熱管3の直管の段方向の間隔は、直管の外径の2倍となっている。また、伝熱管3の直管を拡径した後の外径をDとする。ここで伝熱管3は、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金などの金属材料からなる(他の実施の形態においても同様である)。次に図3に示すように、伝熱管3は内面に溝無又は溝(突条31)が形成されており、管軸方向と突条31が延びる方向とがある角度を成している。図3(b)は突条31の形状が全て同じ場合を、図3(c)は突条31の形状を周期的に変えて配置した場合を示している。
Next, the arrangement, material, and inner surface shape of the heat transfer tube 3 will be described.
In FIG. 2, the interval in the step direction of the straight pipe of the heat transfer pipe 3 is twice the outer diameter of the straight pipe. Further, D is an outer diameter after the diameter of the straight pipe of the heat transfer tube 3 is expanded. Here, the heat transfer tube 3 is made of a metal material such as copper, a copper alloy, aluminum, or an aluminum alloy (the same applies to other embodiments). Next, as shown in FIG. 3, the heat transfer tube 3 is formed with no grooves or grooves (projections 31) on the inner surface, and forms an angle between the tube axis direction and the direction in which the projections 31 extend. FIG. 3B shows a case where the shapes of the ridges 31 are all the same, and FIG. 3C shows a case where the shape of the ridges 31 is periodically changed.

このような伝熱管3の拡径後の外径Dは8.4mm以下にすることが好ましい。その理由として、従来の圧入拡管方式では、外径が8.4mm以下の場合で拡管用マンドレル43の挿入力が増加し、拡管用マンドレル43の座屈が発生してしまう。また、外径が8.4mmを超えると、従来の圧入拡管方式で対応が可能となる。   The outer diameter D of the heat transfer tube 3 after the diameter expansion is preferably set to 8.4 mm or less. The reason for this is that, in the conventional press-fitting tube expansion method, when the outer diameter is 8.4 mm or less, the insertion force of the tube expansion mandrel 43 increases, and the tube expansion mandrel 43 buckles. Moreover, when the outer diameter exceeds 8.4 mm, it is possible to cope with the conventional press-fitting and expanding method.

続いて、上記のような伝熱管3を拡径する治具の一例について説明する。
拡管に用いる治具は、第1の治具41(図4(a)参照)と第2の治具42とから構成される。第2の治具は、図5に示すように円筒部51と管当接部材52とを備えている。
Then, an example of the jig | tool which expands the diameter of the above heat exchanger tubes 3 is demonstrated.
The jig used for the tube expansion is composed of a first jig 41 (see FIG. 4A) and a second jig 42. As shown in FIG. 5, the second jig includes a cylindrical portion 51 and a tube contact member 52.

伝熱管3の管終部で一旦マンドレル43を引き上げることで、第1の治具41の外面凹部44と管当接部材52の内面凸部45とが係合する。すると、第2の治具42の管当接部材52が外方側に開放された状態となるので、この状態でマンドレル43を徐々に引き上げると伝熱管3が拡径され、伝熱管3は前記フィン2に一体に固定される。図5は拡管後の第1の治具41と管当接部材52との係合状態を示す。   By pulling up the mandrel 43 once at the tube end of the heat transfer tube 3, the outer surface concave portion 44 of the first jig 41 and the inner surface convex portion 45 of the tube contact member 52 are engaged. Then, since the tube contact member 52 of the second jig 42 is opened outward, in this state, when the mandrel 43 is gradually pulled up, the heat transfer tube 3 is expanded in diameter, and the heat transfer tube 3 is The fin 2 is integrally fixed. FIG. 5 shows an engaged state between the first jig 41 and the tube contact member 52 after the tube expansion.

予め、外面凹部44及び内面凸部45を設けておき、それらを係合させることの利点は、第2の治具42の管当接部材52が管径方向に均等に拡張されるという点である。すると、伝熱管3の拡径を均等にムラ無く行うことができる。また、第1の治具41の内面凹部44は2個以上から8個以下にすることが好ましい。   The advantage of providing the outer surface concave portion 44 and the inner surface convex portion 45 in advance and engaging them is that the tube contact member 52 of the second jig 42 is evenly expanded in the tube diameter direction. is there. As a result, the diameter of the heat transfer tube 3 can be evenly and uniformly distributed. Further, it is preferable that the inner surface recess 44 of the first jig 41 is 2 or more and 8 or less.

実施の形態2.
図6は、本実施の形態2における、伝熱管3を拡径する際に用いる治具の他の例を示す説明図である。
第2の治具42の管当接部材52の外面に突起部46を設けることで、伝熱管3の内面に溝を付け、管内の伝熱面積を拡大することができる。これにより伝熱管3の管内性能が増加する。
Embodiment 2. FIG.
FIG. 6 is an explanatory view showing another example of a jig used for expanding the diameter of the heat transfer tube 3 in the second embodiment.
By providing the protrusion 46 on the outer surface of the tube abutting member 52 of the second jig 42, a groove can be formed on the inner surface of the heat transfer tube 3 to increase the heat transfer area in the tube. Thereby, the in-pipe performance of the heat transfer tube 3 increases.

実施の形態3.
図7は、本実施の形態3の伝熱管3の他の例を示す説明図である。
図7は、本実施の形態3に係るフィンアンドチューブ型熱交換器の伝熱管3における管軸方向に垂直な断面を示す断面図である。本実施形態のフィン2は銅若しくは銅合金又はアルミ若しくはアルミ合金等の金属材料からなり、フィン内面が曲面の凹凸を連続させている形状である。
Embodiment 3 FIG.
FIG. 7 is an explanatory view showing another example of the heat transfer tube 3 of the third embodiment.
FIG. 7 is a cross-sectional view showing a cross section perpendicular to the tube axis direction in the heat transfer tube 3 of the fin-and-tube heat exchanger according to the third embodiment. The fin 2 of the present embodiment is made of a metal material such as copper, a copper alloy, aluminum, or an aluminum alloy, and has a shape in which the inner surface of the fin has continuous curved irregularities.

図8は、各伝熱管3における管軸方向に垂直な断面を示す断面図である。
図8(a)は内径dの各冷媒流路32a〜32dの内壁面に所定の間隔で、管軸方向に平行して断面がほぼ四角形状の複数の突条31を延設したものである。図8(b)は冷媒流路32a〜32dのうち、空気の流入方向の下流側の冷媒流路32c、32dの内周壁に、図8(a)の場合と同様に所定の間隔で管軸方向に平行な複数の突条31を延設したものである。図8(c)は下流側の冷媒流路32c、32dの内径d1を、上流側の冷媒流路32a、32bの内径dよりも小さく、d1<dに形成するとともに、上流側の冷媒流路32a、32bの内周壁と、下流側の冷媒流路32c、32dの内周壁に、図8(a)の場合と同様に、所定の間隔で管軸方向に平行な複数の突条31、31aをそれぞれ延設したものである。図8(d)は下流側の冷媒流路32c、32dの内径d1を、上流側の冷媒流路32a、32bの内径dよりも小さく、d1<dに形成するとともに、下流側の冷媒流路32c、32dの内周壁に、所定の間隔で管軸方向に平行な複数の突条31aを延設したものである。
FIG. 8 is a cross-sectional view showing a cross section perpendicular to the tube axis direction in each heat transfer tube 3.
FIG. 8A shows a plurality of protrusions 31 having a substantially rectangular cross section extending in parallel to the tube axis direction at predetermined intervals on the inner wall surfaces of the refrigerant flow paths 32a to 32d having an inner diameter d. . FIG. 8B shows the pipe shafts at predetermined intervals on the inner peripheral walls of the refrigerant flow paths 32c and 32d on the downstream side in the air inflow direction among the refrigerant flow paths 32a to 32d as in the case of FIG. 8A. A plurality of protrusions 31 parallel to the direction are extended. FIG. 8 (c) downstream of the coolant channel 32c, and the inner diameter d 1 of the 32d, the upstream side of the coolant channel 32a, smaller than the inner diameter d of 32b, and forming the d 1 <d, the upstream-side refrigerant A plurality of ridges 31 parallel to the pipe axis direction at predetermined intervals on the inner peripheral walls of the flow paths 32a and 32b and the inner peripheral walls of the downstream refrigerant flow paths 32c and 32d, as in FIG. , 31a are respectively extended. Figure 8 (d) the downstream side of the coolant channel 32c, and the inner diameter d 1 of the 32d, the upstream side of the coolant channel 32a, smaller than the inner diameter d of 32b, and forming the d 1 <d, the refrigerant on the downstream side of A plurality of protrusions 31a extending in parallel to the pipe axis direction are provided at predetermined intervals on the inner peripheral walls of the flow paths 32c and 32d.

本実施の形態3の伝熱管3は、銅若しくは銅合金又はアルミ若しくはアルミ合金等の金属材料からなる。また伝熱管3は、管外面が曲面の凹凸を連続させている形状であり、前記外面形状は左右対称であって、前記管外面における管軸方向に平行な管が連結されている。これにより、伝熱管3を細径化する際に伝熱管3の加工コストが低減され、フィン2に伝熱管3を挿入する作業も軽減される。   The heat transfer tube 3 of the third embodiment is made of a metal material such as copper, a copper alloy, aluminum, or an aluminum alloy. In addition, the heat transfer tube 3 has a shape in which the outer surface of the tube has curved curved irregularities, the outer surface shape is bilaterally symmetric, and pipes parallel to the tube axis direction on the outer surface of the tube are connected. Thereby, when the diameter of the heat transfer tube 3 is reduced, the processing cost of the heat transfer tube 3 is reduced, and the work of inserting the heat transfer tube 3 into the fin 2 is also reduced.

本実施の形態3の伝熱管3の内面には、管軸方向に平行な複数の突条31が一定の間隔で形成されており、管軸方向と突条31が延びる方向とがある角度をなす。本実施の形態3の伝熱管3における上記の角度は0°であることが好ましい。角度を0°にすることにより、伝熱管3の管内圧力の損失が増えず、伝熱性能をより向上させることができる。   On the inner surface of the heat transfer tube 3 of the third embodiment, a plurality of ridges 31 parallel to the tube axis direction are formed at regular intervals, and an angle between the tube axis direction and the direction in which the ridges 31 extend is given. Eggplant. The angle in the heat transfer tube 3 of the third embodiment is preferably 0 °. By setting the angle to 0 °, the loss of the pressure in the heat transfer tube 3 does not increase, and the heat transfer performance can be further improved.

また本実施の形態3における、伝熱管3における突条31及び31aの高さは、0.1mmまたは0.3mmであることが好ましい。突条31及び31aの高さを0.1mmまたは0.3mmにすることにより、管内圧力の損失が増えず、伝熱性能をより向上させることができる。   In the third embodiment, the height of the protrusions 31 and 31a in the heat transfer tube 3 is preferably 0.1 mm or 0.3 mm. By setting the height of the protrusions 31 and 31a to 0.1 mm or 0.3 mm, the loss of pressure in the pipe does not increase, and the heat transfer performance can be further improved.

図9及び図10は、本実施の形態3における第2の治具の管当接部材52の例を示す説明図である。伝熱管3の管終部で一旦マンドレル43を引き上げることで、第1の治具41の外面凹部44と管当接部材52の内面凸部45とが係合する。すると、第2の治具42の管当接部材52が外方側に開放された状態となるので、この状態でマンドレル43を徐々に引き上げると伝熱管3が拡径され、伝熱管3は前記フィン2に一体に固定される。   9 and 10 are explanatory views showing an example of the tube contact member 52 of the second jig according to the third embodiment. By pulling up the mandrel 43 once at the tube end of the heat transfer tube 3, the outer surface concave portion 44 of the first jig 41 and the inner surface convex portion 45 of the tube contact member 52 are engaged. Then, since the tube contact member 52 of the second jig 42 is opened outward, in this state, when the mandrel 43 is gradually pulled up, the heat transfer tube 3 is expanded in diameter, and the heat transfer tube 3 is The fin 2 is integrally fixed.

実施の形態4.
図11は、本発明の実施の形態4に係る熱交換器の正面図である。図11において、フィン2は銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金等の金属板からなる。フィン2は空気の流入方向と平行に、かつ図の垂直方向(奥行方向)に所定の間隔で並設され、その上下方向にはフィン2と直交して、後述の伝熱管3が設けられている。
Embodiment 4 FIG.
FIG. 11 is a front view of a heat exchanger according to Embodiment 4 of the present invention. In FIG. 11, the fin 2 is made of a metal plate such as copper, a copper alloy, aluminum, or an aluminum alloy. The fins 2 are arranged in parallel to the air inflow direction and at a predetermined interval in the vertical direction (depth direction) in the figure, and the heat transfer tubes 3 described later are provided in the vertical direction perpendicular to the fins 2. Yes.

図12に示すように、伝熱管3は、銅若しくは銅合金又はアルミニウム若しくはアルミニウム合金等の金属材料からなり、アルミ又はアルミ合金等の金属材料の外表面は亜鉛溶射・拡散処理されている。また伝熱管3は、空気の流入方向に沿って細長く、上下の面が平坦で、断面はほぼ小判状に形成されている。そして長手方向の両側には、断面が円形の第1、第2の冷媒流路32a、32bが管軸方向に平行に設けられている。また、ほぼ半円状の第1、第2の冷媒流路32a、32bの内壁面には、所定の間隔で管軸方向に断面がほぼ四角形状の複数の突条31が設けられている。   As shown in FIG. 12, the heat transfer tube 3 is made of a metal material such as copper, copper alloy, aluminum, or aluminum alloy, and the outer surface of the metal material such as aluminum or aluminum alloy is subjected to zinc spraying / diffusion treatment. The heat transfer tube 3 is elongated along the air inflow direction, the upper and lower surfaces are flat, and the cross section is formed in a substantially oval shape. On both sides in the longitudinal direction, first and second refrigerant channels 32a and 32b having a circular cross section are provided in parallel to the tube axis direction. Further, a plurality of protrusions 31 having a substantially square cross section in the tube axis direction are provided at predetermined intervals on the inner wall surfaces of the substantially semicircular first and second refrigerant flow paths 32a and 32b.

図12に示すように、本実施の形態4の伝熱管3においては、拡径後の突条31の高さh(突出長)が高い程、その熱伝達率も高くなる。しかしながら、拡径後の突条31の高さhが0.3mmを超えると、熱伝達率の増加量よりも圧力損失の増加量の方が多くなり、結果として、熱交換率が低下する。一方、拡径後の突条31の高さhが0.1mm未満の場合、熱伝達率が向上しない。よって、本実施の形態4の伝熱管3においては、拡径後の突条31の高さh(突出長)は、0.1〜0.3mm程度とすることが望ましい。なお、突条31の断面形状は四角形状に限定するものではなく、三角形状、台形状または半円形状等、適宜の断面形状とすることができる。   As shown in FIG. 12, in the heat transfer tube 3 of the fourth embodiment, the heat transfer coefficient increases as the height h (projection length) of the protrusion 31 after diameter expansion increases. However, when the height h of the protrusion 31 after diameter expansion exceeds 0.3 mm, the amount of increase in pressure loss is greater than the amount of increase in heat transfer coefficient, and as a result, the heat exchange rate decreases. On the other hand, when the height h of the ridge 31 after the diameter expansion is less than 0.1 mm, the heat transfer rate is not improved. Therefore, in the heat transfer tube 3 of the fourth embodiment, it is desirable that the height h (projection length) of the protrusion 31 after the diameter expansion is about 0.1 to 0.3 mm. In addition, the cross-sectional shape of the protrusion 31 is not limited to a quadrangular shape, and may be an appropriate cross-sectional shape such as a triangular shape, a trapezoidal shape, or a semicircular shape.

図13及び図14は、本実施の形態3における第2の治具の管当接部材52の別の例を示す説明図である。伝熱管3の管終部で一旦マンドレル43を引き上げることで、第1の治具41の外面凹部44と管当接部材52の内面凸部45とが係合する。すると、第2の治具42の管当接部材52が外方側に開放された状態となるので、この状態でマンドレル43を徐々に引き上げると伝熱管3が拡径され、伝熱管3は前記フィン2に一体に固定される。   13 and 14 are explanatory views showing another example of the tube contact member 52 of the second jig according to the third embodiment. By pulling up the mandrel 43 once at the tube end of the heat transfer tube 3, the outer surface concave portion 44 of the first jig 41 and the inner surface convex portion 45 of the tube contact member 52 are engaged. Then, since the tube contact member 52 of the second jig 42 is opened outward, in this state, when the mandrel 43 is gradually pulled up, the heat transfer tube 3 is expanded in diameter, and the heat transfer tube 3 is The fin 2 is integrally fixed.

実施の形態5.
実施の形態1においては、伝熱管3の拡径によってフィン2と伝熱管3とを接合させた場合を示したが、本実施の形態5ではさらに、熱交換器1における伝熱管3の拡管率を規定したものである。
Embodiment 5 FIG.
In Embodiment 1, although the case where the fin 2 and the heat transfer tube 3 were joined by the diameter expansion of the heat transfer tube 3 was shown, in this Embodiment 5, the tube expansion rate of the heat transfer tube 3 in the heat exchanger 1 is further shown. Is specified.

本実施の形態5では、伝熱管3を機械拡管方式により拡管する際の拡管率を、熱交換器1の伝熱管3で105.5%〜107.5%とする。これにより、熱交換器1における伝熱管3とフィン2の密着性を改善して、高効率の熱交換器1を得る。しかしながら、熱交換器1における伝熱管3の拡管率が107.5%以上になると、山頂部での潰れとフィンカラー割れが発生し、伝熱管3とフィン2の密着性が悪化する。一方、熱交換器1における伝熱管3の拡管率が105.5%未満の場合は、伝熱管3とフィン2の密着性が悪く、高い熱交換率が得られない。
よって、本実施の形態5のヘアピン管を拡管する際の拡管率を、熱交換器1の伝熱管3で105.5%〜107.5%と規定する。
こうして拡管率を規定すると、製品にばらつきが発生しない。
In the fifth embodiment, the expansion rate when the heat transfer tube 3 is expanded by the mechanical tube expansion method is set to 105.5% to 107.5% in the heat transfer tube 3 of the heat exchanger 1. Thereby, the adhesiveness of the heat exchanger tube 3 and the fin 2 in the heat exchanger 1 is improved, and the highly efficient heat exchanger 1 is obtained. However, when the expansion ratio of the heat transfer tube 3 in the heat exchanger 1 is 107.5% or more, crushing at the summit and fin color cracks occur, and the adhesion between the heat transfer tube 3 and the fin 2 deteriorates. On the other hand, when the expansion ratio of the heat transfer tubes 3 in the heat exchanger 1 is less than 105.5%, the adhesion between the heat transfer tubes 3 and the fins 2 is poor, and a high heat exchange rate cannot be obtained.
Therefore, the tube expansion rate when the hairpin tube of the fifth embodiment is expanded is defined as 105.5% to 107.5% in the heat transfer tube 3 of the heat exchanger 1.
If the expansion ratio is defined in this way, there will be no variation in the product.

なお、実施の形態1及び5においては、伝熱管3の拡管のみによってフィン2とヘアピン管(伝熱管3)とを接合するようにしているが、接合後に、さらにロウ付けによって完全接着するようにしてもよく、これにより信頼性をさらに高めることができる。   In the first and fifth embodiments, the fin 2 and the hairpin tube (heat transfer tube 3) are joined only by expanding the heat transfer tube 3. However, after joining, the fin 2 and the hairpin tube are further bonded by brazing. This may further increase the reliability.

上記のように構成した熱交換器1は、圧縮機、凝縮器、絞り装置及び蒸発器を順次配管によって接続し、冷媒を作動流体として用いた冷凍サイクルにおいて、上記の蒸発器または凝縮器として設けられる。その際の冷媒として例えば、HC単一冷媒若しくはHC冷媒を含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペン(例えば2,3,3,3−テトラフルオロプロペン)または二酸化炭素等のいずれかを使用する。   The heat exchanger 1 configured as described above is provided as the evaporator or the condenser in the refrigeration cycle in which the compressor, the condenser, the expansion device, and the evaporator are sequentially connected by piping and the refrigerant is used as the working fluid. It is done. As the refrigerant at that time, for example, HC single refrigerant or a mixed refrigerant containing HC refrigerant, R32, R410A, R407C, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene), carbon dioxide, or the like is used. use.

本実施の形態5によれば、伝熱性能が優れた細径化した伝熱管3を用いてもマンドレル43が変形せず、伝熱管3と放熱フィン2との密着性が悪化することなく、伝熱管3を放熱フィン2に接合させることができるので、空気調和機にも利用可能な熱交換効率を向上させた高能率の熱交換器1を得ることができる。   According to the fifth embodiment, the mandrel 43 is not deformed even if the heat transfer tube 3 having a small diameter and excellent heat transfer performance is used, and the adhesion between the heat transfer tube 3 and the radiation fin 2 is not deteriorated. Since the heat transfer tubes 3 can be joined to the radiating fins 2, the highly efficient heat exchanger 1 with improved heat exchange efficiency that can also be used in an air conditioner can be obtained.

また、第2の治具42の管当接部材52に外面突起46を設けることで、冷媒との接触面積が増大し、かつ突条31及び31aの高さhを0.1〜0.3mm程度としたので、流路内圧力が増大することなく、伝熱性能をより向上することができる。   Moreover, by providing the outer surface protrusion 46 on the tube contact member 52 of the second jig 42, the contact area with the refrigerant increases, and the height h of the protrusions 31 and 31a is 0.1 to 0.3 mm. Therefore, the heat transfer performance can be further improved without increasing the pressure in the flow path.

1 熱交換器、2 放熱フィン、3 伝熱管、31,31a 突条、32a,32b, 32c,32d 第1、第2、第3、第4の冷媒流路、41 第1の治具、42 第2の治具、43 マンドレル、44 第1の治具の外面凹部、45 第2の治具の管当接部材の内面凸部、46 第2の治具の管当接部材の外面突起、51 第2の治具の円筒部、52 第2の治具の管当接部材。   DESCRIPTION OF SYMBOLS 1 Heat exchanger, 2 Radiation fin, 3 Heat exchanger tube, 31 and 31a protrusion, 32a, 32b, 32c, 32d 1st, 2nd, 3rd, 4th refrigerant | coolant flow path, 41 1st jig | tool, 42 Second jig, 43 mandrel, 44 outer surface concave portion of the first jig, 45 inner surface convex portion of the tube contact member of the second jig, 46 outer surface protrusion of the tube contact member of the second jig, 51 Cylindrical portion of the second jig, 52 Pipe contact member of the second jig.

Claims (12)

円すい台形状からなり頭部にマンドレルが接合された第1の治具と、
円筒部と、円筒部の下端に設けられた外方側に開放可能な複数の管当接部材とを有する第2の治具とを備え、
伝熱管の一端側の管口から、前記第1の治具と前記第2の治具を分離した状態で挿入する工程と、
前記伝熱管の他端側の管終部で、一旦前記マンドレルを引き上げて前記第1の治具を前記第2の治具の中に挿入させ、前記第2の治具の管当接部材が外方側に開放された状態でさらに前記マンドレルを引き上げることで前記伝熱管を拡径させていき、前記伝熱管を放熱フィンに一体に固定する工程とを有し、
前記第1の治具の側面には均等な間隔で複数の凹部が設けられ、
前記第2の治具の管当接部材内面には前記凹部と係合可能な複数の凸部が設けられ、
前記第1の治具の凹部と前記第2の治具の凸部が係合することで、前記第2の治具の管当接部材が管径方向に均等に拡張されること
を特徴とする熱交換器の製造方法。
A first jig having a conical trapezoidal shape and having a mandrel joined to the head;
A second jig having a cylindrical portion and a plurality of tube abutting members that can be opened outwardly provided at the lower end of the cylindrical portion;
Inserting the first jig and the second jig in a state of being separated from a tube port on one end side of the heat transfer pipe;
At the end of the tube on the other end side of the heat transfer tube, the mandrel is once pulled up to insert the first jig into the second jig, and the tube abutting member of the second jig is Further expanding the diameter of the heat transfer tube by pulling up the mandrel in a state opened to the outer side, and fixing the heat transfer tube to a radiation fin integrally.
A plurality of recesses are provided at equal intervals on the side surface of the first jig,
A plurality of convex portions that can be engaged with the concave portions are provided on the inner surface of the tube contact member of the second jig,
By projecting portion of the second jig and the recess of the first jig is engaged, and wherein the second jig tube abutment member is evenly expanded pipe diameter direction A method for manufacturing a heat exchanger.
前記伝熱管は、長手方向の中央部で所定の曲げピッチでヘアピン状に曲げ加工され、これらのヘアピン管を、所定の間隔をおいて相互に平行に配置した複数枚のフィンに挿通すること
を特徴とする請求項1記載の熱交換器の製造方法。
The heat transfer tube is bent into a hairpin shape at a predetermined bending pitch at the center in the longitudinal direction, and these hairpin tubes are inserted through a plurality of fins arranged in parallel with each other at a predetermined interval. The method for manufacturing a heat exchanger according to claim 1, characterized in that:
前記伝熱管は、相互に平行に配置した複数枚のフィンに対し、直管を外径の2倍の間隔をおいて挿通させること
を特徴とする請求項1記載の熱交換器の製造方法。
2. The method of manufacturing a heat exchanger according to claim 1, wherein the heat transfer tube is inserted into a plurality of fins arranged in parallel with each other with a straight tube inserted at an interval twice the outer diameter.
前記第2の治具の管当接部材の外面に突起部を設けることで、伝熱管の内面山部に溝を付けて、管内の伝熱面積を拡大すること
を特徴とする請求項1記載の熱交換器の製造方法。
2. The heat transfer area in the tube is expanded by providing a protrusion on the outer surface of the tube abutting member of the second jig so that a groove is formed in the inner surface peak portion of the heat transfer tube. Method of manufacturing a heat exchanger.
前記伝熱管は外周面が左右対称の凹凸状に形成され、長手方向に所定の間隔で軸方向に複数の円筒状の冷媒流路が設けられ、
長手方向の中央部で所定の曲げピッチでヘアピン状に曲げ加工されたものであり、これらのヘアピン管を、所定の間隔をおいて相互に平行に配置した複数枚のフィンに挿通すること、また前記伝熱管は、その内面には、管軸方向に平行な複数の突条が一定の間隔で形成されており、管軸方向と突条が延びる方向とである角度を成していること
を特徴とする請求項1記載の熱交換器の製造方法。
The outer surface of the heat transfer tube is formed in a symmetrical uneven shape, and a plurality of cylindrical refrigerant channels are provided in the axial direction at predetermined intervals in the longitudinal direction,
It is bent into a hairpin shape at a predetermined bending pitch at the center in the longitudinal direction, and these hairpin tubes are inserted through a plurality of fins arranged in parallel with each other at a predetermined interval. In the heat transfer tube, a plurality of protrusions parallel to the tube axis direction are formed on the inner surface at regular intervals, and an angle between the tube axis direction and the direction in which the protrusions extend is formed. The method for manufacturing a heat exchanger according to claim 1, characterized in that:
前記伝熱管は管外面が平坦で、管外面における管軸方向に平行な冷媒流路の穴数が2個であり、風上流側と風下流側には半円弧の第1、第2の冷媒流路が形成され、
長手方向の中央部で所定の曲げピッチでヘアピン状に曲げ加工され、これらのヘアピン管を、所定の間隔をおいて相互に平行に配置した複数枚のフィンに挿通すること、また前記伝熱管は、その内面には、管軸方向に平行な複数の突条が一定の間隔で形成されており、管軸方向と突条が延びる方向とである角度を成していること
を特徴とする請求項1記載の熱交換器の製造方法。
The heat transfer tube has a flat tube outer surface, the number of holes in the refrigerant flow path parallel to the tube axis direction on the tube outer surface is two, and the first and second refrigerants are semicircular on the wind upstream side and the wind downstream side. A flow path is formed,
The hairpin tube is bent into a hairpin shape at a predetermined bending pitch at the center in the longitudinal direction, and these hairpin tubes are inserted through a plurality of fins arranged in parallel with each other at a predetermined interval. A plurality of protrusions parallel to the tube axis direction are formed on the inner surface at regular intervals, and an angle between the tube axis direction and the direction in which the protrusions extend is formed. The manufacturing method of the heat exchanger of claim | item 1.
拡管により接合された前記伝熱管と前記フィンが、ロウ付けによって接着されていること
を特徴とする請求項1記載の熱交換器の製造方法。
The method for manufacturing a heat exchanger according to claim 1, wherein the heat transfer tubes and the fins joined by expansion are bonded by brazing.
機械拡管方式による前記伝熱管の拡管率が、105.5%〜107.5%であること
を特徴とする請求項1記載の熱交換器の製造方法。
The method for manufacturing a heat exchanger according to claim 1, wherein a tube expansion rate of the heat transfer tube by a mechanical tube expansion method is 105.5% to 107.5%.
前記伝熱管を、銅又は銅合金並びにアルミ又はアルミ合金等の金属材料により形成し、アルミ又はアルミ合金等の金属材料の外表面は亜鉛溶射・拡散処理されていること
を特徴とする請求項1〜のいずれかに記載の熱交換器の製造方法。
2. The heat transfer tube is formed of copper or a copper alloy and a metal material such as aluminum or aluminum alloy, and the outer surface of the metal material such as aluminum or aluminum alloy is subjected to zinc spraying / diffusion treatment. the method for manufacturing a heat exchanger as claimed in any one of 1-8.
圧縮機、凝縮器、絞り装置及び蒸発器を順次配管によって接続し、冷媒を作動流体として用いた冷凍サイクルにおいて、前記熱交換器を前記蒸発器または凝縮器として用いたこと
を特徴とする請求項1〜のいずれかに記載の熱交換器の製造方法。
The compressor, the condenser, the expansion device, and the evaporator are sequentially connected by piping, and the heat exchanger is used as the evaporator or the condenser in a refrigeration cycle using a refrigerant as a working fluid. the method for manufacturing a heat exchanger as claimed in any one of 1-9.
前記冷媒として、HC単一冷媒若しくはHC冷媒を含む混合冷媒、R32、R410A、R407C、テトラフルオロプロペン(例えば2,3,3,3−テトラフルオロプロペン)または二酸化炭素のいずれかを用いること
を特徴とする請求項10記載の熱交換器の製造方法。
As the refrigerant, any one of HC single refrigerant or a mixed refrigerant containing HC refrigerant, R32, R410A, R407C, tetrafluoropropene (for example, 2,3,3,3-tetrafluoropropene) or carbon dioxide is used. The method for manufacturing a heat exchanger according to claim 10 .
請求項1〜11のいずれかに記載の熱交換器を用いたこと
を特徴とする空気調和機。
An air conditioner using the heat exchanger according to any one of claims 1 to 11 .
JP2009063005A 2009-03-16 2009-03-16 Manufacturing method of heat exchanger and air conditioner using the heat exchanger Active JP5094771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009063005A JP5094771B2 (en) 2009-03-16 2009-03-16 Manufacturing method of heat exchanger and air conditioner using the heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009063005A JP5094771B2 (en) 2009-03-16 2009-03-16 Manufacturing method of heat exchanger and air conditioner using the heat exchanger

Publications (2)

Publication Number Publication Date
JP2010214404A JP2010214404A (en) 2010-09-30
JP5094771B2 true JP5094771B2 (en) 2012-12-12

Family

ID=42973808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009063005A Active JP5094771B2 (en) 2009-03-16 2009-03-16 Manufacturing method of heat exchanger and air conditioner using the heat exchanger

Country Status (1)

Country Link
JP (1) JP5094771B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143808A (en) * 2013-03-21 2015-12-09 三菱电机株式会社 Heat exchanger, refrigeration cycle device, and production method for heat exchanger

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5063765B2 (en) * 2010-10-28 2012-10-31 三菱電機株式会社 Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
WO2012141403A1 (en) * 2011-04-15 2012-10-18 세진이노테크(주) Intercooler and method for manufacturing same
JP6878918B2 (en) * 2017-01-30 2021-06-02 株式会社富士通ゼネラル Refrigeration cycle equipment
US11852386B2 (en) * 2018-11-22 2023-12-26 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
CN109482753B (en) * 2018-12-19 2020-04-14 广东省智能机器人研究院 Abnormal pressure monitoring system and method used in pipe expanding process
JP7293570B2 (en) * 2019-03-25 2023-06-20 株式会社ノーリツ Heat exchanger and manufacturing method thereof
CN110479901B (en) * 2019-08-29 2021-03-09 无锡市杰美特科技有限公司 Batch production process of automobile heat dissipation connecting pipe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58175833U (en) * 1982-05-13 1983-11-24 株式会社東芝 Pipe grooving equipment
DE3730117C1 (en) * 1987-09-08 1988-06-01 Norsk Hydro As Method for producing a heat exchanger, in particular a motor vehicle radiator and tube profile for use in such a method
JP2003161595A (en) * 2001-11-20 2003-06-06 Paloma Ind Ltd Latent heat recovery heat exchanger
JP2003279282A (en) * 2002-03-20 2003-10-02 Toshiba Kyaria Kk Heat exchanger
JP4870126B2 (en) * 2003-02-20 2012-02-08 三菱電機株式会社 Tube expansion method for heat exchanger
JP4759226B2 (en) * 2004-03-31 2011-08-31 株式会社コベルコ マテリアル銅管 Tube expansion tool and tube expansion method using the same
ITMI20060502A1 (en) * 2006-03-21 2007-09-22 Maus Italia F Agostino & C Sas MULTI-PURPOSE EXPANSION WORKING DEVICE FOR CUTTING OR EXPANSION OF METAL TUBES
JP4659779B2 (en) * 2007-03-23 2011-03-30 三菱電機株式会社 Heat exchanger and air conditioner equipped with the heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105143808A (en) * 2013-03-21 2015-12-09 三菱电机株式会社 Heat exchanger, refrigeration cycle device, and production method for heat exchanger

Also Published As

Publication number Publication date
JP2010214404A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5094771B2 (en) Manufacturing method of heat exchanger and air conditioner using the heat exchanger
US9322602B2 (en) Heat exchanger having a plurality of plate-like fins and a plurality of flat-shaped heat transfer pipes orthogonal to the plate-like fins
RU2557812C2 (en) Heat exchanger, refrigerator provided with heat exchanger, and air conditioning device provided with heat exchanger
JP2011153823A (en) Heat exchanger and air conditioner using the same
JPH06341788A (en) Manufacture of heat exchanger and heat exchanger
JP6336153B2 (en) Double tube heat exchanger and method for manufacturing the same
JP6997703B2 (en) Heat exchanger tubes for heat exchangers, heat exchangers, and how to assemble them
WO2015114888A1 (en) Method for manufacturing heat exchanger and diameter expanding jig
JP2001523577A (en) How to assemble a heat exchanger
JP2012097920A (en) Heat exchanger
US8516701B2 (en) Manifold bending support and method for using same
JP3934631B2 (en) End plate for heat exchanger, heat exchanger provided with the same, and manufacturing method thereof
KR20120038621A (en) Manufacturing method of pipe using heat exchanger
JP2009186090A (en) Heat exchanger and its manufacturing method
JP5709733B2 (en) Double pipe
JP6958238B2 (en) How to manufacture heat exchangers and heat exchangers
US20200088470A1 (en) Heat exchanger, heat exchanger manufacturing method, and air-conditioner including heat exchanger
JP2014105951A (en) Heat exchanger
WO2017080269A1 (en) Heat exchanger and heat exchange tube
JP5595343B2 (en) Heat exchanger, refrigeration cycle circuit using the same, refrigerator using the refrigeration cycle circuit, and air conditioner
JP5063765B2 (en) Heat exchanger, heat exchanger manufacturing method, refrigerator, and air conditioner
JP2006162245A (en) High pressure header and heat exchanger and method of making the same
JP5107641B2 (en) Manufacturing method of heat exchanger
JP2012200769A (en) Flat tube for heat exchanger and method of manufacture the same
JP2009250600A (en) Copper flat heat-transfer pipe

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120821

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120918

R150 Certificate of patent or registration of utility model

Ref document number: 5094771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250