JPH11264630A - Air-conditioning equipment - Google Patents
Air-conditioning equipmentInfo
- Publication number
- JPH11264630A JPH11264630A JP6978598A JP6978598A JPH11264630A JP H11264630 A JPH11264630 A JP H11264630A JP 6978598 A JP6978598 A JP 6978598A JP 6978598 A JP6978598 A JP 6978598A JP H11264630 A JPH11264630 A JP H11264630A
- Authority
- JP
- Japan
- Prior art keywords
- heat exchanger
- heat transfer
- tube
- outdoor
- indoor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、冷凍・空調機に用
いられる熱交換器に係わり、特に伝熱促進のために内面
に溝を形成した伝熱管及び熱交換器並びに冷凍・空調機
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger used for a refrigerator / air conditioner, and more particularly to a heat exchanger tube and a heat exchanger having a groove formed on an inner surface for promoting heat transfer, and a refrigerator / air conditioner.
【0002】[0002]
【従来の技術】図5に従来技術による空調機用クロスフ
ィンチューブ熱交換器の斜視図を示す。クロスフィンチ
ューブ熱交換器はフィン1に伝熱管2が挿入され構成さ
れている。従来から熱交換器の高性能化を達成するため
伝熱管も高性能化が図られてきており、これまでは伝熱
管として管内にらせん状に溝を形成したらせん溝付管が
広く用いられてきた。このようならせん溝付管は平滑管
よりも非常に高い伝熱性能を有するため、室内外の熱交
換器に用いると空調機の高性能化が達成される。近年こ
のらせん溝付管の性能を一層向上させるために、平行で
ない溝を有する溝付管、例えば、主溝と副溝の交差した
クロス溝付管や、内面フィン先端に微細な副溝を設けた
微細2次溝付管、さらに内面溝が松葉状に形成された松
葉溝付管等が開発されている。このような溝付管を用い
ると、熱交換器の性能が向上し熱交換器を小型化できる
ので、コンパクト性に対する要請が高い室内機では非常
に有効である。2. Description of the Related Art FIG. 5 is a perspective view of a conventional cross-fin tube heat exchanger for an air conditioner. The cross fin tube heat exchanger is configured by inserting a heat transfer tube 2 into a fin 1. In the past, heat transfer tubes have also been upgraded to achieve higher performance of heat exchangers.Spiral grooved tubes have been widely used as heat transfer tubes if spiral grooves are formed in the tubes. Was. Since such a spiral grooved pipe has a much higher heat transfer performance than a smooth pipe, when it is used for indoor and outdoor heat exchangers, high performance of an air conditioner is achieved. In recent years, in order to further improve the performance of this spiral grooved tube, a grooved tube having non-parallel grooves, for example, a cross grooved tube where the main groove and the sub groove intersect, and a fine sub groove provided at the tip of the inner fin A fine secondary grooved tube, a pine needle grooved tube having an inner groove formed in a pine needle shape, and the like have been developed. When such a grooved tube is used, the performance of the heat exchanger is improved and the size of the heat exchanger can be reduced, so that it is very effective for an indoor unit that has a high demand for compactness.
【0003】また、従来より、空調機の室内機及び室外
機の熱交換器に異なる伝熱管を用いられた例はあった。
例えば、文献(平成9年度日本冷凍空調学会学術講演会
講演論文集、p.89)では、室内熱交換器には溝付管
を、室外熱交換器には平滑管を用いている。[0003] Conventionally, there has been an example in which different heat transfer tubes are used for a heat exchanger of an indoor unit and an outdoor unit of an air conditioner.
For example, in the literature (Paper Collection of 1997 Annual Meeting of the Japan Society of Refrigeration and Air Conditioning Society, p. 89), a grooved tube is used for the indoor heat exchanger, and a smooth tube is used for the outdoor heat exchanger.
【0004】[0004]
【発明が解決しようとする課題】ところが、このような
従来の考え方に基づいて上記近年考えられた熱交換性能
の他界溝付管を単に室内及び室外熱交換器に用いると、
かえって空調機としての性能が低下してしまうことが判
明した。However, based on such a conventional idea, the above-mentioned recently considered heat-exchange-periphery grooved tube is simply used for indoor and outdoor heat exchangers.
It has been found that the performance as an air conditioner is rather deteriorated.
【0005】本発明は、室内および室外熱交換器の伝熱
性能を考慮してサイクル全体の効率を向上する空調機を
提供することを目的とする。[0005] It is an object of the present invention to provide an air conditioner that improves the efficiency of the entire cycle in consideration of the heat transfer performance of the indoor and outdoor heat exchangers.
【0006】[0006]
【課題を解決するための手段】上記目的は、内部を冷媒
が流れる伝熱管を有した室外熱交換器及び室内熱交換器
とを備え、これらの熱交換器が配管により接続された空
気調和機において、室内熱交換器は内側の表面に平行で
ない複数の溝が形成された伝熱管を備え、室外熱交換器
は内側の表面にらせん状の溝を形成された伝熱管を備え
ることにより達成される。An object of the present invention is to provide an air conditioner having an outdoor heat exchanger and an indoor heat exchanger each having a heat transfer tube through which a refrigerant flows, and these heat exchangers are connected by piping. In the above, the indoor heat exchanger includes a heat transfer tube having a plurality of grooves that are not parallel to the inner surface, and the outdoor heat exchanger includes a heat transfer tube that has a spiral groove formed on the inner surface. You.
【0007】また、内部を冷媒が流れる伝熱管を有した
室外熱交換器及び室内熱交換器とを備え、これらの熱交
換器が配管により接続された空気調和機において、室内
熱交換器は内側の表面に形成されたフィンを有し、この
フィンは、フィンの頂部を含む第1の部分とフィンの根
本を含む第2の部分からなり、前記第1の部分の稜線が
凹凸形状あるいは略波形状とすることにより達成され
る。In an air conditioner having an outdoor heat exchanger having a heat transfer tube through which a refrigerant flows and an indoor heat exchanger, and these heat exchangers are connected by piping, the indoor heat exchanger is an inner heat exchanger. Having a first portion including the top of the fin and a second portion including the root of the fin, the ridge line of the first portion having an uneven shape or a substantially wave shape. Achieved by shaping.
【0008】さらに、前記室内熱交換器の前記伝熱管の
前記冷媒がその内部を通過する際の熱抵抗を、前記室外
熱交換器の前記伝熱管の前記冷媒がその内部を通過する
際の熱抵抗よりも大きいものとすることにより達成され
る。Further, the heat resistance of the heat transfer tube of the indoor heat exchanger when the refrigerant passes through the inside thereof is determined by the heat resistance of the heat transfer tube of the outdoor heat exchanger when the refrigerant passes through the inside thereof. This is achieved by making it larger than the resistance.
【0009】らせん溝付管は平滑管に比べ、圧力損失は
20〜40%程度の増加におさまるのに対し、熱伝達率
は2倍以上にも向上する。現在ではこのらせん溝付管よ
りもさらに熱伝達率の高い幾つかの内面溝付管が提案さ
れている。例えば内面の副溝と主溝が交差したクロス溝
付管や、内面フィンの先端に微細な凹凸を有する微細2
次溝付管、あるいは内面溝が松葉状に形成された松葉溝
付管などである。ただし、これらの高性能溝付管はらせ
ん溝付管よりも熱伝達率は確かに向上するが、管内冷媒
圧力損失も増大してしまう。熱伝達率が向上しても管内
圧力損失が増大すると、冷媒飽和温度が変化し同一熱交
換量を確保するためには圧縮機仕事が増大してしまう可
能性がある。さらには室外蒸発器として用いた場合に冷
媒温度の低い領域で着霜しやすくなるという問題点があ
る。The helical grooved tube has a pressure loss of about 20 to 40% as compared with a smooth tube, while the heat transfer coefficient is more than doubled. At present, several internally grooved tubes having a higher heat transfer coefficient than the spiral grooved tube have been proposed. For example, a cross-grooved tube in which the sub-groove and the main groove on the inner surface intersect, or a fine 2 having fine irregularities at the tip of the inner fin
A secondary grooved tube or a pine needle grooved tube having an inner surface groove formed in a pine needle shape. However, these high-performance grooved tubes certainly have a higher heat transfer coefficient than the spiral grooved tube, but also increase the refrigerant pressure loss in the tube. Even if the heat transfer coefficient is improved, if the pressure loss in the pipe increases, the saturation temperature of the refrigerant changes, and the work of the compressor may increase in order to ensure the same heat exchange amount. Furthermore, when used as an outdoor evaporator, there is a problem that frost is easily formed in a region where the refrigerant temperature is low.
【0010】本発明では、室外機と室内機が接続される
空調機において、室外機熱交換器の伝熱管には圧力損失
の小さいらせん溝付管を用い、室内機には熱伝達率の高
いクロス溝付管、微細2次溝付管、あるいは松葉溝付管
を用いることで、室内外機の大きさや冷媒流量範囲が異
なる場合においても性能の高い空調機を提供することが
できる。さらに冷媒飽和温度があまり変化しないことで
着霜に強い空調機を提供することができる。According to the present invention, in an air conditioner in which an outdoor unit and an indoor unit are connected, a spiral grooved tube having a small pressure loss is used for a heat transfer tube of the outdoor unit heat exchanger, and a high heat transfer coefficient is used for the indoor unit. By using a cross grooved pipe, a fine secondary grooved pipe, or a pine needle grooved pipe, a high-performance air conditioner can be provided even when the sizes of the indoor and outdoor units and the refrigerant flow ranges are different. Furthermore, an air conditioner that is resistant to frost can be provided because the refrigerant saturation temperature does not change much.
【0011】[0011]
【発明の実施の形態】以下、本発明の実施例を図面を参
照しつつ説明する。Embodiments of the present invention will be described below with reference to the drawings.
【0012】本発明の第1の実施例による溝付伝熱管の
構造を図1に示す。図1は、室内熱交換器に用いられる
クロス溝付伝熱管101、及び室外熱交換器に用いられ
る、内面にらせん状の溝を形成したらせん溝付伝熱管1
02(例えば文献、日本機械学会論文集B45−38
9、p118)の断面図である。これらの伝熱管は内側
を冷媒が流れる冷媒管であり、冷媒が伝熱管外部と熱を
授受するものである。クロス溝付管とは、図に示したよ
うに管の軸に対してらせん状に形成された主溝103に
対し、これらの溝の山の尾根方向とは角度を変えて別の
溝、例えば管軸にほぼ平行に副溝104が形成された溝
付管である。FIG. 1 shows the structure of a grooved heat transfer tube according to a first embodiment of the present invention. FIG. 1 shows a cross-groove heat transfer tube 101 used for an indoor heat exchanger and a spiral grooved heat transfer tube 1 having a spiral groove formed on an inner surface used for an outdoor heat exchanger.
02 (for example, Literature, Transactions of the Japan Society of Mechanical Engineers, B45-38)
9, p118). These heat transfer tubes are refrigerant tubes through which the refrigerant flows, and the refrigerant exchanges heat with the outside of the heat transfer tubes. The cross-grooved pipe is different from the main groove 103 formed in a spiral shape with respect to the axis of the pipe as shown in the figure by changing the angle from the ridge direction of these grooves to another groove, for example, This is a grooved tube in which a sub-groove 104 is formed substantially parallel to the tube axis.
【0013】本願発明においては、室内側熱交換器に用
いられる伝熱管は、相互に異なる方向に溝(フィン)が
その内側表面に形成されている。あるいは、溝(フィ
ン)はその頂上の部分を凹凸形状や略波形状に形成され
ている。このような異なる方向に形成された溝を内表面
に持つ伝熱管では、管の断面の方向だけでなく溝の山の
尾根の方向についても凹凸が形成されており、単に2次
元的な山形状ではなく、いわば3次元的な山形状が形成
されている。このため、管内面の表面に作用する冷媒液
の表面張力が、内表面に単一の形状の溝を持つ伝熱管、
例えばらせん溝付管と比べて大きくなる。管内表面の冷
媒液の液膜の厚さを局所的に薄くできるので、冷媒液と
伝熱管外部との間の熱抵抗が小さくでき、熱伝達効率を
大きくできる。また、液膜の厚さの薄い領域が凹凸に応
じてその高さ方向の位置を変えて形成されるので、液膜
が薄く熱伝達に有効に作用する部分の面積を大きくする
ことが出来るので、熱伝達効率を大きくできる。また、
3次元的な山形状を有するために、伝熱管内部を流れる
冷媒液を攪はんし、冷媒液の乱れを大きくすること乱流
熱伝達を促進し伝熱管の熱伝達率を大きく出来る。In the present invention, grooves (fins) are formed on the inner surface of the heat transfer tube used in the indoor heat exchanger in directions different from each other. Alternatively, the top of the groove (fin) is formed in an uneven shape or a substantially wavy shape. In a heat transfer tube having such grooves formed in different directions on the inner surface, irregularities are formed not only in the direction of the cross section of the tube but also in the direction of the ridge of the groove. Rather, a so-called three-dimensional mountain shape is formed. For this reason, the surface tension of the refrigerant liquid acting on the surface of the inner surface of the tube is a heat transfer tube having a single-shaped groove on the inner surface,
For example, it becomes larger than a spiral grooved tube. Since the thickness of the liquid film of the refrigerant liquid on the inner surface of the tube can be locally reduced, the heat resistance between the refrigerant liquid and the outside of the heat transfer tube can be reduced, and the heat transfer efficiency can be increased. Also, since the liquid film is formed in a region where the thickness of the liquid film is small, the position of the liquid film in the height direction is changed according to the unevenness, the area of the portion where the liquid film is thin and effectively acts on heat transfer can be increased. The heat transfer efficiency can be increased. Also,
Due to the three-dimensional mountain shape, the refrigerant liquid flowing inside the heat transfer tube is agitated, the turbulence of the refrigerant liquid is increased, turbulent heat transfer is promoted, and the heat transfer coefficient of the heat transfer tube can be increased.
【0014】上記のように、室内側熱交換器として熱抵
抗の小さな伝熱管、例えばクロス溝付管を用いた熱交換
器を、室外側により熱抵抗の大きな伝熱管、例えばらせ
ん溝付管と用いた熱交換器とする組み合わせがよい理由
を以下に説明する。◆図5は現在空調機に広く用いられ
るクロスフィンチューブ熱交換器の斜視図である。本発
明の空調機において、図1に示す伝熱管は図5のように
フィンに挿入され熱交換器として構成される。この図に
おいては、フィンは複数の伝熱管に挿入されているが、
各伝熱管毎に異なるフィンを有する独立フィンの場合も
同様である。初期のクロスフィンチューブ熱交換器では
伝熱管として平滑管が用いられていた。やがてらせん溝
付管が開発されると、このらせん溝付管が平滑管よりも
高い熱伝達率を有するため広く用いられるようになっ
た。As described above, a heat transfer tube having a small heat resistance, for example, a heat exchanger using a cross grooved tube as the indoor heat exchanger is replaced with a heat transfer tube having a higher heat resistance, for example, a spiral grooved tube at the outdoor side. The reason why the combination used as the heat exchanger is good will be described below. FIG. 5 is a perspective view of a cross fin tube heat exchanger widely used in air conditioners at present. In the air conditioner of the present invention, the heat transfer tube shown in FIG. 1 is inserted into a fin as shown in FIG. 5 and configured as a heat exchanger. In this figure, the fins are inserted into multiple heat transfer tubes,
The same applies to independent fins having different fins for each heat transfer tube. Early cross fin tube heat exchangers used smooth tubes as heat transfer tubes. When spiral grooved tubes were developed, the spiral grooved tubes became widely used because of their higher heat transfer coefficient than smooth tubes.
【0015】その時の暖房性能をあらわす成績係数を図
6を用いて説明する。。図6は、室内側熱交換器と室外
側熱交換器とに複数の種類の伝熱管を組み合わせて用い
た場合の、夫々の場合についての暖房COP比を示すグ
ラフである。溝付管は室内機だけに用いても高性能化が
図られるのはもちろんであるが、室内外機の両方に用い
れば一層の高性能化が図られるということは容易に予測
できることである。例えば、らせん溝付管を室内および
室外側熱交換器に使用した場合は、室内側にのみらせん
溝付管を、室外側に平滑管を用いた場合と比べて暖房C
OP比が高いことが図6に示されている。近年、らせん
溝付管よりも熱抵抗が小さくでき、さらに熱伝達率の高
いクロス溝付管、微細2次溝付管、あるいは松葉溝付管
(例えば、日本冷凍協会学術講演会講演論文集、199
6、p49)などが開発されている。The coefficient of performance indicating the heating performance at that time will be described with reference to FIG. . FIG. 6 is a graph showing the heating COP ratio in each case where a plurality of types of heat transfer tubes are used in combination for the indoor heat exchanger and the outdoor heat exchanger. It is obvious that the use of the grooved tube in the indoor unit alone can improve the performance, but the use of the grooved tube in both the indoor unit and the outdoor unit can further improve the performance. For example, when the spiral grooved pipe is used for the indoor and outdoor heat exchangers, the heating C is compared with the case where the spiral grooved pipe is used only for the indoor side and the smooth pipe is used for the outdoor side.
FIG. 6 shows that the OP ratio is high. In recent years, the cross-grooved tube, the fine secondary grooved tube, or the Matsuba grooved tube, which has a smaller heat resistance than the spiral grooved tube and has a higher heat transfer coefficient (for example, the Japan Refrigeration Association Academic Lecture Meeting, 199
6, p49) have been developed.
【0016】これらの高性能溝付管は、室内機に用いる
と暖房性能は一層向上するが、室外機にも適用すると逆
に性能は低下してしまう場合がある。例えば、室内およ
び室外の熱交換器にクロス溝付管を使用した場合には、
室内側にのみクロス溝付管を、室外側にらせん溝付管を
使用した場合と比べて、暖房COP比が小さくなること
が図6に示されている。すなわち、平滑管かららせん溝
付管までは、伝熱管の高熱伝達率化により空調機全体を
高性能化(高暖房COP化)することが可能であった。
ところが、溝形状を工夫して伝熱管の伝熱性能の向上が
進むにつれ、溝付管の高性能化が空調機の全体的な高性
能化に結びつかない例が生じるようになったことを、図
6は示している。The use of these high-performance grooved pipes for heating in an indoor unit further improves the heating performance, but when applied to an outdoor unit, the performance may be deteriorated. For example, when using cross grooved tubes for indoor and outdoor heat exchangers,
FIG. 6 shows that the heating COP ratio is smaller than when a cross grooved pipe is used only on the indoor side and a spiral grooved pipe is used on the outdoor side. That is, from the smooth pipe to the spiral grooved pipe, it was possible to improve the performance of the entire air conditioner (higher heating COP) by increasing the heat transfer coefficient of the heat transfer pipe.
However, as the heat transfer performance of the heat transfer tubes has been improved by devising the groove shape, there have been cases where higher performance of grooved tubes does not lead to overall higher performance of air conditioners, FIG. 6 shows this.
【0017】上記の現象の原因は、これらの高性能溝付
管の特性と、空調機の室内ユニットと室外ユニットの使
用条件や形態の違いに由来する。図7は、ルームエアコ
ンの室内機及び室外機の結合を示す模式図である。一般
に、室内機と室外機ではコンパクト性に対する要請が室
内側の方が強いために、相対的に室内機は小さく室外機
は大きなものとなる。また、空気と冷媒の温度差も一般
的に室外側の方が小さい。さらに、着霜の問題から室外
熱交換器はフィンピッチやフィン奥行きが大きく伝熱性
能が低い。このような理由から室外熱交換器は室内熱交
換器よりも一般に大型なものとなる。室内側熱交換器は
室外側熱交換器と比して小型であることが求められるの
でその分熱交換の高効率化が必要であり、らせん溝付管
よりも熱伝達率の大きなクロス溝付管を用いることが有
効である。一方、室外側熱交換器は大型であるため伝熱
管も長く、冷媒圧力損失が大きくなってしまう。The above-mentioned phenomena are caused by the characteristics of these high performance grooved pipes and the differences in the use conditions and forms of the indoor unit and the outdoor unit of the air conditioner. FIG. 7 is a schematic diagram showing a combination of an indoor unit and an outdoor unit of a room air conditioner. In general, indoor units and outdoor units have a higher demand for compactness on the indoor side, so that the indoor units are relatively small and the outdoor units are relatively large. Also, the temperature difference between the air and the refrigerant is generally smaller on the outdoor side. Further, due to the problem of frost, the outdoor heat exchanger has a large fin pitch and fin depth and low heat transfer performance. For these reasons, outdoor heat exchangers are generally larger than indoor heat exchangers. The indoor heat exchanger is required to be smaller than the outdoor heat exchanger, so it is necessary to increase the efficiency of heat exchange. It is effective to use a tube. On the other hand, since the outdoor heat exchanger is large, the length of the heat transfer tube is long, and the pressure loss of the refrigerant increases.
【0018】図8に示した冷凍サイクルにおいて冷媒圧
力損失の大きい熱交換器を用いると、冷凍サイクルは実
線1−2−3−4から点線1´−2´−3´−4´のよ
うに変化し、圧縮機仕事が増大し空調機の効率が低下す
る。特にガス密度の小さくガス流速の大きい蒸発器内で
の圧力の変化が大きい。この変化に対応して凝縮器入口
圧力は上昇、蒸発器出口圧力は低下し、従って圧縮機仕
事が増大してしまう。圧力損失の増大は空調機の効率低
下をもたらし問題となる。When a heat exchanger having a large refrigerant pressure loss is used in the refrigeration cycle shown in FIG. 8, the refrigeration cycle changes from a solid line 1-2-3-4 to a dotted line 1'-2'-3'-4 '. The compressor work increases and the efficiency of the air conditioner decreases. In particular, a pressure change is large in an evaporator having a small gas density and a large gas flow rate. Corresponding to this change, the condenser inlet pressure increases and the evaporator outlet pressure decreases, thus increasing compressor work. The increase in the pressure loss causes a problem in that the efficiency of the air conditioner decreases.
【0019】そして、クロス溝付伝熱管はその溝形状に
よる冷媒液の乱流を促進すること及び液膜の厚さを局所
的に薄くすることによって熱抵抗を小さくしているた
め、らせん溝付管よりも当然熱伝達率が向上するが、こ
れらの部分で液冷媒の圧力損失も増大してしまい、かえ
って性能を低下させてしまう。従って、小型の室内熱交
換器には熱抵抗が小さく伝熱効率が大きなクロス溝付
管、管内の冷媒圧力損失による性能の低下が問題となる
室外熱交換器には熱抵抗が大きくとも冷媒の流れ方向の
抵抗が小さく圧力損失の小さな溝付管、例えばらせん溝
付管を用いることが有効である。Since the cross-groove heat transfer tube promotes turbulent flow of the refrigerant liquid due to its groove shape and locally reduces the thickness of the liquid film to reduce the thermal resistance, the heat transfer tube with the spiral groove has a spiral groove. Naturally, the heat transfer coefficient is improved as compared with the tube, but the pressure loss of the liquid refrigerant is increased in these portions, and the performance is rather deteriorated. Therefore, a small indoor heat exchanger has a cross-grooved tube with low thermal resistance and high heat transfer efficiency, and performance degradation due to refrigerant pressure loss in the tube is problematic. It is effective to use a grooved tube having a small directional resistance and a small pressure loss, for example, a spiral grooved tube.
【0020】また、暖房運転時の室外機では冷媒飽和圧
力が冷媒流れ方向に変化すると図9のように冷媒飽和温
度が低いところに着霜し、フィンが目詰まりして空気流
を妨げるので熱交換器の性能が低下してしまう。ただ
し、図9で風は紙面垂直方向に流れている。一旦、熱交
換器のどこかの領域で着霜が始まると、交換する熱量を
確保するために冷媒の蒸発温度が低下し、一層着霜が進
行するという悪循環に陥る。着霜による性能低下を防ぐ
には、霜が着きやすい領域を作らないこと、すなわち冷
媒蒸発温度の低い領域を作らないことが重要である。こ
のためには熱交換器内での冷媒飽和圧力をほぼ一定とす
ることが望ましく、従って室外熱交換器には圧力損失の
小さい伝熱管を用いることが有効である。したがって、
室内側にクロス溝付管のように熱抵抗の小さな伝熱管を
用いた熱交換器を、室外側には、例えばらせん溝付管の
ように、熱抵抗は大きくとも圧力損失のより小さい伝熱
管を用いた熱交換器との組み合わせにより着霜しにくく
なり、着霜による性能劣化を低減できる。Further, in the outdoor unit during the heating operation, if the refrigerant saturation pressure changes in the refrigerant flow direction, frost is formed at a low refrigerant saturation temperature as shown in FIG. 9 and the fins are clogged to impede the air flow. The performance of the exchanger will be reduced. However, the wind is flowing in the direction perpendicular to the paper of FIG. Once frost starts to be formed in any region of the heat exchanger, the evaporation temperature of the refrigerant decreases in order to secure the amount of heat to be exchanged, causing a vicious cycle in which frost is further advanced. In order to prevent performance deterioration due to frost formation, it is important not to create a region where frost easily forms, that is, not to create a region where the refrigerant evaporation temperature is low. For this purpose, it is desirable to make the refrigerant saturation pressure in the heat exchanger substantially constant, and thus it is effective to use a heat transfer tube having a small pressure loss for the outdoor heat exchanger. Therefore,
A heat exchanger using a heat transfer tube with a small thermal resistance like a cross grooved tube on the indoor side, and a heat transfer tube with a large heat resistance but smaller pressure loss like a spiral grooved tube on the outdoor side, for example. Combination with a heat exchanger that uses frost prevents frost formation and reduces performance degradation due to frost formation.
【0021】さらに、図10のように室内機1001と
室外機1002とが複数台接続されるマルチ空調機にお
いては、室外機の冷媒流量が室内機に比べて相対的に多
いため熱交換器が大型なものとなる。これに対応して伝
熱管流路も長くなり冷媒圧力損失による性能低下が一層
問題となる。従って、この場合も室内側にクロス溝付管
のように熱抵抗の小さな伝熱管を用いた熱交換器を、室
外側には、例えばらせん溝付管のように、熱抵抗は大き
くとも圧力損失のより小さい伝熱管を用いた熱交換器と
の組み合わせが有効となる。Furthermore, as shown in FIG. 10, in a multi-air conditioner in which a plurality of indoor units 1001 and outdoor units 1002 are connected, a heat exchanger is used because the refrigerant flow rate of the outdoor units is relatively larger than that of the indoor units. It becomes large. Correspondingly, the flow path of the heat transfer tube becomes longer, and performance deterioration due to refrigerant pressure loss becomes more problematic. Therefore, in this case as well, a heat exchanger using a heat transfer tube having a small thermal resistance such as a cross grooved tube on the indoor side and a pressure loss on the outdoor side even if the thermal resistance is large, such as a spiral grooved tube, are used. Combination with a heat exchanger using a heat transfer tube smaller than the above is effective.
【0022】また非共沸混合冷媒を用いた場合には、図
11に示すように冷媒質量速度が小さい領域で熱伝達率
の低下が大きい。従って、性能の低下を少しでも防ぐた
めに単一冷媒や疑似共沸の混合冷媒の場合よりも大きな
冷媒質量速度域で使用することが有効である。ところ
が、室外機の場合は既に述べたように大型であること、
さらには着霜のため熱伝達率の上昇よりも冷媒の圧力損
失が大きくなってしまい、むやみに冷媒質量速度を増加
させると非共沸混合冷媒においても性能が低下してしま
う。従って、非共沸混合冷媒の場合にも室外機には熱抵
抗が大きくとも圧力損失がより小さな伝熱管、例えばら
せん溝付管を用いることが有効である。When a non-azeotropic refrigerant mixture is used, the heat transfer coefficient is greatly reduced in a region where the refrigerant mass velocity is small as shown in FIG. Accordingly, it is effective to use the refrigerant in a refrigerant mass velocity region larger than that of a single refrigerant or a pseudo-azeotropic mixed refrigerant in order to prevent any deterioration in performance. However, in the case of an outdoor unit, it must be large as described above,
Further, the pressure loss of the refrigerant becomes larger than the increase of the heat transfer coefficient due to frosting, and if the mass velocity of the refrigerant is increased unnecessarily, the performance of the non-azeotropic mixed refrigerant is reduced. Therefore, even in the case of a non-azeotropic refrigerant mixture, it is effective to use a heat transfer tube having a large heat resistance and a small pressure loss, such as a spiral grooved tube, for the outdoor unit.
【0023】また、冷房運転時に外気温が高温となると
室外機の凝縮圧力が上昇し、伝熱管の耐圧性能が問題と
なる。従って、室外熱交換器に用いられる伝熱管は厚肉
であることが望ましい。この場合、室外熱交換器の材料
費が増加するため加工の簡単ならせん溝付管が低コスト
となり有効である。If the outside air temperature becomes high during the cooling operation, the condensation pressure of the outdoor unit rises, and the pressure resistance of the heat transfer tube becomes a problem. Therefore, it is desirable that the heat transfer tube used in the outdoor heat exchanger be thick. In this case, since the material cost of the outdoor heat exchanger increases, the spiral grooved tube which is easy to process is reduced in cost and is effective.
【0024】なお、上に述べたような効果を得るための
同様な手段として室外機のパス数を増やすことと管径を
大きくすることが挙げられる。パス数を増加させれば、
パスあたりの冷媒流量が減るため冷媒圧力損失を小さく
することができ、また管径を大きくしても断面積あたり
の流量が減るので冷媒圧力損失を小さくすることができ
るためである。ただし、パス数の増加は配管の製造、組
立等のコスト増加につながり、また管径の増加も冷媒封
入量及び熱交換器重量の増加あるいは空気側伝熱性能の
低下につながるため、これらの手段は極力避けることが
望ましい。Incidentally, similar means for obtaining the above-described effects include increasing the number of passes of the outdoor unit and increasing the pipe diameter. By increasing the number of passes,
This is because the refrigerant flow rate per path is reduced, so that the refrigerant pressure loss can be reduced, and even if the pipe diameter is increased, the flow rate per cross-sectional area is reduced, so that the refrigerant pressure loss can be reduced. However, an increase in the number of passes leads to an increase in the cost of manufacturing and assembling the piping, and an increase in the pipe diameter leads to an increase in the amount of filled refrigerant and the weight of the heat exchanger, or a decrease in the air-side heat transfer performance. It is desirable to avoid as much as possible.
【0025】以上、それぞれの溝付管の性能とその位置
づけを図12にまとめて示す。図12は室内及び室外熱
交換器を蒸発器として使用した場合に、現行らせん溝付
管と同等の蒸発能力を与える線を示している。The performance of each grooved tube and its positioning are summarized in FIG. FIG. 12 shows a line that gives an evaporation capacity equivalent to that of the existing spiral grooved tube when the indoor and outdoor heat exchangers are used as evaporators.
【0026】本図の見方は次の通りである。例えば、熱
伝達率が増加しても圧力損失がこの線上に乗るように増
加してしまうと、結果として空調機能力は同じになって
しまう。つまり、この線上に乗る伝熱管ならば蒸発器と
して現行らせん溝付管と同等の性能を与え、この線より
右下のハッチングを施した領域内にある伝熱管ならば現
行らせん溝付管を用いた蒸発器よりも性能が向上する。
そしてこの境界線は室内用熱交換器と室外用熱交換器と
では同一な線とはならない。これは上に述べたように管
内熱伝達率と冷媒圧力損失に対して要求される性能が室
内機と室外機では異なるためである。平滑管は両線より
も上方にあることから、現行らせん溝付管よりも性能が
低いことがわかる。一方、現行らせん溝付管よりも高性
能な溝付管を用いた場合、例えばより高性能ならせん溝
付管では室内及び室外機どちらに用いても性能が向上す
る。The way to read this figure is as follows. For example, even if the heat transfer coefficient increases, if the pressure loss increases so as to be on this line, the air conditioning function will be the same. In other words, a heat transfer tube on this line gives the same performance as the current spiral grooved tube as an evaporator, and a heat transfer tube in the hatched area at the lower right of this line uses the current spiral grooved tube. The performance is improved compared to the evaporator that was used.
This boundary line is not the same line between the indoor heat exchanger and the outdoor heat exchanger. This is because the performance required for the heat transfer coefficient in the pipe and the refrigerant pressure loss is different between the indoor unit and the outdoor unit as described above. Since the smooth tube is above both lines, it can be seen that the performance is lower than the current spiral grooved tube. On the other hand, when a grooved pipe having higher performance than the current spiral grooved pipe is used, for example, a higher performance spiral grooved pipe has improved performance when used in both indoor and outdoor units.
【0027】しかしながら、クロス溝付管のように熱伝
達率も高いが圧力損失も大きい溝付管は、室内機に用い
ると有効であるが、室外機に用いると逆に性能が低下す
る。このように室内側熱交換器と室外側熱交換器とでは
使用条件や形態が異なるために、最適な溝付管も異なっ
たものとなる。そして、室内側を熱抵抗の小さな伝熱
管、例えばクロス溝付管を用いた熱交換器、室外側を熱
抵抗が大きいが圧力損失のより小さな伝熱管、例えばら
せん溝付伝熱管を用いた熱交換器とすることにより、高
い性能を発揮することができる。However, a grooved tube having a high heat transfer coefficient but a large pressure loss, such as a cross-grooved tube, is effective when used in an indoor unit, but deteriorates in performance when used in an outdoor unit. As described above, since the indoor heat exchanger and the outdoor heat exchanger have different use conditions and forms, the optimum grooved pipe also differs. A heat exchanger using a heat transfer tube having a small thermal resistance on the indoor side, for example, a heat exchanger using a cross grooved tube, and a heat exchanger using a heat transfer tube having a large thermal resistance but a smaller pressure loss on the outdoor side, for example, using a heat transfer tube with a spiral groove. By using the exchanger, high performance can be exhibited.
【0028】なお、熱交換器夫々で異なる伝熱管を用い
た空調機の例としては、特開平5―340630号公報
に開示されるように、蓄熱槽内の製氷させる1次側熱交
換器に平滑管を、蓄えられた熱を室内へ輸送するための
2次側熱交換器に溝付管を用いた技術がある。この技術
では、1次側熱交換器において製氷するため、氷が伝熱
管の周りに成長し氷の熱抵抗がこの装置全体の熱交換率
の支配因子となる。この場合も溝付管を用いた方が高性
能となるが、管内側熱抵抗は1次側熱交換器全体の熱抵
抗に効かないため、むやみに管内側を高性能化すること
は意味がない。このような理由から1次側熱交換器には
平滑管が用いられている。As an example of an air conditioner using different heat transfer tubes in each heat exchanger, as disclosed in Japanese Patent Application Laid-Open No. 5-340630, a primary heat exchanger for making ice in a heat storage tank is used. There is a technique using a grooved pipe as a secondary heat exchanger for transporting the stored heat of a smooth pipe into a room. In this technique, since ice is made in the primary heat exchanger, ice grows around the heat transfer tube, and the thermal resistance of the ice becomes a controlling factor of the heat exchange rate of the entire apparatus. In this case as well, the use of a grooved tube will provide higher performance, but since the heat resistance inside the tube does not affect the heat resistance of the entire primary heat exchanger, it is meaningless to improve the performance inside the tube unnecessarily. Absent. For this reason, a smooth tube is used for the primary heat exchanger.
【0029】本発明の効果は、室内熱交換器の冷媒管を
クロス溝付管とすることのみにより得られるものではな
く、室内熱交換器および冷媒管における熱抵抗を、室外
熱交換器および冷媒管における熱抵抗より小さくするこ
とにより得られるものである。図2は、図1に示した実
施例の変形例としての、本発明に係る空気調和機の室内
熱交換器に用いられるクロス溝付管201、及び室外熱
交換器に用いられるらせん溝付管202の管内面を示す
断面図である。このクロス溝付管は、第1のらせん状の
主溝203と、主溝のらせん角と符号の異なる方向に副
溝204が彫られている。その他の説明は上記の実施例
の場合と同様である。The effect of the present invention can be obtained not only by making the refrigerant pipe of the indoor heat exchanger a cross grooved pipe, but by reducing the heat resistance of the indoor heat exchanger and the refrigerant pipe by the outdoor heat exchanger and the refrigerant. It is obtained by reducing the thermal resistance in the tube. FIG. 2 shows a cross grooved tube 201 used for an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube used for an outdoor heat exchanger as a modification of the embodiment shown in FIG. It is sectional drawing which shows the tube inner surface of 202. This cross-grooved tube has a first spiral main groove 203 and a sub-groove 204 engraved in a direction different from the spiral angle and sign of the main groove. The other description is the same as that of the above embodiment.
【0030】また、図3に示すように、上記実施例の変
形例として、室内用熱交換器伝熱管として内面フィン先
端に微細な凹凸303を設けた微細2次溝付管301を
用いても良い。図3は、本発明に係る空気調和機の室内
熱交換器に用いられる微細2次溝付管301と、室外熱
交換器に用いられるらせん溝付管302の管内面を示す
断面図である。微細2次溝付管は内面フィン先端の微細
な凹凸303が表面張力効果を有効に作用させ熱伝達率
が大幅に向上する。この溝の凹凸については、溝の深さ
方向のみでなく、溝の山(凸部)の高さや溝の山の尾根
をうねらせても、この実施例の作用は変わらない。その
他の説明は上記実施例の場合と同様である。As shown in FIG. 3, as a modification of the above-described embodiment, a fine secondary grooved tube 301 provided with fine irregularities 303 at the tip of an inner fin may be used as a heat exchanger tube for an indoor heat exchanger. good. FIG. 3 is a cross-sectional view showing a fine secondary grooved tube 301 used in the indoor heat exchanger of the air conditioner according to the present invention and a spiral grooved tube 302 used in the outdoor heat exchanger. In the fine secondary grooved tube, the fine irregularities 303 at the tip of the inner fin effectively act on the surface tension effect, and the heat transfer coefficient is greatly improved. Regarding the unevenness of the groove, the action of this embodiment does not change not only in the depth direction of the groove but also when the height of the groove peak (convex portion) or the ridge of the groove peak is undulated. The other description is the same as in the above embodiment.
【0031】また、図4に示すように、上記実施例の変
形例として、室内用熱交換器伝熱管として内面溝が松葉
状に彫られた松葉溝付管401を用いても良い。図4
は、本発明に係る空気調和機の室内熱交換器に用いられ
る松葉溝付管401と、室外熱交換器に用いられるらせ
ん溝付管402の管内面を示す断面図である。As shown in FIG. 4, as a modification of the above-described embodiment, a pine needle grooved tube 401 whose inner surface groove is carved into a pine needle shape may be used as a heat exchanger tube for an indoor heat exchanger. FIG.
FIG. 3 is a cross-sectional view showing the inner surface of a pine grooved tube 401 used for an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube 402 used for an outdoor heat exchanger.
【0032】このような伝熱管では、内表面を展開する
と松葉状に彫られた溝が組み合わされて形成されてい
る。この松葉状の溝の集合する部分では冷媒液が溝に沿
って集められ、液膜厚さが厚くなる。一方、松葉状の溝
が離れていく部分では液膜厚さは薄くなることで、管内
面には液膜厚さの異なる領域が形成される。この液膜厚
さが薄くなる領域で冷媒液と伝熱管外部との間の熱抵抗
が小さくできて、熱抵抗を小さくできる。また、松葉状
の溝の集合すす部分では冷媒液が衝突することで乱れが
大きくなり、乱流熱伝達を促進することができるので熱
伝達率を大きくできる。その他の説明は上記の実施例の
場合と同様である。In such a heat transfer tube, when the inner surface is developed, grooves formed in a pine needle shape are combined and formed. In the portion where the pine needle-shaped grooves gather, the refrigerant liquid is collected along the grooves, and the liquid film thickness increases. On the other hand, the liquid film thickness becomes thinner at the portion where the pine needle-shaped grooves are separated, so that regions having different liquid film thickness are formed on the inner surface of the tube. In the region where the liquid film thickness is reduced, the thermal resistance between the refrigerant liquid and the outside of the heat transfer tube can be reduced, and the thermal resistance can be reduced. Further, in the soot portion of the pine needle-shaped grooves, turbulence increases due to collision of the refrigerant liquid, and turbulent heat transfer can be promoted, so that the heat transfer coefficient can be increased. The other description is the same as that of the above embodiment.
【0033】[0033]
【発明の効果】上記のように、本発明によれば、室内お
よび室外熱交換器の伝熱性能を考慮してサイクル全体の
効率を向上する空調機を提供できる。As described above, according to the present invention, it is possible to provide an air conditioner that improves the efficiency of the entire cycle in consideration of the heat transfer performance of the indoor and outdoor heat exchangers.
【図1】本発明に係る空気調和器の室内熱交換器に用い
られるクロス溝付管及び室外熱交換器に用いられるらせ
ん溝付管の管内面を示す断面図である。FIG. 1 is a cross-sectional view showing an inner surface of a cross grooved tube used in an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube used in an outdoor heat exchanger.
【図2】本発明に係る空気調和器の室内熱交換器に用い
られるクロス溝付管及び室外熱交換器に用いられるらせ
ん溝付管の管内面を示す断面図である。FIG. 2 is a cross-sectional view showing an inner surface of a cross grooved tube used for an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube used for an outdoor heat exchanger.
【図3】本発明に係る空気調和器の室内熱交換器に用い
られる微細2次溝付管及び室外熱交換器に用いられるら
せん溝付管の管内面を示す断面図である。FIG. 3 is a sectional view showing an inner surface of a fine secondary grooved tube used in an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube used in an outdoor heat exchanger.
【図4】本発明に係る空気調和器の室内熱交換器に用い
られる松葉溝付管及び室外熱交換器に用いられるらせん
溝付管の管内面を示す断面図である。FIG. 4 is a cross-sectional view showing an inner surface of a pine grooved tube used in an indoor heat exchanger of an air conditioner according to the present invention and a spiral grooved tube used in an outdoor heat exchanger.
【図5】クロスフィンチューブを用いた熱交換器の斜視
図断面図である。FIG. 5 is a perspective sectional view of a heat exchanger using a cross fin tube.
【図6】図6は、室内側熱交換器と室外側熱交換器とに
複数の種類の伝熱管を組み合わせて用いた場合の、夫々
の場合についての暖房COP比を示すグラフである。FIG. 6 is a graph showing a heating COP ratio in each case where a plurality of types of heat transfer tubes are used in combination for an indoor heat exchanger and an outdoor heat exchanger.
【図7】図7は、ルームエアコンの室内機及び室外機の
結合を示す模式図である。FIG. 7 is a schematic diagram showing a combination of an indoor unit and an outdoor unit of a room air conditioner.
【図8】冷凍サイクルの模式図である。FIG. 8 is a schematic diagram of a refrigeration cycle.
【図9】着霜した熱交換器の模式図である。FIG. 9 is a schematic view of a frosted heat exchanger.
【図10】室外機に室外機より多数の室内機が接続され
た空調機の模式図である。FIG. 10 is a schematic diagram of an air conditioner in which more indoor units are connected to the outdoor units than the outdoor units.
【図11】非共沸混合冷媒を用いた場合の伝熱管性能を
示す図である。FIG. 11 is a graph showing heat transfer tube performance when a non-azeotropic mixed refrigerant is used.
【図12】各種伝熱管の性能とその位置づけを示す図で
ある。FIG. 12 is a diagram showing the performance of various heat transfer tubes and their positioning.
1 ……フィン。 2 ……伝熱管。 101 ……本発明の第1の実施例の室内熱交換器用
クロス溝付管。 102 ……本発明の第1の実施例の室外熱交換器用
らせん溝付管。 201 ……本発明の第2の実施例の室内熱交換器用
クロス溝付管。 202 ……本発明の第2の実施例の室外熱交換器用
らせん溝付管。 301 ……本発明の第3の実施例の室内熱交換器用
微細2次溝付管。 302 ……本発明の第3の実施例の室外熱交換器用
らせん溝付管。 401 ……本発明の第4の実施例の室内熱交換器用
松葉溝付管。 402 ……本発明の第4の実施例の室外熱交換器用
らせん溝付管。 701 ……空調機室内機。 702 ……空調機室外機。 703 ……室内熱交換器。 704 ……室外熱交換器。 705 ……冷媒配管。 801 ……圧縮機。 802 ……凝縮器。 803 ……蒸発器。 804 ……膨張弁。 901 ……霜。 902 ……冷媒流れ方向。 1001 ……空調機室内機。 1002 ……空調機室外機。 1003 ……室内熱交換器。 1004 ……室外熱交換器。 1005 ……冷媒配管。1 ... Fins. 2 ... heat transfer tubes. 101 Cross-grooved tube for indoor heat exchanger according to the first embodiment of the present invention. 102 Spiral grooved tube for outdoor heat exchanger according to the first embodiment of the present invention. 201 Cross-grooved tube for indoor heat exchanger according to the second embodiment of the present invention. 202 ... Spiral grooved tube for outdoor heat exchanger according to the second embodiment of the present invention. 301... Fine secondary grooved tube for indoor heat exchanger according to the third embodiment of the present invention. 302. A spiral grooved tube for an outdoor heat exchanger according to a third embodiment of the present invention. 401 ... Matsuba grooved tube for indoor heat exchanger according to the fourth embodiment of the present invention. 402 A spiral grooved tube for an outdoor heat exchanger according to a fourth embodiment of the present invention. 701 ... air conditioner indoor unit. 702 ... air conditioner outdoor unit. 703: Indoor heat exchanger. 704: outdoor heat exchanger. 705: refrigerant pipe. 801 Compressor. 802: A condenser. 803: Evaporator. 804 An expansion valve. 901: frost. 902 ... refrigerant flow direction. 1001 ... air conditioner indoor unit. 1002 ... Air conditioner outdoor unit. 1003 ... indoor heat exchanger. 1004 ... outdoor heat exchanger. 1005 ... refrigerant pipe.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 正昭 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 畑田 敏夫 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 石羽根 久平 静岡県清水市村松390番地 株式会社日立 製作所空調システム事業部内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masaaki Ito 502 Kandate-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratory, Hitachi, Ltd. Inside the Machinery Research Laboratory (72) Inventor Hisahei Ishibane 390 Muramatsu, Shimizu-shi, Shizuoka Prefecture Air Conditioning Systems Division, Hitachi, Ltd.
Claims (4)
交換器と圧縮機と室内熱交換器と膨張弁とがこれらの順
に接続された熱サイクルを備えた空気調和機において、
室内熱交換器は内側の表面に平行でない複数の溝が形成
された伝熱管を備え、室外熱交換器は内側の表面にらせ
ん状の溝を形成された伝熱管を備えた空気調和機。An air conditioner having a heat cycle in which an outdoor heat exchanger having a heat transfer tube through which a refrigerant flows, a compressor, an indoor heat exchanger, and an expansion valve are connected in this order.
An air conditioner in which an indoor heat exchanger includes a heat transfer tube having a plurality of non-parallel grooves formed on an inner surface thereof, and an outdoor heat exchanger includes a heat transfer tube having a spiral groove formed on an inner surface thereof.
交換器と圧縮機と室内熱交換器と膨張弁とがこれらの順
に接続された熱サイクルを備えた空気調和機において、
室内熱交換器は内側の表面に形成されたフィンを有し、
このフィンは、フィンの頂部を含む第1の部分とフィン
の根本を含む第2の部分からなり、前記第1の部分の稜
線が凹凸形状あるいは略波形状である空気調和機。2. An air conditioner having a heat cycle in which an outdoor heat exchanger having a heat transfer tube through which a refrigerant flows, a compressor, an indoor heat exchanger, and an expansion valve are connected in this order.
The indoor heat exchanger has fins formed on the inner surface,
The air conditioner includes a first portion including a top portion of the fin and a second portion including a root of the fin, and a ridge of the first portion has an uneven shape or a substantially wavy shape.
交換器と圧縮機と室内熱交換器と膨張弁とがこれらの順
に接続された熱サイクルを備え、室外熱交換機は内側の
表面にらせん状の溝を形成された伝熱管を有した空気調
和器において、前記室内熱交換器が、前記冷媒がその内
部を通過する際の熱抵抗が、前記室外熱交換器の伝熱管
の前記冷媒がその内部を通過する際の熱抵抗よりも大き
な熱抵抗を有する伝熱管を備えた空気調和機3. A heat cycle in which an outdoor heat exchanger having a heat transfer tube through which a refrigerant flows, a compressor, an indoor heat exchanger, and an expansion valve are connected in this order, and the outdoor heat exchanger has an inner surface. In an air conditioner having a heat transfer tube formed with a spiral groove, the indoor heat exchanger has a heat resistance when the refrigerant passes through the inside thereof, and the heat transfer tube of the outdoor heat exchanger has An air conditioner equipped with a heat transfer tube having a thermal resistance greater than the thermal resistance of the refrigerant when passing through the interior
器において、前記室内側熱交換器を構成する伝熱管の長
さが、前記室外側熱交換器を構成する伝熱管の長さより
も短い空気調和機。4. The air conditioner according to claim 1, wherein a length of the heat transfer tube forming the indoor heat exchanger is longer than a length of the heat transfer tube forming the outdoor heat exchanger. Short air conditioner.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06978598A JP3430909B2 (en) | 1998-03-19 | 1998-03-19 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP06978598A JP3430909B2 (en) | 1998-03-19 | 1998-03-19 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH11264630A true JPH11264630A (en) | 1999-09-28 |
JP3430909B2 JP3430909B2 (en) | 2003-07-28 |
Family
ID=13412773
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP06978598A Expired - Fee Related JP3430909B2 (en) | 1998-03-19 | 1998-03-19 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3430909B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009300021A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2012057849A (en) * | 2010-09-08 | 2012-03-22 | Toshiba Carrier Corp | Heat transfer tube, heat exchanger, and refrigerating cycle device |
JP2013178138A (en) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | Fluid cooling device and heat exchanger |
EP2796822A1 (en) * | 2011-12-19 | 2014-10-29 | Mitsubishi Electric Corporation | Air conditioner |
CN105042689A (en) * | 2007-11-28 | 2015-11-11 | 三菱电机株式会社 | Air conditioning apparatus |
WO2019180817A1 (en) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device, and air conditioning device |
-
1998
- 1998-03-19 JP JP06978598A patent/JP3430909B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105042689A (en) * | 2007-11-28 | 2015-11-11 | 三菱电机株式会社 | Air conditioning apparatus |
US9714795B2 (en) | 2007-11-28 | 2017-07-25 | Mitsubishi Electric Corporation | Air conditioner |
US9791218B2 (en) | 2007-11-28 | 2017-10-17 | Mitsubishi Electric Corporation | Air conditioner with grooved inner heat exchanger tubes and grooved outer heat exchanger tubes |
JP2009300021A (en) * | 2008-06-16 | 2009-12-24 | Mitsubishi Electric Corp | Refrigerating cycle device |
JP2012057849A (en) * | 2010-09-08 | 2012-03-22 | Toshiba Carrier Corp | Heat transfer tube, heat exchanger, and refrigerating cycle device |
EP2796822A1 (en) * | 2011-12-19 | 2014-10-29 | Mitsubishi Electric Corporation | Air conditioner |
EP2796822A4 (en) * | 2011-12-19 | 2015-11-25 | Mitsubishi Electric Corp | Air conditioner |
JP2013178138A (en) * | 2012-02-28 | 2013-09-09 | Mitsubishi Heavy Ind Ltd | Fluid cooling device and heat exchanger |
WO2019180817A1 (en) * | 2018-03-20 | 2019-09-26 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device, and air conditioning device |
JPWO2019180817A1 (en) * | 2018-03-20 | 2021-01-07 | 三菱電機株式会社 | Heat exchanger, refrigeration cycle device and air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JP3430909B2 (en) | 2003-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7882708B2 (en) | Flat pipe-shaped heat exchanger | |
EP2006629A2 (en) | Fin-tube heat exchanger, fin for heat exchanger, and heat pump device | |
JP4122608B2 (en) | Refrigerant evaporator | |
US7182127B2 (en) | Heat exchanger | |
US7299863B2 (en) | Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage | |
JP2000193389A (en) | Outdoor unit of air-conditioner | |
JPS58217195A (en) | Heat exchanger | |
JP2009145009A (en) | Air conditioner | |
JPH04177091A (en) | Heat exchanger | |
JP2018021756A (en) | Heat transfer tube for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger | |
JPH10197184A (en) | Heat transfer tube equipped with internal fin and heat exchanger | |
JPH11264630A (en) | Air-conditioning equipment | |
WO2018207321A1 (en) | Heat exchanger and refrigeration cycle device | |
JP2010139115A (en) | Heat exchanger and heat exchanger unit | |
JP2008215737A (en) | Fin tube type heat exchanger and refrigerating cycle | |
CN117157500A (en) | Heat exchanger | |
JP2002318088A (en) | Heat exchanger and air conditioner | |
JP2002235993A (en) | Spiral fin tube and refrigeration air conditioning device | |
JP2005127570A (en) | Heat transfer pipe and refrigeration unit using the same | |
JP2001165586A (en) | Heat exchanger and air-conditioning refrigerating device equipped with the heat exchanger | |
JPH0968396A (en) | Heat exchanger | |
JP6621928B2 (en) | Heat exchanger and air conditioner | |
JPH06147532A (en) | Air conditioner | |
JPS58214783A (en) | Heat exchanger | |
JPS61159094A (en) | Finned heat exchanger |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R371 | Transfer withdrawn |
Free format text: JAPANESE INTERMEDIATE CODE: R371 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080523 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090523 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100523 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110523 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120523 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130523 Year of fee payment: 10 |
|
LAPS | Cancellation because of no payment of annual fees |