JPH051891A - Heat transfer tube with internal groove - Google Patents

Heat transfer tube with internal groove

Info

Publication number
JPH051891A
JPH051891A JP30775591A JP30775591A JPH051891A JP H051891 A JPH051891 A JP H051891A JP 30775591 A JP30775591 A JP 30775591A JP 30775591 A JP30775591 A JP 30775591A JP H051891 A JPH051891 A JP H051891A
Authority
JP
Japan
Prior art keywords
tube
grooves
groove
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30775591A
Other languages
Japanese (ja)
Inventor
Yoshihiro Shinohara
義広 篠原
Kiyoshi Oizumi
清 大泉
Yasuhiko Ito
靖彦 伊藤
Makoto Hori
誠 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP30775591A priority Critical patent/JPH051891A/en
Publication of JPH051891A publication Critical patent/JPH051891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To obtain a heat transfer tube with internal grooves, reduced in the increase of a unit weight and not so high in the hardness of manufacturing, by a method wherein a ratio of the sectional area of respective grooves to the depth of the groove is specified while an vertical angle of a crest positioned between respective grooves is also specified, in the heat transfer tube with internal grooves, in which a multitude of grooves are formed on the internal surface thereof with a specified twisting angle. CONSTITUTION:A heat transfer tube with internal grooves is provided with a multitude of spiral grooves, having a ratio of the depth Hf of the groove to the inner diameter Di of the tube or Hf/Di=0.02-0.03, a twisting angle beta with respect to the axis of the tube r beta=7 deg.-30 deg. and a truncated section, on the inner surface thereof for effecting the phase change of fluid flowing through the inside of the tube. The ratio of the sectional area S of the section vertical to the axis of respective grooves to the depth Hf of the grooves are specified so that S/Hf=0.15-0.40 while the vertical angle of a crest positioned between respective grooves in the section orthogonal to the axis of the tube is specified so as to be 30-60. The sectional area of respective grooves and the shape of crest defining the grooves are limited in such a manner whereby the reduction of weight, as well as the improvement of workability are permitted and the heat transfer tube can be provided with high performance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は空気調和機、冷凍機、ボ
イラー等の熱交換器の中で、管内流体が相変化を行う用
途に適した内面溝付伝熱管(以下単に内面溝付管とい
う)の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger tube with an inner surface groove (hereinafter simply referred to as an inner surface grooved tube) suitable for use in a heat exchanger such as an air conditioner, a refrigerator, a boiler, etc., in which the fluid inside the tube undergoes a phase change Say) improvement.

【0002】[0002]

【従来の技術】内面溝付管は、その概略を図10に示す
ように、銅管の如き金属管の内面に多数のらせん状の溝
を設けたものである。
2. Description of the Related Art As shown in FIG. 10, an inner grooved tube is a metal tube such as a copper tube provided with a large number of spiral grooves on its inner surface.

【0003】従来この種の内面溝付管には、溝深さ、溝
形状溝のねじれ角度等に種々の制限を加えたものが発表
されているが、それらは実際に使用する側から見ると、
必ずしも最適なものとはいえず、その適用拡大に今一歩
の感がある。その最大の理由は、伝熱性能と製造コスト
の比にある。即ち、内面溝付管は、その微細な内面構造
上、転造法によらなければ、安定した品質が得にくい
が、転造法は、モーターの回転数、その他から来る速度
上の限界、換言すれば、製造コスト的な限界がある。し
かるに平滑管は高速引抜法によって製造が可能であるの
で、従来の内面溝付管は伝熱性能と製造コストの比で考
えると、平滑管からの切替メリットが出にくいという理
由によるところが大きい。
Conventionally, this type of inner grooved tube has been announced with various restrictions on the groove depth, the groove shape, the twist angle of the groove, and the like. ,
It's not always the optimal one, and there is a feeling that it is just one step away from expanding its application. The biggest reason is the ratio of heat transfer performance to manufacturing cost. In other words, the inner grooved tube is difficult to obtain stable quality unless it is formed by the rolling method because of its fine inner surface structure. However, the rolling method is limited in the number of rotations of the motor, speed limit, etc. If so, there is a limit in manufacturing cost. However, since the smooth tube can be manufactured by the high-speed drawing method, considering the ratio of heat transfer performance to the manufacturing cost of the conventional inner grooved tube, the reason is that it is difficult to obtain the merit of switching from the smooth tube.

【0004】従来から実用に供されている内面溝付管の
代表的な形状を図11に示す。
FIG. 11 shows a typical shape of an inner grooved tube which has been conventionally put to practical use.

【0005】しかし、かかる内面形状をもった溝付管は
以下に述べるような理由で性能/コスト比が低い。
However, the grooved tube having such an inner surface shape has a low performance / cost ratio for the reason described below.

【0006】まず第1に、溝深さ(Hf)と性能が比例
的な関係にあることは従来から衆知であるが、圧力損失
が平滑管に比べて大幅に増大する限界は、溝深さ(H
f)と内径(Di)との比(Hf/Di)が0.02〜
0.03付近にあるにも拘らず、従来品はHf/Di=
0.018以下であるので、溝深さ(Hf)が圧力損失
上の限界にまで達していなかった点にある。これはま
た、従来形状のままで溝深さ(Hf)を大きくすること
が即、単位重量(以下単重という)の増加につながると
いうコスト的な理由にも起因している。
First of all, it has been well known that the groove depth (Hf) and the performance are in a proportional relationship, but the limit to which the pressure loss greatly increases as compared with the smooth tube is the groove depth. (H
The ratio (Hf / Di) between f) and the inner diameter (Di) is 0.02 to
Despite being around 0.03, Hf / Di =
Since it is 0.018 or less, the groove depth (Hf) does not reach the limit of pressure loss. This is also due to the cost reason that increasing the groove depth (Hf) while maintaining the conventional shape immediately leads to an increase in unit weight (hereinafter referred to as unit weight).

【0007】第2に、性能に影響する要因は、溝形状と
山形状であり、詳細は後述するが、図11(a)に示す
従来品は、溝部の断面積(S)が小さく、山の頂角
(α)が大きいため性能は十分でなかった。また、図1
1(b)の場合は、溝部断面積(S)が(a)の場合よ
り大きいものの、山が台形であるためにやはり満足の行
く性能は得られなかった。
Secondly, the factors that affect the performance are the groove shape and the mountain shape. The details will be described later, but in the conventional product shown in FIG. 11A, the groove has a small cross-sectional area (S), The apex angle (α) was large, so the performance was not sufficient. Also, FIG.
In the case of 1 (b), although the groove cross-sectional area (S) was larger than that in (a), satisfactory performance could not be obtained because the peaks were trapezoidal.

【0008】[0008]

【発明が解決しようとする課題】本発明は以上のような
点に鑑みなされたもので、その目的とするところは、性
能を向上させながら単重増加が相対的に少なく、かつ製
造上の困難さも相対的に大きくない実用的な内面溝付管
を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above points, and it is an object of the present invention to increase the unit weight while improving the performance and to make the manufacturing difficult. Another object is to provide a practical inner grooved tube that is not relatively large.

【0009】[0009]

【課題を解決するための手段】即ち本発明の要旨は、特
許請求の範囲に記載した如く、溝深さを内部流体の圧力
損失を増加させない程度にできるだけ大きく設定し、個
々の溝部断面積について、液膜の厚みと管内表面積の2
点を勘案して制限を加え、かつ山の形状についても管内
表面積、管の単重、製造時の加工性等を総合的に判断し
て制限を加えたことにある。
That is, the gist of the present invention is to set the groove depth as large as possible so as not to increase the pressure loss of the internal fluid, as described in the claims, and , The thickness of the liquid film and the surface area inside the tube 2
This is because the restrictions were added in consideration of the points, and the shape of the ridges was also restricted by comprehensively judging the internal surface area of the pipe, the unit weight of the pipe, and the workability during manufacturing.

【0010】[0010]

【実施例】本発明に係る内面溝付管の一実施例における
横断面部分拡大図を図1に示す。この実施例は外径(O
D)9.52mmの銅管の内面に、管軸に対して18°の
ねじれ角(β)をもって円周上に山数(n)60の三角
山が等間隔にできるように溝を形成したもので、有効な
肉厚(Tw)は0.30mmである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows a partially enlarged cross-sectional view of an embodiment of an inner grooved tube according to the present invention. In this embodiment, the outer diameter (O
D) Grooves were formed on the inner surface of a 9.52 mm copper tube with a twist angle (β) of 18 ° with respect to the tube axis so that triangular peaks with a crest number (n) of 60 could be formed at equal intervals. The effective wall thickness (Tw) is 0.30 mm.

【0011】以下に本発明の数値限定理由を従来品と比
較しながら説明する。
The reasons for limiting the numerical values of the present invention will be described below in comparison with conventional products.

【0012】なお、以下に示すデータは全て管内流体と
してフレオン:R−22を使用し、蒸気圧力4kg/cm2
G、平均乾き度=0.6、熱流速=10Kw/m2 、冷
媒流量=200kg/m2 S、凝縮圧力=14.6kg/cm
2 G、入口過熱度=50℃、出口過冷却度=5℃の条件
であり、内表面積は最小内径(Di)基準でとってあ
る。
All the data shown below were measured using Freon: R-22 as the fluid in the pipe, and the steam pressure was 4 kg / cm 2
G, average dryness = 0.6, heat flow rate = 10 Kw / m 2 , refrigerant flow rate = 200 kg / m 2 S, condensing pressure = 14.6 kg / cm
The conditions are 2 G, superheat at the inlet = 50 ° C., supercooling at the outlet = 5 ° C., and the inner surface area is based on the minimum inner diameter (Di).

【0013】まず最初に、溝深さ(Hf)について説明
する。
First, the groove depth (Hf) will be described.

【0014】図2は、一般的な内面溝付銅管(OD=φ
9.52、Di=φ8.52、β=18°)について、
横軸に溝深さ(Hf)を管内最小径(Di)との比でと
り、縦軸には、管内熱伝達率及び管内流体の圧力損失を
平滑管との比でとったものである。本図によれば、熱伝
達率は溝深さ(Hf)が深くなるにしたがって比例的に
増加するが、Hf/Di=0.02〜0.03付近から
の増加量は緩慢になる。また圧力損失比はやはりHf/
Di=約0.03までは平滑管と大差ないが、これ以降
は急激に増大する。従って、圧力損失が平滑管と大差な
い範囲でできる限り高性能な範囲を選択するには、Hf
/Di=0.02〜0.03の範囲が望ましい。
FIG. 2 shows a general copper pipe with internal groove (OD = φ
9.52, Di = φ8.52, β = 18 °),
The horizontal axis represents the groove depth (Hf) as a ratio with the minimum pipe diameter (Di), and the vertical axis shows the heat transfer coefficient in the pipe and the pressure loss of the fluid in the pipe as a ratio with the smooth pipe. According to this figure, the heat transfer coefficient increases proportionally as the groove depth (Hf) becomes deeper, but the amount of increase from around Hf / Di = 0.02 to 0.03 becomes slow. The pressure loss ratio is Hf /
Up to Di = about 0.03, there is not much difference from the smooth tube, but after that, it increases sharply. Therefore, in order to select the highest possible range within the range where the pressure loss is not much different from that of the smooth tube, Hf
The range of /Di=0.02 to 0.03 is desirable.

【0015】次に、溝のねじれ角度(β)について説明
する。
Next, the twist angle (β) of the groove will be described.

【0016】図3は内面溝付銅管(OD=φ9.52、
Di=φ8.52、Hf=0.20)について、横軸に
溝の管軸に対するねじれ角度(β)をとり、縦軸に管内
熱伝達率の平滑管との比をとったものである。本図によ
れば、蒸発時は7〜20°付近に僅かなピークをもち、
凝縮時はねじれ角度(β)の増加と共に性能が漸増する
傾向にある。しかし一方で、ねじれ角度(β)の増加
は、管製造時の加工性低下を招くことも考え合わせる
と、最適なねじれ角度(β)としては、蒸発、凝縮とも
性能が急激に立上がる7°付近から30°程度までの範
囲に留めるのが望ましく、これらの範囲内においては性
能的に大差ないと見ることができる。
FIG. 3 shows a copper pipe with internal groove (OD = φ9.52,
For Di = φ8.52, Hf = 0.20), the horizontal axis represents the twist angle (β) of the groove with respect to the tube axis, and the vertical axis represents the ratio of the heat transfer coefficient in the tube to that of the smooth tube. According to this figure, during evaporation, there is a slight peak around 7 to 20 °,
At the time of condensation, the performance tends to gradually increase as the twist angle (β) increases. On the other hand, considering that the increase of the twist angle (β) leads to the deterioration of the workability at the time of manufacturing the pipe, the optimum twist angle (β) is 7 ° where the performances of evaporation and condensation sharply rise. It is desirable to keep the range from the vicinity to about 30 °, and it can be considered that there is no great difference in performance within these ranges.

【0017】次に、溝部断面積(S)について説明す
る。
Next, the groove sectional area (S) will be described.

【0018】一般的に内面溝付管の相変化状態での性能
向上は、内面の凹凸による流体への撹拌効果、内表面積
の増大効果及び凹凸部における液膜変動の効果が考えら
れる。第1の撹拌効果については、溝深さ(Hf)が支
配的であり、これが大きいほど性能向上に寄与すること
は論を待たないが、第3の液膜挙動とも密接に関連す
る。即ち、管内を一定速以上で流体が流れる場合、微細
な溝の毛細管作用と流体速度から来る引摺力によって液
はらせん状の溝内をかけ上がって管内全周を濡らす、い
わゆる環状流となり易い。この状況を図4(a)、
(b)に示す。
Generally, the improvement of the performance of the inner grooved tube in the phase change state is considered to be the effect of stirring the fluid due to the unevenness of the inner surface, the effect of increasing the inner surface area, and the effect of the liquid film fluctuation in the uneven portion. Regarding the first stirring effect, it is clear that the groove depth (Hf) is dominant and that the larger it is, the more it contributes to the performance improvement, but it is closely related to the third liquid film behavior. That is, when the fluid flows in the tube at a certain speed or more, the liquid tends to rise up in the spiral groove by the capillary action of the fine groove and the drag force resulting from the fluid velocity to wet the entire circumference of the tube, that is, a so-called annular flow. This situation is shown in FIG.
It shows in (b).

【0019】図4(a)の平滑管の場合は上側の乾いた
部分は蒸発に寄与しないのに対し、(b)の溝付管の場
合は、全面で蒸発が促進される。しかし、溝付管1であ
っても、溝部の断面積が異なった場合は、全液量を一定
としたとき、液膜の厚みは図5に示すように、夫々異な
った様相を呈する。即ち、溝部断面積が大きい(c)の
場合は、液膜2が薄すぎて山の先端が露出してしまい、
ここでの蒸発が行なわれない。また、溝部断面積の小さ
な管(a)は、液膜2が厚すぎて、流体ガスー管壁間の
熱抵抗が増大し、やはり性能低下を招く。従って、でき
るだけ薄い液膜で壁面全体が覆われて(b)の状態とな
るような最適な溝断面積が存在する。但し、溝を隔てる
山の形状が同一の場合、内表面積は溝断面積に反比例す
るので、(c)は(b)に比べて表面積的にも性能低下
の方向となるが、(a)は(b)に比べて表面積的には
性能向上の方向となる。従って総合的に最適な溝部断面
積S(正確にはS/Hf)は、図5の(a)と(b)の
中間的な位置にあると予想される。
In the case of the smooth tube of FIG. 4 (a), the upper dry portion does not contribute to evaporation, whereas in the case of the grooved tube of FIG. 4 (b), evaporation is promoted over the entire surface. However, even in the grooved pipe 1, when the total cross-sectional area of the groove is different, the thickness of the liquid film has different appearances as shown in FIG. 5 when the total amount of liquid is constant. That is, when the groove cross-sectional area is large (c), the liquid film 2 is too thin and the tip of the crest is exposed,
No evaporation takes place here. Further, in the pipe (a) having a small groove cross-sectional area, the liquid film 2 is too thick, the thermal resistance between the fluid gas and the pipe wall increases, and the performance also deteriorates. Therefore, there is an optimum groove cross-sectional area such that the entire wall surface is covered with the thinnest possible liquid film and the state shown in FIG. However, when the shapes of the ridges that separate the grooves are the same, the inner surface area is inversely proportional to the groove cross-sectional area, so (c) tends to deteriorate in surface area compared to (b), but (a) shows Compared to (b), the surface area tends to improve the performance. Therefore, it is expected that the comprehensively optimum groove sectional area S (to be exact, S / Hf) is located at an intermediate position between (a) and (b) of FIG.

【0020】また、一定の最適溝部断面積(S)に対し
て、山の断面形状を変えた場合の例を図6に示す。同図
において、(a)は(b)に比べて山の頂角(α)が大
きいため、管製造時の加工性に秀れるものの、山部断面
積が大きく、単重の増加につながると同時に、内表面積
を減少させて性能低下の方向となる。(c)のような矩
形または台形の山部の場合も、単重の増加及び山ピッチ
増加から来る全内表面積の減少は同様である。一方、
(d)のように頂角(α)の小さい山形状は、(b)に
比べて単重の増加なしに内表面積を増大させるが、著し
く頂角が小さいスリムな山は加工性を甚だしく低下させ
るため、製造コストの大幅な増加を招き易い。
FIG. 6 shows an example in which the cross-sectional shape of the crests is changed with respect to the constant optimum groove cross-sectional area (S). In the figure, (a) has a larger peak apex angle (α) than (b), so that although it has excellent workability during pipe manufacturing, it has a large peak cross-sectional area, which leads to an increase in unit weight. At the same time, the inner surface area is reduced, which tends to reduce the performance. In the case of the rectangular or trapezoidal crests as in (c), the decrease of the total inner surface area due to the increase of the unit weight and the crest pitch is similar. on the other hand,
A mountain shape with a small apex angle (α) as in (d) increases the internal surface area without increasing the unit weight compared to (b), but a slim mountain with a significantly smaller apex angle significantly reduces workability. Therefore, the manufacturing cost is likely to increase significantly.

【0021】以上に述べた溝や山の形状が性能に及ぼす
定性的な影響をデータ的に示したのが図7〜図9であ
る。
FIGS. 7 to 9 show qualitative influences of the above-mentioned groove and mountain shapes on the performance as data.

【0022】図7はOD=φ9.52、Di=φ8.5
2、Hf=0.20、β=18、n=60、の内面溝付
銅管における山形状と熱伝達率化の関係を示している。
本図によれば、蒸発、凝縮とも頂角(α)が小さいほど
性能は良く、また台形山(A)より三角山(B)の方が
性能が良いことが判る。しかし、頂角(α)が小さくな
るほど管製造時の加工性が著しく低下してコストアップ
につながるので、実用的には、頂角(α)は30〜60
°の範囲が望ましいといえる。
In FIG. 7, OD = φ9.52 and Di = φ8.5.
2 shows the relationship between the peak shape and the heat transfer coefficient in the inner grooved copper tube with Hf = 0.20, β = 18, and n = 60.
From this figure, it can be seen that the smaller the apex angle (α) is, the better the performance is, and the triangular mountain (B) is better than the trapezoidal mountain (A) in both evaporation and condensation. However, as the apex angle (α) becomes smaller, the workability at the time of manufacturing the pipe remarkably lowers, leading to an increase in cost. Therefore, the apex angle (α) is practically 30 to 60.
It can be said that the range of ° is desirable.

【0023】図8は、前記頂角をα=50°の三角山で
一定とし、溝部断面積S(正確にはS/Hf)との関係
を見た図である。本図によれば、蒸発性能はS/Hf=
0.3付近にピークがあるが、0.3以上の範囲の急激
な低下に比べ、0.3以下の範囲は性能低下が緩やかで
ある。一方、凝縮性能はS/Hfが小さくなるほど急激
に上昇しており、S/Hf=0.2付近に僅かなピーク
が見られる程度である。
FIG. 8 is a view showing the relationship with the groove section cross-sectional area S (more accurately, S / Hf), with the apex angle being constant with triangular peaks of α = 50 °. According to this figure, the evaporation performance is S / Hf =
Although there is a peak in the vicinity of 0.3, in the range of 0.3 or less, the performance deterioration is gradual, compared with the sharp decrease in the range of 0.3 or more. On the other hand, the condensation performance sharply increases as S / Hf becomes smaller, and a slight peak is observed near S / Hf = 0.2.

【0024】これらの傾向から見ると、S/Hfが小さ
いほど性能的に安定しているといえるが、反面、山数の
増加による単重の増加がS/Hfに反比例的に増大する
ことも忘れてはならない。即ち、溝を画定する山の数以
外の緒元を一定とした場合、S/Hfが小さくなること
は、山数(n)の増加、延いては単重の増加を意味し、
これをS/Hfとの関係で見ると、反比例的な傾向を示
す。従って、これらを総合的に判断して最適仕様を求め
なければならない。
From these tendencies, it can be said that the smaller the S / Hf is, the more stable the performance is, but on the other hand, the increase in the unit weight due to the increase in the number of peaks may be inversely proportional to the S / Hf. Don't forget. That is, when the specifications other than the number of peaks that define the groove are constant, a decrease in S / Hf means an increase in the number of peaks (n) and, in turn, an increase in unit weight.
Looking at this in relation to S / Hf, it shows an inversely proportional tendency. Therefore, it is necessary to comprehensively judge these and obtain the optimum specifications.

【0025】本発明の目的の1つである総合的なコスト
メリットを考えるための試算例を次に示す。
An example of trial calculation for considering the overall cost merit, which is one of the objects of the present invention, is shown below.

【0026】代表的な熱交換器の1つであるルームエア
コンのフィンコイル型熱交換器を想定し、スリット型ア
ルミフィンを含めた管外側熱抵抗と、従来品を使ったと
きの管内側抵抗との比を75%:25%と仮定する。こ
のとき、管内のみ図11(a)に示す従来品から本発明
の一実施例品(OD=9.52、Hf=0.2、β=1
8°、α=50°、n=60)に切替えたときの熱伝達
率向上率を熱通過率増加率に換算すると、図9のBで表
わされる。同様の比較を単重についても行なうと、図9
のAのグラフとなる。
Assuming a fin coil type heat exchanger for a room air conditioner, which is one of the typical heat exchangers, the tube outside heat resistance including slit type aluminum fins and the tube inside heat resistance when using a conventional product Assume that the ratio of and is 75%: 25%. At this time, only the inside of the pipe is changed from the conventional product shown in FIG. 11A to an embodiment product of the present invention (OD = 9.52, Hf = 0.2, β = 1.
8B, α = 50 °, n = 60), the heat transfer coefficient improvement rate is converted into a heat passage rate increase rate, which is represented by B in FIG. When the same comparison is performed for the unit weight, FIG.
It becomes the graph of A.

【0027】尚、この場合、従来品(図11(a))の
緒元は、OD=φ9.52、Hf=0.15、β=25
°、α=90°、n=65である。
In this case, the specifications of the conventional product (FIG. 11A) are OD = φ9.52, Hf = 0.15, β = 25.
°, α = 90 °, n = 65.

【0028】ここで熱通過率の向上分だけチューブ長さ
を短かくしたとすれば、この分がそのままコストメリッ
トとなり、また単重の減少分も製造時の加工性の低下を
考慮しなければ、ほぼこれに近い値のコストメリットと
なる。従って、図9のA+Bがチューブ購入側のメリッ
ト合計となる。
If the tube length is shortened by the amount corresponding to the improvement of the heat transmission rate, this amount will be the cost merit as it is, and the reduction of the unit weight must be taken into consideration the deterioration of the workability at the time of manufacturing. , And the cost merit is close to this. Therefore, A + B in FIG. 9 is the total merit on the tube purchase side.

【0029】現実には溝付管の採用に当たって空調能力
の向上や効率向上を図れば、その分コストメリットは減
少するし、加工性の低下があれば、更にメリットは減少
する。図9のメリット換算は、単なる目安に過ぎない
が、本発明では性能向上と共に、単重低減にも力点をお
いて検討した結果、性能向上の少ないS/Hfが小さい
領域においても十分メリットを出し得ることが図9から
読みとることができる。従ってS/Hfとしては0.1
5〜0.40の範囲が効果的である。
Actually, if the air-conditioning capacity and the efficiency are improved in adopting the grooved pipe, the cost merit is reduced accordingly, and if the workability is deteriorated, the merit is further reduced. The merit conversion shown in FIG. 9 is merely a guide, but as a result of studying the present invention with an emphasis on reducing the unit weight as well as improving the performance, a sufficient merit is obtained even in the region where the S / Hf is small and the performance is small. What can be read can be read from FIG. Therefore, S / Hf is 0.1
A range of 5 to 0.40 is effective.

【0030】[0030]

【発明の効果】以上のように、本発明は個々の溝部断面
積と、その溝部を画定する山の形状に制限を加えること
により、単重の低減、加工性の改善等を可能にすると共
に、高性能化を図ったもので、その実用価値は大なるも
のがある。
As described above, according to the present invention, the unit weight can be reduced and the workability can be improved by limiting the cross-sectional area of each groove and the shape of the peak defining the groove. However, it has high performance, and its practical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す横断面拡大図。FIG. 1 is an enlarged cross-sectional view showing an embodiment of the present invention.

【図2】溝深さ、伝熱性能及び圧力損失の関係を示すグ
ラフ。
FIG. 2 is a graph showing the relationship between groove depth, heat transfer performance, and pressure loss.

【図3】溝のねじれ角と伝熱性能の関係を示すグラフ。FIG. 3 is a graph showing a relationship between a groove twist angle and heat transfer performance.

【図4】管内を流れる流体の流れを模式化した図。FIG. 4 is a diagram schematically showing the flow of fluid flowing in a pipe.

【図5】溝寸法と液膜厚みの関係を模式化した図。FIG. 5 is a diagram schematically showing the relationship between groove dimensions and liquid film thickness.

【図6】溝部寸法と山部寸法の関連を示した図。FIG. 6 is a diagram showing the relationship between the groove size and the peak size.

【図7】山頂角と伝熱性能の関係を示すグラフ。FIG. 7 is a graph showing the relationship between the peak angle and heat transfer performance.

【図8】溝部断面積、伝熱性能及び単重の関係を示すグ
ラフ。
FIG. 8 is a graph showing the relationship between groove cross-sectional area, heat transfer performance, and unit weight.

【図9】溝部断面積と伝熱性能、単重減少率及び従来品
と比べたメリットを試算した例を示すグラフ。
FIG. 9 is a graph showing an example of trial calculation of groove cross-sectional area, heat transfer performance, unit weight reduction rate, and merits compared with conventional products.

【図10】内面溝付管の概略を示す横断面及び縦断面
図。
10A and 10B are a horizontal cross-sectional view and a vertical cross-sectional view schematically showing an inner grooved tube.

【図11】従来品の横断面拡大図と各部寸法の記号を示
した図。
FIG. 11 is an enlarged cross-sectional view of a conventional product and a diagram showing symbols for the dimensions of each part.

【符号の説明】[Explanation of symbols]

1 内面溝付管 2 液膜 1 Internal grooved tube 2 Liquid film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 堀 誠 茨城県土浦市木田余町3550番地 日立電線 株式会社土浦工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Makoto Hori 3550 Kidayomachi, Tsuchiura City, Ibaraki Prefecture Hitachi Cable Co., Ltd. Tsuchiura Plant

Claims (1)

【特許請求の範囲】 【請求項1】管内を流れる流体が相変化を行う伝熱管で
あって、管の内面に、溝深さ(Hf)が管内径(Di)
との比でHf/Di=0.02〜0.03、溝の管軸に
対するねじれ角が7°〜30°である断面が台形状の多
数のらせん状の溝を持つものにおいて、個々の溝部の軸
直角断面積(S)を溝深さ(Hf)との比でS/Hf=
0.15〜0.40とし、かつ各溝間に位置する山部の
軸直角断面での頂角を30°〜60°としたことを特徴
とする内面溝付伝熱管。
Claim: What is claimed is: 1. A heat transfer tube in which a fluid flowing inside the tube undergoes a phase change, and a groove depth (Hf) is formed on the inner surface of the tube.
Hf / Di = 0.02 to 0.03 in ratio with the groove and the spiral angle with respect to the tube axis of the groove is 7 ° to 30 °, and has a plurality of trapezoidal grooves with a trapezoidal cross section. The ratio of the cross-sectional area (S) perpendicular to the axis to the groove depth (Hf) is S / Hf =
An inner grooved heat transfer tube, characterized in that the apex angle is 0.15 to 0.40, and the apex angle of the crests located between the grooves in a cross section perpendicular to the axis is 30 ° to 60 °.
JP30775591A 1991-11-22 1991-11-22 Heat transfer tube with internal groove Pending JPH051891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30775591A JPH051891A (en) 1991-11-22 1991-11-22 Heat transfer tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30775591A JPH051891A (en) 1991-11-22 1991-11-22 Heat transfer tube with internal groove

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP58252191A Division JPS60142195A (en) 1983-12-28 1983-12-28 Heat transfer tube equipped with groove on internal surface thereof

Publications (1)

Publication Number Publication Date
JPH051891A true JPH051891A (en) 1993-01-08

Family

ID=17972884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30775591A Pending JPH051891A (en) 1991-11-22 1991-11-22 Heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JPH051891A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JP2003287392A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd Boiling type heat transfer pipe
KR100918216B1 (en) * 2004-12-02 2009-09-21 스미토모 게이 긴조쿠 고교 가부시키가이샤 Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
US11609123B2 (en) 2020-03-10 2023-03-21 Baidu Online Network Technology (Beijing) Co., Ltd. Calibration method, device for infrared temperature measurement, electronic apparatus and storage medium

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH085278A (en) * 1994-06-20 1996-01-12 Mitsubishi Shindoh Co Ltd Heat transfer tube with inner surface grooves
JP2003287392A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd Boiling type heat transfer pipe
KR100918216B1 (en) * 2004-12-02 2009-09-21 스미토모 게이 긴조쿠 고교 가부시키가이샤 Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
US11609123B2 (en) 2020-03-10 2023-03-21 Baidu Online Network Technology (Beijing) Co., Ltd. Calibration method, device for infrared temperature measurement, electronic apparatus and storage medium

Similar Documents

Publication Publication Date Title
JPH0421117B2 (en)
Bergles The implications and challenges of enhanced heat transfer for the chemical process industries
RU2289076C2 (en) Pipes with grooves for reversible usage at heat exchangers
JP4395378B2 (en) HEAT TRANSFER TUBE, INCLUDING METHOD OF MANUFACTURING AND USING HEAT TRANSFER TUBE
JP4932439B2 (en) Plate fin tube heat exchanger and manufacturing method thereof
US7267166B2 (en) Grooved tubes for heat exchangers that use a single-phase fluid
JPH06201286A (en) Heat transfer pipe
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JPH051891A (en) Heat transfer tube with internal groove
JP5642462B2 (en) Heat exchanger tube for heat exchanger and heat exchanger using the same
JPH04260793A (en) Heat transfer tube with inner surface groove
JP3784626B2 (en) Manufacturing method of heat exchangers with internally grooved heat transfer tubes
JP3219811B2 (en) Heat transfer tube with internal groove
JP3829648B2 (en) Internal grooved heat transfer tube
JPH0335011B2 (en)
JP2005134053A (en) Heat exchanger tube with inner surface groove, and manufacturing method of heat exchanger using it
JPS62142995A (en) Heat transfer pipe with inner surface spiral groove
JPH0579783A (en) Heat transfer tube with inner surface groove
JP2912826B2 (en) Heat transfer tube with internal groove
JPH04260792A (en) Small-diameter heat transfer tube
JP3417825B2 (en) Inner grooved pipe
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JP5476080B2 (en) Aluminum inner surface grooved heat transfer tube
JPH0712483A (en) Heat transfer tube with inner surface groove
JPH02161290A (en) Inner face processed heat transfer tube