JPH11270980A - Heat transfer pipe for evaporator - Google Patents

Heat transfer pipe for evaporator

Info

Publication number
JPH11270980A
JPH11270980A JP7384698A JP7384698A JPH11270980A JP H11270980 A JPH11270980 A JP H11270980A JP 7384698 A JP7384698 A JP 7384698A JP 7384698 A JP7384698 A JP 7384698A JP H11270980 A JPH11270980 A JP H11270980A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
tube
refrigerant
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7384698A
Other languages
Japanese (ja)
Inventor
Kotaro Tsuri
弘太郎 釣
Hidemitsu Kameoka
秀光 亀岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP7384698A priority Critical patent/JPH11270980A/en
Publication of JPH11270980A publication Critical patent/JPH11270980A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0071Evaporators

Abstract

PROBLEM TO BE SOLVED: To provide a heat transfer pipe for an evaporator that can thinly retain a refrigerant between fins and can obtain high heat transfer performance with a small amount of refrigerant. SOLUTION: A single fin part consisting of a fin 10 with a twisting angle of θ1 and a cross fin part consisting of the fin 10 with the twisting angle of θ1 and a fin 11 with a twisting angle of θ2 are formed alternately in the direction of a pipe axis on the outer surface of the heat transfer pipe. As a result, since a refrigerant falls at the cross fin part, the refrigerant is retained thinly between fins, thus obtaining a high heat transfer rate outside the pipe and achieving improved heat transfer performance. Also, since the amount of refrigerant storage can be reduced, a refrigerator can be miniaturized and the circulation load of the refrigerant can be reduced.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷水などの冷却流
体製造用の吸収式冷凍機や空調用吸収ヒートポンプなど
の蒸発器に使用される、少量の冷媒で高い伝熱性能が得
られる蒸発器用伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an evaporator which is used in an evaporator such as an absorption refrigerator for producing a cooling fluid such as cold water or an absorption heat pump for air conditioning and which can obtain high heat transfer performance with a small amount of refrigerant. Regarding heat transfer tubes.

【0002】[0002]

【従来の技術】吸収式冷凍機などの蒸発器では、その内
部に伝熱管が水平に多列多段などに配置され、この伝熱
管の外面に冷媒を減圧下で滴下して蒸発させ、冷媒の蒸
発潜熱により伝熱管内を流れる水などの流体が冷却され
る。前記伝熱管には、外面に螺旋状フィンを形成して表
面積を大きくし熱交換効率を高めた伝熱管が使用されて
いる。この螺旋状フィン付伝熱管はターボ冷凍機や各種
熱交換器の熱交換管にも使用されている。前記螺旋状フ
ィン付伝熱管の伝熱性能を高めるには、冷媒が螺旋状フ
ィンを乗り越えて膜状に広がり伝熱管表面に乾き面が生
じないようにする必要があり、そのためフィン高さを
0.3〜0.7mm程度に低くして、冷媒が螺旋状フィ
ンを乗り越えて膜状に広がるようにした伝熱管が開発さ
れている。
2. Description of the Related Art In an evaporator such as an absorption refrigerator, heat transfer tubes are horizontally disposed in a multi-row, multi-stage or the like, and a refrigerant is dropped on the outer surface of the heat transfer tube under reduced pressure to evaporate the refrigerant. Fluid such as water flowing in the heat transfer tube is cooled by the latent heat of evaporation. As the heat transfer tube, a heat transfer tube having spiral fins formed on the outer surface to increase the surface area and enhance the heat exchange efficiency is used. This heat transfer tube with a spiral fin is also used for a heat exchange tube of a turbo refrigerator or various heat exchangers. In order to enhance the heat transfer performance of the heat transfer tube with the spiral fins, it is necessary to prevent the refrigerant from spreading over the spiral fins and spreading in a film form so that a dry surface is not formed on the surface of the heat transfer tube. A heat transfer tube has been developed in which the coolant is reduced to about 0.3 to 0.7 mm so that the refrigerant gets over the spiral fins and spreads in a film form.

【0003】[0003]

【発明が解決しようとする課題】前記フィン高さの低い
フィン伝熱管は、比較的高い伝熱性能が得られるもので
あるが、本発明者等は、伝熱性能の更なる向上を目指し
て、前記フィン伝熱管について種々検討を行った。その
結果、前記伝熱管のフィン間(間隙)には冷媒が厚く保
持され、この厚く保持された冷媒が管外熱伝達率を低下
させることを見いだし、冷媒を薄く保持する方法につい
て鋭意検討を進めて本発明を完成させるに至った。本発
明は、冷媒がフィン間に薄く保持され、少量の冷媒で高
い伝熱性能が得られる蒸発器用伝熱管の提供を目的とす
る。
The fin heat transfer tube having a low fin height can obtain relatively high heat transfer performance. However, the present inventors aimed at further improving the heat transfer performance. Various investigations were made on the fin heat transfer tubes. As a result, the refrigerant is held thick between the fins (gap) of the heat transfer tube, and it has been found that this thickly held refrigerant lowers the heat transfer coefficient outside the tube. Thus, the present invention has been completed. An object of the present invention is to provide a heat transfer tube for an evaporator in which a refrigerant is held thin between fins and high heat transfer performance can be obtained with a small amount of refrigerant.

【0004】[0004]

【課題を解決するための手段】請求項1記載の発明は、
伝熱管の外面に、ねじれ角θ1 のフィンからなる単一フ
ィン部と、ねじれ角θ1 のフィンとねじれ角θ2 のフィ
ンからなる交差フィン部とが前記伝熱管の管軸方向に交
互に形成されていることを特徴とする蒸発器用伝熱管で
ある。
According to the first aspect of the present invention,
The outer surface of the heat transfer tube, a single fin portion comprising a fin helix angle theta 1, alternating with cross fin portion in the tube axis direction of the heat transfer tube comprising a fin helix angle theta 1 between the fin and the twist angle theta 2 A heat transfer tube for an evaporator, which is formed.

【0005】請求項2記載の発明は、交差フィン部が伝
熱管の円周方向にリング状に形成されていることを特徴
とする請求項1記載の蒸発器用伝熱管である。
The invention according to claim 2 is the heat transfer tube for an evaporator according to claim 1, wherein the cross fin portion is formed in a ring shape in a circumferential direction of the heat transfer tube.

【0006】請求項3記載の発明は、交差フィン部が伝
熱管の管軸方向に螺旋状に形成されていることを特徴と
する請求項1記載の蒸発器用伝熱管である。
According to a third aspect of the present invention, there is provided the heat transfer tube for an evaporator according to the first aspect, wherein the cross fin portion is formed in a spiral shape in the tube axis direction of the heat transfer tube.

【0007】[0007]

【発明の実施の形態】本発明の伝熱管は、フィン伝熱管
の複数箇所にフィンが交差する交差フィン部を設けて、
フィン間に厚く保持された冷媒を前記交差フィン部で落
下させて冷媒がフィン間に薄く保持されるようにしたも
のである。これにより管外熱伝達率が向上してより高い
伝熱性能が得られる。交差フィン部で冷媒が落下する理
由は、単一フィン部を流動してくる冷媒が、交差フィン
部に形成された交差フィンにその流動が阻まれて交差フ
ィン部に多量に滞留するためである。
BEST MODE FOR CARRYING OUT THE INVENTION A heat transfer tube according to the present invention is provided with cross fin portions where fins cross each other at a plurality of locations of a fin heat transfer tube.
The coolant held thick between the fins is dropped at the cross fin portion so that the coolant is held thin between the fins. Thereby, the heat transfer coefficient outside the tube is improved, and higher heat transfer performance can be obtained. The reason why the refrigerant drops at the crossed fin portion is that the refrigerant flowing through the single fin portion is blocked by the crossed fins formed in the crossed fin portion and stays in a large amount in the crossed fin portion. .

【0008】以下に本発明の伝熱管を図を参照して具体
的に説明する。図1は本発明の伝熱管の第1の例を示す
側面図(イ) と部分拡大説明図(ロ)(ハ)である。伝熱管32の
外面に、ねじれ角θ1 のフィン10からなる単一フィン部
と、ねじれ角θ1 のフィン10とねじれ角θ2 のフィン11
からなる交差フィン部とが伝熱管32表面の管軸方向に交
互に形成されている。前記交差フィン部は伝熱管32の円
周方向にリング状に形成されている。そして前記交差フ
ィン部の向きと管軸とのなす角度θ3 は90°であり、
交差フィン部の向きとフィン10の向きとのなす角度αは
ほぼ45°である。
Hereinafter, the heat transfer tube of the present invention will be specifically described with reference to the drawings. FIG. 1 is a side view (a) and a partially enlarged explanatory view (b) and (c) showing a first example of a heat transfer tube of the present invention. The outer surface of the heat transfer tube 32, a single fin portion comprising a fin 10 of the helix angle theta 1, the helix angle theta 1 of the fin 10 and the helix angle theta 2 of the fins 11
Are formed alternately in the tube axis direction on the surface of the heat transfer tube 32. The cross fin portion is formed in a ring shape in the circumferential direction of the heat transfer tube 32. The angle θ 3 between the direction of the cross fin portion and the pipe axis is 90 °,
The angle α between the direction of the cross fin portion and the direction of the fin 10 is approximately 45 °.

【0009】図2は、本発明の伝熱管の第2の例を示す
側面図である。この伝熱管32は交差フィン部が管軸方向
に螺旋状に形成されたものである。ここで、交差フィン
部の向きの管軸とのなす角度は反時計回りにθ3 (θ3
<90°)であり、交差フィン部の向きとフィン10の向
きとのなす角度αはほぼ90°である。
FIG. 2 is a side view showing a second example of the heat transfer tube of the present invention. The heat transfer tube 32 has a cross fin portion formed spirally in the tube axis direction. Here, the angle between the direction of the intersection fin and the tube axis is counterclockwise θ 33
<90 °), and the angle α between the direction of the cross fin portion and the direction of the fin 10 is substantially 90 °.

【0010】図3は、本発明の伝熱管の第3の例を示す
側面図である。この伝熱管32は交差フィン部が管軸方向
に螺旋状に形成されたものである。ここで、交差フィン
部の向きの管軸とのなす角度は時計回りにθ3 (θ3
90°)であり、交差フィン部の向きとフィン10の向き
とのなす角度αはほぼ15度である。図1〜3に示した
伝熱管は、交差フィン部の形状が異なるものであるが、
その差が伝熱性能に及ぼす影響は小さい。本発明では、
冷媒がフィン間に薄く保持されるため、冷凍機に貯留す
る冷媒が少量になり、冷凍機の小型化および冷媒循環の
負荷の低減が図れる。
FIG. 3 is a side view showing a third example of the heat transfer tube of the present invention. The heat transfer tube 32 has a cross fin portion formed spirally in the tube axis direction. Here, the angle between the direction of the cross fin and the tube axis is clockwise θ 33 <
90 °), and the angle α between the direction of the cross fin portion and the direction of the fin 10 is approximately 15 degrees. The heat transfer tubes shown in FIGS. 1 to 3 have different cross fin portions,
The effect of the difference on the heat transfer performance is small. In the present invention,
Since the refrigerant is kept thin between the fins, the amount of refrigerant stored in the refrigerator becomes small, so that the refrigerator can be downsized and the load of refrigerant circulation can be reduced.

【0011】次に、本発明の伝熱管の製造方法について
説明する。図1に示した伝熱管32は、走行する平滑管の
外面に、ローレット溝がθ1 の傾きで形成された回転工
具aを押当ててフィン10を形成して素管とし、次に前記
素管外面の所定箇所にローレット溝がθ2 の傾きで形成
された回転工具bを押当てて素管外面の円周方向にフィ
ン11をリング状に形成して製造される。ここで、回転工
具bは素管の回りに遊星回転させつつ素管と一緒に管軸
方向に走行させてフィン11を形成し、その後回転工具b
を元の位置に戻す操作を繰り返すことにより、素管の走
行を止めずにフィン11を形成できる。
Next, a method of manufacturing a heat transfer tube according to the present invention will be described. Heat transfer pipe 32 shown in FIG. 1, the outer surface of the smooth tube running to the base tube to form fins 10 of the rotary tool a the knurled grooves are formed in the theta 1 of inclination against press, then the element knurls a predetermined position of the tube outer surface is produced by forming a fin 11 in a ring shape in the circumferential direction of the mother tube outer surface against press rotary tool b formed in theta 2 gradient. Here, the rotating tool b is caused to run in the tube axis direction together with the raw tube while rotating the planetary gear around the raw tube to form the fins 11, and thereafter, the rotating tool b
The fin 11 can be formed without stopping the running of the raw tube by repeating the operation of returning the fin 11 to the original position.

【0012】図2と図3に示した伝熱管32は、走行する
平滑管の外面にローレット溝がθ1の傾きで形成された
回転工具aを押当ててフィン10を形成して素管とし、次
に前記素管外面にローレット溝がθ2 の傾きで形成され
た回転工具bを押当ててねじれ角θ2 のフィン11を螺旋
状に形成して製造される。ここで、回転工具bの素管と
の接触長さは、通常、回転工具aの平滑管との接触長さ
の1/2〜1/6程度にする。回転工具bは管軸方向に
対する位置を固定して素管の回りを遊星回転させる。
The heat transfer tube 32 shown in FIGS. 2 and 3 is formed into a base tube by forming a fin 10 by pressing a rotating tool a having a knurl groove formed at an inclination of θ 1 against the outer surface of a running smooth tube. It is then produced the fins 11 of the rotary tool b a devoted press helix angle theta 2 which knurls are formed by theta 2 of inclination to the base pipe outer surface and formed in a spiral shape. Here, the contact length of the rotary tool b with the raw pipe is usually about 2〜 to 6 of the contact length of the rotary tool a with the smooth tube. The rotating tool b rotates the planet around the raw tube while fixing the position in the tube axis direction.

【0013】本発明において、フィンの高さは、0.2
mm未満では管外面の表面積を十分大きくできず、0.
7mmを超えるとフィン間の冷媒液膜が厚くなり管外熱
伝達率が低下するようになる。従ってフィンの高さは
0.2〜0.7mm、特には0.2〜0.5mmが望ま
しい。単一フィン部は冷媒液膜を管軸方向に広げて熱交
換を効率良く行う部分なのでその長さL1 (図1〜3参
照)は長くする。交差フィン部は単一フィン部上の流動
冷媒を落下させる部分なのでその長さL2 (図1〜3参
照)は短くて良い。前記単一フィン部の長さL1 は20
〜30mm程度、交差フィン部の長さL2は5〜10m
m程度が適当である。
In the present invention, the height of the fin is 0.2
If it is less than 0.1 mm, the surface area of the outer surface of the tube cannot be sufficiently increased.
If it exceeds 7 mm, the refrigerant liquid film between the fins becomes thick, and the heat transfer coefficient outside the tube decreases. Therefore, the height of the fin is desirably 0.2 to 0.7 mm, particularly desirably 0.2 to 0.5 mm. Since the single fin portion is a portion where the refrigerant liquid film is spread in the tube axis direction and heat exchange is performed efficiently, its length L 1 (see FIGS. 1 to 3) is increased. Since the cross fin portion is a portion where the flowing refrigerant on the single fin portion falls, the length L 2 (see FIGS. 1 to 3) may be short. The length L 1 of the single fin portion is 20
About ~30Mm, the length L 2 of the cross fin portion 5~10m
About m is appropriate.

【0014】[0014]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)前述の方法により図1〜3に示した種々の
伝熱管を製造した。フィン形成前の平滑管にはりん脱酸
銅管を用い、これを外径19.05mm、肉厚0.75
mmの伝熱管に加工した。伝熱管のフィンの高さ、フィ
ン数、ねじれ角θ1,θ2 、単一フィン部と交差フィン部
の長さL1,L2 、交差フィン部の向きの管軸とのなす角
度θ3 は種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) Various heat transfer tubes shown in FIGS. 1 to 3 were manufactured by the above-described method. A phosphorus deoxidized copper tube was used as the smooth tube before the fin formation, and had an outer diameter of 19.05 mm and a wall thickness of 0.75.
mm heat transfer tube. Fin height, number of fins, torsion angle θ 1, θ 2 of heat transfer tube, lengths L 1 , L 2 of single fin portion and cross fin portion, angle θ 3 between tube axis in direction of cross fin portion Was varied.

【0015】実施例1で得られた各々の伝熱管を吸収式
冷凍機の蒸発器用伝熱管に用いてそれらの管外熱伝達率
α0 を測定した。比較のため単一フィン部のみからなる
伝熱管およびりん脱酸銅製の表面が平滑な伝熱管につい
ても同様の測定を行った。結果を表1、2に示す。各伝
熱管の管外熱伝達率α0 は、単一フィン部のみからなる
伝熱管の管外熱伝達率α0 を100としたときの比率で
表示した。
Each of the heat transfer tubes obtained in Example 1 was used as a heat transfer tube for an evaporator of an absorption refrigerator, and the heat transfer coefficient α 0 outside the tube was measured. For comparison, the same measurement was performed on a heat transfer tube having only a single fin portion and a heat transfer tube made of phosphor deoxidized copper having a smooth surface. The results are shown in Tables 1 and 2. The heat transfer coefficient α 0 outside the tube of each heat transfer tube is represented by a ratio when the heat transfer coefficient α 0 outside the tube of the heat transfer tube including only a single fin portion is set to 100.

【0016】前記測定に用いた吸収式冷凍器を図4に示
す。この吸収式冷凍機は蒸発器31と吸収器41からなり、
蒸発器31内には長さ500mmの蒸発器用伝熱管32が2
列5段に、軸芯間隔35mmで配置され、各伝熱管32は
直列に連通されて内部に冷水が通される。蒸発器31内は
減圧されており、散布パイプ33から散布された冷媒(純
水)は伝熱管32表面にて蒸発し、そのときの蒸発潜熱に
より伝熱管32内部の冷水が冷却される。本発明および比
較のための伝熱管は蒸発器31の伝熱管32に用いた。
FIG. 4 shows the absorption refrigerator used for the measurement. This absorption refrigerator comprises an evaporator 31 and an absorber 41,
Two evaporator heat transfer tubes 32 each having a length of 500 mm are provided in the evaporator 31.
The heat transfer tubes 32 are arranged in five rows at a shaft center interval of 35 mm, and the heat transfer tubes 32 are connected in series so that cold water is passed inside. The pressure inside the evaporator 31 is reduced, and the refrigerant (pure water) sprayed from the spray pipe 33 evaporates on the surface of the heat transfer tube 32, and the cold water inside the heat transfer tube 32 is cooled by the latent heat of evaporation at that time. The heat transfer tube of the present invention and a comparative example were used for the heat transfer tube 32 of the evaporator 31.

【0017】吸収器41内には通常の吸収器用伝熱管42が
1列5段に配置され、各伝熱管42は相互に直列に連通さ
れて内部に冷却水が通される。蒸発器31と吸収器41との
間は連通しており、蒸発器31で発生した蒸気は吸収器41
内の伝熱管42の表面に結露し、散布パイプ43から散布さ
れる吸収液(LiBr)に吸収される。図4で44は希釈
された吸収液の貯留槽、45は濃度調整槽、46は循環ポン
プ、47は配管である。
In the absorber 41, ordinary heat transfer tubes 42 for the absorber are arranged in five rows in one row, and the heat transfer tubes 42 are connected to each other in series so that the cooling water flows therein. The evaporator 31 and the absorber 41 are in communication with each other.
The water is condensed on the surface of the heat transfer pipe 42 in the inside, and is absorbed by the absorbing liquid (LiBr) sprayed from the spray pipe 43. In FIG. 4, 44 is a storage tank for the diluted absorption liquid, 45 is a concentration adjusting tank, 46 is a circulation pump, and 47 is a pipe.

【0018】前記吸収式冷凍機の蒸発器における諸条件
は次の通りである。 (1)冷媒(水) 入口温度:15±1℃ 流量:1.0リットル/m・min. (単位長さ当たりの伝熱管に流れる冷媒流量) (2)冷媒散布装置 孔径:1.5mm、間隔12mm (3)伝熱管内冷水 入口温度:28±0.3℃、流速:2.0m/sec (4)蒸発器内圧力 1.6±0.07kPa(12±0.5mmHg)
The conditions in the evaporator of the absorption refrigerator are as follows. (1) Refrigerant (water) Inlet temperature: 15 ± 1 ° C. Flow rate: 1.0 liter / m · min. (2) Refrigerant spraying device Hole diameter: 1.5 mm, spacing 12 mm (3) Cold water in the heat transfer tube Inlet temperature: 28 ± 0.3 ° C, flow rate: 2.0 m / sec (4) Pressure in the evaporator 1.6 ± 0.07 kPa (12 ± 0.5 mmHg)

【0019】管外熱伝達率α0 (単位:KW/m2
K)は下式により算出した。 α0 =(1/U)−〔D0 /(Di ・αi )〕 ただし、Uは、式U=Q/(ΔT・S)で求められる熱
通過率(式中Qは管内冷水の熱交換量、ΔTは管内冷水
温度と冷媒蒸発温度との対数平均温度差、Sは管の最大
外径基準の表面積)、D0 は伝熱管の最大外径、Di
伝熱管の内径、αi は、式αi =0.023(K/
i )Re 0.8 r 0.4 で求められる管内熱伝達率(式
中Kは冷水の熱伝導率、Re は冷水のレイノルズ数、P
r は冷水のプランドル数)である。
Out-of-tube heat transfer coefficient α 0 (unit: KW / m 2 ·
K) was calculated by the following equation. α 0 = (1 / U) − [D 0 / (D i · α i )] where U is the heat transfer rate determined by the equation U = Q / (ΔT · S) (where Q is the cold water in the pipe) heat exchange amount, logarithmic mean temperature difference ΔT and the pipe cold water temperature and the refrigerant evaporation temperature, the surface area of the maximum outer diameter criterion S is the tube), D 0 is the maximum outer diameter of the heat transfer tube, D i is the inner diameter of the heat transfer tube, α i is calculated by the equation α i = 0.023 (K /
D i) R e 0.8 P tract heat transfer coefficient obtained by r 0.4 (wherein K is cold thermal conductivity, R e is cold water Reynolds number, P
r is the number of plandles in cold water).

【0020】[0020]

【表1】 (注)No.1は図1に示した伝熱管、No.2〜9 は図2に示した伝熱管。 単一フィン部のフィン、交差フィン部の交差フィン。 θ123:単位 度、管軸からの角度が時計回りを+、反時計回りを−と した。高さ:フィン高さmm。枚数:管周方向1周あたりのフィン枚数。[Table 1] (Note) No. 1 is the heat transfer tube shown in Fig. 1, and No. 2 to 9 are the heat transfer tubes shown in Fig. 2. Single fin fin, cross fin cross fin. θ 1 , θ 2 , θ 3 : Units: The angle from the tube axis clockwise is +, and the counterclockwise angle is-. Height: fin height mm. Number of fins: Number of fins per round in the pipe circumferential direction.

【0021】[0021]

【表2】 (注) No.10,11は図2に示した伝熱管、No.12,13は図3に示した伝熱管。 単一フィン部のフィン、交差フィン部の交差フィン。 θ123:単位 度、管軸からの角度が時計回りを+、反時計回りを−と した。高さ:フィン高さmm。枚数:管周方向1周あたりのフィン枚数。[Table 2] (Note) Nos. 10 and 11 are the heat transfer tubes shown in Fig. 2, and Nos. 12 and 13 are the heat transfer tubes shown in Fig. 3. Single fin fin, cross fin cross fin. θ 1 , θ 2 , θ 3 : Units: The angle from the tube axis clockwise is +, and the counterclockwise angle is-. Height: fin height mm. Number of fins: Number of fins per round in the pipe circumferential direction.

【0022】表1、2より明らかなように、本発明例の
No.1〜13は、いずれも、管外熱伝達率の比率が104〜
135であり、単一フィン部のみからなる伝熱管(No.1
4,15)や平滑伝熱管(No.16) より伝熱性能に優れてい
る。単一フィン部の長さL1 と交差フィン部の長さL2
の管外熱伝達率α0 に及ぼす影響をNo.4,5,6について比
較すると、L1 は長く、L2 は短い方が管外熱伝達率α
0 は大きくなり、また交差フィン部の長さL2 は6mm
あれば十分なことが判る。交差フィン部の形状が管外熱
伝達率α0 に及ぼす影響をNo.1,4,13 について比較する
と、その影響は小さく、図2に示したもの(No.4)が若干
優れている程度である。単一フィン部のフィンの高さの
影響は、0.2mm未満(No.10)または0.7mm超(
No.11)で管外熱伝達率α0 がやや低下するが、他は高い
値を示し、フィンの高さは0.2〜0.7mmであれば
問題ないことが判る。単一フィン部のフィンのねじれ角
度θ1 が管外熱伝達率α0 に及ぼす影響は、ねじれ角度
θ1 が40〜60°においては大差ないことが判る(但
し、フィンの高さが0.2〜0.7mmの範囲)。
As is clear from Tables 1 and 2,
Nos. 1 to 13 all had an out-of-tube heat transfer coefficient ratio of 104 to
135, a heat transfer tube consisting of only a single fin (No. 1
4,15) and smooth heat transfer tubes (No.16). The length of the length L 1 intersecting the fin portion of a single fin unit L 2
When compared for the No.4,5,6 the effect on extravascular heat transfer coefficient α 0, L 1 is longer, L 2 is shorter is extravascular heat transfer coefficient alpha
0 becomes large, and the length L 2 of the cross fin portion is 6 mm
It turns out enough. The shape of the cross fin portion is compared for No.1,4,13 the effect on extravascular heat transfer coefficient alpha 0, the degree the influence is small, as shown in FIG. 2 (No.4) is slightly better It is. The influence of the fin height of the single fin portion is less than 0.2 mm (No. 10) or more than 0.7 mm (No. 10).
Is extravascular heat transfer coefficient alpha 0 slightly decreased at No.11), but others showed a high value, the height of the fin it can be seen that no problem if 0.2 to 0.7 mm. Effect of twist angle theta 1 of the fins of a single fin unit is on extravascular heat transfer coefficient alpha 0 is twist angle theta 1 it can be seen that no significant difference in the 40 to 60 ° (provided that the height of the fins 0. Range from 2 to 0.7 mm).

【0023】(実施例2)実施例1で用いたNo.4(本発
明例)、 No.14(単一フィン部のみからなる伝熱管)、
No.16(平滑伝熱管)の管外熱伝達率α0 を冷媒流量を
種々変えて測定した。冷媒流量以外の測定条件は実施例
1と同じにした。結果を図5に示す。
(Example 2) No. 4 (Example of the present invention) used in Example 1, No. 14 (a heat transfer tube having only a single fin portion),
No.16 The extravascular heat transfer coefficient alpha 0 of (smooth heat transfer tube) were measured by variously changing the refrigerant flow rate. The measurement conditions other than the refrigerant flow rate were the same as in Example 1. FIG. 5 shows the results.

【0024】図5より明らかなように、本発明例の伝熱
管は、冷媒流量の少ない領域で管外熱伝達率α0 が最も
高くなり、単一フィン部のみからなる伝熱管と傾向を異
にする。これは本発明の伝熱管は交差フィン部を有し、
この交差フィン部で冷媒が落下し、フィン間に冷媒が薄
く保持されるためである。測定中、冷媒の挙動を観察し
たところ、図6に示すように、冷媒20は、単一フィン部
全体に膜状に広がり、交差フィン部で落下することが認
められた。なお、膜状の広がりは図示を省略した。冷媒
20の流量を1.0リットル/m・min.以下に絞っても乾
き面は生じなかった。単一フィン部のみからなる伝熱管
(No.14) では同じ冷媒流量で乾き面が生じた。
[0024] Figure 5 As is evident, the heat transfer tube of the present invention example, the highest is the extravascular heat transfer coefficient alpha 0 in the region with less refrigerant flow rate, different heat transfer tubes and tends to be only a single fin unit To This is because the heat transfer tube of the present invention has crossed fins,
This is because the refrigerant drops at the cross fin portions and the refrigerant is kept thin between the fins. When the behavior of the refrigerant was observed during the measurement, as shown in FIG. 6, it was recognized that the refrigerant 20 spread in a film shape over the entire single fin portion and dropped at the cross fin portion. The illustration of the film-like spread is omitted. Refrigerant
20 at a flow rate of 1.0 liter / m · min. No dry surface was produced even when squeezed below. Heat transfer tube consisting of only a single fin
(No. 14) produced a dry surface at the same refrigerant flow rate.

【0025】[0025]

【発明の効果】以上に述べたように、本発明の蒸発器用
伝熱管は、交差フィン部で冷媒が落下するのでフィン間
で冷媒は薄く保持されて高い管外熱伝達率が得られ、従
って伝熱性能に優れる。また冷媒貯留量を少なくできる
ので冷凍機の小型化および冷媒の循環負荷の低減が図れ
る。依って、工業上顕著な効果を奏する。
As described above, in the heat transfer tube for an evaporator according to the present invention, since the refrigerant falls at the intersection fin portion, the refrigerant is kept thin between the fins and a high heat transfer coefficient outside the tube is obtained. Excellent heat transfer performance. Further, since the amount of stored refrigerant can be reduced, the size of the refrigerator can be reduced, and the circulation load of the refrigerant can be reduced. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の伝熱管の第1の例を示す側面図(イ) お
よび部分拡大説明図(ロ)(ハ)である。
FIG. 1 is a side view (a) and a partially enlarged explanatory view (b) and (c) showing a first example of a heat transfer tube of the present invention.

【図2】本発明の伝熱管の第2の例を示す側面図であ
る。
FIG. 2 is a side view showing a second example of the heat transfer tube of the present invention.

【図3】本発明の伝熱管の第3の例を示す側面図であ
る。
FIG. 3 is a side view showing a third example of the heat transfer tube of the present invention.

【図4】吸収式冷凍機の要部説明図である。FIG. 4 is an explanatory view of a main part of the absorption refrigerator.

【図5】管外熱伝達率α0 に及ぼす冷媒流量の影響を示
す説明図である。
FIG. 5 is an explanatory diagram showing an influence of a refrigerant flow rate on an extra-tube heat transfer coefficient α 0 .

【図6】本発明の伝熱管における冷媒の挙動を示す説明
図である。
FIG. 6 is an explanatory diagram showing behavior of a refrigerant in the heat transfer tube of the present invention.

【符号の説明】[Explanation of symbols]

10 ねじれ角θ1 のフィン 11 ねじれ角θ2 のフィン 20 冷媒(水) 31 蒸発器 32 蒸発器用伝熱管 33 蒸発器の散布パイプ 41 吸収器 42 吸収器用伝熱管 43 吸収器の散布パイプ 44 貯留槽 45 濃度調整槽 46 循環ポンプ 47 配管10 Fin with torsion angle θ 1 11 Fin with torsion angle θ 2 20 Refrigerant (water) 31 Evaporator 32 Heat transfer tube for evaporator 33 Evaporator scatter pipe 41 Absorber 42 Heat transfer tube for absorber 43 Scatter pipe for absorber 44 Storage tank 45 Concentration adjustment tank 46 Circulation pump 47 Piping

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 伝熱管の外面に、ねじれ角θ1 のフィン
からなる単一フィン部と、ねじれ角θ1 のフィンとねじ
れ角θ2 のフィンからなる交差フィン部とが前記伝熱管
の管軸方向に交互に形成されていることを特徴とする蒸
発器用伝熱管。
The outer surface of 1. A heat transfer tube, a single fin portion comprising a fin helix angle theta 1, tube and crossing the fin portion is the heat transfer tube comprising a helix angle theta 1 between the fin and the twist angle theta 2 of the fin A heat transfer tube for an evaporator, which is formed alternately in the axial direction.
【請求項2】 交差フィン部が伝熱管の円周方向にリン
グ状に形成されていることを特徴とする請求項1記載の
蒸発器用伝熱管。
2. The heat transfer tube for an evaporator according to claim 1, wherein the cross fin portion is formed in a ring shape in a circumferential direction of the heat transfer tube.
【請求項3】 交差フィン部が伝熱管の管軸方向に螺旋
状に形成されていることを特徴とする請求項1記載の蒸
発器用伝熱管。
3. The heat transfer tube for an evaporator according to claim 1, wherein the cross fin portion is spirally formed in a tube axis direction of the heat transfer tube.
JP7384698A 1998-03-23 1998-03-23 Heat transfer pipe for evaporator Pending JPH11270980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7384698A JPH11270980A (en) 1998-03-23 1998-03-23 Heat transfer pipe for evaporator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7384698A JPH11270980A (en) 1998-03-23 1998-03-23 Heat transfer pipe for evaporator

Publications (1)

Publication Number Publication Date
JPH11270980A true JPH11270980A (en) 1999-10-05

Family

ID=13529928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7384698A Pending JPH11270980A (en) 1998-03-23 1998-03-23 Heat transfer pipe for evaporator

Country Status (1)

Country Link
JP (1) JPH11270980A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045447B1 (en) * 2009-01-09 2011-06-30 엘지전자 주식회사 Heat exchanging tube for absorption type refrigerator
CN102654372A (en) * 2012-05-28 2012-09-05 苏州新太铜高效管有限公司 Pyramid-shaped finned condensing tube
CN105066761A (en) * 2015-09-22 2015-11-18 烟台恒辉铜业有限公司 Evaporating pipe with narrow-gap steam exhaust opening

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101045447B1 (en) * 2009-01-09 2011-06-30 엘지전자 주식회사 Heat exchanging tube for absorption type refrigerator
CN102654372A (en) * 2012-05-28 2012-09-05 苏州新太铜高效管有限公司 Pyramid-shaped finned condensing tube
CN105066761A (en) * 2015-09-22 2015-11-18 烟台恒辉铜业有限公司 Evaporating pipe with narrow-gap steam exhaust opening

Similar Documents

Publication Publication Date Title
US7178361B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
JP2002372390A (en) Heat exchanger tube for falling film evaporator
US20060075772A1 (en) Heat transfer tubes, including methods of fabrication and use thereof
US5590711A (en) Heat transfer tube for absorber
KR20150084778A (en) Evaporation heat transfer tube with a hollow caviity
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP3801771B2 (en) Heat transfer tube for falling film evaporator
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JPH11270980A (en) Heat transfer pipe for evaporator
JPH04260793A (en) Heat transfer tube with inner surface groove
JPH0771889A (en) Heat transfer tube for falling luquid film type evaporator
JP2001153580A (en) Heat transfer pipe
JP3434464B2 (en) Heat transfer tube
JPH04263792A (en) Heat transfer tube for heat exchanger
CN208108902U (en) Half annular knurl finned condensation pipe
JP4587545B2 (en) Heat exchanger tube for absorber
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JP3042486B2 (en) Absorption refrigeration equipment
JPH02161290A (en) Inner face processed heat transfer tube
JPH08136178A (en) Heat transfer tube for heat exchanger and manufacture thereof
KR200150457Y1 (en) Heat pipe
KR100205978B1 (en) Heat pipe for airconditioner
JP5255241B2 (en) Heat transfer tube
JPH10238982A (en) Heat transfer tube for evaporator