JPH0926280A - Refrigerant piping with internal surface groove - Google Patents

Refrigerant piping with internal surface groove

Info

Publication number
JPH0926280A
JPH0926280A JP20046095A JP20046095A JPH0926280A JP H0926280 A JPH0926280 A JP H0926280A JP 20046095 A JP20046095 A JP 20046095A JP 20046095 A JP20046095 A JP 20046095A JP H0926280 A JPH0926280 A JP H0926280A
Authority
JP
Japan
Prior art keywords
refrigerant
groove
pipe
grooves
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20046095A
Other languages
Japanese (ja)
Inventor
Atsuyumi Ishikawa
敦弓 石川
Masahiro Kobayashi
雅博 小林
Masanori Akutsu
正徳 阿久津
Takashi Kawanabe
隆 川鍋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20046095A priority Critical patent/JPH0926280A/en
Priority to TW85106413A priority patent/TW297090B/zh
Priority to CA002179448A priority patent/CA2179448A1/en
Priority to MYPI96002721A priority patent/MY116659A/en
Priority to SG1996010210A priority patent/SG44961A1/en
Priority to KR1019960027458A priority patent/KR100417844B1/en
Priority to BR9603005A priority patent/BR9603005A/en
Priority to EP96305076A priority patent/EP0753709A3/en
Priority to US08/680,264 priority patent/US5862857A/en
Priority to CNB961099151A priority patent/CN1143119C/en
Publication of JPH0926280A publication Critical patent/JPH0926280A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve heat transfer characteristics by forming many grooves in an internal surface in the direction of the flow of a refrigerant, the widths of which have several values. SOLUTION: In the internal surface of a straight pipe 26A constituting a refrigerant piping 26, the number of grooves 31..., 32... is, e.g. 60 in total are formed. Herein, the bottom width B of the groove 31 is set to be 0.33mm for example, and the bottom width (e) of the groove 32 is set to be 0.48mm for example wider than the former. Both grooves 31, 32 are alternately formed. A mixed refrigerant flows spirally with the aid of a capillary phenomenon in the grooves 31, 32 adapted to the physical properties of each refrigerant on the side of an internal wall in the refrigerant piping 26, and hereby the flow of a specific refrigerant is prevented from staying. A high viscosity R134a mainly flows in the wider groove 32 while R32, R125 flow in the narrower groove 31. Accordingly, flow resistance of the R134a is reduced owing to the capillary phenomenon to reduce pressure drop whereby the mixed refrigerant flows smoothly also along the upper part in the refrigerant piping 26 to improve the heat transfer characteristics.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、内面に多数の螺旋状溝
が形成された内面溝付冷媒配管に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved refrigerant pipe having a large number of spiral grooves formed on its inner surface.

【0002】[0002]

【従来の技術】従来より空気調和機、冷凍機、冷蔵庫、
或いは、低温ショーケースなどの冷凍空調用電気機器に
用いられる熱交換器は、蛇行状の冷媒配管と複数枚のフ
ィンなどから構成されている。また、冷媒配管(伝熱
管)の内面には例えば特公平4−21117号公報(F
28F1/40)に示される如く、多数の螺旋状溝を形
成し、毛細管現象によりこの溝を伝って冷媒が管内上部
にも流れるようにして、配管内面の広い範囲(理想的に
は全域)で冷媒と冷媒配管とを熱交換させ、伝熱特性を
向上させていた。
2. Description of the Related Art Conventionally, air conditioners, refrigerators, refrigerators,
Alternatively, a heat exchanger used for a refrigerating and air-conditioning electric device such as a low-temperature showcase includes a meandering refrigerant pipe and a plurality of fins. In addition, for example, Japanese Patent Publication No. 4-211117 (F
28F1 / 40), a large number of spiral grooves are formed, and the refrigerant flows through these grooves by capillarity so that the refrigerant flows to the upper part of the pipe as well. The refrigerant and the refrigerant pipe are heat-exchanged to improve heat transfer characteristics.

【0003】[0003]

【発明が解決しようとする課題】ここで、冷媒配管内を
流れる冷媒として二種以上の混合冷媒を用いる場合、各
冷媒はそれぞれ物性、特に粘性が異なってくる。しかし
ながら、従来では各溝の幅が同一であったため、粘性の
低い冷媒に合わせて溝幅を狭く設定すると、粘性の大き
い冷媒に対しては幅が狭小となり、流通抵抗が増大して
圧力損失が大きくなってしまう。そして、結果的に粘性
の大きい冷媒の流れが停滞してしまう。
When two or more kinds of mixed refrigerants are used as the refrigerant flowing in the refrigerant pipe, the respective refrigerants have different physical properties, particularly viscosity. However, since the width of each groove is the same in the past, if the groove width is set to be narrower in accordance with the low-viscosity refrigerant, the width becomes narrower for the high-viscosity refrigerant, the flow resistance increases, and the pressure loss increases. It gets bigger. As a result, the flow of the highly viscous refrigerant becomes stagnant.

【0004】逆に、粘性の高い冷媒に合わせて溝幅を広
く設定すると、今度は粘性の低い冷媒に対しては幅が広
大となり、毛細管現象が機能しなくなる問題が生じる。
On the contrary, if the groove width is set to be wide in accordance with the highly viscous refrigerant, then the width becomes wide and wide for the low viscous refrigerant, and the capillary phenomenon does not work.

【0005】本発明は、係る従来の技術的課題を解決す
るために成されたものであり、特に二種以上の混合冷媒
を用いる場合に、冷媒と冷媒配管との伝熱特性を改善す
ると共に、混合冷媒の混合比が変化する不具合を抑制す
ることができる冷媒配管を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned conventional technical problems. In particular, when two or more kinds of mixed refrigerants are used, the heat transfer characteristics between the refrigerant and the refrigerant pipe are improved and An object of the present invention is to provide a refrigerant pipe capable of suppressing the problem that the mixing ratio of the mixed refrigerant changes.

【0006】[0006]

【課題を解決するための手段】即ち、請求項1の発明の
内面溝付冷媒配管は、冷媒の流れる方向に向かって内面
に多数の溝が形成されたものであって、各溝の幅を異な
る複数の幅のいずれかの幅に形成したものである。
That is, the inner surface grooved refrigerant pipe of the invention of claim 1 is one in which a large number of grooves are formed on the inner surface in the direction in which the refrigerant flows, and the width of each groove is It is formed in any one of a plurality of different widths.

【0007】請求項2の発明の内面溝付冷媒配管は、冷
媒の流れる方向に向かって内面に多数の溝が形成され、
内部を少なくとも二種以上混合された冷媒が流れるもの
であって、各溝を、いずれかの冷媒の物性に適合した幅
でそれぞれ形成すると共に、それぞれの冷媒の物性に適
合する溝を少なくとも一つ内面に形成したものである。
In the refrigerant pipe with an inner groove according to the second aspect of the present invention, a large number of grooves are formed on the inner surface in the direction in which the refrigerant flows,
Refrigerant mixed with at least two kinds flows inside, each groove is formed with a width suitable for the physical properties of any refrigerant, and at least one groove suitable for the physical properties of each refrigerant is formed. It is formed on the inner surface.

【0008】請求項3の発明の内面溝付冷媒配管は、上
記各発明において冷媒配管の内面に形成される溝は、冷
媒の流れる方向に向かって螺旋状に形成されているもの
である。
In the refrigerant pipe with an inner groove according to a third aspect of the present invention, in each of the above inventions, the groove formed on the inner surface of the refrigerant pipe is formed in a spiral shape in the direction in which the refrigerant flows.

【0009】[0009]

【作用】請求項1の発明の内面溝付冷媒配管によれば、
内面に形成した溝の幅を異なる複数の幅のいずれかの幅
に形成したものであるから、内部を二種以上の混合冷媒
が流れる場合にも、各冷媒の特性に溝幅を合致させるこ
とが可能となる。従って、流通抵抗による圧力損失の増
加を防止しつつ、毛細管現象により配管内面の広い範囲
で冷媒と冷媒配管とを熱交換させ、伝熱特性を向上させ
ることが可能となる。また、溝幅による毛細管現象で冷
媒毎の流通抵抗による圧力損失の違いを抑制し、混合冷
媒が冷媒配管を流れる際の混合冷媒の混合比の変動を抑
制することができるようになるものである。
According to the refrigerant pipe with internal groove of the invention of claim 1,
Since the width of the groove formed on the inner surface is formed to be one of a plurality of different widths, it is necessary to match the groove width with the characteristics of each refrigerant even when two or more types of mixed refrigerant flow inside. Is possible. Therefore, while preventing an increase in pressure loss due to flow resistance, it is possible to improve the heat transfer characteristics by exchanging heat between the refrigerant and the refrigerant pipe in a wide range on the inner surface of the pipe by the capillary phenomenon. Further, it is possible to suppress the difference in pressure loss due to the flow resistance of each refrigerant due to the capillary phenomenon due to the groove width, and to suppress the fluctuation of the mixing ratio of the mixed refrigerant when the mixed refrigerant flows through the refrigerant pipe. .

【0010】請求項2の発明の内面溝付冷媒配管によれ
ば、内部を少なくとも二種以上混合された冷媒が流れる
ものにおいて、内面に形成した溝を、いずれかの冷媒の
物性に適合した幅でそれぞれ形成すると共に、それぞれ
の冷媒の物性に適合する溝を少なくとも一つ内面に形成
したものであるから、流通抵抗による圧力損失の増加を
防止しつつ、毛細管現象により配管内面の広い範囲で冷
媒と冷媒配管とを熱交換させ、伝熱特性を向上させるこ
とが可能となる。また、溝幅による毛細管現象で冷媒毎
の流通抵抗による圧力損失の違いを抑制し、混合冷媒が
冷媒配管を流れる際の混合冷媒の混合比の変動を抑制す
ることができるようになる。
According to the inner surface grooved refrigerant pipe of the invention of claim 2, in which the refrigerant in which at least two kinds or more are mixed flows in the inside, the groove formed on the inner surface has a width adapted to the physical properties of any refrigerant. Since at least one groove that matches the physical properties of each refrigerant is formed on the inner surface, the refrigerant is prevented from increasing in pressure loss due to flow resistance, and the refrigerant is spread over a wide range on the inner surface of the pipe due to the capillary phenomenon. It is possible to improve the heat transfer characteristics by exchanging heat between the refrigerant pipe and the refrigerant pipe. Further, it is possible to suppress the difference in pressure loss due to the flow resistance of each refrigerant due to the capillary phenomenon due to the groove width, and to suppress the fluctuation of the mixing ratio of the mixed refrigerant when the mixed refrigerant flows through the refrigerant pipe.

【0011】請求項3の発明の内面溝付冷媒配管によれ
ば、上記各発明に加えて溝を冷媒の流れる方向に向かっ
て螺旋状に形成したものであるから、冷媒と冷媒配管と
の伝熱特性を向上させることができるようになるもので
ある。
According to the refrigerant pipe with an inner groove of the third aspect of the present invention, in addition to the above respective inventions, the groove is formed in a spiral shape in the direction in which the refrigerant flows. The thermal characteristics can be improved.

【0012】[0012]

【実施例】以下、本発明の実施例を図面に基づいて詳述
する。図1は本発明を適用した実施例としての空気調和
機ACの冷媒回路図を示している。図1において、空気
調和機ACは、圧縮機1、四方弁2、室外熱交換器3、
減圧装置としてのキャピラリーチューブ4、スクリーン
入モジュレータ5、室内側熱交換器6、アキュムレータ
7を冷媒配管にて接続することにより、冷凍サイクルが
構成されており、HFC系冷媒を含む混合冷媒と、この
冷媒と相溶性のあるオイルとを封入して構成されてい
る。また、前記室外側熱交換器3及び室内側熱交換器6
には送風機41、42によってそれぞれ送風される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 shows a refrigerant circuit diagram of an air conditioner AC as an embodiment to which the present invention is applied. In FIG. 1, the air conditioner AC includes a compressor 1, a four-way valve 2, an outdoor heat exchanger 3,
A refrigeration cycle is configured by connecting the capillary tube 4, the screen-containing modulator 5, the indoor heat exchanger 6, and the accumulator 7 as a decompressor with a refrigerant pipe, and a mixed refrigerant containing an HFC-based refrigerant and It is configured by enclosing a refrigerant and an oil that is compatible. Further, the outdoor heat exchanger 3 and the indoor heat exchanger 6
Are blown by the blowers 41 and 42, respectively.

【0013】ここで、冷媒回路に封入される冷媒、オイ
ルは、蒸発温度の違い、即ち、用途によって異なる。例
えは、この実施例の空気調和機ACなどの高温機器は、
冷媒としてR134aを含むHFC系の混合冷媒、例え
ばR134aとR32とR125との3種混合冷媒(冷
媒組成は、例えばR134aが52重量%、R32が2
3重量%、R125が25重量%)を使用し、オイルは
ポリオールエステル系油、又は、アルキルベンゼン系油
を使用することになる。
Here, the refrigerant and oil sealed in the refrigerant circuit differ in evaporation temperature, that is, depending on the application. For example, high temperature equipment such as the air conditioner AC of this embodiment is
An HFC-based mixed refrigerant containing R134a as a refrigerant, for example, a mixed refrigerant of three kinds of R134a, R32, and R125 (refrigerant composition is, for example, R134a is 52% by weight and R32 is 2% by weight).
3% by weight, R125 is 25% by weight), and the oil is a polyol ester oil or an alkylbenzene oil.

【0014】また、前記各冷媒の特性は下記の如くであ
る。即ち、R134aの沸点は−26℃、粘度は0.2
04mPa・S、R32の沸点は−53℃、粘度は0.
140mPa・S、R125の沸点は−48.3℃、粘
度は0.145mPa・Sである。
The characteristics of each of the refrigerants are as follows. That is, R134a has a boiling point of −26 ° C. and a viscosity of 0.2.
The boiling point of 04 mPa · S, R32 is −53 ° C., and the viscosity is 0.1.
The boiling point of 140 mPa · S and R125 is −48.3 ° C., and the viscosity thereof is 0.145 mPa · S.

【0015】前記室外側熱交換器3は、図2に示す如く
所定の間隔を存して配置された複数枚のフィン23・・
と、これらフィン23を貫通して設けられた蛇行状の冷
媒配管26とから構成されている。
The outdoor heat exchanger 3 has a plurality of fins 23, ... Arranged at predetermined intervals as shown in FIG.
And a meandering refrigerant pipe 26 that penetrates through the fins 23.

【0016】前記フィン23は、厚さ100ミクロン〜
120ミクロンのアルミニウム(アルミニウム合金を含
む)薄板から成り、その表面には酸系溶液(クロム酸、
クロム酸塩、重クロム酸塩、クロム酸・リン酸、リン酸
など)にアルミニウム薄板を浸漬することにより、厚さ
2ミクロン程の防錆層が形成されている。また、この防
錆層の外側には、5ミクロン乃至10ミクロンの黒色親
水性皮膜が塗装形成される。この親水性皮膜は、フィン
23表面に通風抵抗となる水滴が出来難くするために形
成されるものであるが、黒色とされることにより、光の
反射率が低減され、熱放射特性が改善されている。
The fin 23 has a thickness of 100 .mu.m.
It consists of a 120-micron aluminum (including aluminum alloy) thin plate, on the surface of which an acid-based solution (chromic acid,
By immersing the thin aluminum plate in chromate, dichromate, chromic acid / phosphoric acid, phosphoric acid, etc., a rust preventive layer having a thickness of about 2 microns is formed. Further, a black hydrophilic film having a thickness of 5 to 10 microns is formed by coating on the outside of the rust preventive layer. This hydrophilic film is formed in order to make it difficult for water droplets, which become ventilation resistance, to form on the surface of the fins 23, but by making it black, the reflectance of light is reduced and the heat radiation characteristics are improved. ing.

【0017】このようなフィン23には予め配管挿通用
の孔を形成しており、冷媒配管26を構成する複数本の
直管26Aに順次フィン23を所定間隔で挿入して行
く。そして、直管26Aを内側から圧力をかけて拡管し
た後、ベンド配管26Bを溶接し、各直管26Aを連通
する。これによって、蛇行状の冷媒配管26を構成し、
熱交換器3を完成する。
A hole for inserting a pipe is formed in advance in such a fin 23, and the fin 23 is sequentially inserted into a plurality of straight pipes 26A constituting the refrigerant pipe 26 at predetermined intervals. Then, the straight pipe 26A is expanded by applying pressure from the inside, and then the bend pipe 26B is welded to connect the straight pipes 26A. This constitutes the meandering refrigerant pipe 26,
The heat exchanger 3 is completed.

【0018】ここで、前記冷媒配管26を構成する直管
26A(ベンド配管26Bも同様)の断面図を図3に示
し、その一部拡大断面図を図4に示す。直管26Aの内
面には例えば合計60条の溝31・・、32・・が形成
されている。ここで、溝31の底幅Bは、例えば0.3
3mm、溝32の底幅eはそれより広い、例えば0.4
8mmとされており、両溝31、32が交互に形成され
たかたちとされている。
Here, FIG. 3 shows a sectional view of a straight pipe 26A (similar to the bend pipe 26B) constituting the refrigerant pipe 26, and FIG. 4 shows a partially enlarged sectional view thereof. For example, a total of 60 grooves 31, ..., 32 ... Are formed on the inner surface of the straight pipe 26A. Here, the bottom width B of the groove 31 is 0.3, for example.
3 mm, the bottom width e of the groove 32 is wider than that, for example 0.4
It is set to 8 mm, and both grooves 31, 32 are formed alternately.

【0019】また、各溝31、32を仕切る山35の高
さHは例えば0.3mm、頂角θは30度、先端曲率r
は0.05mmとされ、溝31、32の螺旋配置時のね
じれ角は例えば18度とされている。尚、直管26Aの
外径ODは例えば10mm、底肉厚TFは0.27mm
である。
The height H of the crest 35 for partitioning the grooves 31 and 32 is 0.3 mm, the apex angle θ is 30 degrees, and the tip curvature r.
Is 0.05 mm, and the twist angle when the grooves 31 and 32 are spirally arranged is, for example, 18 degrees. The outer diameter OD of the straight pipe 26A is, for example, 10 mm, and the bottom wall thickness TF is 0.27 mm.
It is.

【0020】また、前記室内側熱交換器6も図2に示す
室外側熱交換器3と同様の構造であるので説明を省略す
る。
Since the indoor heat exchanger 6 has the same structure as the outdoor heat exchanger 3 shown in FIG. 2, its explanation is omitted.

【0021】以上の構成で空気調和機ACの冷房運転時
は、図1中実線矢印に示すように、圧縮機1、四方弁
2、室外側熱交換器3、キャピラリーチューブ4、スク
リーン入モジュレータ5、室内側熱交換器6、アキュム
レータ7の順で混合冷媒が流れる。この場合、圧縮機1
からは高温高圧のガス冷媒(混合冷媒)が吐出され、室
外側熱交換器3に流入して放熱し、凝縮される。そし
て、キャピラリーチューブ4にて減圧された後、室内側
熱交換器6に流入して蒸発する。従って、室外側熱交換
器3は凝縮器となり、室内側熱交換器6は冷却器とな
る。
In the cooling operation of the air conditioner AC having the above configuration, as shown by the solid line arrow in FIG. 1, the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the capillary tube 4, the screen-containing modulator 5 are shown. The mixed refrigerant flows in the order of the indoor heat exchanger 6 and the accumulator 7. In this case, the compressor 1
A high-temperature and high-pressure gas refrigerant (mixed refrigerant) is discharged from the inside, flows into the outdoor heat exchanger 3, radiates heat, and is condensed. Then, after being decompressed by the capillary tube 4, it flows into the indoor heat exchanger 6 and evaporates. Therefore, the outdoor heat exchanger 3 becomes a condenser, and the indoor heat exchanger 6 becomes a cooler.

【0022】前記室外側熱交換器3には送風機41によ
って1m/sの風速で外気が通風されており、室外側熱
交換器3と熱交換して温められた暖気は庫外に放散され
る。また、前記室内側熱交換器6と熱交換して冷却され
た冷気は送風機42によって室内に供給される。
Outside air is ventilated through the outdoor heat exchanger 3 by a blower 41 at a wind speed of 1 m / s, and warm air that has been heated by exchanging heat with the outdoor heat exchanger 3 is diffused outside the refrigerator. . The cool air that has exchanged heat with the indoor heat exchanger 6 and is cooled is supplied to the room by the blower 42.

【0023】ここで、室外側熱交換器3及び室内側熱交
換器6に流入した混合冷媒は、冷媒配管26内の内壁側
でそれぞれの冷媒の物性に適合した溝31、32内を毛
細管現象によって伝って螺旋状に流れ、特定の冷媒の流
れが停滞することがなくなる。前述の如くR32及びR
125の粘度は低く、R134aの粘度は高いため、そ
の流れ易さから、粘度の高いR134aは主に広い方の
溝32内を流れ、R32及びR125は主に狭い方の溝
31内を流れるようになる。
Here, the mixed refrigerant that has flowed into the outdoor heat exchanger 3 and the indoor heat exchanger 6 is capillarity inside the grooves 31 and 32 on the inner wall side of the refrigerant pipe 26, which are adapted to the physical properties of the respective refrigerants. Therefore, the flow of the specific refrigerant is prevented from being stagnant and the flow of the specific refrigerant does not become stagnant. As mentioned above, R32 and R
Since the viscosity of 125 is low and the viscosity of R134a is high, R134a having a high viscosity flows mainly in the wider groove 32 and R32 and R125 mainly flow in the narrower groove 31 because of its ease of flow. become.

【0024】従って、毛細管現象によりR134aの流
通抵抗が実質的に低くなって圧力損失が低減され、冷媒
配管26(直管26A及びベンド配管26B)内の上部
にも混合冷媒が円滑に流れる。また、R32とR125
も毛細管現象により支障無く溝31内を伝って冷媒配管
26内の上部も流れるようになる。
Therefore, due to the capillary phenomenon, the flow resistance of R134a is substantially lowered and the pressure loss is reduced, and the mixed refrigerant smoothly flows into the upper portion of the refrigerant pipe 26 (the straight pipe 26A and the bend pipe 26B). Also, R32 and R125
Also, due to the capillary phenomenon, the upper portion of the refrigerant pipe 26 also flows through the groove 31 without any trouble.

【0025】即ち、各冷媒はその特性(特に粘度)に適
合した幅の溝31、32内を伝って円滑に流れるように
なるので、冷媒配管26内面の広い範囲で冷媒と冷媒配
管26とが熱交換し、伝熱特性が向上する。従って、こ
の場合室外側熱交換器3においては更に放熱特性(凝縮
性能)を向上させることができると共に、室内側熱交換
器6においても吸熱特性(冷却特性)を向上させ、空気
調和機ACの冷却能力を改善することが可能となる。
That is, since each refrigerant flows smoothly through the grooves 31 and 32 having a width suitable for its characteristics (particularly, viscosity), the refrigerant and the refrigerant pipe 26 are spread over a wide area on the inner surface of the refrigerant pipe 26. Heat is exchanged and heat transfer characteristics are improved. Therefore, in this case, the heat dissipation characteristics (condensation performance) can be further improved in the outdoor heat exchanger 3, and the heat absorption characteristics (cooling characteristics) can also be improved in the indoor heat exchanger 6 to improve the air conditioner AC. It is possible to improve the cooling capacity.

【0026】また、このように異なる溝幅を形成した冷
媒配管を冷凍サイクル中の各機器をつなぐ冷媒配管にも
用いると、冷凍サイクル中を循環する混合冷媒のそれぞ
れの冷媒の圧力損失を略同じに構成することができる。
従って、それぞれの冷媒の圧力損失の違いによって、特
定の冷媒が冷凍サイクル中の一部に溜まり、冷凍サイク
ル中を循環する混合冷媒の混合比が変化する不具合を抑
制できる。
When the refrigerant pipes having different groove widths are also used as the refrigerant pipes connecting the devices in the refrigeration cycle, the pressure loss of each refrigerant of the mixed refrigerants circulating in the refrigeration cycle is substantially the same. Can be configured to.
Therefore, it is possible to suppress the problem that a specific refrigerant is accumulated in a part of the refrigeration cycle due to the difference in pressure loss of each refrigerant and the mixing ratio of the mixed refrigerant circulating in the refrigeration cycle changes.

【0027】一方、暖房運転時は、図1中破線矢印に示
すように、圧縮機1、四方弁2、室内熱交換器6、スク
リーン入モジュレータ5、キャピラリーチューブ4、室
外側熱交換器3、アキュムレータ7の順で混合冷媒が流
れる。この場合、圧縮機1から吐出された高温高圧のガ
ス冷媒(混合冷媒)は室内側熱交換器6に流入して放熱
し、凝縮される。そして、キャピラリーチューブ4にて
減圧された後、室外側熱交換器3に流入して蒸発する。
従って、室外側熱交換器3は冷却器となり、室内側熱交
換器6は凝縮器となる。
On the other hand, during the heating operation, as shown by the broken line arrow in FIG. 1, the compressor 1, the four-way valve 2, the indoor heat exchanger 6, the screen-containing modulator 5, the capillary tube 4, the outdoor heat exchanger 3, The mixed refrigerant flows in the order of the accumulator 7. In this case, the high-temperature and high-pressure gas refrigerant (mixed refrigerant) discharged from the compressor 1 flows into the indoor heat exchanger 6, radiates heat, and is condensed. Then, after being decompressed by the capillary tube 4, it flows into the outdoor heat exchanger 3 and evaporates.
Therefore, the outdoor heat exchanger 3 becomes a cooler, and the indoor heat exchanger 6 becomes a condenser.

【0028】前記室内側熱交換器6には前述の如く送風
機42によって通風されており、室内側熱交換器6と熱
交換した後の暖気は室内に循環されるが、この場合にも
前述同様に各熱交換器3、6の伝熱特性が向上してお
り、室内側熱交換器6においては更に放熱特性(暖房性
能)を向上させることができると共に、室外側熱交換器
3においても吸熱特性を向上させ、空気調和機ACの暖
房能力を改善することが可能となる。
The indoor heat exchanger 6 is ventilated by the blower 42 as described above, and the warm air after heat exchange with the indoor heat exchanger 6 is circulated in the room. In addition, the heat transfer characteristics of the heat exchangers 3 and 6 are improved, and the heat dissipation characteristics (heating performance) of the indoor heat exchanger 6 can be further improved and the outdoor heat exchanger 3 also absorbs heat. It is possible to improve the characteristics and improve the heating capacity of the air conditioner AC.

【0029】尚、除霜運転時には図1中点付実線矢印に
示すように、圧縮機1、四方弁2、室内側熱交換器6、
スクリーン入モジュレータ5、キャピラリーチューブ
4、室外側熱交換器3、四方弁2、アキュムレータ7の
順で混合冷媒が流れると共に、圧縮機1、電磁弁33、
室外側熱交換器3と混合冷媒が流れ、室外側熱交換器3
の除霜が行われる。
During the defrosting operation, the compressor 1, the four-way valve 2, the indoor heat exchanger 6, as shown by the solid arrow with dots in FIG.
The mixed refrigerant flows in the order of the screen-containing modulator 5, the capillary tube 4, the outdoor heat exchanger 3, the four-way valve 2, and the accumulator 7, and the compressor 1, the solenoid valve 33,
The outdoor heat exchanger 3 and the mixed refrigerant flow, and the outdoor heat exchanger 3
Defrosting is performed.

【0030】また、実施例では三種混合冷媒を用い、2
種類の幅の溝を冷媒配管内面に形成したが、二種類、或
いは、更に他種類の他の冷媒を組み合わせても良い。但
し、その場合にも各冷媒の特性(特に粘度)に合致した
幅の溝をそれぞれ形成するものとする。更に、実施例で
は空気調和機を例に採り説明したが、それに限らず、冷
蔵庫や低温ショーケースなどにも本発明は有効である。
Further, in the embodiment, a mixed refrigerant of three kinds is used, and
Although the groove having the width of the kind is formed on the inner surface of the refrigerant pipe, two kinds or another kind of another kind of refrigerant may be combined. However, even in that case, a groove having a width that matches the characteristics (especially viscosity) of each refrigerant is formed. Further, although the air conditioner has been described as an example in the embodiment, the present invention is not limited to this, and the present invention is also effective for a refrigerator, a low temperature showcase, and the like.

【0031】[0031]

【発明の効果】以上詳述した如く請求項1の発明によれ
ば、内面に形成した溝の幅を異なる複数の幅のいずれか
の幅に形成したものであるから、内部を二種以上の混合
冷媒が流れる場合にも、各冷媒の特性に溝幅を合致させ
ることが可能となる。従って、流通抵抗による圧力損失
の増加を防止しつつ、毛細管現象により配管内面の広い
範囲で冷媒と冷媒配管とを熱交換させ、伝熱特性を向上
させることが可能となる。また、溝幅による毛細管現象
で冷媒毎の流通抵抗による圧力損失の違いを抑制し、混
合冷媒が冷媒配管を流れる際の混合冷媒の混合比の変動
を抑制することができるようになるものである。
As described in detail above, according to the invention of claim 1, since the width of the groove formed on the inner surface is formed to be any one of a plurality of different widths, the inside is made of two or more kinds. Even when the mixed refrigerant flows, the groove width can be matched to the characteristics of each refrigerant. Therefore, while preventing an increase in pressure loss due to flow resistance, it is possible to improve the heat transfer characteristics by exchanging heat between the refrigerant and the refrigerant pipe in a wide range on the inner surface of the pipe by the capillary phenomenon. Further, it is possible to suppress the difference in pressure loss due to the flow resistance of each refrigerant due to the capillary phenomenon due to the groove width, and to suppress the fluctuation of the mixing ratio of the mixed refrigerant when the mixed refrigerant flows through the refrigerant pipe. .

【0032】請求項2の発明によれば、内部を少なくと
も二種以上混合された冷媒が流れるものにおいて、内面
に形成した溝を、いずれかの冷媒の物性に適合した幅で
それぞれ形成すると共に、それぞれの冷媒の物性に適合
する溝を少なくとも一つ内面に形成したものであるか
ら、流通抵抗による圧力損失の増加を防止しつつ、毛細
管現象により配管内面の広い範囲で冷媒と冷媒配管とを
熱交換させ、伝熱特性を向上させることが可能となる。
また、溝幅による毛細管現象で冷媒毎の流通抵抗による
圧力損失の違いを抑制し、混合冷媒が冷媒配管を流れる
際の混合冷媒の混合比の変動を抑制することができるよ
うになる。
According to the second aspect of the present invention, in a refrigerant in which at least two kinds or more are mixed, the groove formed on the inner surface is formed with a width adapted to the physical properties of any refrigerant, and Since at least one groove suitable for the physical properties of each refrigerant is formed on the inner surface, the refrigerant and the refrigerant pipe are heated in a wide range of the inner surface of the pipe by the capillary phenomenon while preventing an increase in pressure loss due to flow resistance. It becomes possible to exchange the heat transfer characteristics and improve the heat transfer characteristics.
Further, it is possible to suppress the difference in pressure loss due to the flow resistance of each refrigerant due to the capillary phenomenon due to the groove width, and to suppress the fluctuation of the mixing ratio of the mixed refrigerant when the mixed refrigerant flows through the refrigerant pipe.

【0033】請求項3の発明によれば、上記各発明に加
えて溝を冷媒の流れる方向に向かって螺旋状に形成した
ものであるから、冷媒と冷媒配管との伝熱特性を向上さ
せることができるようになるものである。
According to the invention of claim 3, in addition to each of the above inventions, the groove is formed in a spiral shape in the direction of flow of the refrigerant, so that the heat transfer characteristics between the refrigerant and the refrigerant pipe are improved. You will be able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例としての空気調和機の冷媒回路
図である。
FIG. 1 is a refrigerant circuit diagram of an air conditioner as an embodiment of the present invention.

【図2】本発明の実施例としての室外側熱交換器の正面
図である。
FIG. 2 is a front view of an outdoor heat exchanger as an embodiment of the present invention.

【図3】冷媒配管(直管またはベンド配管)の断面図で
ある。
FIG. 3 is a cross-sectional view of a refrigerant pipe (straight pipe or bend pipe).

【図4】冷媒配管(直管またはベンド配管)の一部拡大
断面図である。
FIG. 4 is a partially enlarged sectional view of a refrigerant pipe (straight pipe or bend pipe).

【符号の説明】[Explanation of symbols]

AC 空気調和機 1 圧縮機 3 室外側熱交換器 6 室内側熱交換器(熱交換器) 23 フィン 26 冷媒配管 26A 直管 26B ベンド配管 31、32 溝 AC air conditioner 1 Compressor 3 Outdoor heat exchanger 6 Indoor heat exchanger (heat exchanger) 23 Fins 26 Refrigerant pipe 26A Straight pipe 26B Bend pipe 31, 32 groove

───────────────────────────────────────────────────── フロントページの続き (72)発明者 川鍋 隆 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── --Continued front page (72) Inventor Takashi Kawanabe 2-5-5 Keihan Hondori, Moriguchi City, Osaka Sanyo Electric Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 冷媒の流れる方向に向かって内面に多数
の溝が形成された冷媒配管において、 前記各溝の幅を異なる複数の幅のいずれかの幅に形成し
たことを特徴とする内面溝付冷媒配管。
1. A refrigerant pipe having a large number of grooves formed on the inner surface thereof in the direction of flow of the refrigerant, wherein the width of each groove is one of a plurality of different widths. Refrigerant piping.
【請求項2】 冷媒の流れる方向に向かって内面に多数
の溝が形成され、内部を少なくとも二種以上混合された
冷媒が流れる内面溝付冷媒配管において、 前記各溝を、いずれかの冷媒の物性に適合した幅でそれ
ぞれ形成すると共に、それぞれの冷媒の物性に適合する
溝を少なくとも一つ内面に形成したことを特徴とする内
面溝付冷媒配管。
2. In an inner grooved refrigerant pipe in which a large number of grooves are formed on the inner surface in the direction of flow of the refrigerant, and a refrigerant mixed with at least two kinds or more flows in the inside, each of the grooves is An internal grooved refrigerant pipe, characterized in that it is formed with a width suitable for the physical properties, and at least one groove suitable for the physical properties of each refrigerant is formed on the inner surface.
【請求項3】 冷媒配管の内面に形成される溝は、冷媒
の流れる方向に向かって螺旋状に形成されていることを
特徴とする請求項1または請求項2の内面溝付冷媒配
管。
3. The refrigerant pipe with internal groove according to claim 1 or 2, wherein the groove formed on the inner surface of the refrigerant pipe is formed in a spiral shape in the direction in which the refrigerant flows.
JP20046095A 1995-07-12 1995-07-12 Refrigerant piping with internal surface groove Pending JPH0926280A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP20046095A JPH0926280A (en) 1995-07-12 1995-07-12 Refrigerant piping with internal surface groove
TW85106413A TW297090B (en) 1995-07-12 1996-05-30
CA002179448A CA2179448A1 (en) 1995-07-12 1996-06-19 Heat exchanger for refrigerating cycle
MYPI96002721A MY116659A (en) 1995-07-12 1996-07-03 Heat exchanger for refrigerating cycle
SG1996010210A SG44961A1 (en) 1995-07-12 1996-07-04 Heat exchanger for refrigerating cycle
KR1019960027458A KR100417844B1 (en) 1995-07-12 1996-07-08 Heat exchanger for refrigeration cycle
BR9603005A BR9603005A (en) 1995-07-12 1996-07-08 Heat exchanger used for a refrigeration cycle
EP96305076A EP0753709A3 (en) 1995-07-12 1996-07-10 Heat exchanger for refrigeration circuit
US08/680,264 US5862857A (en) 1995-07-12 1996-07-11 Heat exchanger for refrigerating cycle
CNB961099151A CN1143119C (en) 1995-07-12 1996-07-12 Heat exchanger of refrigerating circulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20046095A JPH0926280A (en) 1995-07-12 1995-07-12 Refrigerant piping with internal surface groove

Publications (1)

Publication Number Publication Date
JPH0926280A true JPH0926280A (en) 1997-01-28

Family

ID=16424681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20046095A Pending JPH0926280A (en) 1995-07-12 1995-07-12 Refrigerant piping with internal surface groove

Country Status (2)

Country Link
JP (1) JPH0926280A (en)
BR (1) BR9603005A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
JP2008020150A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Return bend tube, and fin and tube type heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001092806A1 (en) * 2000-05-31 2001-12-06 Mitsubishi Shindoh Co., Ltd. Heating tube with internal grooves and heat exchanger
JP2008020150A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Return bend tube, and fin and tube type heat exchanger

Also Published As

Publication number Publication date
BR9603005A (en) 1998-05-05

Similar Documents

Publication Publication Date Title
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
KR100417844B1 (en) Heat exchanger for refrigeration cycle
JP5661202B2 (en) Plate fin tube type heat exchanger and refrigeration air conditioning system including the same
US20110030932A1 (en) Multichannel heat exchanger fins
JP2002139282A (en) Heat exchanger, refrigerating air conditioner and manufacturing method of heat exchanger
WO2010016516A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigerating cycle apparatus, and air conditioning apparatus
WO2011086881A1 (en) Heat transfer tube for heat exchanger, heat exchanger, refrigeration cycle device, and air conditioning device
EP3021064B1 (en) Heat pump device
WO2017199393A1 (en) Outdoor unit and refrigeration cycle device comprising same
JP5627635B2 (en) Air conditioner
WO2017208419A1 (en) Fin-tube type heat exchanger, heat pump apparatus provided with fin-tube type heat exchanger, and method for manufacturing fin-tube type heat exchanger
JPH0926280A (en) Refrigerant piping with internal surface groove
US20210278137A1 (en) System and Method for Manufacturing and Operating a Coaxial Tube Heat Exchanger
JP2013076485A (en) Air conditioner
WO2015125525A1 (en) Heat exchanger and refrigerating cycle device
JP6621928B2 (en) Heat exchanger and air conditioner
JPH11264630A (en) Air-conditioning equipment
JP4813534B2 (en) Air conditioner
JP7112168B2 (en) Heat exchanger and refrigeration cycle equipment
JP3421130B2 (en) Air conditioner
JPH0959537A (en) Coating for heat exchanger
JPH0926289A (en) Heat exchanger and electric apparatus mounted with the heat exchanger
JP2011058771A (en) Heat exchanger, and refrigerator and air conditioner including the heat exchanger
JP5255249B2 (en) Heat transfer tube with internal fin
JP3349265B2 (en) Heat exchanger