JPH02137609A - Heat exchanger tube for tube condensation and its manufacture - Google Patents

Heat exchanger tube for tube condensation and its manufacture

Info

Publication number
JPH02137609A
JPH02137609A JP28851088A JP28851088A JPH02137609A JP H02137609 A JPH02137609 A JP H02137609A JP 28851088 A JP28851088 A JP 28851088A JP 28851088 A JP28851088 A JP 28851088A JP H02137609 A JPH02137609 A JP H02137609A
Authority
JP
Japan
Prior art keywords
tube
grooves
heat exchanger
groove
plug
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28851088A
Other languages
Japanese (ja)
Other versions
JPH0824952B2 (en
Inventor
Tadao Otani
忠男 大谷
Kenichi Inui
謙一 乾
Kiyoshi Oizumi
大泉 清
Tokuo Miyauchi
宮内 徳雄
Makoto Hori
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP63288510A priority Critical patent/JPH0824952B2/en
Publication of JPH02137609A publication Critical patent/JPH02137609A/en
Publication of JPH0824952B2 publication Critical patent/JPH0824952B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/04Arrangements for modifying heat-transfer, e.g. increasing, decreasing by preventing the formation of continuous films of condensate on heat-exchange surfaces, e.g. by promoting droplet formation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/182Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing especially adapted for evaporator or condenser surfaces

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To manufacture a heat exchanger tube for inner tube condensation with excellent heat transfer coefficient of condensation heat by forming spiral grooves or grooves met at right angles to the tube axis inside a tube and forming axially grooves which divide into section the above grooves by drawing a plug with projections. CONSTITUTION:Spiral grooves 1 are formed inside the heat exchanger tube 10 using a groove plug and rolling ball. After or in that process, the drawing is performed by the plug 31 with plural projections 32 on its surface. By these projections 32, parallel grooves 2 are formed continuously and axially inside the tube. The above spiral grooves are divided into section by the grooves 2. When a refrigerant is condensed inside the tube using the heat exchanger tube 10 obtained by these processes, the refrigerant vapor is generated turbulant flow by the spiral grooves 1 and the heat transfer efficiency is improved and a liquid film is prevented to form inside the tube by suppressing to comb up the liquefied refrigerant by the above parallel grooves 2. Therefore, the heat exchanger tube 10 for inner tube condensation is increased the heat transfer coefficient of condensation heat particularly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、熱交換器用の伝熱管とくに冷媒を当該管内で
凝縮させて熱交換する管内凝縮用伝熱管およびその製造
方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat exchanger tube for a heat exchanger, particularly a heat exchanger tube for condensing a refrigerant in the tube to exchange heat, and a method for manufacturing the same.

[従来の技術] 冷凍・空気調和器やヒートポンプなどにおける熱交換器
には、冷媒を管内に通し、当該冷媒を管内で凝縮させる
ことにより必要な熱交換を行なわせる管内凝縮用の伝熱
管が使用されている。
[Prior art] Heat exchangers in refrigerators, air conditioners, heat pumps, etc. use heat exchanger tubes for condensation within the tubes, which pass refrigerant through the tubes and condense the refrigerant within the tubes to perform the necessary heat exchange. has been done.

このような伝熱管の内面は、当初は平滑なものであった
が、熱力学的研究が進むにつれ、管内面は平滑のままで
はなく所定の凹凸を形成さぜな方が熱伝達率が良くなる
ことがわかり、最近では第3図に示すように伝熱管10
−の内面にらせん状の連続溝1−(あるいは管軸に直交
する溝、以下同じ)を形成させたものが主流を占めるよ
うになった。
Initially, the inner surface of such heat transfer tubes was smooth, but as thermodynamic research progressed, it became clear that the heat transfer coefficient would be better if the inner surface of the tube was not smooth but had a certain unevenness. Recently, as shown in Fig. 3, heat exchanger tube 10
Types in which continuous spiral grooves 1- (or grooves perpendicular to the tube axis, hereinafter the same) are formed on the inner surface of the tube have become mainstream.

このようにらせん渭1−を形成することの効果として、
一つにはそれにより管内面の表面積が大きくなり伝熱面
積が増大することがあけられる。
As an effect of forming the spiral arm 1- in this way,
For one thing, this increases the surface area of the inner surface of the tube, increasing the heat transfer area.

しかし、それだけではなく、管内にらせん状の凹凸が存
在することで流通する冷媒が撹拌乱流化され、それによ
って熱伝達率が向上することになるし、管内で冷媒を沸
騰させて熱交換する場合には、管内に流れる冷奴液がら
ぜん消1−11−に沿ってかき上げられ、管内面全体が
冷媒液でぬらされることによる熱伝達率の向上効果を期
待することもできるものである。
However, not only that, the existence of spiral irregularities inside the pipes causes the circulating refrigerant to become agitated and turbulent, which improves the heat transfer coefficient. In this case, the chilled liquid flowing inside the tube is scraped up along the drain 1-11-, and the entire inner surface of the tube is wetted with the refrigerant liquid, which can be expected to improve the heat transfer coefficient.

[発明が解決しようとする課題] 上記内面らせん清付き伝熱管は、前記したようなすぐれ
た熱伝達特性を有するが、すべてにおいて好都合なわけ
ではない。とくに管内で冷媒を凝縮させて使用する場合
にはつぎのような問題点がある。
[Problems to be Solved by the Invention] Although the heat exchanger tube with the inner spiral surface has the excellent heat transfer characteristics described above, it is not advantageous in all respects. In particular, when refrigerant is used after being condensed within the pipes, the following problems arise.

ずなわち、管内で凝縮した冷媒液は重力により管の下方
に溜り、管の下側を流れることになるが、らぜん11−
.1−が存在するために液化した冷媒の流れが円滑にい
かず、らせん消1−21−による前記かき上げ現象が起
り、管内面全体をぬらすような結果になる。
In other words, the refrigerant liquid condensed inside the pipe accumulates at the bottom of the pipe due to gravity and flows down the pipe.
.. Due to the presence of 1-21-, the liquefied refrigerant does not flow smoothly, and the above-mentioned scraping phenomenon due to the spiral quenching 1-21- occurs, resulting in the entire inner surface of the tube becoming wet.

このように管内面が液でぬらされると、管内壁面と気体
である冷媒蒸気とが直接的に接触しないために、熱伝達
率を大巾に低下させてしまうおそれがある。この故に、
凝縮用の伝熱管の場合には、管内壁面と冷媒蒸気とがよ
り多くの表面積において直接的に接触できるようにする
ことがより重要である。
When the inner surface of the tube is wetted with liquid in this way, the inner wall surface of the tube does not come into direct contact with the gaseous refrigerant vapor, so there is a risk that the heat transfer coefficient will be significantly reduced. For this reason,
In the case of heat transfer tubes for condensation, it is more important to enable direct contact between the inner wall surface of the tube and the refrigerant vapor over a larger surface area.

本発明の目的は、上記のような実情にがんがみ、前記冷
媒液のかき上げ現象の発生を大中に抑制し、凝縮熱伝達
率を格段に増大させ得る新規な凝縮用伝熱管およびその
製造方法を提供しようとするものである。
The object of the present invention is to provide a novel condensing heat transfer tube and a condensing heat transfer tube capable of greatly suppressing the occurrence of the refrigerant liquid scraping phenomenon and significantly increasing the condensing heat transfer coefficient, in view of the above-mentioned circumstances. This paper attempts to provide a manufacturing method for the same.

[課題を解決するための手段] 本発明の第1の要旨は、管内面にらせん消を有する伝熱
管の前記溝を、別な溝をもって分断したものであり、第
2の要旨は、内面にらせん消を有する管を表面に突起を
有するプラグを用いて引抜き加工し、当該プラグの突起
により管内面に軸方向に連続的に伸びる溝を形成して該
消をもって前記らせん溝を分断させる上記管の製造方法
にある。
[Means for Solving the Problems] A first aspect of the present invention is that the groove of a heat exchanger tube having a spiral break on the inner surface of the tube is divided by another groove, and a second aspect of the present invention is that A pipe having a spiral groove is drawn using a plug having a protrusion on the surface thereof, a groove continuously extending in the axial direction is formed on the inner surface of the tube by the protrusion of the plug, and the spiral groove is divided by the groove. It is in the manufacturing method.

[作用] 管内面のらせん溝により冷媒蒸気に乱流が生じ、伝熱効
率を向上させ得る一方、当該らせん消が軸方向に伸びる
溝により分断されることにより、液化した冷媒のかき上
げが抑止され、管内面に不必要な液膜の形成されるのか
防止される。
[Function] The spiral grooves on the inner surface of the tube create turbulent flow in the refrigerant vapor, which can improve heat transfer efficiency, while the spiral grooves are separated by grooves extending in the axial direction, which prevents the liquefied refrigerant from being stirred up. , the formation of an unnecessary liquid film on the inner surface of the tube is prevented.

さらに、表面突起付きプラグを用いて引抜くことてらせ
ん溝を分断する溝を容易に形成することかできる。
Further, by using a plug with a surface protrusion and pulling it out, it is possible to easily form a groove that divides the spiral groove.

[実施例1 以下に、本発明について実施例図面を参照し説明する。[Example 1 The present invention will be described below with reference to the drawings.

第1図は、本発明に係る伝熱管10の一実施例における
内面の様子を示す半割断面図である。
FIG. 1 is a half-cut sectional view showing the inner surface of an embodiment of the heat exchanger tube 10 according to the present invention.

1.1は管10の内面に形成されたらせん清であり、2
.2は当該らせん渭1,1を図のように分断している管
軸方向に平行な平行溝である。
1.1 is a spiral formed on the inner surface of the tube 10, and 2
.. Reference numeral 2 denotes a parallel groove parallel to the tube axis direction that divides the spiral banks 1, 1 as shown in the figure.

第3図の従来例と相違し、本発明においてはらせん消1
,1が平行溝2,2により分断されているため、たとえ
凝縮した冷媒液にかき上げが起つでも、そのかき上げは
平行溝2,2を越えてさらに上側にまではかき上げられ
ず、それを局限された範囲に止めることができる。
Unlike the conventional example shown in FIG. 3, in the present invention, the spiral eraser 1
, 1 are separated by the parallel grooves 2, 2, even if the condensed refrigerant liquid is scraped up, the scraped up will not be scraped up beyond the parallel grooves 2, 2. It can be stopped within a limited range.

第4図は、上記のように構成される本発明に係る伝熱管
10を製造している様子を示す縦断面説明図である。
FIG. 4 is an explanatory longitudinal cross-sectional view showing how the heat exchanger tube 10 according to the present invention configured as described above is being manufactured.

10Aは素材管であり、まずタイ20とフローティング
プラグ21との間で引抜かれ縮径される。
10A is a material tube, which is first pulled out between the tie 20 and the floating plug 21 and reduced in diameter.

フローティングプラグ21にはロッド22を介して消プ
ラグ23が連結されており、当該溝プラク23の周囲を
高速回転する転造ボール24.24により内面にらせん
消1,1が形成される。
A plug 23 is connected to the floating plug 21 via a rod 22, and spiral plugs 1, 1 are formed on the inner surface by rolled balls 24, 24 rotating at high speed around the groove plug 23.

前記溝プラグ23にはさらにロッド25を介して外周に
突起26a、26aを有する突起付きプラグ26が連結
されており、らせん渭1,1の形成された管は、当該突
起付きプラグ26とダイ27の間で引抜き加工される。
A protrusion plug 26 having protrusions 26a, 26a on the outer periphery is further connected to the groove plug 23 via a rod 25, and the tube in which the helical shafts 1, 1 are formed is connected to the protrusion plug 26 and the die 27. It is drawn between

この引抜き加工において、前記突起26a、26aがら
ぜん溝1゜1を有する管内面にさらに平行溝2,2を形
成させ、それによりらせんfit、1が分断される。
In this drawing process, the protrusions 26a, 26a further form parallel grooves 2, 2 on the inner surface of the tube having the helical groove 1.1, thereby dividing the helical fit, 1.

上記のようにすれば、第1図に示した本発明に係る伝熱
管10を一つの工程において連続的に製造することがで
きる。
By doing the above, the heat exchanger tube 10 according to the present invention shown in FIG. 1 can be manufactured continuously in one process.

第5図は、さらに別な方法により伝熱管1oを製造して
いる様子を示す縦断面説明図である。
FIG. 5 is an explanatory longitudinal cross-sectional view showing how the heat exchanger tube 1o is manufactured by yet another method.

本方法においてはらせん渭1,1は別工程で形成されて
おり、そのように別加工されならせん溝付き管をタイ3
0およびフローティングプラグ31によって引抜き形成
するものである。
In this method, the spiral arms 1, 1 are formed in separate processes, and the spiral grooved pipes, which are not processed separately, are connected to the tie 3.
0 and a floating plug 31 by drawing.

フローティングプラグ31の表面には突起32゜32が
設けられており、上記引抜き成形される際に当該突起3
2.32が管内面に連続的な平行溝2.2を形成し、そ
れによってらせん渭1.1が分断されて、本発明に係る
伝熱管10が製造される。
A projection 32° 32 is provided on the surface of the floating plug 31, and the projection 3 is removed when the floating plug 31 is pultruded.
2.32 forms continuous parallel grooves 2.2 on the inner surface of the tube, thereby dividing the helical strands 1.1 to produce the heat exchanger tube 10 according to the present invention.

上記のようにフローティングプラグ21あるいは31を
用いて平行溝2,2を形成すれば、平行溝の深さを平均
化し安定化させることができるという付加的特徴を発揮
させることができる。
If the parallel grooves 2, 2 are formed using the floating plugs 21 or 31 as described above, an additional feature can be exhibited in that the depth of the parallel grooves can be averaged and stabilized.

すなわち、平行溝2,2を形成する突起26a。That is, the protrusion 26a forming the parallel grooves 2,2.

26aあるいは32.32からせん消1,1に深く入り
込もうとすればその変形抵抗によって押戻され変形量の
浅い側へプラグが移動し、全体に同じ深さの清となるよ
うに自動調整される所謂セルフセンタリング効果を期待
することができるからである。
26a or 32. If you try to go deep into the clearing 1, 1 from 32, the plug will be pushed back by the deformation resistance and move to the side where the amount of deformation is shallow, and the plug will be automatically adjusted so that the same depth of clearing is achieved throughout. This is because a so-called self-centering effect can be expected.

図示例においてはプラグの突起が円周方向に90°置き
に4個設けられた例が示されているが、上記セルフセン
タリングの上からみるとこの配置がより好都合なことは
いうまでもない、しかし、つねにそのような配置に限定
されねばならないというものではない。
In the illustrated example, four protrusions of the plug are provided at 90° intervals in the circumferential direction, but it goes without saying that this arrangement is more convenient when viewed from above the self-centering ring. However, it is not always necessary to be limited to such an arrangement.

第2図は、第5図におけるプラグ31(第4図のプラグ
26であっても同じ)の突起32.32を製造される伝
熱管10の下方に集中的に設けた例を示すものである。
FIG. 2 shows an example in which the protrusions 32 and 32 of the plug 31 in FIG. 5 (the same applies to the plug 26 in FIG. 4) are provided centrally below the heat exchanger tube 10 to be manufactured. .

このようにして、らせん渭1.1を分断させる平行溝2
,2を管10の下方に集中的に形成すれば、凝縮した冷
媒液がこの清白を管軸方向に小さな抵抗で円滑に流れる
ことになり、前述したかき上げ現象もそれだけ低減され
るものである。
In this way, the parallel groove 2 that divides the spiral arm 1.1
, 2 are formed in a concentrated manner below the tube 10, the condensed refrigerant liquid will flow smoothly through this clear liquid in the direction of the tube axis with little resistance, and the above-mentioned scraping phenomenon will be reduced accordingly. .

以上はらせん溝1.1を分断する清が管軸に平行に形成
されるものとして説明したが、必ずしも平行である必要
はない。例えば突起付きプラグを管内でらせん渭の形成
方向とは反対に回転させるなどして、らせん溝を別なら
せん清で分断するようにしても差支えはないのである。
Although the above description has been made assuming that the grooves dividing the spiral groove 1.1 are formed parallel to the tube axis, they do not necessarily have to be parallel. For example, there is no problem in dividing the helical groove with another helical groove by rotating a plug with a protrusion in the tube in the opposite direction to the direction in which the helical strand is formed.

[発明の効果] 以上の通り、本発明に係る伝熱管によれば、冷媒の凝縮
熱伝達率を著しく向上させることができ、熱交換器の小
型化ひいては冷媒装置の小型化を達成することが可能と
なり、設備費やランニングコストの低減を図り得るなど
、その工業上の価値は非常に大きなものがある。
[Effects of the Invention] As described above, according to the heat exchanger tube according to the present invention, the condensation heat transfer coefficient of the refrigerant can be significantly improved, and the size of the heat exchanger and, in turn, the size of the refrigerant device can be reduced. It has great industrial value, as it can reduce equipment costs and running costs.

【図面の簡単な説明】 第1図は本発明に係る伝熱管の実施例の−を示す半割断
面図、第2図はプラグの突起の配置例を示す説明図、第
3図は従来の伝熱管を示す半割断面図、第4および5図
は本発明に係る伝熱管を製造する2mの方法を示ず継断
面説明図である。 1.1−:らせん清、 2:平行溝、 to、io  :伝熱管、 26.31:突起付きプラグ、 26a、32:突起。
[BRIEF DESCRIPTION OF THE DRAWINGS] Fig. 1 is a half-cut sectional view showing an embodiment of the heat exchanger tube according to the present invention, Fig. 2 is an explanatory drawing showing an example of the arrangement of the protrusions of the plug, and Fig. 3 is a conventional FIGS. 4 and 5 are half-cut cross-sectional views showing a heat exchanger tube, and are joint cross-sectional explanatory views showing a 2 m method for manufacturing a heat exchanger tube according to the present invention. 1.1-: spiral groove, 2: parallel groove, to, io: heat exchanger tube, 26.31: plug with protrusion, 26a, 32: protrusion.

Claims (2)

【特許請求の範囲】[Claims] (1)管内面にらせん溝あるいは管軸に直交するる溝を
有する伝熱管の前記溝を、それとは別に形成された溝を
もって分断してなる管内凝縮用伝熱管。
(1) A heat exchanger tube for condensing inside a tube, which is formed by dividing the groove of a heat exchanger tube having a spiral groove or a groove perpendicular to the tube axis on the inner surface of the tube with a groove formed separately from the groove.
(2)管内面にらせん溝あるいは管軸に直交する溝を有
する伝熱管の当該溝を予め形成しあるいは同工程で形成
しつつ、該管を表面に突起を有するプラグを用いて引抜
き加工し、前記プラグの突起により管内面に軸方向に連
続的に伸びる溝を形成し、該溝をもって前記らせん溝あ
るいは直交する溝を分断させる管内凝縮用伝熱管の製造
方法。
(2) forming the groove of a heat transfer tube having a spiral groove or a groove perpendicular to the tube axis on the inner surface of the tube in advance or in the same process, and drawing the tube using a plug having a protrusion on the surface; A method of manufacturing a heat exchanger tube for condensing inside a tube, in which a groove continuously extending in the axial direction is formed on the inner surface of the tube by the protrusion of the plug, and the groove divides the spiral groove or orthogonal groove.
JP63288510A 1988-11-15 1988-11-15 Heat transfer tube for condensation in tube and method of manufacturing the same Expired - Fee Related JPH0824952B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63288510A JPH0824952B2 (en) 1988-11-15 1988-11-15 Heat transfer tube for condensation in tube and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63288510A JPH0824952B2 (en) 1988-11-15 1988-11-15 Heat transfer tube for condensation in tube and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02137609A true JPH02137609A (en) 1990-05-25
JPH0824952B2 JPH0824952B2 (en) 1996-03-13

Family

ID=17731163

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63288510A Expired - Fee Related JPH0824952B2 (en) 1988-11-15 1988-11-15 Heat transfer tube for condensation in tube and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0824952B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254192A (en) * 1990-12-27 1992-09-09 Mitsubishi Shindoh Co Ltd Heat transfer tube provided with internal surface groove
US5381600A (en) * 1993-10-06 1995-01-17 Ford Motor Company Heat exchanger and method of making the same
EP1271087A1 (en) * 2000-04-07 2003-01-02 Daikin Industries, Ltd. Heating tube with inner surface grooves

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521914A (en) * 1975-06-23 1977-01-08 Asahi Chemical Ind Sound insulation panel
JPS61266121A (en) * 1985-05-20 1986-11-25 Kobe Steel Ltd Working device for pipe with internal groove
JPS6264421A (en) * 1985-09-13 1987-03-23 Kobe Steel Ltd Manufacture of heat exchanger tube

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS521914A (en) * 1975-06-23 1977-01-08 Asahi Chemical Ind Sound insulation panel
JPS61266121A (en) * 1985-05-20 1986-11-25 Kobe Steel Ltd Working device for pipe with internal groove
JPS6264421A (en) * 1985-09-13 1987-03-23 Kobe Steel Ltd Manufacture of heat exchanger tube

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04254192A (en) * 1990-12-27 1992-09-09 Mitsubishi Shindoh Co Ltd Heat transfer tube provided with internal surface groove
US5381600A (en) * 1993-10-06 1995-01-17 Ford Motor Company Heat exchanger and method of making the same
US5404942A (en) * 1993-10-06 1995-04-11 Ford Motor Company Heat exchanger and method of making the same
EP1271087A1 (en) * 2000-04-07 2003-01-02 Daikin Industries, Ltd. Heating tube with inner surface grooves
EP1271087A4 (en) * 2000-04-07 2008-07-30 Daikin Ind Ltd Heating tube with inner surface grooves

Also Published As

Publication number Publication date
JPH0824952B2 (en) 1996-03-13

Similar Documents

Publication Publication Date Title
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH02108426A (en) High-performance heat-transfer tube for heat exchanger and manufacture thereof
KR100472526B1 (en) Heat exchanger tube for absorber and its manufacturing method
US5275234A (en) Split resistant tubular heat transfer member
KR20020018046A (en) Heat exchanger and method of manufacturing the same
JPH02137609A (en) Heat exchanger tube for tube condensation and its manufacture
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JPH04260793A (en) Heat transfer tube with inner surface groove
JPS6029594A (en) Heat-transmitting pipe and manufacture thereof
JP2001074384A (en) Internally grooved tube
JP3587599B2 (en) Heat transfer tube for absorber
JP3199636B2 (en) Heat transfer tube with internal groove
JPH0724522A (en) Heat-transfer tube for absorber and production therefor
CN208108902U (en) Half annular knurl finned condensation pipe
JPS62102093A (en) Heat transfer tube equipped with internal grooves
JPH0459968B2 (en)
JPH06159860A (en) Heat transfer pipe for absorber
JPH11118382A (en) Heat transfer pipe for evaporator and manufacture thereof
JPH02137631A (en) Method for expanding inside-grooved heat exchanger tube for condensation
JPH03170797A (en) Heat transfer tube
JPH051891A (en) Heat transfer tube with internal groove
JP2004003733A (en) Heat transfer pipe and heat exchanger, and method of manufacture of heat transfer pipe
KR100468397B1 (en) A Falling Film Enhanced Tub
JPH09113165A (en) Heat transfer pipe for absorber
JPH1163878A (en) Internal surface grooved heat transfer pipe

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees