JPH11118382A - Heat transfer pipe for evaporator and manufacture thereof - Google Patents

Heat transfer pipe for evaporator and manufacture thereof

Info

Publication number
JPH11118382A
JPH11118382A JP27926797A JP27926797A JPH11118382A JP H11118382 A JPH11118382 A JP H11118382A JP 27926797 A JP27926797 A JP 27926797A JP 27926797 A JP27926797 A JP 27926797A JP H11118382 A JPH11118382 A JP H11118382A
Authority
JP
Japan
Prior art keywords
heat transfer
transfer tube
fin
fins
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27926797A
Other languages
Japanese (ja)
Inventor
Kotaro Tsuri
弘太郎 釣
Hidemitsu Kameoka
秀光 亀岡
Takeshi Nishizawa
武史 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP27926797A priority Critical patent/JPH11118382A/en
Publication of JPH11118382A publication Critical patent/JPH11118382A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a high performance heat transfer pipe suitable for an evaporator of an absorption refrigerator wherein dryness of fins is hardly induced and heat transfer area extension effect by fins can be demonstrated to the maximum. SOLUTION: A heat transfer pipe used in an evaporator of an absorption refrigerator is provided on an outer face of the pipe with helical-formed fins l having a height of 0.2-0.6 mm in an axial direction of the pipe at a pitch of 35-50 pieces per inch and each of the fins 1 is provided at an interval of 0.5-0.9 mm in a circumferencial direction of the pipe with pressing parts 2 having a width of 0.3 mm or less, a depth of 0.1-0.45 mm and a height of less than the height of the fin 1. By such a construction, because a large number of the fins having a short height and provided with the pressing parts are formed, a refrigerant liquid film extends thinly and uniformly on a whole outer surface of the pipe so that a superior heat transfer performance is attained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は冷水製造用の吸収式
冷凍機や空調用吸収ヒートポンプなどの蒸発器に使用さ
れる伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used for an evaporator such as an absorption refrigerator for producing cold water and an absorption heat pump for air conditioning.

【0002】[0002]

【従来の技術】吸収式冷凍機や空調用吸収ヒートポンプ
の蒸発器は、例えば、水平に配置した伝熱管内に水を流
し、前記伝熱管の外面に、減圧下で、冷媒水を滴下また
は散布(スプレー)して蒸発させ、このときの蒸発潜熱
で前記伝熱管内の流水を冷却するものである。ところ
で、近年、地球環境保全の観点からフロン冷媒の使用削
減が要求され、フロン冷媒を用いるターボ冷凍機に代わ
って、水などの自然冷媒を用いる吸収式冷凍機が注目さ
れるようになった。しかし、特に冷媒に水を使用する吸
収式冷凍機の成績係数は1.0程度しかなく、フロンを
冷媒とするターボ冷凍機の成績係数(一般的には3.0
以上)に比べて相当悪い。この性能不足を補うため、吸
収式冷凍機はターボ冷凍機より設備が大型になる。この
ため吸収式冷凍機では伝熱管の性能向上が強く求められ
ている。ところで、ターボ冷凍機などの各種熱交換器に
は、従来より、外面に螺旋状フィンを形成して伝熱面積
を大きくした螺旋フィン付伝熱管が使用されているが、
最近、吸収式冷凍機の蒸発器にもこの螺旋フィン付伝熱
管が使用されるようになってきた。
2. Description of the Related Art An evaporator of an absorption refrigerator or an air conditioning absorption heat pump, for example, flows water into a horizontally arranged heat transfer tube, and drops or sprays refrigerant water on the outer surface of the heat transfer tube under reduced pressure. (Spray) to evaporate, and the flowing water in the heat transfer tube is cooled by the latent heat of evaporation at this time. Meanwhile, in recent years, from the viewpoint of global environmental conservation, reduction of the use of CFC refrigerant has been required, and instead of a centrifugal chiller using CFC refrigerant, an absorption chiller using a natural refrigerant such as water has attracted attention. However, particularly, the coefficient of performance of an absorption refrigerator using water as a refrigerant is only about 1.0, and the coefficient of performance of a turbo refrigerator using Freon as a refrigerant (generally 3.0).
Above). To compensate for this lack of performance, absorption chillers require larger equipment than turbo chillers. For this reason, there is a strong demand for improved performance of heat transfer tubes in absorption chillers. By the way, in various heat exchangers such as a centrifugal chiller, a heat transfer tube with a spiral fin having a larger heat transfer area by forming a spiral fin on the outer surface has been used,
Recently, this heat transfer tube with spiral fins has come to be used also in an evaporator of an absorption refrigerator.

【0003】[0003]

【発明が解決しようとする課題】従来、螺旋フィン付伝
熱管の寸法や形状に関しては、特開昭61−26549
9号公報に、フィン高さ0.1〜8mm、フィンピッチ
0.5〜8mm、フィン枚数50〜3枚/インチという
ように大雑把に開示されているにすぎない。このため、
螺旋フィン付管の寸法や形状は、用途に応じて個々に設
計されており、吸収式冷凍機の蒸発器では、一般に、フ
ィン高さは1.0〜1.5mm程度と高く、管軸方向の
フィンの枚数は、冷媒の蒸発を妨げないように1インチ
あたり15〜30枚と少なく設計されている。しかし、
この設計の伝熱管は、フィンの高さが高いため、図6に
示すように、冷媒水滴下トレー9から滴下される冷媒水
21は管軸方向に広がり難く、冷媒水21で濡れていない乾
き面が多くなり、フィン1の効果が十分に得られないば
かりか、却って伝熱性能が低下してしまうという問題が
ある。
Conventionally, regarding the size and shape of a heat transfer tube with spiral fins, see JP-A-61-26549.
No. 9 only roughly discloses the fin height of 0.1 to 8 mm, the fin pitch of 0.5 to 8 mm, and the number of fins of 50 to 3 / inch. For this reason,
The dimensions and shape of the spiral finned tube are individually designed according to the application. In an evaporator of an absorption refrigerator, the fin height is generally as high as about 1.0 to 1.5 mm, The number of fins is designed to be as small as 15 to 30 per inch so as not to hinder the evaporation of the refrigerant. But,
In the heat transfer tube of this design, since the height of the fins is high, as shown in FIG.
21 has a problem that it is difficult to spread in the axial direction of the tube, the dry surface not wetted by the coolant water 21 increases, and the effect of the fin 1 is not sufficiently obtained, but the heat transfer performance is rather deteriorated.

【0004】また、特公昭58−13837号公報に
は、図7に示すように、螺旋フィン付管のフィン1を管
軸方向に複数に分割して冷媒液膜が分割部を通って管軸
方向に広がり易くした凝縮用伝熱管が開示されている。
この伝熱管は、分割されたフィン1の先端を鋭角状に形
成して凝縮液膜の液切れを促進させる構造になっている
が、このフィン1先端を鋭角状に形成するにはフィン1
を高くする必要があり、やはりフィン先端部で乾き面が
生じ易く十分な伝熱性能は望めない。
In Japanese Patent Publication No. 58-13837, as shown in FIG. 7, a fin 1 of a spiral finned tube is divided into a plurality of tubes in a tube axis direction so that a refrigerant liquid film passes through a divided portion and is connected to a tube shaft. A condensing heat transfer tube that is easy to spread in a direction is disclosed.
This heat transfer tube has a structure in which the tip of the divided fin 1 is formed in an acute angle to promote the drainage of the condensed liquid film.
Therefore, a dry surface tends to occur at the tip of the fin, and sufficient heat transfer performance cannot be expected.

【0005】また、特開昭62−206356号公報に
は、螺旋フィン付伝熱管のフィン1を管軸方向に複数に
分割した蒸発器用伝熱管が開示されているが、この伝熱
管はフィンの切欠き部分が多いため、フィンの伝熱面積
拡大効果が十分に得られず、やはり伝熱性能は不十分で
ある。
Japanese Patent Application Laid-Open No. 62-206356 discloses a heat transfer tube for an evaporator in which a fin 1 of a heat transfer tube with spiral fins is divided into a plurality of tubes in the tube axis direction. Since there are many notches, the effect of expanding the heat transfer area of the fin cannot be sufficiently obtained, and the heat transfer performance is still insufficient.

【0006】また、特開平7−71889号公報には、
図8に示すように、フィン1を管軸方向に複数に分割
し、さらにフィン1先端部に沿って溝22を設けた蒸発器
用伝熱管が開示されているが、この伝熱管はフィン先端
に溝を設けるためフィン1を厚くしてあり、そのためフ
ィン枚数は1インチあたり19〜26枚と少なくなり、
従って伝熱面積が減少し、やはり十分な伝熱性能が得ら
れない。本発明は、フィンに乾きが生じ難くフィンによ
る伝熱面積拡大効果が最大限に発現される吸収式冷凍機
の蒸発器に適した高性能伝熱管およびその製造方法の提
供を目的とする。
[0006] Japanese Patent Application Laid-Open No. 7-71889 discloses that
As shown in FIG. 8, there is disclosed a heat transfer tube for an evaporator in which a fin 1 is divided into a plurality in the tube axis direction and a groove 22 is provided along a tip of the fin 1. The fins 1 are thickened to provide grooves, so the number of fins is reduced to 19 to 26 per inch,
Therefore, the heat transfer area decreases, and sufficient heat transfer performance cannot be obtained. SUMMARY OF THE INVENTION An object of the present invention is to provide a high-performance heat transfer tube suitable for an evaporator of an absorption refrigerator in which fins are unlikely to dry and maximize the heat transfer area expansion effect of the fins, and a method for manufacturing the same.

【0007】[0007]

【課題を解決するための手段】請求項1記載の発明は、
吸収式冷凍機の蒸発器に使用される伝熱管において、前
記伝熱管の外面に高さが0.2〜0.6mmのフィンが
螺旋状に、管軸方向に1インチあたり35〜50枚形成
され、前記フィンに、巾が0.3mm以下、深さが0.
1〜0.45mmでかつ前記フィンの高さ未満の押圧部
が、伝熱管の周囲方向に0.5〜0.9mmの間隔で形
成されていることを特徴とする蒸発器用伝熱管である。
According to the first aspect of the present invention,
In a heat transfer tube used for an evaporator of an absorption refrigerator, fins having a height of 0.2 to 0.6 mm are spirally formed on an outer surface of the heat transfer tube, and 35 to 50 fins are formed per inch in a tube axis direction. The fin has a width of 0.3 mm or less and a depth of 0.3 mm.
A heat transfer tube for an evaporator, wherein the pressing portions having a height of 1 to 0.45 mm and less than the height of the fin are formed at intervals of 0.5 to 0.9 mm in a circumferential direction of the heat transfer tube.

【0008】請求項2記載の発明は、伝熱管の外面のフ
ィンの高さが0.2mm以上0.5mm未満であること
を特徴とする請求項1記載の蒸発器用伝熱管である。
The invention according to claim 2 is the heat transfer tube for an evaporator according to claim 1, wherein the height of the fin on the outer surface of the heat transfer tube is 0.2 mm or more and less than 0.5 mm.

【0009】請求項3記載の発明は、伝熱管内面に複数
の凸状リッジが螺旋状に設けられていることを特徴とす
る請求項1、2のいずれかに記載の蒸発器用伝熱管であ
る。
The invention according to claim 3 is the heat transfer tube for an evaporator according to any one of claims 1 and 2, wherein a plurality of convex ridges are spirally provided on the inner surface of the heat transfer tube. .

【0010】請求項4記載の発明は、伝熱素管の外面に
フィンを、フィン成形円板工具群により螺旋状に形成
し、次いで前記フィンに押圧部を、歯車状円板工具を押
圧して管の周囲方向に形成することを特徴とする請求項
1、2のいずれかに記載の蒸発器用伝熱管の製造方法で
ある。
According to a fourth aspect of the present invention, a fin is formed on the outer surface of the heat transfer tube in a spiral shape by a group of fin forming disk tools, and then a pressing portion is pressed on the fin and a gear-shaped disk tool is pressed. The method for manufacturing a heat transfer tube for an evaporator according to any one of claims 1 and 2, wherein the heat transfer tube is formed in a circumferential direction of the tube.

【0011】請求項5記載の発明は、伝熱管内面に複数
の凸状リッジが螺旋状に設けられた伝熱素管の外面にフ
ィンを、フィン成形円板工具群により螺旋状に形成し、
次いで前記フィンに押圧部を、歯車状円板工具を押圧し
て管の周囲方向に形成することを特徴とする請求項3記
載の蒸発器用伝熱管の製造方法である。
According to a fifth aspect of the present invention, fins are spirally formed on the outer surface of a heat transfer tube in which a plurality of convex ridges are spirally provided on the inner surface of the heat transfer tube by a group of fin forming disk tools.
4. The method according to claim 3, wherein the pressing portion is formed on the fin in a circumferential direction of the tube by pressing a gear-shaped disk tool.

【0012】[0012]

【発明の実施の形態】本発明の伝熱管は、図1(イ)〜
(ハ)に示すように、フィン1の高さを低くしてフィン
1に乾き面が生じ難いようにし、高さを低くしたため減
少したフィン1の表面積はフィン1の枚数を多くして補
足し、さらに、フィン1に押圧部2を形成して冷媒液膜
の管軸方向への広がりを容易にし、以て伝熱性能を高め
たものである。この伝熱管は、フィン1の高さが低いの
で、引抜加工前の伝熱素管の薄肉化が可能となりコスト
的にも有利である。本発明において、フィンの高さを
0.2〜0.6mmに規定する理由は、0.2mm未満
ではフィンによる伝熱面積拡大効果が十分に得られず、
0.6mmを超えると冷媒がフィンを乗り越えて管軸方
向に広がり難くなり、フィン先端部に乾き面が生じて、
十分な伝熱性能が得られなくなるためである。本発明に
おいて、フィンの枚数を管軸方向1インチあたり35〜
50枚に規定する理由は、35枚未満ではフィンによる
伝熱面積拡大効果が十分に得られず、50枚を超えると
フィンの厚さが薄くなり加工が困難になるためである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A heat transfer tube according to the present invention is shown in FIGS.
As shown in (c), the height of the fins 1 is reduced to prevent a dry surface from being formed on the fins 1, and the reduced surface area of the fins 1 due to the reduced height is complemented by increasing the number of the fins 1. Further, the pressing portion 2 is formed on the fin 1 to facilitate the spreading of the refrigerant liquid film in the tube axis direction, thereby improving the heat transfer performance. Since the height of the fins 1 of this heat transfer tube is low, the heat transfer tube before drawing can be made thinner, which is advantageous in terms of cost. In the present invention, the reason for defining the fin height to be 0.2 to 0.6 mm is that if the fin height is less than 0.2 mm, the effect of expanding the heat transfer area by the fin is not sufficiently obtained,
If it exceeds 0.6 mm, it becomes difficult for the refrigerant to climb over the fins and spread in the tube axis direction, and a dry surface occurs at the fin tip,
This is because sufficient heat transfer performance cannot be obtained. In the present invention, the number of fins is 35 to 1 per inch in the tube axis direction.
The reason why the number of fins is set to 50 is that if the number of fins is less than 35, the effect of expanding the heat transfer area by the fins cannot be sufficiently obtained.

【0013】本発明において、押圧部の幅を0.3mm
以下に規定する理由は、押圧部形成によるフィン表面積
の減少を最小限に止めるためである。押圧部の深さを
0.1〜0.45mmに規定する理由は、0.1mm未
満では冷媒液膜が管軸方向に十分に広がらず、0.45
mmを超えるとフィンの表面積が減少して伝熱面積拡大
効果が十分に得られないためである。押圧部の深さをフ
ィンの高さ未満に規定する理由は、押圧部の深さをフィ
ン高さ以上にすると、押圧部での冷媒液膜の厚さが厚く
なりすぎて伝熱性能が低下するためである。押圧部の望
ましい深さは、フィン高さよりも0.1〜0.3mm程
度小さい深さである。押圧部の管周方向の間隔を0.5
〜0.9mmに規定する理由は、0.5mm未満ではフ
ィンの表面積が小さくなって伝熱面積拡大効果が十分に
得られず、0.9mmを超えると冷媒液膜を管軸方向に
広げる効果が十分に得られなくなるためである。
In the present invention, the width of the pressing portion is 0.3 mm
The reason specified below is to minimize the decrease in the fin surface area due to the formation of the pressing portion. The reason why the depth of the pressing portion is defined to be 0.1 to 0.45 mm is that if the depth is less than 0.1 mm, the refrigerant liquid film does not sufficiently spread in the tube axis direction, and
This is because if the diameter exceeds 2,000 mm, the surface area of the fins decreases, and a sufficient effect of expanding the heat transfer area cannot be obtained. The reason for defining the depth of the pressing part to be less than the height of the fin is that if the depth of the pressing part is greater than the fin height, the thickness of the refrigerant liquid film at the pressing part becomes too thick, and the heat transfer performance decreases. To do that. A desirable depth of the pressing portion is a depth smaller by about 0.1 to 0.3 mm than the fin height. The interval between the pressing parts in the pipe circumferential direction is 0.5
The reason for defining the thickness to be 0.9 mm is that if it is less than 0.5 mm, the surface area of the fin becomes small and the effect of expanding the heat transfer area cannot be sufficiently obtained. Is not sufficiently obtained.

【0014】本発明の伝熱管では、過剰の冷媒はフィン
が妨げとなって伝熱管から離脱し、所要の冷媒のみがフ
ィンに形成された押圧部を通ってフィンの全表面に薄く
液膜状に広げられる。従ってフィン形成による管外面の
実表面積の増加を有効に伝熱面として作用させることが
できる。
In the heat transfer tube of the present invention, the excess refrigerant is separated from the heat transfer tube by the fins, and only the required refrigerant passes through the pressing portions formed on the fins to form a thin liquid film on the entire surface of the fins. Spread out. Therefore, the increase in the actual surface area of the outer surface of the tube due to the formation of the fins can effectively act as a heat transfer surface.

【0015】請求項1記載の伝熱管は、図2に示すよう
に、常法で製造した伝熱素管4の外面に、フィン成形円
板工具群5によりフィンを螺旋状に形成し、次いでフィ
ンを形成した伝熱素管4の外面に歯車状円板工具6を押
圧してフィンに押圧部を形成することにより製造され
る。前記フィンおよび押圧部の形成は、連続して行うこ
とにより、極めて高い生産性が得られる。
In the heat transfer tube according to the first aspect, as shown in FIG. 2, fins are spirally formed on the outer surface of a heat transfer tube 4 manufactured by a conventional method using a fin forming disk tool group 5. It is manufactured by pressing the gear-shaped disk tool 6 against the outer surface of the heat transfer element tube 4 on which the fin is formed to form a pressing portion on the fin. By forming the fins and the pressing portions continuously, extremely high productivity can be obtained.

【0016】請求項2記載の伝熱管は、図3に示すよう
に内面に凸状リッジ(線状突起部)3を螺旋状に複数設
けたものである。この伝熱管3は、凸状リッジ3によ
り、管内の冷水に乱流が生じ、また内面の伝熱面積が増
加して熱通過率が向上する。この伝熱管は、伝熱素管
に、内面に凸状リッジを設けた伝熱素管を用いる他は、
図2に示したのと同じ方法により製造できる。前記の内
面に凸状リッジを設けた伝熱素管は、通常の引抜加工法
や電縫加工法などにより容易に製造できる。
In the heat transfer tube according to the second aspect, as shown in FIG. 3, a plurality of convex ridges (linear projections) 3 are spirally provided on the inner surface. In the heat transfer tube 3, turbulence is generated in the cold water in the tube by the convex ridge 3, and the heat transfer area on the inner surface is increased, so that the heat transfer rate is improved. This heat transfer tube uses a heat transfer tube in which a convex ridge is provided on the inner surface,
It can be manufactured by the same method as shown in FIG. The heat transfer pipe provided with the convex ridge on the inner surface can be easily manufactured by a normal drawing method, an electric resistance welding method, or the like.

【0017】本発明において、伝熱管の材料には、空調
用などに多用されているリン脱酸銅管が好適である。使
用条件に応じて鋼管などの他の材料を用いることもでき
る。
In the present invention, the material of the heat transfer tube is preferably a phosphorous deoxidized copper tube that is frequently used for air conditioning and the like. Other materials, such as a steel pipe, can also be used according to use conditions.

【0018】[0018]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)外径15.88mm、肉厚0.8mmのリ
ン脱酸銅素管に、図2に示した方法により、螺旋状フィ
ンを形成し、さらにフィンに押圧部を形成して、押圧部
を有する螺旋状フィン付き伝熱管を製造した。フィンの
高さ、枚数、押圧部のピッチ、深さ、巾は、本発明の規
定値内で種々に変化させた。なお、伝熱管は容易に高歩
留りで製造できた。
The present invention will be described below in detail with reference to examples. (Example 1) Spiral fins were formed on a phosphorous deoxidized copper raw tube having an outer diameter of 15.88 mm and a wall thickness of 0.8 mm by the method shown in FIG. A heat transfer tube with a spiral fin having a pressing portion was manufactured. The height, the number of fins, the pitch, the depth, and the width of the pressing portion were variously changed within the specified values of the present invention. Note that the heat transfer tube could be easily manufactured at a high yield.

【0019】(比較例1)伝熱管の寸法などを本発明の
規定値外とした他は、実施例1と同じ方法により押圧部
を有する螺旋状フィン付き伝熱管を製造した。 (従来例1)前述の特許公報に開示された従来の3種類
の伝熱管を用意した。
(Comparative Example 1) A heat transfer tube with a spiral fin having a pressing portion was manufactured in the same manner as in Example 1, except that the dimensions of the heat transfer tube were outside the specified values of the present invention. (Conventional example 1) Three types of conventional heat transfer tubes disclosed in the above-mentioned patent publication were prepared.

【0020】得られた各々の伝熱管について管外熱伝達
率を測定した。管外熱伝達率の測定は図4に示す試験装
置を用いて行った。試験条件を表1に、得られた結果を
表2に示す。表2にはフィンおよび押圧部の寸法などを
併記した。管外熱伝達率は従来品(No.10) の管外熱伝達
率を100としたときの比率で表した。
The heat transfer coefficient outside the tube was measured for each of the obtained heat transfer tubes. The measurement of the heat transfer coefficient outside the tube was performed using the test device shown in FIG. The test conditions are shown in Table 1, and the obtained results are shown in Table 2. Table 2 also shows the dimensions of the fins and the pressing parts. The heat transfer coefficient outside the tube was expressed as a ratio when the heat transfer coefficient outside the tube of the conventional product (No. 10) was set to 100.

【0021】以下に、前記試験装置について、図4を参
照して説明する。減圧された蒸発器7内部に蒸発器用伝
熱管8が1列5段に2列配されている。各列の伝熱管8
は相互に連通されている。伝熱管8の上方に配された冷
媒水滴下トレー9から冷媒水(純水)が滴下され、この
冷媒水の蒸発潜熱により伝熱管8内の水が冷却される。
一方、減圧された吸収器11内部には吸収器用伝熱管12が
1列5段に1列配されている。各伝熱管12は相互に連通
されている。伝熱管12表面には散布パイプ13より吸収液
(臭化リチウム水溶液)が散布され、この吸収液に蒸発
器7で発生した蒸気が吸収される。吸収器用伝熱管12内
部には冷却水を流して吸収液を冷却し、その蒸気の吸収
効率を高めるようにする。蒸気を吸収して希釈された吸
収液は吸収液貯留タンク14から吸収液調整タンク15に移
され、ここで濃度調整されたのち、ポンプ16により散布
パイプ13に循環される。
Hereinafter, the test apparatus will be described with reference to FIG. Inside the evaporator 7 which has been decompressed, evaporator heat transfer tubes 8 are arranged in two rows in one row and five stages. Heat transfer tubes 8 in each row
Are communicated with each other. Refrigerant water (pure water) is dropped from a coolant water drop tray 9 disposed above the heat transfer tube 8, and the water in the heat transfer tube 8 is cooled by the latent heat of evaporation of the coolant water.
On the other hand, the heat transfer tubes 12 for the absorber are arranged in one row in five rows in the absorber 11 in which the pressure is reduced. Each heat transfer tube 12 is communicated with each other. Absorbing liquid (aqueous lithium bromide solution) is sprayed on the surface of the heat transfer tube 12 from the spraying pipe 13, and the vapor generated in the evaporator 7 is absorbed by the absorbing liquid. Cooling water is allowed to flow inside the absorber heat transfer tube 12 to cool the absorbing liquid, thereby increasing the vapor absorption efficiency. The absorbing liquid diluted by absorbing the vapor is transferred from the absorbing liquid storage tank 14 to the absorbing liquid adjusting tank 15, where the concentration is adjusted, and then circulated to the spray pipe 13 by the pump 16.

【0022】[0022]

【表1】 (注)図2における蒸発器内の伝熱管の吸収器側の1列のみ使用。[Table 1] (Note) Only one row on the absorber side of the heat transfer tube in the evaporator in Fig. 2 is used.

【0023】[0023]

【表2】 (注)※冷媒水流量1.5リットル/m・min.[Table 2] (Note) * Refrigerant water flow rate 1.5 liter / m · min.

【0024】表2より明らかなように、本発明例のNo.1
〜5 はいずれも、管外熱伝達率の比率が高く、従来品に
比べて伝熱性能に優れるものであった。これは高さの低
いフィンが多数枚押圧部を有して形成されているため、
冷媒液膜が管外全表面に薄く均一に広がったことによ
る。特に、フィンの高さが0.45mm以下のもの(No.
1〜3)は、優れた管外熱伝達率を示した。これに対し比
較例のNo.6はフィン高さが低かったため、No.7はフィン
枚数が少なかったため、No.8は押圧部のピッチが小さか
ったため、No.9は押圧部の深さがフィン高さより深かっ
たため、いずれも管外熱伝達率が低下した。
As is clear from Table 2, No. 1 of the present invention example
In each of Nos. 5 to 5, the ratio of the heat transfer coefficient outside the tube was high, and the heat transfer performance was superior to the conventional product. This is because low fins are formed with a large number of pressing parts,
This is because the refrigerant liquid film spread thinly and uniformly over the entire outer surface of the tube. In particular, fins with a height of 0.45 mm or less (No.
1 to 3) showed excellent heat transfer coefficient outside the tube. In contrast, No. 6 of the comparative example had a low fin height, No. 7 had a small number of fins, No. 8 had a small pitch of the pressing portion, and No. 9 had a low fin depth. Since the depth was higher than the height, the heat transfer coefficient outside the tube decreased in all cases.

【0025】本発明例のNo.2、従来品のNo.11 と平滑管
について、冷媒流量を0.6〜2.4リットル/m・m
in.の範囲で種々に変化させたときの管外熱伝達率を
求めた。結果を図5に示す。図5より明らかなように、
本発明例のNo.2は、従来品のNo.11 や平滑管に比べて全
冷媒水流量において、高い管外熱伝達率を示した。
With respect to No. 2 of the present invention, No. 11 of the conventional product, and the smoothing tube, the refrigerant flow rate was 0.6 to 2.4 liter / m · m.
in. The heat transfer coefficient outside the tube when variously changed in the range of was obtained. FIG. 5 shows the results. As is clear from FIG.
No. 2 of the present invention example showed a higher heat transfer coefficient outside the pipe at all refrigerant water flow rates than No. 11 of the conventional product and the smooth pipe.

【0026】(実施例2)引抜加工法により内面に凸状
リッジを形成した伝熱素管の外表面に押圧部を有する螺
旋状フィン付き伝熱管を製造した。螺旋状フィンの形
状、寸法は実施例1のNo.2と同じにした。凸状リッジ
は、横断面のリッジ数24、ねじれ角度40°、リッジ
高さ0.20mmとした(図3(イ)(ロ)参照)。この伝熱
管 (No.13)と実施例1のNo.2について、図4の装置を用
いて熱通過率(総括熱伝達率)を求めた。結果を表3に
示す。熱通過率はNo.2の熱通過率を100としたときの
比率で表した。
(Example 2) A heat transfer tube with a spiral fin having a pressing portion on the outer surface of a heat transfer tube having a convex ridge formed on the inner surface by a drawing method was manufactured. The shape and dimensions of the spiral fin were the same as No. 2 of Example 1. The number of the ridges in the cross section was 24, the twist angle was 40 °, and the ridge height was 0.20 mm (see FIGS. 3A and 3B). For this heat transfer tube (No. 13) and No. 2 of Example 1, the heat transfer coefficient (overall heat transfer coefficient) was determined using the apparatus of FIG. Table 3 shows the results. The heat transmission rate was represented by a ratio when the heat transmission rate of No. 2 was set to 100.

【0027】[0027]

【表3】 [Table 3]

【0028】表3より明らかなように、内面に凸状リッ
ジを有するNo.13 は、内面に凸状リッジを有さないNo.2
に比べて熱通過率が25%高かった。これはNo.13 は管
内面の凸状リッジにより、管内を流れる冷水に乱流効果
が生じたことによる。
As is clear from Table 3, No. 13 having a convex ridge on the inner surface was No. 2 having no convex ridge on the inner surface.
The heat transmission rate was 25% higher than that of. No. 13 is due to the turbulence effect of cold water flowing in the pipe due to the convex ridge on the inner surface of the pipe.

【0029】吸収式冷凍機の蒸発器では、冷媒水の散布
には、主に、滴下式とスプレー式が使用されている。ス
プレー式は、冷媒水をシャワー状態で散布するので、冷
媒水は伝熱管群の全表面に散布され、伝熱管上に乾き面
は生じ難い。滴下式は、冷媒水を伝熱管群の1列ごとに
滴下する方法で、乾き面はスプレー式より生じ易いが、
水圧をかける必要がなく、構造も簡単で、低コストであ
る。本発明の伝熱管は、冷媒が広がり易いものなので、
滴下式でも乾き面は生じ難い。従って、低コストの滴下
式を採用した方が効果的である。
In the evaporator of the absorption refrigerator, the dropping type and the spray type are mainly used for dispersing the refrigerant water. In the spray type, since the coolant water is sprayed in a shower state, the coolant water is sprayed on the entire surface of the heat transfer tube group, and a dry surface hardly occurs on the heat transfer tubes. The dripping method is a method in which the coolant water is dropped for each row of the heat transfer tube group, and the dry surface is more likely to occur than the spray method,
There is no need to apply water pressure, the structure is simple and the cost is low. Since the heat transfer tube of the present invention is one in which the refrigerant easily spreads,
A dry surface is unlikely to occur even with a dropping method. Therefore, it is more effective to adopt a low-cost dropping type.

【0030】[0030]

【発明の効果】以上に述べたように、本発明の伝熱管
は、高さの低いフィンが多数枚押圧部を有して形成され
ているため、冷媒液膜が管外全表面に薄く均一に広が
り、優れた伝熱性能が得られる。さらに内面に凸状リッ
ジを形成したものは、管内を流れる冷水に乱流効果が生
じるなどして伝熱性能が一層向上する。またフィン高さ
が低いので加工素管の薄肉化が可能でコスト的に有利で
ある。本発明の伝熱管はフィン成形円板工具群と歯車状
円板工具を用いて容易に製造でき生産性に優れる。依っ
て、工業上顕著な効果を奏する。
As described above, in the heat transfer tube of the present invention, since the low fins are formed with a large number of pressing portions, the refrigerant liquid film is thin and uniform on the entire outer surface of the tube. And excellent heat transfer performance can be obtained. In the case where the convex ridge is formed on the inner surface, the heat transfer performance is further improved due to the turbulence effect of the cold water flowing in the pipe. Further, since the height of the fins is low, the thickness of the processing tube can be reduced, which is advantageous in cost. The heat transfer tube of the present invention can be easily manufactured using a group of fin-formed disk tools and a gear-shaped disk tool, and is excellent in productivity. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】(イ)、(ロ)、(ハ)は、本発明の伝熱管の
例を示すそれぞれ平面図、フィン部分の斜視図、フィン
部分の拡大斜視図である。
FIGS. 1A, 1B, and 1C are a plan view, a perspective view of a fin portion, and an enlarged perspective view of a fin portion, respectively, showing an example of a heat transfer tube of the present invention.

【図2】本発明の伝熱管の製造方法の例を示す工程説明
図である。
FIG. 2 is a process explanatory view showing an example of a method for manufacturing a heat transfer tube of the present invention.

【図3】(イ)、(ロ)は本発明の伝熱管の内面に形成
する凸状リッジの例を示すそれぞれ横、縦断面図であ
る。
FIGS. 3A and 3B are horizontal and vertical cross-sectional views, respectively, showing examples of a convex ridge formed on the inner surface of the heat transfer tube of the present invention.

【図4】本発明の伝熱管の伝熱性能の測定に用いた装置
の説明図である。
FIG. 4 is an explanatory view of an apparatus used for measuring the heat transfer performance of the heat transfer tube of the present invention.

【図5】冷媒水流量を変化させたときの管外熱伝達率に
おける本発明例と従来品との比較説明図である。
FIG. 5 is a diagram illustrating a comparison between an example of the present invention and a conventional product in the heat transfer coefficient outside the tube when the flow rate of the coolant water is changed.

【図6】フィンに乾き面が生じる状況の説明図である。FIG. 6 is an explanatory diagram of a situation where a dry surface occurs on a fin.

【図7】従来の伝熱管の外表面の説明図である。FIG. 7 is an explanatory diagram of an outer surface of a conventional heat transfer tube.

【図8】従来の伝熱管の外表面の説明図である。FIG. 8 is an explanatory diagram of an outer surface of a conventional heat transfer tube.

【符号の説明】[Explanation of symbols]

1 フィン 2 押圧部 3 凸状リッジ 4 伝熱素管 5 フィン形成円板工具群 6 歯車状円板工具 7 蒸発器 8 蒸発器用伝熱管 9 冷媒水滴下トレー 11 吸収器 12 吸収器用伝熱管 13 散布パイプ 14 吸収液貯留タンク 15 吸収液調整タンク 16 ポンプ 21 冷媒水 22 フィン先端部に設けた溝 DESCRIPTION OF SYMBOLS 1 Fin 2 Pressing part 3 Convex ridge 4 Heat transfer tube 5 Fin forming disk tool group 6 Gear disk tool 7 Evaporator 8 Heat transfer tube for evaporator 9 Refrigerant water drop tray 11 Absorber 12 Heat transfer tube for absorber 13 Scattering Pipe 14 Absorbent liquid storage tank 15 Absorbent liquid adjustment tank 16 Pump 21 Refrigerant water 22 Groove provided at fin tip

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 吸収式冷凍機の蒸発器に使用される伝熱
管において、前記伝熱管の外面に高さが0.2〜0.6
mmのフィンが螺旋状に、管軸方向に1インチあたり3
5〜50枚形成され、前記フィンに、巾が0.3mm以
下、深さが0.1〜0.45mmでかつ前記フィンの高
さ未満の押圧部が、伝熱管の周囲方向に0.5〜0.9
mmの間隔で形成されていることを特徴とする蒸発器用
伝熱管。
1. A heat transfer tube used for an evaporator of an absorption refrigerator, wherein a height of the heat transfer tube is 0.2 to 0.6 on an outer surface of the heat transfer tube.
mm fins in a spiral shape, 3 inches per inch in the tube axis direction
5 to 50 sheets are formed, and the fin is provided with a pressing portion having a width of 0.3 mm or less, a depth of 0.1 to 0.45 mm, and a height less than the height of the fin. ~ 0.9
A heat transfer tube for an evaporator, which is formed at an interval of mm.
【請求項2】 伝熱管の外面のフィンの高さが0.2m
m以上0.5mm未満であることを特徴とする請求項1
記載の蒸発器用伝熱管。
2. The height of the fin on the outer surface of the heat transfer tube is 0.2 m.
2. The structure according to claim 1, wherein the length is not less than m and less than 0.5 mm.
The heat transfer tube for an evaporator according to the above.
【請求項3】 伝熱管内面に複数の凸状リッジが螺旋状
に設けられていることを特徴とする請求項1、2のいず
れかに記載の蒸発器用伝熱管。
3. The heat transfer tube for an evaporator according to claim 1, wherein a plurality of convex ridges are spirally provided on the inner surface of the heat transfer tube.
【請求項4】 伝熱素管の外面にフィンを、フィン成形
円板工具群により螺旋状に形成し、次いで前記フィンに
押圧部を、歯車状円板工具を押圧して管の周囲方向に形
成することを特徴とする請求項1、2のいずれかに記載
の蒸発器用伝熱管の製造方法。
4. A fin is formed on the outer surface of the heat transfer tube in a helical shape by a group of fin-formed disk tools, and then a pressing portion is formed on the fin in a circumferential direction of the tube by pressing a gear-shaped disk tool. The method for manufacturing a heat transfer tube for an evaporator according to claim 1, wherein the heat transfer tube is formed.
【請求項5】 伝熱管内面に複数の凸状リッジが螺旋状
に設けられた伝熱素管の外面にフィンを、フィン成形円
板工具群により螺旋状に形成し、次いで前記フィンに押
圧部を、歯車状円板工具を押圧して管の周囲方向に形成
することを特徴とする請求項3記載の蒸発器用伝熱管の
製造方法。
5. A fin is formed on an outer surface of a heat transfer tube in which a plurality of convex ridges are spirally provided on an inner surface of the heat transfer tube by a group of fin forming disk tools, and then a pressing portion is formed on the fin. 4. The method for manufacturing a heat transfer tube for an evaporator according to claim 3, wherein the heat transfer tube is formed by pressing a gear-shaped disk tool around the tube.
JP27926797A 1997-10-14 1997-10-14 Heat transfer pipe for evaporator and manufacture thereof Pending JPH11118382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27926797A JPH11118382A (en) 1997-10-14 1997-10-14 Heat transfer pipe for evaporator and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27926797A JPH11118382A (en) 1997-10-14 1997-10-14 Heat transfer pipe for evaporator and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH11118382A true JPH11118382A (en) 1999-04-30

Family

ID=17608792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27926797A Pending JPH11118382A (en) 1997-10-14 1997-10-14 Heat transfer pipe for evaporator and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH11118382A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030913A (en) * 2007-07-30 2009-02-12 Furukawa Electric Co Ltd:The Heat transfer pipe
CN102538545A (en) * 2012-01-06 2012-07-04 烟台恒辉铜业有限公司 Falling film type evaporation pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009030913A (en) * 2007-07-30 2009-02-12 Furukawa Electric Co Ltd:The Heat transfer pipe
CN102538545A (en) * 2012-01-06 2012-07-04 烟台恒辉铜业有限公司 Falling film type evaporation pipe

Similar Documents

Publication Publication Date Title
EP1502067B1 (en) Heat transfer tubes, including methods of fabrication and use thereof
JP3315785B2 (en) Heat transfer tube for absorber
EP0882939B1 (en) Heating tube for absorber and method of manufacturing same
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JP3480514B2 (en) Heat transfer tube for falling film evaporator
JPH04260793A (en) Heat transfer tube with inner surface groove
JP3434464B2 (en) Heat transfer tube
JPH0579783A (en) Heat transfer tube with inner surface groove
JP2960828B2 (en) Heat transfer tube for absorber
JP4587545B2 (en) Heat exchanger tube for absorber
JP3199636B2 (en) Heat transfer tube with internal groove
JPH11270980A (en) Heat transfer pipe for evaporator
JPH10238982A (en) Heat transfer tube for evaporator
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JP2001066084A (en) Heat transfer pipe for absorber
JP5255241B2 (en) Heat transfer tube
JPH02137609A (en) Heat exchanger tube for tube condensation and its manufacture
JPH02161290A (en) Inner face processed heat transfer tube
CN112944976A (en) Falling film heat exchange tube, falling film heat exchanger and air conditioner
JPH1078268A (en) Heat transfer tube
JPH07305917A (en) Heat transfer pipe for absorber
JPH09113165A (en) Heat transfer pipe for absorber
JPH102689A (en) Heat transfer tube