JP2009030913A - Heat transfer pipe - Google Patents

Heat transfer pipe Download PDF

Info

Publication number
JP2009030913A
JP2009030913A JP2007196901A JP2007196901A JP2009030913A JP 2009030913 A JP2009030913 A JP 2009030913A JP 2007196901 A JP2007196901 A JP 2007196901A JP 2007196901 A JP2007196901 A JP 2007196901A JP 2009030913 A JP2009030913 A JP 2009030913A
Authority
JP
Japan
Prior art keywords
heat transfer
tube
fin
transfer tube
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007196901A
Other languages
Japanese (ja)
Other versions
JP5255241B2 (en
Inventor
Masahiro Shibata
将寛 柴田
Kotaro Tsuri
弘太郎 釣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007196901A priority Critical patent/JP5255241B2/en
Publication of JP2009030913A publication Critical patent/JP2009030913A/en
Application granted granted Critical
Publication of JP5255241B2 publication Critical patent/JP5255241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe wherein a fin area is reduced, water is easily spread to a pipe axis direction correspondingly, the whole of a pipe outer peripheral surface can be wet, and as a result, a heat transfer rate outside the pipe can be improved. <P>SOLUTION: In the heat transfer pipe 11, a fin 12 spirally protruding from a pipe outer peripheral surface is formed, and a protrusion 13 and a recess 14 are formed on the fin 12 along the longitudinal direction of the fin 12 in a repeated manner in a normal or reverse state. The length La of the protrusion 13 is equal to or shorter than the length Lb of the recess 14, and a gap between the adjacent protrusions 13 is in a range of 1.0 mm to 10 mm. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、例えば、ビルの冷房等に用いられる吸収式冷凍機や空調用吸収ヒートポンプなどの蒸発器や吸収器に使用される伝熱管に関する。   The present invention relates to a heat transfer tube used for an evaporator or an absorber such as an absorption refrigerator used for cooling a building or an absorption heat pump for air conditioning.

ビルの冷房等に用いられる吸収式冷凍機や空調用吸収ヒートポンプなどを用いた冷却システムでは、蒸発器や吸収器の内部で、伝熱管を多列状かつ上下方向へ多段になるように水平に設置し、上下方向に隣り合う伝熱管相互の端部を連通させ、蒸発器内を5mmHg程度の減圧状態に保ち、伝熱管内に12℃程度の水を流しならが当該伝熱管に対して上方の凝縮器から供給される冷媒(水)を滴下ないし散布する。
そして、冷媒が伝熱管群の表面を流下して蒸発する際の潜熱により、伝熱管内の流水を7℃程度まで冷却するように構成されている。
In a cooling system using an absorption chiller used for building cooling, an absorption heat pump for air conditioning, etc., the heat transfer tubes are arranged horizontally in a multi-row and vertical direction inside the evaporator and absorber. Installed, communicating the ends of adjacent heat transfer tubes in the vertical direction, keeping the inside of the evaporator at a reduced pressure of about 5 mmHg, and flowing about 12 ° C water into the heat transfer tube The refrigerant (water) supplied from the condenser is dripped or dispersed.
And it is comprised so that the flowing water in a heat exchanger tube may be cooled to about 7 degreeC by the latent heat at the time of a refrigerant | coolant flowing down the surface of a heat exchanger tube group, and evaporating.

他方吸収器では、伝熱管を多列状かつ上下方向へ多段になるように水平に設置し、上下方向に隣り合う伝熱管相互の端部を連通させ、伝熱管内に冷却媒体(水)を流しながら、当該伝熱管に対して再生器から冷却用の熱交換器を経て供給される吸収液(臭化リチュウム水溶液)が滴下ないし散布される。   On the other hand, in the absorber, the heat transfer tubes are installed horizontally so as to form a multi-row and multi-stage in the vertical direction, the ends of the heat transfer tubes adjacent in the vertical direction are communicated, and the cooling medium (water) is placed in the heat transfer tubes While flowing, the absorbing solution (lithium bromide aqueous solution) supplied from the regenerator through the cooling heat exchanger to the heat transfer tube is dropped or sprayed.

そして、吸収液は、伝熱管群の表面を流下する際に蒸発器で蒸発した冷媒蒸気を吸収した後、再生器へ送られる。吸収器の伝熱管内の冷却媒体は、冷媒蒸気の吸収により温度上昇する吸収液を冷却した後、凝縮器の伝熱管へ送られるように構成されている。   The absorbing liquid absorbs the refrigerant vapor evaporated by the evaporator when flowing down the surface of the heat transfer tube group, and then is sent to the regenerator. The cooling medium in the heat exchanger tube of the absorber is configured so as to be sent to the heat exchanger tube of the condenser after cooling the absorbing liquid whose temperature rises due to absorption of the refrigerant vapor.

この種の伝熱管は、蒸発器、及び、吸収器において、従来より、管外熱伝達率を向上させるためにフィンを管外周面に螺旋状に形成した螺旋フィン付管が使用されている。   Conventionally, this type of heat transfer tube uses a spiral finned tube in which fins are spirally formed on the outer peripheral surface of the tube in order to improve the heat transfer rate outside the tube in an evaporator and an absorber.

さらに、伝熱管の中には、管外周面の蒸発面積の拡大を図り、より一層、伝熱性能(管外熱伝達率)を向上させるため、フィンの高さを高くしたり、管軸方向のフィンの枚数を増やした伝熱管も存在する。
ところで、蒸発器における伝熱管内の冷却媒体は、上述したように、凝縮器により伝熱管に滴下した水が蒸発する際の潜熱を利用して冷却されるため、伝熱管に滴下した水が管外周面全体に薄く広がることが必要である。
Furthermore, in the heat transfer tubes, the evaporating area of the outer peripheral surface of the tube is increased, and in order to further improve the heat transfer performance (heat transfer coefficient outside the tube), the height of the fin is increased, There are also heat transfer tubes with more fins.
By the way, as mentioned above, the cooling medium in the heat transfer tube in the evaporator is cooled by using latent heat generated when the water dropped on the heat transfer tube evaporates by the condenser. It is necessary to spread thinly over the entire outer peripheral surface.

ところが、上述したように管外周面にフィンを積極的に形成すると、螺旋状のフィンが管軸方向の水の移動を妨げることになってしまう事態が生じてしまう。   However, as described above, when the fins are positively formed on the outer peripheral surface of the pipe, a situation occurs in which the spiral fins hinder the movement of water in the pipe axis direction.

このような事態に対して、下記特許文献1において「蒸発器用伝熱管およびその製造方法」が開示されている。
特許文献1によれば、螺旋状のフィン(1)に、そのフィン形成方向に沿って断続的に押圧部(2)を形成した「蒸発器用伝熱管およびその製造方法」が開示されている。
In response to such a situation, the following Patent Document 1 discloses “a heat transfer tube for an evaporator and a method for manufacturing the same”.
According to Patent Document 1, “a heat transfer tube for an evaporator and a manufacturing method thereof” in which a pressing portion (2) is intermittently formed in a spiral fin (1) along the fin forming direction is disclosed.

特許文献1における「蒸発器用伝熱管」は、伝熱管に滴下した水が前記押圧部(2)を通じて管軸方向へ移動可能に構成している。   The “heat exchanger tube for evaporator” in Patent Document 1 is configured such that water dripped onto the heat transfer tube can move in the tube axis direction through the pressing portion (2).

前記構成により、特許文献1における「蒸発器用伝熱管」は、フィンに押圧部を全く構成していない構成の伝熱管と比較して、確かに、管軸方向への水が拡散し易くなるといえる。   With the above configuration, it can be said that the “heat transfer tube for evaporator” in Patent Document 1 certainly facilitates diffusion of water in the tube axis direction as compared to a heat transfer tube having a configuration in which no pressing portion is formed on the fin. .

しかし、特許文献1によれば、「蒸発器用伝熱管およびその製造方法」は、押圧部(2)形成によるフィン面積の減少を最小限に留めるため、押圧部(2)の巾をフィンの長さ方向に0.3mm以下という短い長さに限定して構成されている。   However, according to Patent Document 1, “the evaporator heat transfer tube and the manufacturing method thereof” is designed to minimize the reduction of the fin area due to the formation of the pressing portion (2). The length is limited to a short length of 0.3 mm or less.

このため、管軸方向へ水が拡散し、管外熱伝達率の向上を図ることができるというフィンに押圧部(2)を形成することによる効果を十分に発揮できているか否かについては、さらなる検討が必要であった。   For this reason, whether water is diffused in the direction of the tube axis and the effect of forming the pressing portion (2) on the fin that can improve the heat transfer coefficient outside the tube can be sufficiently exhibited. Further study was needed.

特開平11−118382号公報JP-A-11-118382

そこで本発明は、フィン面積は減少するが、その分、水が管軸方向へ広がり易くなり、管外周面全体を濡らすことも可能となり、結果的に、従来の伝熱管よりも格段に、管外熱伝達率を向上させることができる伝熱管の提供を目的とする。   Therefore, in the present invention, although the fin area is reduced, water easily spreads in the direction of the tube axis, and the entire outer peripheral surface of the tube can be wetted. As a result, the tube is significantly more than conventional heat transfer tubes. It aims at providing the heat exchanger tube which can improve an external heat transfer rate.

本発明の伝熱管は、管外周面から螺旋状に突き出したフィンを形成し、該フィンに、フィンの長さ方向に沿って凸部と凹部とが正逆状に繰り返し形成された伝熱管であって、前記凸部の長さを、前記凹部の長さ以下で形成し、隣り合う前記凸部同士の間隔を、1.0mmから10mmの範囲内で形成したことを特徴とする。   The heat transfer tube of the present invention is a heat transfer tube in which a fin projecting spirally from the outer peripheral surface of the tube is formed, and a convex portion and a concave portion are repeatedly formed in the fin in the forward and reverse directions along the length direction of the fin. And the length of the said convex part was formed below the length of the said recessed part, and the space | interval of the said adjacent convex parts was formed in the range of 1.0 mm to 10 mm, It is characterized by the above-mentioned.

本発明の伝熱管は、前記凹部に対する前記凸部の長さの比率を、0.25から1の範囲内で形成することができる。   In the heat transfer tube of the present invention, the ratio of the length of the convex portion to the concave portion can be formed within a range of 0.25 to 1.

本発明の伝熱管は、前記凸部と前記凹部との繰り返しのピッチを、1.0mmから10mmの範囲内で形成したことを特徴とする。   The heat transfer tube of the present invention is characterized in that a repeated pitch between the convex portion and the concave portion is formed within a range of 1.0 mm to 10 mm.

本発明の伝熱管は、管外周面に対するフィンの前記凸部の高さを、0.2mmから0.95mmの範囲内で形成することもできる。   In the heat transfer tube of the present invention, the height of the convex portion of the fin with respect to the outer peripheral surface of the tube can be formed within a range of 0.2 mm to 0.95 mm.

本発明の伝熱管は、フィン頂部に対する前記凹部を、0.1mmから0.8mmの範囲内の深さで形成するとともに、少なくとも前記管外周面以上の高さで形成することもできる。   In the heat transfer tube of the present invention, the concave portion with respect to the fin top portion can be formed with a depth within a range of 0.1 mm to 0.8 mm and at least a height equal to or greater than the outer peripheral surface of the tube.

また、前記フィンは、当該伝熱管を管軸方向に沿って切断した断面で1インチあたり19枚から50枚の範囲内で形成することができる。   The fins can be formed within a range of 19 to 50 sheets per inch in a cross-section obtained by cutting the heat transfer tube along the tube axis direction.

なお、該フィンには、その長さ方向に沿って凸部と凹部とが正逆状に繰り返し形成され、凹部も含まれるため、当該伝熱管を管軸方向に沿って切断した断面に凹部が現れる場合もあるが、この凹部ついてもフィンの一部として数えるものとする。   In addition, since the convex part and the recessed part are repeatedly formed in the fin direction in the fin in the fin direction and include the recessed part, the recessed part has a recessed part in a cross section obtained by cutting the heat transfer tube along the tube axis direction. Although it may appear, this recess is also counted as a part of the fin.

前記凹部は、例えば、加工ロールや歯車状円板工具などの特殊な工具によりフィンを断続的に押圧することにより形成することのできる切り欠き状の部分であり、フィンに、その長さ方向に沿って前記凹部と前記凸部とを繰り返したとき、隣り合う前記凸部同士の間隔の範囲内で管外周面に対する高さが最も低い部分を示す。   The concave portion is, for example, a notch-shaped portion that can be formed by intermittently pressing the fin with a special tool such as a work roll or a gear-shaped disk tool, and the fin has a length direction. When the concave portion and the convex portion are repeated along, the portion having the lowest height relative to the outer peripheral surface of the pipe is shown within the range of the interval between the adjacent convex portions.

一方、前記凸部は、フィンの頂部(フィンの上端部)を示すが、その他にも、前記凹部よりも高さが高くなるようフィン頂部を切り欠いた形状の段状部分、すなわち、フィンにおける隣り合う前記頂部同士の間隔において少なくとも前記凹部よりも高い部分を含む。   On the other hand, although the said convex part shows the top part (fin upper end part) of a fin, in addition to the step part of the shape which notched the fin top part so that height might become higher than the said recessed part, ie, in a fin In the space | interval of the said adjacent top parts, the part higher than the said recessed part is included.

また、前記隣り合う凸部同士の間隔とは、凸部と凹部とが正逆状に繰り返し形成されたフィンにおける所定の隣り合う凸部同士の間隔を示し、この隣り合う各凸部のフィンの長さ方向の中間部分同士の間隔を示す。   The interval between the adjacent convex portions indicates the interval between the predetermined adjacent convex portions in the fin in which the convex portion and the concave portion are repeatedly formed in the forward and reverse directions. The space | interval of the intermediate parts of a length direction is shown.

本発明は、フィン面積は減少するが、その分、管軸包囲工の水の広がり易くなり、管全面が濡らすことも可能となり、結果的に、従来の伝熱管よりも格段に、管外熱伝達率を向上させることができる。   In the present invention, although the fin area is reduced, the water of the pipe shaft surrounding work is easily spread, and the entire surface of the pipe can be wetted. As a result, the heat outside the pipe is significantly higher than that of the conventional heat transfer pipe. The transmission rate can be improved.

この発明の一実施形態を以下図面と共に説明する。
(第1実施形態)
第1実施形態における伝熱管11は、図1に示すように、管外周面から螺旋状に高さ(H)が0.3mmで突き出したフィン12を形成し、該フィン12に、その長さ方向に沿って凸部13と凹部14とが形成され、前記凸部13の長さを、前記凹部14の長さ以下で形成し、隣り合う凸部13同士の間隔を、1.0mmから10mmの範囲内で形成している。
なお、図1は、第1実施形態における伝熱管11の部分拡大正面図である。
An embodiment of the present invention will be described below with reference to the drawings.
(First embodiment)
As shown in FIG. 1, the heat transfer tube 11 in the first embodiment forms a fin 12 that protrudes spirally from the outer peripheral surface of the tube with a height (H) of 0.3 mm, and the fin 12 has its length. A convex portion 13 and a concave portion 14 are formed along the direction, the length of the convex portion 13 is set to be equal to or shorter than the length of the concave portion 14, and the interval between the adjacent convex portions 13 is 1.0 mm to 10 mm. It is formed within the range.
FIG. 1 is a partially enlarged front view of the heat transfer tube 11 in the first embodiment.

前記伝熱管11は、図2(a),(b)に示すように、前記凹部14の長さ(Lb)に対する前記凸部13の長さ(La)の比率(La/Lb)を、0.25から1の範囲内である0.75で形成し、前記凹部14と前記凸部13とを、フィン12の長さ方向に沿って正逆状に繰り返し形成し、フィン12の長さ方向に沿って前記凹部14と前記凸部13との繰り返しのピッチ(P)を、1.0mmから10mmの範囲内である7mmで形成している。
なお、図2(a),(b)は、それぞれ第1実施形態における伝熱管11の外周部の一部を展開して示した斜視図であり、フィン12部分の拡大斜視図である。
As shown in FIGS. 2A and 2B, the heat transfer tube 11 has a ratio (La / Lb) of the length (La) of the convex portion 13 to the length (Lb) of the concave portion 14 as 0. 0.75 which is within a range of .25 to 1, and the concave portion 14 and the convex portion 13 are repeatedly formed in the forward and reverse directions along the length direction of the fin 12, and the length direction of the fin 12 A repetitive pitch (P) between the concave portion 14 and the convex portion 13 is formed at 7 mm within a range of 1.0 mm to 10 mm.
2A and 2B are perspective views showing a part of the outer peripheral portion of the heat transfer tube 11 in the first embodiment, respectively, and are enlarged perspective views of the fin 12 portion.

また、前記伝熱管11は、管外周面に対するフィン12の前記凸部13の高さ(H)を、0.2mmから0.95mmの範囲内である0.3mmで形成している。   Further, the heat transfer tube 11 is formed such that the height (H) of the convex portion 13 of the fin 12 with respect to the outer peripheral surface of the tube is 0.3 mm, which is in the range of 0.2 mm to 0.95 mm.

また、フィン頂部12Tに対する前記凹部14を、0.1mmから0.8mmの範囲内の深さ(d)である0.25mmの深さ(d)で形成するとともに、少なくとも前記管外周面以上の高さで形成している。   Further, the concave portion 14 with respect to the fin top portion 12T is formed with a depth (d) of 0.25 mm which is a depth (d) within a range of 0.1 mm to 0.8 mm, and at least equal to or greater than the outer peripheral surface of the pipe. It is formed with height.

さらにフィン12は、伝熱管11を管軸方向Yに沿って切断した断面で1インチあたり19枚から50枚の範囲内である40枚/インチで形成している。   Further, the fins 12 are formed at a rate of 40 sheets / inch, which is in a range of 19 to 50 sheets per inch in a cross section obtained by cutting the heat transfer tube 11 along the tube axis direction Y.

さらにまた、前記凹部14は、上述したように高さが0.3mmのフィン12に対して深さ(d)が0.25mmで形成しているため、管外周面に対する高さ(h)が0.05mmである。   Furthermore, since the concave portion 14 is formed with a depth (d) of 0.25 mm with respect to the fin 12 having a height of 0.3 mm as described above, the height (h) with respect to the outer peripheral surface of the pipe is small. 0.05 mm.

そして、前記伝熱管11は、上述したとおり、前記凹部14に対する前記凸部13の長さの比率(La/Lb)が0.75であり、さらに、フィンの長さ方向のピッチ(P)が7mmであるため、凹部14のフィンの長さ方向の長さ(Lb)は4mmで形成しているとともに、凸部13のフィンの長さ方向の長さ(La)は3mmで形成している。   And as above-mentioned, as for the said heat exchanger tube 11, the ratio (La / Lb) of the length of the said convex part 13 with respect to the said recessed part 14 is 0.75, and also the pitch (P) of the length direction of a fin is Since it is 7 mm, the length (Lb) in the length direction of the fin of the concave portion 14 is 4 mm, and the length (La) of the fin in the length direction of the convex portion 13 is 3 mm. .

また、前記螺旋状のフィン12は、図1に示したように、管軸に対するねじれ角度θを大きく(70〜85度)形成している。   Further, as shown in FIG. 1, the helical fin 12 has a large twist angle θ (70 to 85 degrees) with respect to the tube axis.

前述した伝熱管11は、図3(a)に示すように、常法で製造した伝熱素管11’の管外周面に、フィン成形円板工具群15によりフィン12を螺旋状に形成し、次いでフィン12を形成した伝熱素管11’の管外周面に配した歯車状円板工具16によりフィン12を断続的に押圧していき、フィン12に凸部13と凹部14を形成することにより製造される。   As shown in FIG. 3 (a), the heat transfer tube 11 described above has fins 12 formed in a spiral shape by a fin-forming disk tool group 15 on the outer peripheral surface of a heat transfer element tube 11 'manufactured by a conventional method. Then, the fin 12 is intermittently pressed by the gear-shaped disk tool 16 disposed on the outer peripheral surface of the heat transfer element tube 11 ′ in which the fin 12 is formed, and the convex portion 13 and the concave portion 14 are formed in the fin 12. It is manufactured by.

具体的には、図3(b)に示すように、伝熱素管11’の周方向へ等分配角度間隔に複数の歯車状円板工具16を配置し、伝熱素管11’の内部へ図示しないが回転自在なマンドレルを挿入し、そのマンドレル側へ歯車状円板工具16を押し付けた状態で同一方向へ回転させる。
歯車状円板工具16の管外周面16aには、伝熱管11における凸部13と凹部14とが繰り返し形成されたフィン12とは対称的な凹凸形状を有し、これら歯車状円板工具16は、その軸線が伝熱素管11’の管軸方向に対して伝熱管11におけるフィン12の前記ねじれ角度θに対応する角度だけ傾いている。
従って、歯車状円板工具16を伝熱素管11’へ押し付けた状態で同一方向へ回転させると、伝熱素管11’は歯車状円板工具16に押圧されて移動する過程で、素管表面に螺旋状のフィン12が連続的に加工され、フィン12には、該フィン12の長さ方向に沿って凸部13と凹部14とを交互に、かつ、連続的に加工することができる。
Specifically, as shown in FIG. 3 (b), a plurality of gear-shaped disk tools 16 are arranged at equal distribution angular intervals in the circumferential direction of the heat transfer element tube 11 ′, and the inside of the heat transfer element tube 11 ′. Although not shown, a rotatable mandrel is inserted and rotated in the same direction with the gear disk tool 16 pressed against the mandrel side.
The outer peripheral surface 16a of the gear-shaped disk tool 16 has a concavo-convex shape symmetrical to the fin 12 in which the convex portion 13 and the concave portion 14 of the heat transfer tube 11 are repeatedly formed. Is inclined by an angle corresponding to the twist angle θ of the fin 12 of the heat transfer tube 11 with respect to the tube axis direction of the heat transfer element tube 11 ′.
Therefore, when the gear-shaped disk tool 16 is rotated in the same direction while being pressed against the heat transfer element tube 11 ′, the heat transfer element tube 11 ′ is pressed by the gear-shaped disk tool 16 and moved. Spiral fins 12 are continuously processed on the tube surface, and the fins 12 can be alternately and continuously processed with convex portions 13 and concave portions 14 along the length direction of the fins 12. it can.

なお、フィン12の凸部13は、フィン12の長さ方向における前記歯車状円板工具16により押圧されなかった部分に相当する。
上述したように、前記フィン12および凹部14の形成は、連続して行うことにより、極めて高い生産性が得られる。
なお、図3(a),(b)は、それぞれ第1実施形態における伝熱管11の製造方法の例を示す工程説明図であり、フィン21に凸部13と凹部14とを形成する工程の例を示す説明図である。
In addition, the convex part 13 of the fin 12 is corresponded to the part which was not pressed by the said gear-shaped disk tool 16 in the length direction of the fin 12. FIG.
As described above, the fin 12 and the recess 14 are continuously formed, so that extremely high productivity can be obtained.
3A and 3B are process explanatory views showing examples of the method of manufacturing the heat transfer tube 11 in the first embodiment, respectively, in the process of forming the convex portion 13 and the concave portion 14 on the fin 21. It is explanatory drawing which shows an example.

前述したように第1実施形態の伝熱管11によれば、
管外周面から螺旋状に突き出したフィン12を形成し、該フィン12に、該フィン12の長さ方向に沿って凸部13と凹部14とが形成され、前記凸部13の長さを、前記凹部14の長さ以下で形成し、隣り合う前記凸部同士の間隔を、1.0mmから10mmの範囲内で形成している。
As described above, according to the heat transfer tube 11 of the first embodiment,
A fin 12 protruding spirally from the outer peripheral surface of the tube is formed, and a convex portion 13 and a concave portion 14 are formed in the fin 12 along the length direction of the fin 12, and the length of the convex portion 13 is It forms below the length of the said recessed part 14, and the space | interval of the said adjacent convex parts is formed in the range of 1.0 mm to 10 mm.

このため、例えば、冷却システムにおける蒸発器に組み込まれて使用される際、管外周面に滴下された水がフィン12によって管軸方向Yへ拡散することを阻害されることなく、フィン12に形成した前記凹部14を通じてスムーズに管軸方向Yへ拡散させることができ、濡れ面積増大により伝熱性能を高めることができる。
なお、このような冷却システムは、代表的なものとして上述したようにオフィスビル等の冷房で広く用いられ、さらにコンビニエンスストアのような小規模なシステムもあれば、地下街や複合施設のような大規模なシステムもある。
For this reason, for example, when incorporated into an evaporator in a cooling system and used, water dropped on the outer peripheral surface of the pipe is formed in the fin 12 without being inhibited from diffusing in the pipe axis direction Y by the fin 12. It is possible to smoothly diffuse in the tube axis direction Y through the recessed portion 14 and to increase heat transfer performance by increasing the wetted area.
Note that such a cooling system is typically used in the cooling of office buildings and the like as described above, and there is a small system such as a convenience store. Some systems are large.

具体的には、前述したように第1実施形態の伝熱管11によれば、前記凹部14に対する前記凸部13の長さの比率(La/Lb)を、0.25から1の範囲内で形成している。   Specifically, as described above, according to the heat transfer tube 11 of the first embodiment, the ratio (La / Lb) of the length of the convex portion 13 to the concave portion 14 is in the range of 0.25 to 1. Forming.

このように、前記凹部14に対する前記凸部13の長さの比率(La/Lb)を、0.25から1の範囲内で形成する理由は、この比率(La/Lb)が0.25未満である場合、すなわち、凸部13に対する凹部14のフィン12の長さ方向の長さを極端に長く形成した場合、フィン12面積が小さすぎて伝熱効果(放熱効果)が十分に得られないためである。
逆に、前記比率(La/Lb)が1を超えた場合、凸部13に対する凹部14のフィン12の長さ方向の長さが短くなり、滴下した水を管軸方向Yへ十分に拡散させることができないためである。
Thus, the reason why the ratio (La / Lb) of the length of the convex portion 13 to the concave portion 14 is formed within the range of 0.25 to 1 is that this ratio (La / Lb) is less than 0.25. In other words, when the length of the fin 12 in the length direction of the concave portion 14 with respect to the convex portion 13 is extremely long, the area of the fin 12 is too small to obtain a sufficient heat transfer effect (heat radiation effect). Because.
On the contrary, when the ratio (La / Lb) exceeds 1, the length of the fin 12 in the concave portion 14 with respect to the convex portion 13 is shortened, and the dropped water is sufficiently diffused in the tube axis direction Y. It is because it cannot be done.

前述したように第1実施形態の伝熱管11によれば、前記凹部14と前記凸部13とを、フィン12の長さ方向に沿って正逆状に繰り返し形成し、前記凹部14と前記凸部13との繰り返しのピッチ(P)を、1.0mmから10mmの範囲内で形成している。   As described above, according to the heat transfer tube 11 of the first embodiment, the concave portion 14 and the convex portion 13 are repeatedly formed in the reverse direction along the length direction of the fin 12, and the concave portion 14 and the convex portion 13 are formed. The repetitive pitch (P) with the portion 13 is formed within a range of 1.0 mm to 10 mm.

前記構成により、フィン12の長さ方向に沿って複数の凹部14が管周方向Xにおいてバランスよく配設されるため、滴下された水は、管周方向Xに拡散するとともに、凹部14を通じて管軸方向Yへ拡散するため、管全体に均等な冷媒液膜を形成することができる。   With the above-described configuration, the plurality of recesses 14 are arranged in a well-balanced manner in the pipe circumferential direction X along the length direction of the fins 12, so that the dropped water diffuses in the pipe circumferential direction X and passes through the recesses 14. Since it diffuses in the axial direction Y, a uniform refrigerant liquid film can be formed on the entire tube.

前記凹部14と前記凸部13との繰り返しのピッチ(P)を、1.0mmから10mmの範囲内で形成する理由は、このピッチ(P)が1.0mm未満である場合、滴下した水が凹部14を通過し難くなり、管軸方向Yへ十分に拡散させることができないためである。
逆に、前記ピッチ(P)が10mmを超えた場合、滴下した水は、凹部14においては管軸方向Yへ拡散するが、凸部13においては管軸方向Yへ拡散し難くなるといった事態が生じ、管周方向Xにおいて水が均等に管軸方向Yへ拡散し難くなるためである。
The reason why the repetitive pitch (P) between the concave portion 14 and the convex portion 13 is formed within a range of 1.0 mm to 10 mm is that when the pitch (P) is less than 1.0 mm, the dropped water is This is because it becomes difficult to pass through the recess 14 and cannot be sufficiently diffused in the tube axis direction Y.
On the contrary, when the pitch (P) exceeds 10 mm, the dropped water diffuses in the tube axis direction Y in the concave portion 14, but becomes difficult to diffuse in the tube axis direction Y in the convex portion 13. This is because water is hardly diffused uniformly in the tube axial direction Y in the tube circumferential direction X.

また、前述したように第1実施形態の伝熱管11によれば、管外周面に対するフィン12の前記凸部13の高さ(H)を、0.2mmから0.95mmの範囲内で形成している。   Further, as described above, according to the heat transfer tube 11 of the first embodiment, the height (H) of the convex portion 13 of the fin 12 with respect to the outer peripheral surface of the tube is formed within a range of 0.2 mm to 0.95 mm. ing.

管外周面に対するフィン12の前記凸部13の高さ(H)を、0.2mmから0.95mmの範囲内で形成する理由は、フィン12の前記凸部13の高さ(H)が0.2mm未満の場合は、フィン12面積が減少しすぎて伝熱効果が十分に得られないためである。逆に、フィン12の前記凸部13の高さ(H)が0.95mmを超えると、フィン12の加工が困難になるためである。   The reason why the height (H) of the convex portion 13 of the fin 12 with respect to the pipe outer peripheral surface is formed within the range of 0.2 mm to 0.95 mm is that the height (H) of the convex portion 13 of the fin 12 is 0. If it is less than 2 mm, the area of the fin 12 is excessively reduced, and a sufficient heat transfer effect cannot be obtained. Conversely, if the height (H) of the convex portion 13 of the fin 12 exceeds 0.95 mm, it is difficult to process the fin 12.

また、前述したように第1実施形態の伝熱管11によれば、フィン頂部12Tに対する前記凹部14を、0.1mmから0.8mmの範囲内の深さ(d)で形成するとともに、少なくとも前記管外周面以上の高さで形成している。   Further, as described above, according to the heat transfer tube 11 of the first embodiment, the concave portion 14 with respect to the fin top portion 12T is formed with a depth (d) in the range of 0.1 mm to 0.8 mm, and at least the It is formed at a height higher than the outer peripheral surface of the tube.

フィン頂部12Tに対する前記凹部14の深さ(d)を、0.1mmから0.8mmの範囲内で形成する理由は、前記凹部14の深さ(d)が0.1mm未満である場合、滴下した水が凹部14を越え難くなり、該水を管軸方向Yへ十分に拡散させることができないためである。   The reason why the depth (d) of the concave portion 14 with respect to the fin top portion 12T is formed within the range of 0.1 mm to 0.8 mm is that the depth (d) of the concave portion 14 is less than 0.1 mm. This is because it becomes difficult for the water to pass over the recess 14 and the water cannot be sufficiently diffused in the tube axis direction Y.

逆に前記凹部14の深さ(d)が0.8mmを超える場合、フィン12の面積が減少して伝熱効果が十分に得られないためである。また、滴下した水が管軸方向Yのフィン12同士の間に僅かな量も留めておくことが困難になり、冷媒液膜が形成され難くなるためである。   Conversely, when the depth (d) of the concave portion 14 exceeds 0.8 mm, the area of the fin 12 is reduced and the heat transfer effect cannot be sufficiently obtained. Further, it is difficult to keep a small amount of the dropped water between the fins 12 in the tube axis direction Y, and it is difficult to form a refrigerant liquid film.

また、フィン頂部12Tに対する前記凹部14の深さ(d)を、少なくとも前記管外周面以上の高さで形成する理由は、管外周面を超える深さを超えてしまうと、凹部14での冷媒液膜の厚さが厚くなりすぎて伝熱性能が低下するためである。   The reason why the depth (d) of the concave portion 14 with respect to the fin top portion 12T is at least higher than the outer peripheral surface of the tube is that if the depth exceeds the outer peripheral surface of the tube, the refrigerant in the concave portion 14 This is because the thickness of the liquid film becomes too thick and the heat transfer performance decreases.

また、前述したように第1実施形態の伝熱管11によれば、前記フィン12は、当該伝熱管11を管軸方向Yに沿って切断した断面で1インチあたり19枚から50枚の範囲内で形成している。   Further, as described above, according to the heat transfer tube 11 of the first embodiment, the fin 12 has a cross section of the heat transfer tube 11 cut along the tube axis direction Y within a range of 19 to 50 per inch. It is formed with.

フィン12の枚数を、管軸方向Yに1インチあたり19枚から50枚の範囲内で形成している理由は、フィン12の枚数が管軸方向Yに1インチあたり19枚未満である場合、フィン12面積が減少しすぎて伝熱効果が十分に得られないためである。逆に、フィン12の枚数が管軸方向Yに1インチあたり50枚を超えるとフィン12加工が困難になるためである。   The reason why the number of fins 12 is formed in the range of 19 to 50 per inch in the tube axis direction Y is that the number of fins 12 is less than 19 per inch in the tube axis direction Y. This is because the area of the fin 12 is excessively reduced and a heat transfer effect cannot be obtained sufficiently. Conversely, if the number of fins 12 exceeds 50 per inch in the tube axis direction Y, fin 12 processing becomes difficult.

(実施例)
本実施例で用いる本発明の伝熱管11は、第1実施形態の伝熱管11と同様な構成であり、外径φ15.88mm、肉厚0.8mmのリン脱酸銅素管11’を用いて構成している。
(Example)
The heat transfer tube 11 of the present invention used in this example has the same configuration as the heat transfer tube 11 of the first embodiment, and uses a phosphorous deoxidized copper base tube 11 ′ having an outer diameter of φ15.88 mm and a wall thickness of 0.8 mm. Is configured.

第1実施形態の伝熱管11の比較例として用いる伝熱管101は、図8(a),(b)に示すような構成をしている。すなわち、比較例で用いた伝熱管101は、フィン102に、該フィン102の長さ方向に沿って凸部103と凹部104とを形成しているが、凸部103の長さ(La’)を、凹部104の長さ(Lb’)よりも長くなるよう形成した構成を採る従来の伝熱管である。
また、比較例で用いた伝熱管101は、第1実施形態の伝熱管11と同様に、外径φ15.88mm、肉厚0.8mmのリン脱酸銅素管を用いて構成している。
なお、図8(a),(b)は、比較例で用いた従来の伝熱管101のそれぞれ部分正面図、外周部の一部を展開して示した斜視図である。
A heat transfer tube 101 used as a comparative example of the heat transfer tube 11 of the first embodiment has a configuration as shown in FIGS. That is, in the heat transfer tube 101 used in the comparative example, the convex portion 103 and the concave portion 104 are formed on the fin 102 along the length direction of the fin 102, but the length (La ′) of the convex portion 103. It is the conventional heat exchanger tube which takes the structure formed so that it might become longer than the length (Lb ') of the recessed part 104. FIG.
Further, the heat transfer tube 101 used in the comparative example is configured by using a phosphorus-deoxidized copper base tube having an outer diameter of 15.88 mm and a wall thickness of 0.8 mm, similarly to the heat transfer tube 11 of the first embodiment.
8A and 8B are a partial front view of a conventional heat transfer tube 101 used in the comparative example and a perspective view in which a part of the outer peripheral portion is developed.

第1実施形態の伝熱管11、及び、比較例で用いた伝熱管101のそれぞれについて表1に示した試験条件の下、図4に示す試験装置24を用いて管外熱伝達率を測定し、比較を行った。
なお、図4は、本実施例で用いた試験装置24の概略図である。
For each of the heat transfer tube 11 of the first embodiment and the heat transfer tube 101 used in the comparative example, the heat transfer coefficient outside the tube was measured using the test apparatus 24 shown in FIG. 4 under the test conditions shown in Table 1. A comparison was made.
FIG. 4 is a schematic diagram of the test apparatus 24 used in this example.

Figure 2009030913
前記試験装置24は、図4に示すように、減圧された蒸発器25内部に蒸発器用伝熱管26が1列5段に2列配されている。各列の伝熱管26は相互に連通されている。伝熱管26の上方に配された冷媒水滴下トレー27から冷媒水(純水)が滴下され、この冷媒水の蒸発潜熱により伝熱管26内の水が冷却される。
Figure 2009030913
As shown in FIG. 4, the test apparatus 24 has evaporator heat transfer tubes 26 arranged in two rows in one row and five stages inside the decompressed evaporator 25. The heat transfer tubes 26 in each row are in communication with each other. Refrigerant water (pure water) is dropped from the refrigerant water dropping tray 27 disposed above the heat transfer tube 26, and the water in the heat transfer tube 26 is cooled by the latent heat of evaporation of the refrigerant water.

一方、減圧された吸収器28内部には吸収器用伝熱管29が1列5段に1列配されている。各伝熱管29は相互に連通されている。伝熱管29表面には散布パイプ35より吸収液(臭化リチウム水溶液)が散布され、この吸収液に蒸発器25で発生した蒸気が吸収される。吸収器用伝熱管29内部には冷却水を流して吸収液を冷却し、その蒸気の吸収効率を高めるようにする。
蒸気を吸収して希釈された吸収液は吸収液貯留タンク36から吸収液調整タンク37に移され、ここで濃度調整されたのち、ポンプ38により散布パイプ35に循環可能に構成している。
On the other hand, the absorber heat transfer tubes 29 are arranged in one row and five stages inside the depressurized absorber 28. The heat transfer tubes 29 are in communication with each other. Absorbing liquid (lithium bromide aqueous solution) is sprayed from the spray pipe 35 on the surface of the heat transfer tube 29, and the vapor generated in the evaporator 25 is absorbed by the absorbing liquid. Cooling water is allowed to flow inside the absorber heat transfer tube 29 to cool the absorbing liquid, thereby improving the absorption efficiency of the vapor.
The absorption liquid diluted by absorbing the vapor is transferred from the absorption liquid storage tank 36 to the absorption liquid adjustment tank 37, and after the concentration is adjusted here, the pump 38 can be circulated to the spray pipe 35.

前記試験装置24における蒸発器用伝熱管26として、第1実施形態の伝熱管11と比較例で用いた伝熱管101とを、別々に組み込んで冷媒流量が1.0リットル/m・minのときのそれぞれの管外熱伝達率を測定した結果を表2に示す。   As the evaporator heat transfer tube 26 in the test device 24, the heat transfer tube 11 of the first embodiment and the heat transfer tube 101 used in the comparative example are separately incorporated, and the refrigerant flow rate is 1.0 liter / m · min. Table 2 shows the results of measuring the external heat transfer coefficient of each tube.

Figure 2009030913
なお、表2にはフィン12および凹部14の寸法などを併記した。第1実施形態の伝熱管11の管外熱伝達率は、比較例として用いた伝熱管101の管外熱伝達率を100としたときの比率で表した。
Figure 2009030913
Table 2 also shows the dimensions of the fins 12 and the recesses 14. The external heat transfer coefficient of the heat transfer tube 11 of the first embodiment is expressed as a ratio when the external heat transfer coefficient of the heat transfer tube 101 used as the comparative example is 100.

さらに、第1実施形態の伝熱管11と比較例で用いた伝熱管101について、冷媒流量を0.6〜2.8リットル/m・min.の範囲で種々に変化させたときの管外熱伝達率を求めた結果を図5に示す。
表2、及び、図5から明らかなように、第1実施形態の伝熱管11は、比較例で用いた伝熱管101に比べて冷媒流量が1.5リットル/m・min.をはじめとして全冷媒水流量において高い管外熱伝達率を示し、本実施例により第1実施形態の伝熱管11の有効性が明らかとなった。
Furthermore, about the heat exchanger tube 11 of 1st Embodiment, and the heat exchanger tube 101 used by the comparative example, a refrigerant | coolant flow volume is 0.6-2.8 liter / m * min. FIG. 5 shows the result of calculating the heat transfer coefficient outside the tube when various changes are made in the above range.
As is apparent from Table 2 and FIG. 5, the heat transfer tube 11 of the first embodiment has a refrigerant flow rate of 1.5 liters / m · min. Compared to the heat transfer tube 101 used in the comparative example. In addition to the above, high external heat transfer coefficient was shown at all refrigerant water flow rates, and the effectiveness of the heat transfer tube 11 of the first embodiment was clarified by this example.

また、本発明の伝熱管は、上述した第1実施形態の伝熱管11の形態に限定せず、他の実施形態により構成することができる。
以下では、本発明における他の実施形態の伝熱管について説明するが、第1実施形態の伝熱管11と同様の構成については、同一の符号を付して、その説明を省略する。
例えば、第1実施形態の伝熱管11は、上述した実施例のように蒸発器用伝熱管26として用いるに限らず、吸収器用伝熱管29に適用することもできる。吸収器用伝熱管29の管外周面に滴下した臭化リチュウム水溶液などの吸収液は、フィン12に形成した凹部14を通じて管軸方向Yへ容易に拡散することができる。
Further, the heat transfer tube of the present invention is not limited to the form of the heat transfer tube 11 of the first embodiment described above, and can be configured by other embodiments.
Below, although the heat exchanger tube of other embodiment in this invention is demonstrated, about the structure similar to the heat exchanger tube 11 of 1st Embodiment, the same code | symbol is attached | subjected and the description is abbreviate | omitted.
For example, the heat transfer tube 11 of the first embodiment is not limited to being used as the evaporator heat transfer tube 26 as in the above-described example, but can also be applied to the absorber heat transfer tube 29. Absorbing liquid such as a lithium bromide aqueous solution dropped on the outer peripheral surface of the absorber heat transfer tube 29 can be easily diffused in the tube axis direction Y through the recesses 14 formed in the fins 12.

このため、吸収液は、積極的に蒸気を吸収するとともに、温度上昇しても吸収器用伝熱管29の管内を流れる冷却水により迅速に冷却することができる。   Therefore, the absorbing liquid actively absorbs the vapor and can be quickly cooled by the cooling water flowing in the absorber heat transfer tube 29 even if the temperature rises.

本発明の伝熱管は、第1実施形態の伝熱管11のようにリン脱酸銅管の素管11’を用いるに限らず、銅や銅合金その他の熱伝導性のよい金属であれば、他の材質の素管を用いて構成してもよい。   The heat transfer tube of the present invention is not limited to using the element tube 11 ′ of the phosphorous deoxidized copper tube like the heat transfer tube 11 of the first embodiment, but may be copper, a copper alloy, or other metal having good thermal conductivity. You may comprise using the raw material pipe | tube of another material.

(第2実施形態)
第2実施形態における伝熱管は、第1実施形態における伝熱管11と同様に、フィンに、該フィンの長さ方向に沿って凸部と凹部とを繰り返して形成している。
但し、第2実施形態における凸部は、図示しないが、管外周面に対する高さがフィンの頂部に相当する高さを有する部分と、フィンの頂部よりも低く凹部よりも高い部分とで段状に形成している。
(Second Embodiment)
As in the heat transfer tube 11 in the first embodiment, the heat transfer tube in the second embodiment is formed by repeatedly forming convex portions and concave portions in the fin along the length direction of the fin.
However, although not shown, the convex portion in the second embodiment is stepped with a portion having a height corresponding to the top of the fin and a portion lower than the top of the fin and higher than the recess. Is formed.

前記構成であっても、フィンの長さ方向に沿った凸部の長さを、凹部の長さ以下で形成しているため、水を管軸方向Yへ拡散させ、管外熱伝達率を向上させることができる。   Even in the above configuration, since the length of the convex portion along the length direction of the fin is less than or equal to the length of the concave portion, water is diffused in the tube axis direction Y, and the heat transfer coefficient outside the tube is increased. Can be improved.

(第3実施形態)
第3実施形態における伝熱管31は、図6に示すように、管外周面に対する高さ(H1,H2)の異なる2種類のフィン12(12a,12b)が混在するよう螺旋状に形成されている。
なお、図6は、第3実施形態における伝熱管31の部分正面図を示す。
(Third embodiment)
As shown in FIG. 6, the heat transfer tube 31 in the third embodiment is formed in a spiral shape so that two types of fins 12 (12a, 12b) having different heights (H1, H2) with respect to the outer peripheral surface of the tube are mixed. Yes.
In addition, FIG. 6 shows the partial front view of the heat exchanger tube 31 in 3rd Embodiment.

具体的には、第3実施形態における伝熱管31は、管外周面に対する高さが高い側(H1)の一種のフィン12aと、該一種のフィン12aよりも管外周面に対する高さが低い側(H2)の他種のフィン12bとが1:2の割合で管軸方向Yに沿って交互に並ぶよう形成している。   Specifically, the heat transfer tube 31 according to the third embodiment includes a kind of fins 12a on the side (H1) having a high height relative to the pipe outer peripheral surface, and a side having a height lower than the type of fin 12a on the pipe outer peripheral surface. (H2) The other types of fins 12b are alternately arranged along the tube axis direction Y at a ratio of 1: 2.

そして、一種のフィン12aのみに、その長さ方向に沿って凸部13と凹部14とを形成している。さらに、前記凸部13と前記凹部14は、第1実施形態の伝熱管11と同様に凸部13の長さを凹部14の長さ以下で形成し、隣り合う前記凸部13同士の間隔を、1.0mmから10mmの範囲内で形成している。
ている。
And the convex part 13 and the recessed part 14 are formed only in the kind of fin 12a along the length direction. Furthermore, the convex part 13 and the said recessed part 14 form the length of the convex part 13 below the length of the recessed part 14 similarly to the heat exchanger tube 11 of 1st Embodiment, and the space | interval of the said adjacent convex parts 13 is formed. , 1.0 mm to 10 mm.
ing.

第3実施形態における伝熱管31は、一種のフィン12aのように管外周面に対する高さを高くに形成している。このため、全てのフィン12を他種のフィン12bで形成する場合と比較してフィン12面積の増加を図ることができるとともに、一種のフィン12aの凹部14を通じて水を管軸方向Yへと拡散させ、管外周面全体を濡らすことができる。   The heat transfer tube 31 in the third embodiment is formed to have a high height with respect to the outer peripheral surface of the tube like a kind of fins 12a. Therefore, the area of the fin 12 can be increased as compared with the case where all the fins 12 are formed of other types of fins 12b, and water is diffused in the tube axis direction Y through the recesses 14 of the kind of fins 12a. And the entire outer peripheral surface of the tube can be wetted.

よって、第3実施形態における伝熱管31の管外熱伝達率を向上させることができる。   Therefore, the external heat transfer coefficient of the heat transfer tube 31 in the third embodiment can be improved.

本発明における伝熱管は、前記構成に限らず、例えば、図示しないが高さの低い側(H2)の他種のフィン12bにも、該フィン12bの長さ方向に沿って凸部13と凹部14とを形成してもよく、また、一種のフィン12aと他種のフィン12bとのそれぞれにおいて、凸部13と凹部14のピッチを、異なる長さで形成することができる。   The heat transfer tube in the present invention is not limited to the above-described configuration. For example, although not shown, the other types of fins 12b on the lower side (H2) are also provided with convex portions 13 and concave portions along the length direction of the fins 12b. 14 may be formed, and the pitch of the convex portion 13 and the concave portion 14 may be formed with different lengths in each of the one type of fin 12a and the other type of fin 12b.

さらにまた、上述したように、管外周面に高さ(H1,H2)が異なるフィン12a,12bは、2種類で形成するに限らず、高さがそれぞれ異なるフィン12を3種類以上、混在させたり、管軸方向Yに沿って如何なる割合で混在させたりして形成してもよい。   Furthermore, as described above, the fins 12a and 12b having different heights (H1, H2) are not limited to two types, and three or more types of fins 12 having different heights are mixed. Or may be mixed at any ratio along the tube axis direction Y.

(第4実施形態)
第4実施形態における伝熱管41は、図7(a),(b)に示すように、その内周面に多数の凸状リッジ43(線状突起部)が螺旋状に形成されている。
なお、図7(a),(b)は、それぞれ第4実施形態における伝熱管11の内面に形成した凸状リッジ43の例を示す横断面図、縦断面図である。
(Fourth embodiment)
As shown in FIGS. 7A and 7B, the heat transfer tube 41 in the fourth embodiment has a large number of convex ridges 43 (linear protrusions) formed in a spiral shape on the inner peripheral surface thereof.
7A and 7B are a transverse sectional view and a longitudinal sectional view showing an example of the convex ridge 43 formed on the inner surface of the heat transfer tube 11 in the fourth embodiment, respectively.

また、前記凸状リッジ43は、素管の管外周面にフィン12を加工する前に転造法により加工され、横断面のリッジ数30、リッジねじれ角46°、リッジ高さ0.2mmで形成している。   Further, the convex ridge 43 is processed by a rolling method before processing the fin 12 on the outer peripheral surface of the raw tube, and has a ridge number of 30 in the cross section, a ridge twist angle of 46 °, and a ridge height of 0.2 mm. Forming.

Figure 2009030913
Figure 2009030913

このように、第4実施形態における伝熱管41は、内周面に多数の凸状リッジ43を形成したことにより、表3に示すように、内周面に凸状リッジ43を形成していない伝熱管と比較して、管内を流れる冷媒の乱流が促進されるとともに、管内面の伝熱面積が増大して熱通過率Kが向上する。さらに、管外周面に前記凸部13と前記凹部14とを備えたフィン12を形成することにより、より一層、管外熱伝達率を向上させることができる。
なお、表3は、管内リッジの有無による熱通過率Kの違いを示す表であり、第4実施形態の伝熱管41の熱通過率Kは、比較例として用いたリッジなしの伝熱管の熱通過率を100としたときの比率で表した。
ここで、熱通過率Kは、管外熱伝達率と管内熱伝達率の両方の効果を加味した値であり、数値が大きいほど伝熱管の伝熱性能が高くなる。熱通過率Kの定義は、次式で表される。
As described above, the heat transfer tube 41 according to the fourth embodiment does not have the convex ridges 43 formed on the inner peripheral surface as shown in Table 3 because the convex ridges 43 are formed on the inner peripheral surface. Compared with the heat transfer tube, the turbulent flow of the refrigerant flowing in the tube is promoted, the heat transfer area on the inner surface of the tube is increased, and the heat passing rate K is improved. Furthermore, by forming the fin 12 having the convex portion 13 and the concave portion 14 on the outer peripheral surface of the tube, the heat transfer coefficient outside the tube can be further improved.
Table 3 is a table showing the difference in the heat transfer rate K depending on the presence or absence of the ridge in the tube. The heat transfer rate K of the heat transfer tube 41 of the fourth embodiment is the heat of the heat transfer tube without a ridge used as a comparative example. Expressed as a ratio when the pass rate is 100.
Here, the heat transfer rate K is a value that takes into account the effects of both the heat transfer coefficient outside the tube and the heat transfer rate inside the tube, and the larger the value, the higher the heat transfer performance of the heat transfer tube. The definition of the heat transfer rate K is expressed by the following equation.

Figure 2009030913
Figure 2009030913

第1実施形態における伝熱管の構成説明図。Structure explanatory drawing of the heat exchanger tube in 1st Embodiment. 第1実施形態における伝熱管の構成説明図。Structure explanatory drawing of the heat exchanger tube in 1st Embodiment. 第1実施形態における伝熱管の製造方法の例を示す工程説明図。Process explanatory drawing which shows the example of the manufacturing method of the heat exchanger tube in 1st Embodiment. 第1実施形態における伝熱管の伝熱性能の測定に用いた装置の説明図。Explanatory drawing of the apparatus used for the measurement of the heat transfer performance of the heat exchanger tube in 1st Embodiment. 冷媒水流量を変化させたときの管外熱伝達率における第1実施形態における伝熱管と従来の伝熱管との比較説明図。The comparison explanatory drawing of the heat exchanger tube in 1st Embodiment, and the conventional heat exchanger tube in the heat transfer coefficient outside a tube when changing coolant water flow volume. 第3実施形態における伝熱管の部分正面図。The partial front view of the heat exchanger tube in 3rd Embodiment. 第4実施形態における伝熱管の部分正面図。The partial front view of the heat exchanger tube in 4th Embodiment. 従来の伝熱管の構成説明図。Structure explanatory drawing of the conventional heat exchanger tube.

符号の説明Explanation of symbols

11,31,41…伝熱管
12,12a,12b…フィン
13…凸部
14…凹部
12T…フィン頂部
11, 31, 41 ... Heat transfer tube 12, 12a, 12b ... Fin 13 ... Convex part 14 ... Concave part 12T ... Fin top part

Claims (6)

管外周面から螺旋状に突き出したフィンを形成し、該フィンに、フィンの長さ方向に沿って凸部と凹部とが正逆状に繰り返し形成された伝熱管であって、
前記凸部の長さを、
前記凹部の長さ以下で形成し、
隣り合う前記凸部同士の間隔を、
1.0mmから10mmの範囲内で形成したことを特徴とする
伝熱管。
A heat transfer tube in which a fin protruding in a spiral shape from the outer peripheral surface of the tube is formed, and a convex portion and a concave portion are repeatedly formed in the fin direction along the length direction of the fin,
The length of the convex portion is
Formed below the length of the recess,
The interval between the adjacent convex portions is
A heat transfer tube formed within a range of 1.0 mm to 10 mm.
前記凹部に対する前記凸部の長さの比率を、
0.25から1の範囲内で形成した
請求項1に記載の伝熱管。
The ratio of the length of the convex part to the concave part,
The heat transfer tube according to claim 1, which is formed within a range of 0.25 to 1.
前記凸部と前記凹部との繰り返しのピッチを、
1.0mmから10mmの範囲内で形成したことを特徴とする
請求項1、又は、請求項2に記載の伝熱管。
Repetitive pitch between the convex part and the concave part is
The heat transfer tube according to claim 1, wherein the heat transfer tube is formed within a range of 1.0 mm to 10 mm.
前記管外周面に対するフィンの前記凸部の高さを、
0.2mmから0.95mmの範囲内で形成したことを特徴とする
請求項1から請求項3のうちいずれか1項に記載の伝熱管。
The height of the convex portion of the fin with respect to the outer peripheral surface of the tube,
The heat transfer tube according to any one of claims 1 to 3, wherein the heat transfer tube is formed within a range of 0.2 mm to 0.95 mm.
フィン頂部に対する前記凹部を、
0.1mmから0.8mmの範囲内の深さで形成するとともに、少なくとも前記管外周面以上の高さで形成した
請求項1から請求項4のうちいずれか1項に記載の伝熱管。
The recess relative to the fin top,
The heat transfer tube according to any one of claims 1 to 4, wherein the heat transfer tube is formed at a depth within a range of 0.1 mm to 0.8 mm and at least a height equal to or greater than the outer peripheral surface of the tube.
前記フィンは、当該伝熱管を管軸方向に沿って切断した断面で1インチあたり19枚から50枚の範囲内で形成した
請求項1から請求項5のうちいずれか1項に記載の伝熱管。
The heat transfer tube according to any one of claims 1 to 5, wherein the fin is formed within a range of 19 to 50 sheets per inch in a cross section obtained by cutting the heat transfer tube along the tube axis direction. .
JP2007196901A 2007-07-30 2007-07-30 Heat transfer tube Active JP5255241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007196901A JP5255241B2 (en) 2007-07-30 2007-07-30 Heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007196901A JP5255241B2 (en) 2007-07-30 2007-07-30 Heat transfer tube

Publications (2)

Publication Number Publication Date
JP2009030913A true JP2009030913A (en) 2009-02-12
JP5255241B2 JP5255241B2 (en) 2013-08-07

Family

ID=40401611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007196901A Active JP5255241B2 (en) 2007-07-30 2007-07-30 Heat transfer tube

Country Status (1)

Country Link
JP (1) JP5255241B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339362U (en) * 1976-09-10 1978-04-06
JPS62206356A (en) * 1986-03-05 1987-09-10 東京瓦斯株式会社 Heat transfer tube for dispersing droplet
JPH01134180A (en) * 1987-11-18 1989-05-26 Hitachi Cable Ltd Heat transfer tube for absorber
JPH11118382A (en) * 1997-10-14 1999-04-30 Furukawa Electric Co Ltd:The Heat transfer pipe for evaporator and manufacture thereof
JP2001165530A (en) * 1999-12-06 2001-06-22 Furukawa Electric Co Ltd:The Absorbing device
JP2004301440A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Heat transfer pipe for falling liquid film type evaporator
JP2005066617A (en) * 2003-08-21 2005-03-17 Sumitomo Metal Ind Ltd Metal tube with outer spiral fin and its manufacturing method
JP2007163119A (en) * 2005-12-16 2007-06-28 Golden Dragon Precise Copper Tube Group Inc Copper heat transfer tube for bromine cooling unit condenser
JP2008267625A (en) * 2007-04-17 2008-11-06 Sumitomo Light Metal Ind Ltd Heat transfer tube for falling liquid film-type refrigerating machine and its manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339362U (en) * 1976-09-10 1978-04-06
JPS62206356A (en) * 1986-03-05 1987-09-10 東京瓦斯株式会社 Heat transfer tube for dispersing droplet
JPH01134180A (en) * 1987-11-18 1989-05-26 Hitachi Cable Ltd Heat transfer tube for absorber
JPH11118382A (en) * 1997-10-14 1999-04-30 Furukawa Electric Co Ltd:The Heat transfer pipe for evaporator and manufacture thereof
JP2001165530A (en) * 1999-12-06 2001-06-22 Furukawa Electric Co Ltd:The Absorbing device
JP2004301440A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Heat transfer pipe for falling liquid film type evaporator
JP2005066617A (en) * 2003-08-21 2005-03-17 Sumitomo Metal Ind Ltd Metal tube with outer spiral fin and its manufacturing method
JP2007163119A (en) * 2005-12-16 2007-06-28 Golden Dragon Precise Copper Tube Group Inc Copper heat transfer tube for bromine cooling unit condenser
JP2008267625A (en) * 2007-04-17 2008-11-06 Sumitomo Light Metal Ind Ltd Heat transfer tube for falling liquid film-type refrigerating machine and its manufacturing method

Also Published As

Publication number Publication date
JP5255241B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
EP1502067B1 (en) Heat transfer tubes, including methods of fabrication and use thereof
EP0559599B1 (en) Heat exchanger tube
US7254964B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
US4159739A (en) Heat transfer surface and method of manufacture
EP0713073B1 (en) Heat transfer tube
US6457516B2 (en) Heat transfer tube for evaporation with variable pore sizes
JP3947158B2 (en) Heat exchanger
EP0865838A1 (en) A heat transfer tube and method of manufacturing same
US5933953A (en) Method of manufacturing a heat transfer tube
EP0882939A1 (en) Heating tube for absorber and method of manufacturing same
JP3916114B2 (en) Absorption type refrigerator and heat transfer tube used therefor
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP5255241B2 (en) Heat transfer tube
JP3434464B2 (en) Heat transfer tube
JPH0771889A (en) Heat transfer tube for falling luquid film type evaporator
JP4587545B2 (en) Heat exchanger tube for absorber
JP2001153580A (en) Heat transfer pipe
JPH11270980A (en) Heat transfer pipe for evaporator
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JP3410211B2 (en) Boiling heat transfer tube
JP2006090657A (en) Heat exchanger tube for heat exchanger, and its manufacturing method
JPH07305917A (en) Heat transfer pipe for absorber
JPH07305918A (en) Heat transfer pipe for absorber
JP2001066084A (en) Heat transfer pipe for absorber
JPH1078268A (en) Heat transfer tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130419

R151 Written notification of patent or utility model registration

Ref document number: 5255241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250