JPH0335011B2 - - Google Patents

Info

Publication number
JPH0335011B2
JPH0335011B2 JP58137292A JP13729283A JPH0335011B2 JP H0335011 B2 JPH0335011 B2 JP H0335011B2 JP 58137292 A JP58137292 A JP 58137292A JP 13729283 A JP13729283 A JP 13729283A JP H0335011 B2 JPH0335011 B2 JP H0335011B2
Authority
JP
Japan
Prior art keywords
tube
fins
fin
disk
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58137292A
Other languages
Japanese (ja)
Other versions
JPS6029594A (en
Inventor
Kyoshi Nosetani
Iwao Takeda
Hiromi Hashimoto
Yoshihiro Hiramatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP13729283A priority Critical patent/JPS6029594A/en
Publication of JPS6029594A publication Critical patent/JPS6029594A/en
Publication of JPH0335011B2 publication Critical patent/JPH0335011B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element
    • F28F1/422Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element with outside means integral with the tubular element and inside means integral with the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(技術分野) 本発明は、伝熱管の製造方法に係り、特に空気
調和装置、冷凍機、ボイラー等の熱交換器として
のコンデンサーに好適に使用される凝縮伝熱管を
有利に製造する方法に関するものである。 (背景技術) 一般に、このような伝熱管は、管内面に流通せ
しめられる伝熱流体(冷却水)と管外面に接触さ
せられる伝熱流体(凝縮性ガス)との間で熱のや
りとりが行なわれるものであるが、従来から、
R11やR12等のフロン系冷媒ガスのコンデンサー
には、フイン形成デイスクの押圧によつて管外周
面に螺旋状のフインを転造形成せしめたローフイ
ン管や、かかるローフイン管の熱伝達を促進する
ために、特公昭52−11670号公報に示される如く、
該ローフイン管の内周面に螺旋状のリブを設けた
内面リブ付きローフイン管が使用されてきた。 ところで、管内面が平滑な通常のローフイン管
においては、管内部を流通せしめられる伝熱流体
が層流となつて、管内周面に伝熱効率の悪い境膜
が生じ易いが、上記内面リブ付きのローフイン管
では、内面リブにより流体の流れが旋回せしめら
れることによつて形成される旋回流により、比較
的境膜が形成されにくく、管内面の熱伝達率を向
上させる上で有効とされている。 しかしながら、そのような旋回流によつても層
流に近似した流体の流れは依然として残り、それ
故、境膜の問題が解決され得たわけでなく、内面
の熱伝達を促進する上にも限界があつた。 一方、管外面の熱伝達率については、多数の外
面フインの形成により、広い接触面積が確保され
るところから、その熱伝達性能の改善は或る程度
は期待出来るのであるが、更に高い外面熱伝達率
への要求には根強いものがあり、内外の熱伝達率
を可及的に高め、全体として伝熱性能に優れた伝
熱管が求められているのである。 このため、特開昭54−157369号公報において
は、前記の如きローフイン管の外面フインに対し
て、それと交叉するように位置せしめた回転工具
を押圧することにより、かかる外面フインを所定
ピツチで切断すると共に、その切断部を外面フイ
ンとは逆方向のリード角にて配列する一方、かか
る切断部位において管内面側に突起を形成してな
る構造の伝熱管が提案されており、これによつて
管の内外面における乱流域の形成が企図されてい
る。 しかしながら、かかる公報に開示の伝熱管の製
造手法にあつては、外面フインに対して円盤状の
回転工具を押圧して、該外面フインの切断と同時
に、その部位を内面側に突出せしめるものである
ところから、管内面に形成される突起が有効な乱
流を惹起させるに充分な高さにおいて形成され得
ないという問題があり、また回転工具による外面
フインの切断に際して、かかる外面フインが大き
な変形を受けるという問題があつた。 (解決課題) ここにおいて、本発明は、かかる事情に鑑みて
為されたものであり、その主たる目的とするとこ
ろは、管内を流通せしめられる流体の流れに境膜
を破壊し得るに有効な乱流を惹起させ得て、内面
熱伝達率を効果的に高め得る伝熱管や、それに加
えて管外面に接触せしめられる伝熱流体を効果的
に外面フインに接触させ得て、外面熱伝達率をよ
り一層向上させ得る伝熱管を、容易に且つ有利に
製造する方法を提供することにある。 (解決手段・効果) そして、本発明にあつては、上記のような優れ
た特徴を発揮する伝熱管の製造のために、目的と
する伝熱管を与える素管の外周面に対してフイン
形成デイスクを押圧せしめることにより所定高さ
の外面フインを螺旋状に転造形成する一方、該フ
イン形成デイスクの外面フイン形成方向における
下流側に、外周部に所定間隔で鋸歯を設けてなる
鋸歯状デイスクを、その回転軸が前記素管の中心
線に対して前記外面フインのリード角に相当する
角度を以て位置するように配置せしめて、該鋸歯
状デイスクを形成された外面フイン間の溝部に沿
つて回転させ、かかる外面フイン間の溝部の底部
に、該鋸歯状デイスクの鋸歯を押圧せしめること
により、該鋸歯による押圧部分を管内面に突出せ
しめるようにする手法を、採用するようにしたの
である。 また、本発明にあつては、目的とする伝熱管を
与える素管の外周面に対してフイン形成デイスク
を押圧せしめることにより所定高さの外面フイン
を螺旋状に転造形成する一方、該フイン形成デイ
スクの外面フイン形成方向における下流側に、外
周部に所定間隔で鋸歯を設けてなる鋸歯状デイス
クを、その回転軸が前記素管の中心線に対して前
記外面フインのリード角に相当する角度を以て位
置するように配置せしめて、該鋸歯状デイスクを
形成された外面フイン間の溝部に沿つて回転さ
せ、かかる外面フイン間の溝部の底部に、該鋸歯
状デイスクの鋸歯を押圧せしめることにより、該
鋸歯による押圧部分を管内面に突出させ、更に前
記転造形成された外面フインに対して、その長さ
方向に所定の間隔を隔てて切込みを加えたことを
も、その特徴とするものである。 このようにすれば、外面フインを傷めたり、そ
の形状に変形を与えることなく、鋸歯状デイスク
によつて、充分な高さにおいて、容易に内面突起
を形成することが出来、しかも管外面を押圧して
内側に突出させるため、内面突起を形成しても、
伝熱管の重量の増大を招くことがない等の利点を
享受し得るのである。 なお、かかる本発明手法に従つて得られる、管
外周面に管材料からなる螺旋状の外面フインが一
体的に形成されてなる伝熱管にして、その管内周
面に複数の内面突起を形成せしめ、且つかかる内
面突起をスパイラル状に配列せしめるようにした
伝熱管にあつては、管内を流通せしめられる伝熱
流体が複数の内面突起を乗り越え、或いはかかる
内面突起によつて流れの方向が変えられる際に微
妙な乱流が生じ、そしてこの管内面に近接した流
れの変化によつて、管内周面付近に生じ易い境膜
が効果的に破壊されて、内面熱伝達率が有効に高
められるのである。 また、上記のような配列で複数の内面突起が形
成されると共に、管外周面に形成された螺旋状の
上記外面フインがその長さ方向に所定の間隔を隔
てた切込みによつて切り欠かれ、更には分断せし
められているように構成した伝熱管にあつては、
複数の内面突起による有効な乱流作用が惹起され
る一方で、管外周面に接触せしめられる伝熱流体
が上記切込みを通じて隣合う外面フインを横切つ
て流通することが出来るため、外面フインに対し
て、かかる流体が効果的に接触せしめられ、また
接触面積も増大するところから、外面熱伝達率を
も従来に比べてより一層高め得るのである。 (具体的構成・実施例) 以下、本発明の構成を更に具体的に明らかにす
るために、本発明の実施例を示す図面に基づいて
更に詳細に説明することとする。 先ず、第1図は、本発明手法に従つて得られる
伝熱管の一例を示す一部切欠図であり、そこにお
いて、2は銅等の熱伝達率のよい金属からなる伝
熱管である。そして、かかる電熱管2の管外周面
には、管壁から移動した管材料からなる螺旋状の
外面フイン4が所定ピツチで一体的に設けられて
いる一方、管内周面には、複数の内面突起6が形
成されているのである。 それら内面突起6は、外面フイン4の間の溝部
8に対応する管内周面に形成され、且つかかる内
面突起6の位置する溝部8の底部部分が凹所(デ
インプル)10とされている。即ち、この場合に
は、溝部8の底部部分に矩形状の凹所10が形成
されることにより、そこに対応する管内面が楕円
丘状に突出せしめられて内面突起6が形成されて
いるのである。このように螺旋状の溝部8に沿つ
て内面突起6が形成される結果、それら内面突起
6は、当然のことながら、管内周面において該溝
部8の螺旋形状と同様なスパイラル状に配列する
こととなるが、また凹所10のピツチによつて
は、管軸方向において互いに隣接する溝部8に対
応する管内面部位に設けられる内面突起6同士
が、全体として、溝部8とは別の螺旋形状の配置
形態を呈し、例えば第1図に示されるような明瞭
なスパイラル模様を呈したり、或いは第2図に示
されるような、最も隣接する内面突起6同士が互
い違いに位置して、千鳥状の模様を呈したりす
る。 そして、そのように、溝部8の螺旋形状とは別
の螺旋状形態を呈するように、内面突起6を配置
せしめる場合、そのピツチは、管軸方向において
一般に0.5〜10mm、また管軸方向に対するリード
角は少なくとも10゜以上、特に好ましくは20〜70゜
位の範囲に定めることが好適である。 また、外面フイン8の大きさは、管径が例えば
20mm前後の場合、フイン厚さ0.2〜0.4mm程度、高
さが1〜3mm前後、また溝部8の間隔は管軸方向
において0.5〜1.3mm程度が普通である。一方、内
面突起6の大きさは、高さ(突出量)が0.2〜1.0
前後、また突起長手方向の長さが1〜5mm前後が
好適であり、従つて溝部8の底部部分に設けられ
る凹所10の深さ及び長さも、そのような高さ及
び長さの内面突起6を得るに足る寸法であること
が望ましいのである。 さらに、内面突起6の管内周面からの突出量等
があまりに大きくなると、管内を流通せしめられ
る伝熱流体の圧力損失(水頭損失)が大きくなる
ため、内面突起6の高さや単位面積あたりの数な
どは、あまりに大きな圧力損失を招かない程度に
適宜に定められるべきである。 そして、かかる内面突起6を有する伝熱管にあ
つては、管内を流通せしめられる伝熱流体の流れ
に、内面突起6を乗り越えてそれを通過する際に
乱流が生じ、且つかかる内面突起6により管内面
に沿つて管軸方向に流れる伝熱流体の流れが左右
に分流せしめられ、そしてこれに加えて内面突起
6のスパイラル状配置による伝熱流体の管内面付
近の螺旋状流れ作用が相俟つて、管内表面の流れ
が複雑且つ微妙な乱流形態をとるようになり、こ
れによつて管内周面付近に形成され易い境膜が効
果的に破壊されて、内面熱伝達率が有効に高めら
れるのである。また管内面における流体接触面積
が内面突起6によつて増大せしめられ、更に管外
周面における接触面積も、凹所10の存在によつ
て増大せしめられるのである。 ところで、本発明は、第1図や第2図に示され
るような伝熱管2を、第3図に示される如き手法
に従つて容易に製造するものである。その第3図
において、12は複数枚のフイン形成デイスクで
あり、漸次径が増大するものが外面フイン4のピ
ツチを与える間隔で軸14によつて同心的且つ一
体的に連結せしめられており、更に最も大径のフ
イン形成デイスク12に隣接してそれと同心的に
鋸歯状デイスク16が軸14に取り付けられてい
る。この鋸歯状デイスク16は、例えば第4図に
示されるように、それの外周部に所定ピツチで鋸
歯18を備えたものであり、その鋸歯18の歯先
が描く円周の半径は、フイン形成デイスク12の
最も大径のものより一定量大きくされている。 そして、上記各フイン形成デイスク12及び鋸
歯状デイスク16が取り付けられた軸14が、目
的とする伝熱管を与える素管20の中心線に対し
て、形成されるべき外面フイン4のリード角に相
当する角度を以て位置せしめられ、また素管20
の内側には、各フイン形成デイスク12には対向
するが鋸歯状デイスク16には対向しない状態
で、プラグ22が挿入される。 かかる状態で、軸14を介してフイン形成デイ
スク12を回転させつつ、素管20の外周面に対
して押圧せしめることにより、漸次外面フイン1
4を転造形成する一方、フイン形成デイスク12
の矢印で示される外面フイン形成方向における下
流側に配置された鋸歯状デイスク16によつて、
形成された外面フイン4間の溝部8の底部に、か
かる鋸歯状デイスク16の鋸歯18を押圧せしめ
ることにより、その鋸歯18による押圧部分を管
内面に突出させるようにするのである。その結
果、管外周面における外面フイン4間の溝部8の
底部部分に凹所10が形成され、且つその凹所1
0に対応する部位に位置して管内周面に内面突起
6が形成されるのである。 なお、管内周面に形成される内面突起6の配列
形態は、素管20の径に対する鋸歯18のピツチ
等によつて決定されることとなり、例えば第4図
に示されるような鋸歯ピツチの小さい鋸歯状デイ
スク16を用いれば、第2図に示されるような配
列形態の内面突起6が容易に形成され、また第5
図に示されるような鋸歯ピツチの大きい鋸歯状デ
イスク28を用いれば、例えば第1図に示される
ような配列形態の内面突起6が形成されることと
なる。 ところで、第1図や第2図に示される伝熱管2
のように螺旋状に連続する外面フイン4を備えた
ものではなく、第6図に示されるように外面フイ
ン4に切込み24が形成された伝熱管26とすれ
ば、外面熱伝達率を高める上で有効である。 すなわち、かかる伝熱管26は、図示はしない
が上記伝熱管2と同様に外面フイン4間の溝部8
の底部部分に凹所10が形成されることにより、
管内面に複数の内面突起6が形成されているが、
更に螺旋状の外面フイン4がその長さ方向に所定
の間隔を隔てた切込み24によつて切り欠かれ、
分断せしめられているのである。かかる切込み2
4は、伝熱管26の管軸に対して、隣接する外面
フイン4間に跨がつて螺旋状に設けることも出来
るし、直線状に設けることも出来、或いは互い違
いとなるように千鳥状に設けることも出来る。 何れにしても、それらの切込み24によつて外
面フイン4が分断せしめられることにより、内面
突起6による乱流惹起作用に基づく内面熱伝達率
の向上に加えて、伝熱管26の外面に接触せしめ
られる伝熱流体が切込み24を通じて外面フイン
4に効果的に接触せしめられ、また切込み24が
その接触面積の増大にも寄与するところから、外
面熱伝達率も有効に高められるのである。 なお、このような伝熱管26を製造するについ
ては、例えば第3図において、鋸歯状デイスク1
6の更に下流側に切込み形成デイスクを配置し、
外面フイン4の転造成形に続いて所定ピツチで切
込み24を設けることが出来る。また、外面フイ
ン4及び内面突起6が上述のように形成された伝
熱管に対して、別工程において、その外面フイン
4の外周部にローレツト掛ローラを押し付けて、
そのような切込み24を形成することも出来る。
このようなローレツト加工工具を用いても、外面
フイン4に対して充分な深さの切込み24を加え
ることが可能であり、例えば高さが1.5mm程度の
外面フインに対して、0.8mm程度の深さの切込み
を入れることが出来るのである。 次に、本発明手法に従つて得られた伝熱管の伝
熱性能と従来の伝熱管の伝熱性能とを比較するた
めに、それぞれの試料管に対して行なつた実験の
結果を、下記第1表に示す。 なお、試料管としては、従来管A,B,C,
D,H及び本発明製造管E,F,Gを選択し、そ
れらの構造は、次の通りであつた。 従来管A;フイン高さ:1.2mm、平均溝幅: 0.8mmにおいて、外面フインが19山/インチ
で形成され、且つ、外面フインとは異なるリー
ド角で管外面に押し付けられたリブ形成デイス
クにより管内面に管軸方向に9.7mmのピツチで
螺旋状に形成された高さ:0.5mmの山形断面の
内面リブを備える(特開昭54−157369号公報参
照)。 従来B;フイン高さ:1.1mm、平均溝幅: 0.35mmにおいて、外面フインが40山/インチ
で形成されると同時に、管内面に挿入された溝
付ダイスにより外面フインを潰すことなく管軸
方向に6mmのピツチで螺旋状に形成された高
さ:0.4mmの台形状断面(上部幅:1mm、下部
幅:1.8mm)の内面リブを備える(特公昭52−
11670号公報参照)。 従来管C;フイン高さ:1.2mm、平均溝幅: 0.35mmにおいて、外面フインが40山/インチ
で形成され、且つ従来管Aと同様な山形断面形
状(高さ:0.5mm)の内面リブを管軸方向に螺
旋状形態(ピツチ:10mm)において備える(特
開昭54−157369号公報参照)。 従来管D;フイン高さ:0.9mm、平均溝幅: 0.3mmにおいて、外面フインが40山/インチ
で形成され、且つ従来管Bと同様な高さ:0.4
mmの台形状断面(上部幅:1mm、下部幅:1.8
mm)の内面リブを管軸方向に螺旋状形態(ピツ
チ:6mm)において備え、更に外面フインにピ
ツチ:0.3mmで、深さ:0.3mmの三角形状の切込
みが形成されている。 本発明製造管E;フイン高さ:1.0mm、平均溝
幅:0.8mmにおいて、外面フインが19山/イン
チで形成され、且つ溝の螺旋形状に沿つて約
5.6mmのピツチにて管内面に形成された複数の
楕円丘状(長さ:1mm、幅:0.5mm、高さ:0.3
mm)の内面突起を有すると共に、外面フインに
ピツチ:1.1mmで、深さ:0.7mmの三角形状の切
込みが加えられている。 本発明製造管F;フイン高さ:1.0mm、平均溝
幅:0.6mmにおいて、外面フインが26山/イン
チで形成され、且つ溝の螺旋形状に沿つて約
5.6mmのピツチにて管内面に形成された複数の
楕円丘状(長さ:0.9mm、幅:0.4mm、高さ:0.2
mm)の内面突起を有すると共に、外面フインに
ピツチ:1.1mmで、深さ:0.7mmの三角形状の切
込みが加えられている。 本発明製造管G;フイン高さ:1.1mm、平均溝
幅:0.8mmにおいて、外面フインが19山/イン
チで形成され、且つ管内面に上記本発明製造管
Eと同様な複数の内面突起を有する。要する
に、内面は本発明製造管Eと同じであるが、外
面フインには切込みを加えていないものであ
る。 従来管H;フイン高さ:1.2mm、平均溝幅:0.8mm
において、外面フインが19山/インチで形成さ
れている基本的な管。内面突起は設けられてい
ない。 なお、各試料管の外径及び内径は第1表に併記
した。
(Technical Field) The present invention relates to a method for manufacturing a heat exchanger tube, and particularly to a method for advantageously manufacturing a condensing heat exchanger tube that is suitably used in a condenser as a heat exchanger in an air conditioner, a refrigerator, a boiler, etc. It is. (Background Art) In general, in such a heat transfer tube, heat is exchanged between a heat transfer fluid (cooling water) that flows through the tube's inner surface and a heat transfer fluid (condensable gas) that is brought into contact with the tube's outer surface. However, traditionally,
Condensers for fluorocarbon-based refrigerant gases such as R11 and R12 are equipped with a loaf-in tube in which spiral fins are formed on the outer circumferential surface of the tube by pressing a fin-forming disk, and to promote heat transfer in such loaf-in tubes. As shown in Special Publication No. 52-11670,
A loaf-in tube with internal ribs has been used in which a spiral rib is provided on the inner peripheral surface of the loaf-in tube. By the way, in a normal loaf-in tube with a smooth inner surface, the heat transfer fluid flowing inside the tube becomes a laminar flow and tends to form a film with poor heat transfer efficiency on the inner circumferential surface of the tube. In loaf-in tubes, the swirling flow created by the swirling of the fluid flow by the inner surface ribs makes it relatively difficult to form a membrane, and is said to be effective in improving the heat transfer coefficient on the inner surface of the tube. . However, even with such a swirling flow, a fluid flow similar to a laminar flow still remains, so the problem of the boundary film has not been solved, and there are limits to promoting internal heat transfer. It was hot. On the other hand, regarding the heat transfer coefficient on the outer surface of the tube, since the formation of a large number of outer surface fins ensures a wide contact area, it is expected that the heat transfer performance will be improved to some extent, but even higher external heat There is a deep-rooted demand for conductivity, and there is a need for heat transfer tubes that have as high an internal and external heat transfer coefficient as possible and have excellent overall heat transfer performance. For this reason, in Japanese Patent Application Laid-open No. 54-157369, a rotary tool placed so as to intersect with the outer fins of the above-mentioned loaf-in tube is pressed against the outer fins to cut the outer fins at a predetermined pitch. At the same time, a heat exchanger tube has been proposed in which the cut portions are arranged at a lead angle opposite to the outer surface fins, and protrusions are formed on the inner surface of the tube at the cut portions. The formation of turbulent zones on the inner and outer surfaces of the tube is contemplated. However, in the heat transfer tube manufacturing method disclosed in this publication, a disc-shaped rotating tool is pressed against the outer fins to cut the outer fins and at the same time cause the parts to protrude inward. For some reason, there is a problem in that the protrusions formed on the inner surface of the tube cannot be formed at a height sufficient to induce effective turbulence, and when the outer fins are cut with a rotating tool, the outer fins are subject to large deformations. There was a problem with receiving it. (Problem to be Solved) The present invention has been made in view of the above circumstances, and its main purpose is to provide effective turbulence to the flow of fluid flowing through the pipe to destroy the film. A heat transfer tube that can cause a flow to effectively increase the internal heat transfer coefficient, and in addition, a heat transfer fluid that is brought into contact with the external surface of the tube can be effectively brought into contact with the external fins to increase the external heat transfer coefficient. It is an object of the present invention to provide a method for easily and advantageously manufacturing a heat exchanger tube that can be further improved. (Solution/Effects) In the present invention, in order to manufacture a heat exchanger tube that exhibits the above-mentioned excellent characteristics, fins are formed on the outer peripheral surface of the base tube that provides the intended heat exchanger tube. A serrated disk in which external fins of a predetermined height are spirally rolled by pressing the disk, and serrations are provided at predetermined intervals on the outer periphery on the downstream side of the fin forming disk in the direction in which the external fins are formed. is arranged so that its rotational axis is positioned at an angle corresponding to the lead angle of the outer fins with respect to the center line of the blank pipe, and the serrated disk is arranged along the groove between the formed outer fins. By rotating the disk and pressing the sawtooth of the serrated disk against the bottom of the groove between the outer fins, a method is adopted in which the pressed portion by the sawtooth protrudes into the inner surface of the tube. In addition, in the present invention, the outer surface fins of a predetermined height are spirally rolled by pressing the fin forming disk against the outer circumferential surface of the raw tube that provides the intended heat transfer tube, and the fins are A serrated disk having serrations provided at predetermined intervals on its outer periphery is provided on the downstream side of the forming disk in the outer fin forming direction, the rotation axis of which corresponds to the lead angle of the outer fin with respect to the center line of the blank pipe. by rotating the serrated disk along a groove between formed outer fins and pressing the serrations of the serrated disk against the bottom of the groove between the outer fins. , the pressing portion of the sawtooth protrudes from the inner surface of the tube, and furthermore, cuts are made at predetermined intervals in the length direction of the rolled outer surface fin. It is. In this way, the inner protrusion can be easily formed at a sufficient height by the serrated disk without damaging the outer surface fin or deforming its shape, and also pressing the outer surface of the tube. Even if an inner protrusion is formed to make it protrude inward,
This provides advantages such as not causing an increase in the weight of the heat exchanger tube. In addition, a heat transfer tube in which spiral outer surface fins made of a tube material are integrally formed on the outer circumferential surface of the tube, which is obtained according to the method of the present invention, is provided, and a plurality of inner surface protrusions are formed on the inner circumferential surface of the tube. , and in the case of a heat transfer tube in which such inner surface protrusions are arranged in a spiral shape, the heat transfer fluid flowing through the tube overcomes the plurality of inner surface protrusions or the direction of flow is changed by such inner surface protrusions. At this time, subtle turbulence occurs, and this change in the flow near the inner surface of the tube effectively destroys the film that tends to form near the inner circumferential surface of the tube, effectively increasing the inner heat transfer coefficient. be. In addition, a plurality of inner protrusions are formed in the arrangement as described above, and the spiral outer surface fins formed on the outer peripheral surface of the tube are cut out by notches spaced at predetermined intervals in the length direction. , and for heat exchanger tubes configured to be divided,
While effective turbulence is induced by the plurality of inner surface protrusions, the heat transfer fluid brought into contact with the outer circumferential surface of the tube can flow across adjacent outer surface fins through the above-mentioned notches, so that the Since the fluids are effectively brought into contact with each other and the contact area is increased, the external heat transfer coefficient can be further increased compared to the conventional method. (Specific Configuration/Example) In order to clarify the configuration of the present invention more specifically, a detailed description will be given below based on drawings showing examples of the present invention. First, FIG. 1 is a partially cutaway view showing an example of a heat exchanger tube obtained according to the method of the present invention, in which 2 is a heat exchanger tube made of a metal with good heat transfer coefficient, such as copper. The outer circumferential surface of the electric heating tube 2 is integrally provided with spiral outer fins 4 made of tube material moved from the tube wall at a predetermined pitch, while the inner circumferential surface of the tube is provided with a plurality of inner surface fins. A protrusion 6 is formed. These inner surface protrusions 6 are formed on the inner peripheral surface of the tube corresponding to the grooves 8 between the outer surface fins 4, and the bottom portions of the grooves 8 in which the inner surface protrusions 6 are located are defined as dimples 10. That is, in this case, by forming the rectangular recess 10 in the bottom portion of the groove 8, the inner surface of the tube corresponding to the recess 10 is made to protrude in the shape of an elliptical hill, and the inner surface protrusion 6 is formed. be. As a result of the inner surface protrusions 6 being formed along the spiral groove 8, the inner surface protrusions 6 are naturally arranged in a spiral shape similar to the spiral shape of the groove 8 on the inner peripheral surface of the pipe. However, depending on the pitch of the recess 10, the inner surface protrusions 6 provided on the inner surface of the tube corresponding to the grooves 8 adjacent to each other in the tube axis direction may have a spiral shape different from that of the grooves 8 as a whole. For example, a clear spiral pattern as shown in FIG. 1 may be formed, or a staggered pattern in which the inner protrusions 6 that are closest to each other are staggered as shown in FIG. It shows a pattern. When the inner surface protrusion 6 is arranged so as to have a spiral shape different from the spiral shape of the groove part 8, the pitch thereof is generally 0.5 to 10 mm in the tube axis direction, and the lead in the tube axis direction. It is preferable that the angle is at least 10° or more, particularly preferably in the range of 20 to 70°. Further, the size of the outer surface fin 8 is such that the pipe diameter is, for example,
In the case of about 20 mm, the fin thickness is usually about 0.2 to 0.4 mm, the height is about 1 to 3 mm, and the interval between the grooves 8 is about 0.5 to 1.3 mm in the tube axis direction. On the other hand, the size of the inner protrusion 6 has a height (protrusion amount) of 0.2 to 1.0.
It is preferable that the length in the longitudinal direction of the protrusion is approximately 1 to 5 mm. Therefore, the depth and length of the recess 10 provided in the bottom part of the groove 8 should also be determined by the inner protrusion having such a height and length. It is desirable that the dimensions be sufficient to obtain 6. Furthermore, if the amount of protrusion of the inner surface protrusions 6 from the inner circumferential surface of the pipe becomes too large, the pressure loss (head loss) of the heat transfer fluid flowing through the pipe becomes large. etc., should be determined appropriately to avoid causing too large a pressure loss. In the case of a heat transfer tube having such an inner surface protrusion 6, turbulence occurs in the flow of the heat transfer fluid flowing through the tube when it passes over the inner surface protrusion 6. The flow of the heat transfer fluid flowing in the tube axial direction along the inner surface of the tube is divided to the left and right, and in addition to this, the spiral flow effect of the heat transfer fluid near the inner surface of the tube due to the spiral arrangement of the inner surface protrusions 6 is combined. As a result, the flow on the inner surface of the pipe takes on a complex and subtle turbulent flow, which effectively destroys the film that tends to form near the inner peripheral surface of the pipe, effectively increasing the inner heat transfer coefficient. It will be done. Further, the fluid contact area on the inner surface of the tube is increased by the inner surface protrusion 6, and the contact area on the outer peripheral surface of the tube is also increased by the presence of the recess 10. By the way, the present invention allows the heat exchanger tube 2 as shown in FIGS. 1 and 2 to be easily manufactured according to the method shown in FIG. 3. In FIG. 3, reference numeral 12 denotes a plurality of fin-forming disks, each of which gradually increases in diameter, concentrically and integrally connected by a shaft 14 at intervals that provide the pitch of the outer fins 4; Additionally, a serrated disk 16 is mounted on the shaft 14 adjacent and concentrically to the largest diameter fin-forming disk 12. As shown in FIG. 4, for example, this serrated disk 16 is provided with serrations 18 at a predetermined pitch on its outer periphery, and the radius of the circumference drawn by the tips of the serrations 18 is equal to the radius of the fin formation. It is larger by a certain amount than the largest diameter of the disks 12. The shaft 14 to which each of the fin-forming disks 12 and the serrated disks 16 is attached corresponds to the lead angle of the outer fins 4 to be formed with respect to the center line of the raw tube 20 that provides the intended heat transfer tube. The base pipe 20 is positioned at an angle of
A plug 22 is inserted inside the fins, facing each fin-forming disc 12 but not facing the serrated disc 16. In this state, the fin forming disk 12 is rotated via the shaft 14 and pressed against the outer peripheral surface of the raw tube 20, thereby gradually forming the outer surface fin 1.
4 is rolled and formed while the fin forming disk 12
By the serrated disk 16 disposed downstream in the direction of outer fin formation indicated by the arrow,
By pressing the sawtooth 18 of the sawtooth disk 16 against the bottom of the groove 8 between the outer fins 4 formed, the pressed portion by the sawtooth 18 is made to protrude to the inner surface of the tube. As a result, a recess 10 is formed at the bottom of the groove 8 between the outer fins 4 on the outer peripheral surface of the tube, and the recess 1
An inner surface protrusion 6 is formed on the inner circumferential surface of the tube at a position corresponding to 0. The arrangement form of the inner surface protrusions 6 formed on the inner circumferential surface of the pipe is determined by the pitch of the sawteeth 18 with respect to the diameter of the raw pipe 20. For example, when the sawtooth pitch is small as shown in FIG. If the serrated disk 16 is used, the inner surface protrusions 6 in the arrangement shown in FIG. 2 can be easily formed, and the fifth
If a serrated disk 28 with a large serration pitch as shown in the figure is used, the inner surface protrusions 6 will be formed in the arrangement shown in FIG. 1, for example. By the way, the heat exchanger tube 2 shown in FIGS. 1 and 2
If the heat transfer tube 26 is not provided with the outer surface fins 4 continuous in a spiral shape as shown in FIG. 6, but the outer surface fins 4 are formed with cuts 24 as shown in FIG. is valid. That is, although not shown, the heat exchanger tube 26 has grooves 8 between the outer surface fins 4 like the heat exchanger tube 2 described above.
By forming the recess 10 in the bottom part of the
Although a plurality of inner protrusions 6 are formed on the inner surface of the tube,
Further, the spiral outer surface fin 4 is cut out with notches 24 spaced at predetermined intervals along its length,
They are being divided. Such depth of cut 2
The fins 4 can be provided in a spiral shape spanning between adjacent outer surface fins 4 with respect to the tube axis of the heat transfer tube 26, or can be provided in a straight line, or can be provided in a staggered manner so as to be staggered. You can also do that. In any case, by dividing the outer surface fins 4 by these cuts 24, in addition to improving the inner heat transfer coefficient based on the turbulence-inducing effect of the inner surface protrusions 6, the outer surface fins 4 are brought into contact with the outer surface of the heat exchanger tube 26. Since the heat transfer fluid is brought into effective contact with the outer surface fins 4 through the notches 24, and the notches 24 also contribute to increasing the contact area, the outer surface heat transfer coefficient is also effectively increased. In order to manufacture such a heat exchanger tube 26, for example, in FIG.
A notch forming disk is arranged further downstream of 6,
Following the rolling of the outer fins 4, cuts 24 can be formed at predetermined pitches. Further, in a separate process, a knurling roller is pressed against the outer periphery of the outer fins 4 of the heat exchanger tube in which the outer fins 4 and the inner protrusions 6 are formed as described above.
It is also possible to form such a cut 24.
Even if such a knurling tool is used, it is possible to make a sufficient depth of cut 24 on the outer fin 4. For example, for an outer fin with a height of about 1.5 mm, it is possible to make a cut 24 with a sufficient depth of about 0.8 mm. It is possible to make deep cuts. Next, in order to compare the heat transfer performance of the heat transfer tube obtained according to the method of the present invention with that of a conventional heat transfer tube, the results of experiments conducted on each sample tube are shown below. Shown in Table 1. In addition, as sample tubes, conventional tubes A, B, C,
D, H and pipes E, F, and G manufactured according to the present invention were selected, and their structures were as follows. Conventional pipe A; fin height: 1.2 mm, average groove width: 0.8 mm, outer surface fins are formed with 19 ridges/inch, and a rib-forming disk pressed against the tube outer surface with a lead angle different from that of the outer surface fins. The inner surface of the tube is provided with an inner rib having a chevron-shaped cross section and having a height of 0.5 mm, which is spirally formed at a pitch of 9.7 mm in the tube axis direction (see Japanese Patent Laid-Open Publication No. 157369/1983). Conventional B: Fin height: 1.1 mm, average groove width: 0.35 mm, the outer fins are formed with 40 ridges/inch, and at the same time, the grooved die inserted into the inner surface of the tube allows the tube axis to be fixed without crushing the outer fins. Equipped with internal ribs of a trapezoidal cross section (upper width: 1 mm, lower width: 1.8 mm) with a height of 0.4 mm and a spiral shape with a pitch of 6 mm in the direction (Special Publications Showa 52-
(See Publication No. 11670). Conventional pipe C; fin height: 1.2 mm, average groove width: 0.35 mm, outer surface fins are formed with 40 ridges/inch, and inner ribs have a chevron cross-sectional shape (height: 0.5 mm) similar to conventional pipe A. is provided in a spiral shape (pitch: 10 mm) in the tube axis direction (see Japanese Patent Laid-Open No. 157369/1983). Conventional pipe D; fin height: 0.9 mm, average groove width: 0.3 mm, outer surface fins are formed with 40 ridges/inch, and the same height as conventional pipe B: 0.4
Trapezoidal cross section of mm (upper width: 1 mm, lower width: 1.8
mm) inner ribs are provided in a spiral shape (pitch: 6 mm) in the tube axis direction, and triangular notches with a pitch of 0.3 mm and a depth of 0.3 mm are further formed on the outer surface fins. Pipe E manufactured by the present invention; fin height: 1.0 mm, average groove width: 0.8 mm, outer surface fins are formed with 19 ridges/inch, and along the spiral shape of the groove, approximately
Multiple elliptical hills formed on the inner surface of the tube with a pitch of 5.6 mm (length: 1 mm, width: 0.5 mm, height: 0.3
mm), and a triangular cut with a pitch of 1.1 mm and a depth of 0.7 mm is added to the outer fin. Pipe F manufactured by the present invention: fin height: 1.0 mm, average groove width: 0.6 mm, outer surface fins are formed with 26 ridges/inch, and along the spiral shape of the groove, approximately
Multiple elliptical hills formed on the inner surface of the tube with a pitch of 5.6 mm (length: 0.9 mm, width: 0.4 mm, height: 0.2
mm), and a triangular cut with a pitch of 1.1 mm and a depth of 0.7 mm is added to the outer fin. Pipe G manufactured by the present invention; fin height: 1.1 mm, average groove width: 0.8 mm, outer surface fins are formed with 19 ridges/inch, and a plurality of inner protrusions similar to the pipe E manufactured by the present invention are provided on the inner surface of the tube. have In short, the inner surface is the same as the tube E manufactured by the present invention, but the outer surface fins are not cut. Conventional pipe H; fin height: 1.2mm, average groove width: 0.8mm
, a basic tube whose outer surface fins are formed with 19 threads/inch. No inner protrusions are provided. The outer diameter and inner diameter of each sample tube are also listed in Table 1.

【表】 但し、第1表において、 hi;管内面熱伝達係数 ho;管外面熱伝達係数 Kt;試料管の熱通過率 Ks;従来管Hと同様な構成の基準管(外面フイ
ンが19山/インチで、内面が平滑な従来のロー
フイン管)の熱通過率 また、各々の値は、管内面に流速;2m/sで
冷却水を通水せしめ、管外面にはR−12のフロン
系凝縮性ガスを接触させた場合の値である。 かかる第1表に示される試験結果から明らかな
ように、本発明手法に従つて得られた試料管E,
Fにおいては、hi,ho共に高い値が得られ、また
伝達性能を示す指針となるKt/Ksが、従来管A
〜D及びHより悉く上回つていることが理解され
るのである。また、従来管Aと本発明製造管Gと
の違いは、従来管Aにおいては内面の伝熱促進に
スパイラル加工が外面から施されたことにあり、
このため外面のフインがかなりの割合で押し潰さ
れ、外面の伝熱が、従来管Hとの比較から明らか
なように(第1表)、低下しているのに対して、
本発明製造管Gは、その外面フインが押し潰され
ていないために、従来管Aに比して高性能になつ
ている。しかし、本発明製造管Gは、外面のフイ
ンに切込みを施していないため、外面のフイン数
が19山/インチと同じである本発明製造管Eに比
して劣つていることが認められる。 以上、本発明の具体例並びに実験データに基づ
いて詳細に説明したが、本発明はかかる具体例及
び実験データによつて限定的に解釈されるべきも
のでは決してなく、当業者の知識に基づき種々な
る変更、改良等を加えた態様で実施し得ることは
改めて言うまでもないところである。
[Table] However, in Table 1, hi; tube inner surface heat transfer coefficient ho; tube outer surface heat transfer coefficient Kt; sample tube heat transfer coefficient Ks; /inch, and the heat transfer rate of a conventional loaf-in tube with a smooth inner surface This is the value when a condensable gas is brought into contact. As is clear from the test results shown in Table 1, sample tubes E, obtained according to the method of the present invention,
In F, high values are obtained for both hi and ho, and Kt/Ks, which is a guideline for transmission performance, is lower than that of conventional pipe A.
It is understood that all of the values are higher than those of ~D and H. Furthermore, the difference between the conventional tube A and the tube G manufactured by the present invention is that in the conventional tube A, spiral processing was applied from the outside to promote heat transfer on the inside.
As a result, the fins on the outer surface are crushed to a considerable extent, and the heat transfer on the outer surface is reduced, as is clear from the comparison with conventional pipe H (Table 1).
The pipe G manufactured according to the present invention has higher performance than the conventional pipe A because its outer surface fins are not crushed. However, since the pipe G manufactured by the present invention does not have any cuts in the fins on the outer surface, it is recognized that it is inferior to the pipe E manufactured by the present invention, which has the same number of fins on the outer surface (19 fins/inch). Although the present invention has been explained in detail above based on specific examples and experimental data, the present invention should not be construed as being limited by such specific examples and experimental data, and various modifications may be made based on the knowledge of those skilled in the art. It goes without saying that the present invention can be implemented with other changes, improvements, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は、それぞれ、本発明手法に
従つて得られる伝熱管の異なる具体例を示す一部
切欠正面図であり、第3図は、かかる伝熱管を製
造する本発明手法の一つの具体例を示す説明図で
ある。また、第4図は、第3図において用いられ
る鋸歯状デイスクの正面図であり、第5図は、更
に別の鋸歯状デイスクの具体例を示す部分正面図
である。また、第6図は、本発明手法に従つて得
られる別のタイプの伝熱管の具体例の要部を拡大
して示す部分拡大図である。 2:伝熱管、4:外面フイン、6:内面突起、
8:溝部、10:凹部、12:フイン形成デイス
ク、16:鋸歯状デイスク、18:鋸歯、20:
素管、22:プラグ、24:切込み。
1 and 2 are partially cutaway front views showing different specific examples of heat exchanger tubes obtained according to the method of the present invention, and FIG. 3 is a front view of the method of the present invention for manufacturing such heat exchanger tubes. FIG. 2 is an explanatory diagram showing one specific example. 4 is a front view of the serrated disk used in FIG. 3, and FIG. 5 is a partial front view showing still another specific example of the serrated disk. Moreover, FIG. 6 is a partially enlarged view showing a main part of a specific example of another type of heat exchanger tube obtained according to the method of the present invention. 2: heat exchanger tube, 4: outer surface fin, 6: inner surface protrusion,
8: groove, 10: recess, 12: fin-forming disk, 16: sawtooth disk, 18: sawtooth, 20:
Base pipe, 22: Plug, 24: Notch.

Claims (1)

【特許請求の範囲】 1 目的とする伝熱管を与える素管20の外周面
に対してフイン形成デイスク12を押圧せしめる
ことにより所定高さの外面フイン4を螺旋状に転
造形成する一方、該フイン形成デイスクの外面フ
イン形成方向における下流側に、外周部に所定間
隔で鋸歯18を設けてなる鋸歯状デイスク16
を、その回転軸が前記素管の中心線に対して前記
外面フインのリード角に相当する角度を以て位置
するように配置せしめて、該鋸歯状デイスク16
を、形成された外面フイン間の溝部8に沿つて回
転させ、かかる外面フイン間の溝部の底部に、該
鋸歯状デイスク16の鋸歯18を押圧せしめるこ
とにより、該鋸歯による押圧部分を管内面に突出
させる(6)ようにしたことを特徴とする伝熱管の製
造方法。 2 目的とする伝熱管を与える素管20の外周面
に対してフイン形成デイスク12を押圧せしめる
ことにより所定高さの外面フイン4を螺旋状に転
造形成する一方、該フイン形成デイスクの外面フ
イン形成方向における下流側に、外周部に所定間
隔で鋸歯18を設けてなる鋸歯状デイスク16
を、その回転軸が前記素管の中心線に対して前記
外面フインのリード角に相当する角度を以て位置
するように配置せしめて、該鋸歯状デイスク16
を、形成された外面フイン間の溝部8に沿つて回
転させ、かかる外面フイン間の溝部の底部に、該
鋸歯状デイスク16の鋸歯18を押圧せしめるこ
とにより、該鋸歯による押圧部分を管内面に突出
させ(6)、更に前記転造形成された外面フイン4に
対して、その長さ方向に所定の間隔を隔てて切込
み24を加えたことを特徴とする伝熱管の製造方
法。
[Scope of Claims] 1. By pressing the fin forming disk 12 against the outer circumferential surface of the raw tube 20 that provides the intended heat transfer tube, the outer surface fins 4 of a predetermined height are formed in a spiral shape. A serrated disk 16 having serrations 18 provided at predetermined intervals on the outer periphery on the downstream side in the fin forming direction on the outer surface of the fin forming disk.
The serrated disc 16 is arranged such that its rotation axis is positioned at an angle corresponding to the lead angle of the outer fin with respect to the center line of the blank pipe.
is rotated along the groove 8 between the outer surface fins formed, and the sawtooth 18 of the serrated disk 16 is pressed against the bottom of the groove between the outer surface fins, so that the pressed portion by the sawtooth is pressed against the inner surface of the tube. A method for manufacturing a heat exchanger tube, characterized in that the tube is made to protrude (6). 2. By pressing the fin forming disk 12 against the outer circumferential surface of the raw tube 20 that provides the desired heat transfer tube, the outer surface fins 4 of a predetermined height are spirally rolled, while the outer surface fins of the fin forming disk are rolled. A serrated disk 16 having saw teeth 18 provided at predetermined intervals on the outer periphery on the downstream side in the forming direction.
The serrated disc 16 is arranged such that its rotation axis is positioned at an angle corresponding to the lead angle of the outer fin with respect to the center line of the blank pipe.
is rotated along the groove 8 between the outer surface fins formed, and the sawtooth 18 of the serrated disk 16 is pressed against the bottom of the groove between the outer surface fins, so that the pressed portion by the sawtooth is pressed against the inner surface of the tube. A method for manufacturing a heat exchanger tube, characterized in that the external fins 4 are made to protrude (6), and cuts 24 are added at predetermined intervals in the longitudinal direction of the rolled external fins 4.
JP13729283A 1983-07-27 1983-07-27 Heat-transmitting pipe and manufacture thereof Granted JPS6029594A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13729283A JPS6029594A (en) 1983-07-27 1983-07-27 Heat-transmitting pipe and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13729283A JPS6029594A (en) 1983-07-27 1983-07-27 Heat-transmitting pipe and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS6029594A JPS6029594A (en) 1985-02-14
JPH0335011B2 true JPH0335011B2 (en) 1991-05-24

Family

ID=15195272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13729283A Granted JPS6029594A (en) 1983-07-27 1983-07-27 Heat-transmitting pipe and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6029594A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084530A1 (en) 2009-01-20 2010-07-29 岡本範政 Electric motor

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189497A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Heat transfer pipe
JPS61235694A (en) * 1985-04-11 1986-10-20 Hitachi Cable Ltd Heat transfer tube
JPH0670556B2 (en) * 1985-06-14 1994-09-07 株式会社日立製作所 Heat transfer tube and manufacturing method thereof
JPS61291895A (en) * 1985-06-19 1986-12-22 Sumitomo Light Metal Ind Ltd Boiling heat transfer pipe and manufacture thereof
JPS63172892A (en) * 1987-01-12 1988-07-16 Sumitomo Light Metal Ind Ltd Heat transfer pipe for evaporation and its manufacture
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same
JP6744666B2 (en) * 2018-06-21 2020-08-19 株式会社宮村鐵工所 Steam heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157369A (en) * 1978-05-31 1979-12-12 Kobe Steel Ltd Heat transmitting bulkhead structure and manufacturing method of heat transmitting bulkhead and piping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54157369A (en) * 1978-05-31 1979-12-12 Kobe Steel Ltd Heat transmitting bulkhead structure and manufacturing method of heat transmitting bulkhead and piping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010084530A1 (en) 2009-01-20 2010-07-29 岡本範政 Electric motor

Also Published As

Publication number Publication date
JPS6029594A (en) 1985-02-14

Similar Documents

Publication Publication Date Title
US4715436A (en) Construction of a heat transfer wall of a heat transfer pipe
US6167950B1 (en) Heat transfer tube
US5775411A (en) Heat-exchanger tube for condensing of vapor
US5669441A (en) Heat transfer tube and method of manufacture
US5682946A (en) Tube for use in a heat exchanger
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP4597475B2 (en) Manufacturing method of cross fin tube for heat exchanger and cross fin type heat exchanger
JPH0741310B2 (en) High performance heat transfer tube for heat exchanger and manufacturing method thereof
JPH0335011B2 (en)
US5010643A (en) High performance heat transfer tube for heat exchanger
JP4294183B2 (en) Internal grooved heat transfer tube
EP0882939A1 (en) Heating tube for absorber and method of manufacturing same
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JPS6011800B2 (en) Manufacturing method for condensing heat exchanger tubes
JPH0519079B2 (en)
JPH04260793A (en) Heat transfer tube with inner surface groove
JPS63172892A (en) Heat transfer pipe for evaporation and its manufacture
JPH0639463A (en) Manufacture of heat transmission tube
JP3606284B2 (en) Boiling type heat transfer tube
JPH0370159B2 (en)
JPH051891A (en) Heat transfer tube with internal groove
JPS62242795A (en) Heat transfer tube
JPS60149894A (en) Heat transfer tube and manufacture thereof
JP3402622B2 (en) Condensing heat transfer tube