JP3606284B2 - Boiling type heat transfer tube - Google Patents

Boiling type heat transfer tube Download PDF

Info

Publication number
JP3606284B2
JP3606284B2 JP30067293A JP30067293A JP3606284B2 JP 3606284 B2 JP3606284 B2 JP 3606284B2 JP 30067293 A JP30067293 A JP 30067293A JP 30067293 A JP30067293 A JP 30067293A JP 3606284 B2 JP3606284 B2 JP 3606284B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
cavity
groove
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP30067293A
Other languages
Japanese (ja)
Other versions
JPH07151485A (en
Inventor
宏行 ▲高▼橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP30067293A priority Critical patent/JP3606284B2/en
Publication of JPH07151485A publication Critical patent/JPH07151485A/en
Application granted granted Critical
Publication of JP3606284B2 publication Critical patent/JP3606284B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、大型冷凍機(ターボ冷凍機、スクリュー冷凍機等)の蒸発器内に組み込まれ、液体冷媒中(フロン、液体窒素等)に浸漬され、この液体冷媒を加熱沸騰するために使用され、その伝熱性能の向上を図った沸騰用伝熱管に関する。
【0002】
【従来の技術】
従来、この種の沸騰伝熱管としては既に数種類の伝熱面形状のものが提案されており、例えば、管外表面にフィンを成形し、フィンの先端に孔となる切れ込みを設け、そのフィン先端を倒して沸騰伝熱に有益な空洞を設けたものがある(例えば、特公昭53−25379号)。図3の断面図及び図4の平面図に示すように、この孔9は夫々独立し、各孔の合計面積と外表面の総面積との割合が2〜50%である。空洞8は沸騰を促進する作用を有し、孔9の面積を調整することにより、空洞8内の残存気泡を確保できる。
【0003】
また、図5に示すように、管外表面に螺旋状のフィンを成形した後に、フィン先端を圧縮変形して管周方向に空洞10を設け、更に空洞10と外部とを連通する幅0.13mm以下の間隙部11を、管周方向に設けたものがある(特公昭64−2878号)。また、この空洞10に直交する管軸方向にも間隙部13及び小さな空洞12が設けられている。この管軸及び管周方向の空洞10、12も、沸騰を促進する作用を有しており、空洞にて気泡になった冷媒は間隙部から排出される。この間隙部11及び13の幅を0.13mm以下にすることにより、空洞内に残留気泡を確保できる。
【0004】
【発明が解決しようとする課題】
しかしながら、前述の構造を有する従来の伝熱管は、沸騰伝熱促進を図ることができるものの、以下に示す欠点がある。例えば、特公昭53−25379号に開示された伝熱管においては、外表面が平滑面のため、核沸騰のみの効果しかなく、孔から離脱した気泡は加熱されにくいため、更に一層の伝熱性能の向上を図ることが困難である。
【0005】
また、特公昭64−2878号に開示された伝熱管においては、管周方向のみならず、管軸方向にも空洞を有し、表面はローレット面を有しているが、空洞及びローレット面を成形するためには、3つ以上の成形工程が必要であり、工程が煩雑である。
【0006】
更に、この従来の伝熱管は管軸方向に空洞部を設けていて、核沸騰を確かに促進するが、管軸方向に空洞部が形成されているため、この空洞部から管周方向の空洞部への液冷媒の流入は、液冷媒に対する圧損が大きくなり、円滑ではない。
【0007】
一方、管軸方向の空洞部と管周方向の空洞部との交差部が開状態であり、核沸騰がなされている管周方向の空洞部に管軸方向の空洞部から液冷媒が一部流入するため、核沸騰がこの部分で阻害されやすくなる。
【0008】
更に、特公昭53−25379号及び特公昭64−2878号に開示された伝熱管では、空洞の高さと伝熱性能との関係についての開示はなく、伝熱性能上の臨界点も開示されていない。
【0009】
本発明はかかる問題点に鑑みてなされたものであって、煩雑な工程によらず製造することができると共に、伝熱性能を向上させることができる伝熱面形状を有する沸騰伝熱管を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明に係る沸騰型伝熱管は、管外表面の表層部に0.27乃至0.70mmの高さを有して設けられ管周方向に又はこの管周方向から傾斜する方向に延びる所定ピッチの空洞部と、管外表面に設けられこの空洞部に交差する方向に延びる所定ピッチの底面が平坦な溝部と、前記空洞部の上部の管外表面に断続的に設けられ前記空洞部と外部とを連通する孔部と、前記孔部と孔部との間又は前記孔部と溝部との間に設けられ表面が平坦であり上部が下部に対して管軸方向に延出している凸部と、を有し、この孔部は管最大外径を直径とする平滑管を仮定したときその外表面積の2乃至40%の総面積を有することを特徴とする。
【0011】
なお、本発明における溝部は開口部幅と底部幅が略等しいか、又は開口部幅が底部幅より広いことが好ましい。また、溝部の開口端から底部に至る側面は平面又は曲面のいずれでもよい。
【0012】
また、溝部の管周方向の幅は、孔部の管周方向の幅及び空洞部の外表面上部幅と略等しくてもよく、またこれより広く又は狭くてもよい。
【0013】
更に、孔部と孔部との間、又は孔部と溝部との間は、伝熱管外表面の中で最も突出した部分となるが、この凸部と孔部又は溝部との間の壁面は、平面又は曲面のいずれでもよい。
【0014】
本発明においては、空洞部高さが0.27乃至0.70mmである。この空洞高さとは、一定の厚さを有する空洞上壁の下面からこの空洞部の底面までの距離をいう。
【0015】
本発明において、孔部の総面積を規定する割合は、伝熱管の最大径を直径とする平滑管を想定した場合に、この平滑管の外表面積を基準とするものである。この孔部の総面積を2乃至40%とするのは、この孔部は空洞部を管外に連通させる開口部となるものであり、この開口部を2乃至40%とすることに対応する。
【0016】
なお、孔部においては、その孔部内の全領域に孔が設けられているとは限らない。即ち、請求項2に規定する発明においては、孔部は、空洞部の上方であって、連続する溝部が設けられていない管外表面部分に設けられている。この場合は、孔部は溝部に直交する方向の両縁部で溝部に隣接し、溝部に平行の方向の両縁部で凸部(前述のように、空洞部間の部分の上方に位置する管外表面部分)に隣接している。このように、孔部は溝部と凸部とにより区画されるが、この孔部内において空洞部と外部とを連通する孔はその一部領域に設けられていれば良く、孔部の全領域が孔である必要はない。従って、孔部内には、実際に開口している孔の部分と、この孔の周辺部であって孔と溝部及び凸部との間に位置する部分とが存在する。そして、本発明にて規定する孔部の総面積は、実際に開口している孔の面積の総和であり、孔部の全体の面積の総和ではない。
【0017】
【作用】
本発明においては、管の外表面に管軸方向又はこの管軸方向に傾斜する方向に延びる溝部を設けたので、管の外側加熱表面積が増加し、液冷媒及び気泡の加熱が促進されると共に、その溝部により構成される凹凸が液冷媒の対流及び気泡発生時の液冷媒及び気泡の攪乱を起こし、外表面が平滑である面に比して伝熱性能が向上する。また、この溝部は空洞の場合に比して圧縮が少ないことにより、孔部への液冷媒の流入が円滑に行われる。そして、溝部で十分に加熱された液冷媒が孔部から空洞部に流入するので、空洞部では沸騰に必要なエネルギが少なくてすみ、効率良く沸騰が行われ、伝熱性能が向上する。
【0018】
この管軸方向又はこれに傾斜する方向の溝部が空洞部の外表面側上部で連続していると、液冷媒がこの溝部から空洞部の外表面側上部に流入してきてそこでも加熱される。従って、液冷媒が加熱される領域が増えることになる。そこで、より加熱された液冷媒が孔部から空洞部内に流入し、更に効率よく沸騰伝熱が促進される。
【0019】
この溝が管軸方向に平行であると、伝熱管を水平に置くタイプの蒸発器においては、管軸に斜めの場合と比較して液冷媒が溝に沿って流れる量が少なくなるが、一方溝部における液冷媒及び気泡の乱流効果が増加するという効果があり、これにより総合的な伝熱効率が更に一層向上することになる。
【0020】
空洞部内では核沸騰が起きているが、空洞部の上部が密閉状であるため、液冷媒が空洞部上部から直接に流入することがなく、この空洞部内での核沸騰が阻外されにくい。
【0021】
孔部における開口率は2乃至40%である。孔部における開口率が40%を超えると、沸騰伝熱を促進する残留気泡が空洞内に保持されず、伝熱性能が低下する。また、開口率が2%よりも小さくなると、残留気泡が放出されにくくなり、更に気泡を生成するための冷媒を空洞部に供給することができず、沸騰が促進されなくなり、伝熱性能が低下する。従って、開口率を2乃至40%にすることが、伝熱性能の向上のために必要である。
【0022】
また、空洞部の高さは0.27乃至0.70mmにする必要がある。この空洞部の高さが0.27mmより低くなると、気泡を生成するための冷媒を空洞部内に導くことができず、沸騰が促進されなくなり、伝熱性能が低下する。また、空洞部の高さが0.70mmを超えると、空洞部にて発生した気泡が放出されやすくなり、必要以上の過冷媒が空洞部に侵入して空洞部の内壁の温度が低下する。このため、空洞部での気泡生成に余分な伝熱熱量を示すことにより、沸騰伝熱が阻害されやすくなり、伝熱性能が飽和する傾向となる。更に、フィン高さを高くすることにより、フィン成形が難加工となり、加工速度が低下して生産性が低下する。従って、空洞の高さを0.27乃至0.70mmにすることにより、伝熱性能を向上させると共に、生産性の低下も防止する。
【0023】
次に、本発明の実施例に係る沸騰伝熱管の製造方法の一例について説明する。管の外表面にディスク(転造用刃)を用いて管軸方向に所定のピッチを有する螺旋状のフィンを成形し、先ずローフィンチューブを得る。その後、ローフィンチューブのフィン先端部を前記ディスクと同軸に固着された所定のピッチの歯を有する歯車ディスクで圧縮することにより、管周方向に所定のピッチを有する管軸方向又はこれに傾斜する方向の溝部と、フィン間の谷の位置にそのフィンの上部がつぶされて形成され管周方向又はそれに傾斜する方向に延びる空洞部と、この空洞部の上部が開口した孔部とを形成する。孔部が設けられていない部分では前記空洞部は密閉される。
【0024】
管軸方向又はこれに傾斜する方向の溝部の形成において、空洞部の外表面側上部間を結ぶときは、歯車ディスクの刃先部でフィン先端部を圧縮成形し、これをそのフィンの両側の谷部の上方に張出させ、空洞部の外表側上部と孔と間を結ぶ時は歯先片サイドにガイドを施けた歯車ディスクの刃先部でフィン先端部をそのフィンの片サイドのフィン間谷部に圧縮成形して張出させる。しかし、このとき歯車ディスクの歯先片サイドにはガイドがあるため、フィン先端は張出さないようになり、孔間を結ぶときは、歯先両サイドにガイドを設けた歯車ディスクで、歯車ディスクの歯の部でフィン先端部をそのフィンの両サイドのフィン間谷部に圧縮成形して張出させる。しかし、このとき歯車ディスクの歯先ガイドが両サイドにあるため、フィン先端部は圧縮変形されるが、フィン谷部に張出さずに歯先側フィン部側に移動する。
【0025】
【実施例】
以下、本発明の実施例について、添付の図面を参照して具体的に説明する。図1は本発明の第1の実施例に係る沸騰伝熱管の管肉部を一部取り出して示す斜視図であって、外表面の形状を示すものである。伝熱管1の内面1aは平滑面であり、外面1bは伝熱面として凹凸を有する面となっている。そして、後述するように、本実施例の伝熱管1はその製造工程で先ずその管表層部にフィン2が形成されるが、このフィン下部2aが内面1a側にあり、フィン上部2bが外面1b側にある。そして、このフィン2間には、管周方向又はこれに傾斜する方向(図示例は管周方向)に延びる螺旋状の空洞部3が管軸方向に所定のピッチで形成されている。この空洞部3は管表層部内に埋め込まれた態様で存在する。
【0026】
そして、この空洞部3に交差して(図示例は直交して)、管軸方向又はこれに傾斜する方向(図示例は管軸方向)に延びる溝部5が管周方向に所定のピッチで形成されている。
【0027】
また、空洞部3上で溝部5が連続している部分は、この溝部5が空洞部3の上壁として存在し、空洞部3が密閉されている。しかし、空洞部3上の溝部5が存在しない部分、即ち、空洞部3上の溝部5間の部分は、孔4aが設けられた孔部4となっている。一方、フィン2の上部、即ち、空洞部3間の部分の上部であって、溝部5が存在しない部分には、凸部6が形成されている。この凸部6は伝熱管1の最大径部となっている。
【0028】
このように構成された伝熱管1を製造する場合は、先ず、管外表面に、管周方向に延びるフィン2を管軸方向に所定のピッチで成形する。次いで、このフィン2の上部をつぶすように、フィン2の上部を線状に押圧して押し込み、管軸方向に延びる溝部5を管周方向に所定のピッチで成形すると共に、溝部5間の領域は溝部成形時の押し込み量より小さい押し込み量でフィン2の上部をつぶす。これにより、溝部5においては、フィン2の上部が大量に押しつぶされる結果、フィン2間の谷部にまたがり、この谷部の上部を閉塞して空洞部3を形成する。しかし、溝部5間の部分では、押し込み量が少ないため、フィン2の上部は平らにつぶれて、凸部6が形成されるものの、このつぶれたフィン2の上部はフィン2間の谷部を掛け渡すまでには至らない。このため、谷部であった部分に孔部4が形成される。
【0029】
次に、図1に示す伝熱管の製造方法について説明する。図6及び図7は溝又はフィンの加工装置を示す正面図であり、図8はその側面図である。図6に示す支軸14a及び図7に示す支軸14bは、図8に示すように、マンドレル17を中心とする3等配の位置に、120°の中心角で配置されている。支軸14a及び14bには、フィン成形及び空洞・溝成形を行う工具として、ディスク群15が同軸的に固定されており、更にこのディスク群15の下流側に、支軸14aには歯車ディスク16が同軸的に固定され、支軸14bには平ロール18が同軸的に固定されている。そして、支軸14a,14bはその軸心を中心として回転する。この支軸14a及び14bを自転させることによって、管19は支軸14a及び14bと逆方向に回転しながら、フィン及び空洞・溝が成形される。また、支軸14a及び14bは管軸に対して相互にねじれた位置(ねじれ角度β)に配設され、管は螺旋状に加工を受けながら管軸方向に送られる。
【0030】
このように構成されるディスク群15及び歯車ディスク16を使用することにより、前述のようにフィン2が成形され、このフィン2の上部を押しつぶすようにして溝部5及び孔部4が成形される。
【0031】
前記螺旋角(ねじれの角度β)は、管の外径をd=19.05mm、条数をn=3、ディスク群15により形成されるフィンのピッチをP=0.529mmとした場合、tanβ=nP/πdとなり、角度β=1.52°が螺旋角となる。
【0032】
図6、図7のディスク群15はフィン成形用のディスク群を示しており、このディスクによって管の表面に螺旋状のフィンが成形される。歯車ディスク16はフィン成形後に空洞孔及び溝を成形するためのものであり、略台形状の溝を有する複数の歯車で構成されている。また、平ロール18は管の曲がりを押さえるためのロールである。
【0033】
歯車ディスク16はディスク群15のディスク径の最大径(図6のディスク群15の右端のディスク径)よりも小さくし、その周面の溝ピッチ(P)は、溝を連続的に成形するために、管外径に応じて決める。
【0034】
図9は歯車ディスク16の構成を示し、図10はその一部拡大図である。前述の如く、歯車ディスク16の溝ピッチ(P)は、溝を連続して成形するために、管外径に応じて決める。歯先の先端は適度の幅Wを持つ。溝は略台形状にすることにより、孔を設ける際に、フィン先端の圧縮を低減でき、必要な大きさの孔を成形できる。また、歯車ディスクの厚さWについては、フィンピッチPよりも大きくすることにより、フィンの座屈が少なくなり、管軸方向の溝が成形しやすく、更に歯車ディスクの使用枚数を少なくできる。
【0035】
この歯車ディスク16によりフィン先端を圧縮変形することによって、円周方向に延びるフィン2の先端部と歯車ディスク16の歯先とが交差するところに溝部5が成形され、圧縮変形されたフィン先端部がフィン2間の谷部に張出されることにより空洞部3の密閉状上部5aが成形され、管軸方向に空洞部3の密閉状上部5aを介して連続した溝5が成形される。また、歯車ディスク16の略台形状の谷部と、管のフィン間の谷部とが交差する部分は、フィンの圧縮変形が少ないことにより空洞部3と管外表面部とを連通する孔4aとなっている。更に、溝部5の密閉状空洞部上部5aの下には沸騰伝熱を促進させるための空洞部3が同時に設けられる。この歯車ディスク16による圧縮応力は、谷部形状及び歯厚さをフィンピッチPより大きくすることにより、その力が分散し、座屈による変形が少なくなる。
【0036】
図11は平ロール18を示す図である。平ロール18は、歯車ディスク16の使用枚数が少ないときに、曲がりを少なくするための工具であり、支軸14a,14bが3等配(中心角120°)に配置され、歯車ディスク16の使用箇所が2カ所のときは、残りの1カ所に平ロール18を配置し、歯車ディスク16の使用箇所が1カ所のときは残りの2カ所に平ロール16を配置する。これにより、管の曲がりが少なくなり、更に歯車ディスク16の圧縮変形を確実に行うことができる。
【0037】
本発明の実施例伝熱管の溝部5の底部から管外表面までの高さ 2 (図1参照)は歯車ディスク16の歯谷部深さh3(図10参照)、管の溝部底部幅W1は歯車ディスク16の歯上部幅W6(図10参照)、管の溝部上部幅W2は歯車ディスク16の歯下部幅W7(図10参照)に夫々略等しくなるように形成される。
【0038】
前述の説明では、同軸的にフィンを成形するディスク群15及び空洞孔及び管軸方向の連続した溝を成形するための歯車ディスク16を取り付けて、連続して加工を行う方法について示したが、フィン成形と空洞及び管軸方向の連続した溝の成形を別工程で行ってもよい。また、フィンを成形する方法としては、前述のように転造による加工に限らず、切削加工による成形でもよい。更に、フィンは単条及び複条のいずれでもよい。
【0039】
前述において、歯車ディスク16の歯ねじれ角γは溝5部を管軸に平行にするとき、γ=β(前述の支軸14a,14bの管軸へのねじれの角度)となるようにし、溝部5を管軸に平行にしないときは、γ≠βとなるようにする。
【0040】
次に、本実施例における孔部4の開口率について説明する。先ず、管外表面の総面積は本発明の実施例伝熱管の外表面直径 =18.95mmに相当する直径D1の平滑管の1m当たりの外表面積(A)である。孔部4の管外表面相当の合計面積(a)は先ず各孔のそれを求め、1個の孔の面積に管の1m当たりについての総個数を乗じて求める。
【0041】
図2(a)は本発明の実施例伝熱管の一部を示す平面図、図2(b)は同じくその正面図である。各孔4aの管外表面相当の面積Sは、図2(a)において、孔上部の管軸方向幅Wにその管周方向幅Wを乗じて得られる面積Sより、孔の上部開口部を管外表面より覆う部分の管外表面側よりこの開口部に投影した面積(S+S)分、差し引いたもの、すなわち、S=S−(S+S)である。そして、開口率は管1m当たりの各孔の面積Sを集計した面積(a)を管1m当たりの外表面積(A)で除した比率(%)として求まる。
【0042】
次に、図16を参照して本発明の他の実施例について説明する。この実施例の伝熱管1は所定のピッチで設けられた空洞部3の上に、この空洞部3に直交する方向に延びる溝部5が所定のピッチで断続的に設けられている。そして、この空洞部3の上方であって、溝部5が設けられていない部分には、孔部4が設けられている。この孔部4には孔4aが形成されている。溝部5は空洞部3の上方から隣接するフィン部2の上方まで延びており、この溝部5が設けられたフィン部2の反対側のフィン部2の上方は、溝部5が形成されず、管最大径の凸部6となっている。
【0043】
この図16に示す伝熱管の製造方法は、図1、2に示す実施例の伝熱管の場合とほぼ同じであるが、歯車ディスクでフィン先端部を圧縮したとき、フィン間の谷部の張り出しが片側のみとなるような歯車ディスク形状にする点が異なる。
【0044】
図17は本発明の更に他の実施例を示す。この実施例の伝熱管1は、所定のピッチで設けられた管周方向に延びる空洞部3の上に、この空洞部3に直交して連続的に延びる凸部6が所定のピッチで設けられている。また、この凸部6間に挟まれた領域に、フィン2上の溝部5と、空洞部3上の孔部4とが交互に設けられている。
【0045】
このように構成された図16又は図17に示す伝熱管も、図1に示す伝熱管と同様の効果を奏する。
【0046】
次に、実際に上述の製造方法で図1に示す沸騰伝熱管を製造し、その特性を評価した結果について説明する。
【0047】
本発明の実施例1,2,3の沸騰伝熱管は、外径が19.05mm、肉厚が1.19mmのりん脱酸銅管を使用し、図6及び図7のようにして、管19内にマンドレル17を設け、管19の外表面にディスク群15を図8に示すように3等配の位置に120°の中心角度で配置して、48山/インチを有する3条のローフィンチューブを成形した後に、空洞部3と、孔4aを有する孔部4と、管軸方向の溝部5を成形して、図1に示す伝熱管1を製作した。この空洞部3、孔部4及び溝部5を成形する際には、3方向に配置したディスク群15の下流側に、外径D=51.7mm、外周は400溝の略台形状溝を有し、歯溝深さh=0.25mm、厚さW=2.5mmの歯車ディスク16を図8に示すように3等配の位置のうち2位置に支軸14aを介して配置し、残り1位置には伝熱管の曲がりを押さえるため、外径D=51.2mmの平ロール18を支軸14bを介して配置した。
【0048】
そして、ディスク群15によりローフィンチューブを成形した後に、フィン先端を歯車ディスク16の刃先にて圧縮する。歯車ディスク16の刃先にて圧縮した部分に、管軸方向の溝部5が成形されると共に、歯車ディスク16の刃先にて圧縮されたフィン先端部がローフィンチューブのフィン間の谷部に張出して密閉状空洞部3を形成し、その張出し部は空洞部上部5aとしてその上壁を形成する。
【0049】
更に、歯車ディスク16の溝部とローフィンチューブのフィン間の谷部とが交差する部分に孔4aを有する孔部4が成形される。
【0050】
空洞部3の高さH1は歯車ディスク16の径D2を変えることにより調節が可能であり、孔部4の上部開口面積は、歯車ディスク16の溝形状、即ち刃先幅W6、刃下部幅W7及び歯ピッチ を変えることにより、調節が可能である。
【0051】
図1、図2に示す管軸方向の溝部5が管周方向の空洞部3の上部5aを介して連続し、且つその溝部5が管軸に平行であると共に、空洞部高さH=0.64mm、開口率17%である本発明の実施例1の伝熱管及び空洞部高さH=0.35mm、開口率17%である本発明の実施例2の伝熱管と、従来例1のローフィンチューブ伝熱管及び図3、図4に示す空洞部高さH=0.35mm、開口率17%である従来例2の伝熱管(特公昭53−25379号)とを比較して伝熱性能を評価した結果を図12に示す。
【0052】
また、この伝熱性能を評価した伝熱管の仕様を下記表1に示す。表1には本発明の実施例3,4及び従来例3(特公昭64−2878号)も合わせて示す。なお、本発明の実施例の伝熱管中、実施例1,2,3は、図1に示す伝熱管であり、溝部5が空洞部の管外表面側上部間で結ばれたものである。また、実施例4は、図16に示す伝熱管であり、溝部5が空洞部の管外表面側上部で断続的に結ばれたものである。
【0053】
【表1】

Figure 0003606284
Figure 0003606284
【0054】
なお、表1中、○印は本発明の実施例において、溝部が連続であり、又は溝部が管軸方向に平行であることを表す。×印は本発明の実施例において溝部が連続でなく、若しくは溝が管軸方向に平行でないか、又は、従来例3において管軸方向の空洞部が連続でなく、又は平行でないことを表す。
【0055】
図12から、本発明の実施例1,2は従来例2に対して、空洞高さ及び開口率が同じでも管軸方向に連続して且つ平行である溝部5を有することにより、液冷媒が溝部及び空洞部上部で加熱され、乱流効果が増加するために、伝熱性能が向上していることがわかる。更に、本発明の実施例1は溝深さが深いことにより、実施例2に比して伝熱性能が向上している。勿論、本発明の実施例1,2は従来例1に比して伝熱性能は向上していて過熱度ΔTが低い域においても一段と性能が向上している。
【0056】
図13に示す実施例3の線分は、図1、図2に示すように管軸方向の溝部5が、管周方向の空洞部3の上部5aを介して連続している伝熱管についてのものであるが、その溝部は管軸に平行ではないと共に、空洞部高さH1=0.64mm、開口率17%である。一方、実施例4の線分は図16に示す伝熱管についてのものであり、図1、図2に示す伝熱管とは異なり、管軸方向の溝部5が連続しておらず、その溝部5が管軸方向に平行ではないと共に、空洞部高さH1=0.64mm、開口率17%である。実施例3,4のように、溝部が平行でないように構成するのは、前述した歯車ディスク16の歯ねじれ角γを支軸14a,14bの管軸のねじれ角度βと相違させることによって得られる。
【0058】
この状態が管軸方向及び管周方向に繰り返されることとなる。すなわち空洞部上部と孔との間を結ぶように溝が形成されているのである。本発明の実施例3,4は上記点を除けば表1に示す如く、実施例1と同じである。
【0059】
図13は、本発明の実施例1,3,4の伝熱管と従来例1及び空洞高さH=0.64mm、開口率(管周方向空洞部のみの開口部)17%である従来例3(特公昭64−2878号)の伝熱管とを比較した伝熱性能の評価結果を示すものである。
【0060】
図13より、本発明の実施例4は従来例3に対して空洞部高さ及び開口率が同じで且つ管軸方向の溝部及び空洞部が管軸方向に連続でも平行でもない点で同一であるが、管軸方向に空洞部でない溝部を有し、且つ管周方向に空洞部上部が密閉状である点で相違することにより、溝部で加熱された液冷媒が一方で軸方向に隣接する空洞部の密閉状上部に流入し、更に加熱され、孔に流入され、他方で軸方向に隣接する孔に流入するが、いずれも、空洞部内で核沸騰をしている液冷媒に直接流入せず、むしろ予備加熱された状態で孔より空洞部内に流入するために、伝熱性能が向上したことがわかる。
【0061】
次に、実施例3は実施例4に対して空洞部高さ及び開口率が同じで、且つ管軸方向に平行でない溝部を有する点で同一でも、管軸方向に連続した溝を有する点で相違することにより、図1に示すとおり、フィン上部5aの管外表面より溝部5に流れ、矢印7に示すように、空洞部の上部5aに流れて加熱された液冷媒が孔4aに流入するために、すなわち実施例4では一部液冷媒が溝部5のみの加熱でそのまま孔4aに流入するのに対して、実施例3は上部5aでも加熱されて孔4aに流入するために、伝熱性能が向上したことがわかる。
【0062】
更に、実施例1は実施例3に対して空洞部高さ及び開口率が同じで且つ管軸方向に連続した溝部を有する点で同一でも、管軸方向に平行である溝部を有する点で相違することにより、液冷媒の乱流効果が増加するために、伝熱性能が向上したことがわかる、勿論、実施例1,3,4は従来例1に比して伝熱性能は向上していて、過熱度ΔTが低い域においても一段と伝熱性能が向上していることがわかる。
【0063】
また、図14は空洞高さ0.20mm、0.27mm、0.35mm、0.64mm、0.70mmについて歯車ディスクの溝形状を変えたものを用いて伝熱管を試作し、孔の開口面積を変え、開口率を変化させて、伝熱性能を評価した結果を示す。
【0064】
この図14から、開口率が2%〜40%を外れると、空洞部高さが異なる場合においても、伝熱性能が低下することがわかる。
【0065】
更に、図15は開口率が2%、10%、17%、20%、40%の場合の伝熱管を、歯車ディスクの径を変えることによって製造し、空洞の高さを変化させて伝熱性能評価を行った場合の評価結果を示す。
【0066】
この図15から、空洞高さが0.27mmより低くなると、伝熱性能が低下し、空洞高さが0.70mm付近になると、伝熱性能が飽和することがわかる。従来例1のローフィンチューブの場合は、総括伝熱係数は、3200Kcal/m・h・℃であった。
【0067】
従って、開口率2〜40%、空洞高さ0.27〜0.70mmの範囲では従来例1のローフィンチューブより優れた伝熱性能が得られる。そして、前述したように、従来例2,3についても開口率及び空洞高さを同一条件にすると、本発明の方が優れた伝熱性能が得られる。
【0069】
【発明の効果】
以上説明したように、本発明の伝熱管は管軸方向の溝部で効率的に加熱された液冷媒が管周方向の孔部から空洞部に流入され、この空洞部の上部が密閉されていることにより、この液冷媒が空洞部内の核沸騰を直接に上部から疎外されにくくして、且つこの状態で最も伝熱性能のよい形状として空洞部高さを0.27乃至0.70mmとし、管外表面の総面積に対する割合が2〜40%である管外表面相当の合計面積を有する孔としたので、伝熱性能を著しく高めることができる。
【0070】
更に、管軸方向の溝を空洞部の外表面側上部を介して連続すること、又は管軸に平行にすることにより、より優れた伝熱性能を得ることができるものである。
【0071】
従って、熱交換器の伝熱性能向上、小型化及び軽量化、更に冷凍機等に使用したときのコンプレッサー動力の低減を図ることができる。
【0072】
更にまた、本発明の伝熱管は従来の伝熱管に比して、例えば管軸方向及び管周方向の空洞形成のために新たな工程を設ける必要がなく、製作工程も簡略化できて生産性の向上を図ることができるものである。
【図面の簡単な説明】
【図1】本発明の実施例に係る沸騰伝熱管の伝熱面を示す一部拡大図である。
【図2】同じくその沸騰伝熱管の正面図及び平面図である。
【図3】従来例2の沸騰伝熱管の伝熱壁を示す断面局部拡大図である。
【図4】従来例2の沸騰伝熱管の伝熱壁を示す平面図である
【図5】従来例3の沸騰伝熱管の伝熱面の一部拡大斜視図である。
【図6】本発明の実施例に係る伝熱管の製造に使用する装置の一部を示す正面図である。
【図7】同じく、その製造装置の一部を示す正面図である。
【図8】同じく、その製造装置における支軸14a及び14bと伝熱管との配置を示す側面図である。
【図9】歯車ディスクの正面図及び側面図である。
【図10】図9に示す歯車ディスクの一部拡大図である。
【図11】平ロールの正面図及び側面図である。
【図12】本発明の実施例1,2と従来例1,2の伝熱管における伝熱性能を示すグラフ図である。
【図13】本発明の実施例1,3,4と従来例1,3の伝熱管における伝熱性能を示すグラフ図である。
【図14】本発明の伝熱管の開口率に対する伝熱性能を示すグラフ図である。
【図15】本発明の伝熱管の空洞高さに対する伝熱性能を示すグラフ図である。
【図16】本発明の他の実施例に係る伝熱管の伝熱面を示す一部拡大図である。
【図17】本発明の更に他の実施例に係る伝熱管の伝熱面を示す一部拡大図である。
【符号の説明】
1;沸騰伝熱管
2;フィン
2a;フィン下部
2b;フィン上部
3;空洞部
4;孔部
5;溝部
5a;溝部の空洞部上部
6;凸部
7;液冷媒流水方向
;沸騰伝熱管の溝部の底部幅
;沸騰伝熱管の溝部の上部幅
;沸騰伝熱管のフィン高さ
;沸騰伝熱管の溝部の底部より管外表面までの高さ
;沸騰伝熱管の管外表面における直径
;沸騰伝熱管の管周方向空洞部高さ
;沸騰伝熱管の1つの孔開口面積(斜部)
,S;沸騰伝熱管の外表面側から投影してみたときのフィン上部が孔開口を上部より覆う部分の面積
;沸騰伝熱管の管軸方向フィンピッチ
;沸騰伝熱管の管軸方向溝ピッチ
;沸騰伝熱管の管軸方向孔幅
;沸騰伝熱管の管周方向孔幅
8;空洞部
9;孔
10;管周方向の空洞部
11;管周方向の間隙部
12;管軸方向の小さい空洞部
13;管軸方向の間隙部
;管外表面の空洞部高さ
;管周方向の空洞部高さ
14a,14b;支軸
15;ディスク群
16;歯車ディスク
17;マンドレル
18;平ロール
;歯車ディスクの外径
;歯車ディスクの幅
;歯車ディスクの歯ピッチ
,W;歯車ディスクの刃先幅
;歯車ディスクの歯溝深さ
;平ロール外径
γ;歯車ディスクの歯ねじれ角[0001]
[Industrial application fields]
The present invention is incorporated in an evaporator of a large-sized refrigerator (turbo refrigerator, screw refrigerator, etc.), immersed in a liquid refrigerant (fluorocarbon, liquid nitrogen, etc.) and used to heat and boil the liquid refrigerant. The present invention relates to a heat transfer tube for boiling which has improved its heat transfer performance.
[0002]
[Prior art]
Conventionally, several types of heat transfer surface shapes have already been proposed as this type of boiling heat transfer tube. For example, a fin is formed on the outer surface of the tube, and a notch that becomes a hole is provided at the tip of the fin. Is provided with a cavity useful for boiling heat transfer (for example, Japanese Patent Publication No. 53-25379). As shown in the sectional view of FIG. 3 and the plan view of FIG. 4, the holes 9 are independent, and the ratio of the total area of each hole to the total area of the outer surface is 2 to 50%. The cavity 8 has an action of promoting boiling, and residual bubbles in the cavity 8 can be secured by adjusting the area of the hole 9.
[0003]
Further, as shown in FIG. 5, after forming a helical fin on the outer surface of the tube, the tip of the fin is compressed and deformed to provide a cavity 10 in the circumferential direction of the tube, and the width 10. There is one in which a gap 11 of 13 mm or less is provided in the pipe circumferential direction (Japanese Patent Publication No. 64-2878). A gap 13 and a small cavity 12 are also provided in the tube axis direction perpendicular to the cavity 10. The cavities 10 and 12 in the tube axis and the tube circumferential direction also have an action of promoting boiling, and the refrigerant that has become bubbles in the cavities is discharged from the gap. By setting the width of the gaps 11 and 13 to 0.13 mm or less, residual bubbles can be secured in the cavity.
[0004]
[Problems to be solved by the invention]
However, the conventional heat transfer tube having the above-described structure can promote boiling heat transfer but has the following drawbacks. For example, in the heat transfer tube disclosed in Japanese Patent Publication No. 53-25379, since the outer surface is smooth, it has only the effect of nucleate boiling, and bubbles released from the holes are not easily heated. It is difficult to improve.
[0005]
In addition, in the heat transfer tube disclosed in Japanese Patent Publication No. 64-2878, not only in the tube circumferential direction but also in the tube axis direction has a cavity and the surface has a knurled surface. In order to mold, three or more molding processes are necessary, and the process is complicated.
[0006]
Furthermore, this conventional heat transfer tube is provided with a cavity in the tube axis direction to surely promote nucleate boiling. However, since the cavity is formed in the tube axis direction, the cavity in the tube circumferential direction is formed from this cavity. The inflow of the liquid refrigerant to the part is not smooth because the pressure loss with respect to the liquid refrigerant increases.
[0007]
On the other hand, the intersection of the tube-cavity cavity portion and the tube-circumferential cavity portion is in an open state, and a part of the liquid refrigerant is transferred from the tube-axis cavity portion to the tube-cavity cavity portion where nucleate boiling is performed. Since it flows in, nucleate boiling is likely to be inhibited in this part.
[0008]
Furthermore, in the heat transfer tubes disclosed in Japanese Patent Publication Nos. 53-25379 and 64-2878, there is no disclosure about the relationship between the height of the cavity and the heat transfer performance, and the critical point on the heat transfer performance is also disclosed. Absent.
[0009]
The present invention has been made in view of such problems, and provides a boiling heat transfer tube having a heat transfer surface shape that can be manufactured without complicated processes and can improve heat transfer performance. For the purpose.
[0010]
[Means for Solving the Problems]
The boiling heat transfer tube according to the present invention is provided with a height of 0.27 to 0.70 mm on the surface layer portion of the outer surface of the tube, and has a predetermined pitch extending in the tube circumferential direction or in a direction inclined from the tube circumferential direction. And a predetermined pitch extending on the outer surface of the tube and extending in a direction crossing the cavity.Flat bottomA groove portion, a hole portion provided intermittently on the outer surface of the tube at the upper portion of the cavity portion and communicating the cavity portion and the outside, and between the hole portion and the hole portion or between the hole portion and the groove portion. And a convex portion that has a flat surface and the upper portion extends in the tube axis direction with respect to the lower portion, and this hole portion has an outer surface area when assuming a smooth tube having the maximum outer diameter of the tube as a diameter. 2 to 40% of the total area.
[0011]
In addition, it is preferable that the groove part in this invention has an opening part width and a bottom part width | variety substantially equal, or an opening part width | variety is wider than a bottom part width | variety. Further, the side surface from the opening end of the groove portion to the bottom portion may be either a flat surface or a curved surface.
[0012]
Further, the width in the tube circumferential direction of the groove portion may be substantially equal to the width in the tube circumferential direction of the hole portion and the upper width of the outer surface of the cavity portion, and may be wider or narrower.
[0013]
Furthermore, between the hole part and the hole part, or between the hole part and the groove part, it becomes the most protruding part in the outer surface of the heat transfer tube, but the wall surface between this convex part and the hole part or groove part is , Either flat or curved.
[0014]
In the present invention, the cavity height is 0.27 to 0.70 mm. The cavity height refers to a distance from the lower surface of the cavity upper wall having a certain thickness to the bottom surface of the cavity portion.
[0015]
In the present invention, the ratio that defines the total area of the hole is based on the outer surface area of the smooth tube, assuming a smooth tube having the maximum diameter of the heat transfer tube as a diameter. The reason why the total area of the holes is 2 to 40% is that the hole is an opening for communicating the cavity with the outside of the tube, and corresponds to the opening being 2 to 40%. .
[0016]
In addition, in a hole part, the hole is not necessarily provided in the whole area | region in the hole part. That is, in the invention defined in claim 2, the hole is provided in the outer surface portion of the tube, which is located above the cavity and is not provided with a continuous groove. In this case, the hole is adjacent to the groove at both edges in a direction perpendicular to the groove, and is convex at both edges in the direction parallel to the groove (as described above, located above the portion between the cavities). Adjacent to the outer surface portion of the tube. In this way, the hole is defined by the groove and the convex, but the hole that communicates the cavity and the outside in the hole only needs to be provided in a partial area, and the entire area of the hole is It need not be a hole. Therefore, in the hole portion, there are a hole portion that is actually opened and a portion that is a peripheral portion of the hole and is located between the hole, the groove portion, and the convex portion. And the total area of the hole part prescribed | regulated by this invention is the sum total of the area of the hole actually opened, and is not the sum total of the whole area of a hole part.
[0017]
[Action]
In the present invention, since the groove portion extending in the tube axis direction or the direction inclined in the tube axis direction is provided on the outer surface of the tube, the outer heating surface area of the tube is increased, and heating of the liquid refrigerant and bubbles is promoted. The irregularities formed by the groove portions cause convection of the liquid refrigerant and disturbance of the liquid refrigerant and bubbles when bubbles are generated, and heat transfer performance is improved as compared with a surface having a smooth outer surface. Further, since the groove portion is less compressed than in the case of a hollow space, the liquid refrigerant can smoothly flow into the hole portion. Then, since the liquid refrigerant sufficiently heated in the groove portion flows from the hole portion into the cavity portion, less energy is required for boiling in the cavity portion, boiling is performed efficiently, and heat transfer performance is improved.
[0018]
When the groove portion in the tube axis direction or the direction inclined thereto is continuous at the upper portion on the outer surface side of the cavity portion, the liquid refrigerant flows from the groove portion to the upper portion on the outer surface side of the cavity portion and is heated there. Therefore, the area where the liquid refrigerant is heated increases. Therefore, the heated liquid refrigerant flows from the hole into the cavity, and the boiling heat transfer is further efficiently promoted.
[0019]
If this groove is parallel to the tube axis direction, the amount of liquid refrigerant flowing along the groove is smaller in an evaporator of the type in which the heat transfer tube is placed horizontally than in the case of being inclined to the tube axis. There is an effect that the turbulent flow effect of the liquid refrigerant and bubbles in the groove portion is increased, and thereby the overall heat transfer efficiency is further improved.
[0020]
Although nucleate boiling occurs in the cavity, the upper part of the cavity is hermetically sealed, so that the liquid refrigerant does not flow directly from the upper part of the cavity, and nucleate boiling in the cavity is not easily prevented.
[0021]
The aperture ratio in the hole is 2 to 40%. If the opening ratio in the hole exceeds 40%, residual bubbles that promote boiling heat transfer are not held in the cavity, and the heat transfer performance deteriorates. Also, if the aperture ratio is less than 2%, residual bubbles are not easily released, and further, refrigerant for generating bubbles cannot be supplied to the cavity, boiling is not promoted, and heat transfer performance is reduced. To do. Therefore, it is necessary to make the aperture ratio 2 to 40% in order to improve the heat transfer performance.
[0022]
Further, the height of the hollow portion needs to be 0.27 to 0.70 mm. When the height of the cavity is lower than 0.27 mm, the refrigerant for generating bubbles cannot be guided into the cavity, boiling is not promoted, and the heat transfer performance is lowered. Moreover, when the height of the cavity portion exceeds 0.70 mm, bubbles generated in the cavity portion are easily released, and excessive super refrigerant enters the cavity portion, and the temperature of the inner wall of the cavity portion decreases. For this reason, by showing an excessive heat transfer heat quantity for the bubble production | generation in a cavity part, boiling heat transfer will become easy to be inhibited and it will become the tendency for heat transfer performance to be saturated. Further, by increasing the fin height, fin forming becomes difficult to process, the processing speed decreases, and the productivity decreases. Therefore, by setting the height of the cavity to 0.27 to 0.70 mm, heat transfer performance is improved and productivity is prevented from being lowered.
[0023]
Next, an example of the manufacturing method of the boiling heat exchanger tube which concerns on the Example of this invention is demonstrated. Using a disk (rolling blade) on the outer surface of the tube, spiral fins having a predetermined pitch in the tube axis direction are formed, and first a low fin tube is obtained. Thereafter, the fin tip portion of the low fin tube is compressed by a gear disk having teeth of a predetermined pitch fixed coaxially with the disk, thereby inclining to or in the tube axis direction having a predetermined pitch in the pipe circumferential direction. Forming a groove portion in the direction, a hollow portion formed by crushing the upper portion of the fin at the position of the valley between the fins and extending in the pipe circumferential direction or a direction inclined thereto, and a hole portion in which the upper portion of the hollow portion is opened . The cavity is hermetically sealed at a portion where no hole is provided.
[0024]
In the formation of the groove portion in the direction of the tube axis or the direction inclined thereto, when connecting the upper portions on the outer surface side of the cavity portion, the tip of the fin is compression-molded with the blade edge portion of the gear disc, and this is formed on the valleys on both sides of the fin The tip of the fin is at the tip of the gear disk with a guide on the tooth tip side when connecting the hole between the upper part on the outer surface side of the cavity and the hole. Compressed and stretched. However, since there is a guide on the tooth tip side of the gear disk at this time, the tip of the fin does not protrude, and when connecting the holes, a gear disk with guides on both sides of the tooth tip is used. The tip portion of the fin is compression-molded and extended over the fin valleys on both sides of the fin. However, at this time, since the tooth tip guides of the gear disk are on both sides, the fin tip portion is compressed and deformed, but moves to the tooth tip side fin portion side without protruding to the fin valley portion.
[0025]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing a part of a wall portion of a boiling heat transfer tube according to a first embodiment of the present invention, and shows the shape of the outer surface. The inner surface 1a of the heat transfer tube 1 is a smooth surface, and the outer surface 1b is a surface having irregularities as the heat transfer surface. As will be described later, in the heat transfer tube 1 of the present embodiment, the fin 2 is first formed on the tube surface layer portion in the manufacturing process. The fin lower portion 2a is on the inner surface 1a side, and the fin upper portion 2b is the outer surface 1b. On the side. Between the fins 2, spiral cavities 3 are formed at a predetermined pitch in the tube axis direction, extending in the tube circumferential direction or in a direction inclined to the tube (in the illustrated example, the tube circumferential direction). The cavity 3 exists in a form embedded in the tube surface layer.
[0026]
And the groove part 5 which cross | intersects this cavity part 3 (in the illustration example orthogonally crosses) and extends in a pipe-axis direction or the direction inclined to this (illustration example is a pipe-axis direction) is formed with a predetermined pitch in the pipe circumferential direction. Has been.
[0027]
Further, in the portion where the groove portion 5 is continuous on the cavity portion 3, the groove portion 5 exists as an upper wall of the cavity portion 3, and the cavity portion 3 is sealed. However, the part where the groove part 5 on the cavity part 3 does not exist, that is, the part between the groove parts 5 on the cavity part 3 is the hole part 4 provided with the hole 4a. On the other hand, the convex part 6 is formed in the upper part of the fin 2, ie, the upper part of the part between the cavity parts 3 and the groove part 5 does not exist. The convex portion 6 is the maximum diameter portion of the heat transfer tube 1.
[0028]
When manufacturing the heat transfer tube 1 configured as described above, first, fins 2 extending in the tube circumferential direction are formed on the outer surface of the tube at a predetermined pitch in the tube axis direction. Next, the upper portion of the fin 2 is linearly pressed and pushed so as to crush the upper portion of the fin 2, and the groove portions 5 extending in the tube axis direction are formed at a predetermined pitch in the tube circumferential direction, and the region between the groove portions 5 is also formed. Crushes the upper part of the fin 2 with a pushing amount smaller than the pushing amount at the time of forming the groove. As a result, in the groove portion 5, the upper portion of the fin 2 is crushed in a large amount, so that it straddles the valley portion between the fins 2, and the upper portion of the valley portion is closed to form the cavity portion 3. However, since the pushing amount is small in the portion between the groove portions 5, the upper portion of the fin 2 is flattened and a convex portion 6 is formed, but the upper portion of the collapsed fin 2 is hung on the valley between the fins 2. I don't get it. For this reason, the hole part 4 is formed in the part which was a trough part.
[0029]
Next, a method for manufacturing the heat transfer tube shown in FIG. 1 will be described. 6 and 7 are front views showing a groove or fin processing apparatus, and FIG. 8 is a side view thereof. As shown in FIG. 8, the support shaft 14a shown in FIG. 6 and the support shaft 14b shown in FIG. 7 are arranged at a center angle of 120 ° at three positions centered on the mandrel 17. A disk group 15 is coaxially fixed to the support shafts 14a and 14b as a tool for fin forming and cavity / groove forming. Further, on the downstream side of the disk group 15, the support disk 14a has a gear disk 16 Is fixed coaxially, and a flat roll 18 is coaxially fixed to the support shaft 14b. Then, the support shafts 14a and 14b rotate around the axis. By rotating the support shafts 14a and 14b, the fin 19 and the cavity / groove are formed while the tube 19 rotates in the direction opposite to the support shafts 14a and 14b. The support shafts 14a and 14b are disposed at positions twisted relative to the tube axis (twist angle β), and the tube is fed in the tube axis direction while being processed in a spiral shape.
[0030]
By using the disk group 15 and the gear disk 16 configured as described above, the fin 2 is formed as described above, and the groove portion 5 and the hole portion 4 are formed so as to crush the upper portion of the fin 2.
[0031]
The spiral angle (twist angle β) is such that the outer diameter of the tube is d = 19.05 mm, the number of stripes is n = 3, and the pitch of the fins formed by the disk group 15 is P.1= 0.529 mm, tan β = nP1/ Πd, and the angle β = 1.52 ° is the spiral angle.
[0032]
The disk group 15 in FIGS. 6 and 7 shows a disk group for fin forming, and a spiral fin is formed on the surface of the tube by this disk. The gear disk 16 is for forming a cavity hole and a groove after fin formation, and is composed of a plurality of gears having substantially trapezoidal grooves. The flat roll 18 is a roll for suppressing the bending of the pipe.
[0033]
The gear disk 16 is made smaller than the maximum disk diameter of the disk group 15 (the disk diameter at the right end of the disk group 15 in FIG. 6), and the groove pitch (P3) Is determined according to the outer diameter of the tube in order to continuously form the groove.
[0034]
FIG. 9 shows the configuration of the gear disk 16, and FIG. 10 is a partially enlarged view thereof. As described above, the groove pitch (P3) Is determined according to the outer diameter of the tube in order to continuously form the groove. The tip of the tooth tip is a moderate width W6have. By forming the groove into a substantially trapezoidal shape, when the hole is provided, compression of the fin tip can be reduced, and a hole having a required size can be formed. Also, the thickness W of the gear disc5About fin pitch P1By making it larger than this, the buckling of the fin is reduced, the groove in the tube axis direction can be easily formed, and the number of used gear disks can be reduced.
[0035]
By compressing and deforming the tip of the fin with the gear disc 16, the groove portion 5 is formed where the tip of the fin 2 extending in the circumferential direction and the tooth tip of the gear disc 16 intersect, and the tip of the fin is compressed and deformed. Is projected over the valleys between the fins 2 to form the sealed upper part 5a of the cavity 3, and the continuous groove 5 is formed through the sealed upper part 5a of the cavity 3 in the tube axis direction. In addition, the portion where the substantially trapezoidal valley portion of the gear disk 16 and the valley portion between the fins of the tube intersect is a hole 4a that communicates the cavity portion 3 and the outer surface portion of the tube due to less compression deformation of the fin. It has become. Further, a cavity 3 for promoting boiling heat transfer is provided at the same time below the sealed cavity upper part 5a of the groove 5. The compression stress caused by the gear disk 16 determines the valley shape and tooth thickness from the fin pitch P.1By making it larger, the force is dispersed and deformation due to buckling is reduced.
[0036]
FIG. 11 is a view showing the flat roll 18. The flat roll 18 is a tool for reducing bending when the number of used gear disks 16 is small, and the support shafts 14a and 14b are arranged in three equal positions (center angle 120 °). When there are two places, the flat rolls 18 are arranged at the remaining one place, and when the gear disk 16 is used at one place, the flat rolls 16 are arranged at the remaining two places. As a result, the bending of the tube is reduced, and the gear disk 16 can be reliably compressed and deformed.
[0037]
Example of the present invention The height from the bottom of the groove portion 5 of the heat transfer tube to the outer surface of the tubeR 2 (See FIG. 1) is the depth h of the tooth root of the gear disc 16Three(See FIG. 10), tube groove bottom width W1Is the upper width W of the gear disk 166(See Fig. 10), tube groove upper width W2Is the lower width W of the gear disk 167(See FIG. 10).
[0038]
In the above description, the disk group 15 for forming the fins coaxially and the gear disk 16 for forming the cavity hole and the continuous groove in the tube axis direction are attached, and the method of performing the processing continuously has been shown. You may perform fin shaping | molding and shaping | molding of the continuous groove | channel of a cavity and a pipe-axis direction by another process. Further, the method for forming the fin is not limited to the processing by rolling as described above, but may be molding by cutting. Furthermore, the fins may be either single or multiple.
[0039]
In the above description, the tooth twist angle γ of the gear disk 16 is set to γ = β (the twist angle of the support shafts 14a and 14b with respect to the tube axis) when the groove 5 portion is parallel to the tube axis. When 5 is not parallel to the tube axis, γ ≠ β is set.
[0040]
Next, the aperture ratio of the hole 4 in the present embodiment will be described. First, the total area of the tube outer surface is the diameter of the outer surface of the heat transfer tube according to the embodiment of the present invention.D 1 = Diameter equivalent to 18.95 mm1It is the external surface area (A) per 1 m of the smooth tube. The total area (a) of the hole 4 corresponding to the outer surface of the tube is obtained by first obtaining that of each hole and multiplying the area of one hole by the total number per 1 m of the tube.
[0041]
FIG. 2A is a plan view showing a part of the heat transfer tube of the embodiment of the present invention, and FIG. 2B is a front view thereof. Area S corresponding to the outer surface of the tube of each hole 4a1In FIG. 2 (a), the axial width W of the upper part of the hole3The circumferential width W of the pipe4Area S obtained by multiplying by0Thus, the area (S projected from the tube outer surface side of the portion covering the upper opening of the hole from the tube outer surface to the opening (S2+ S3) Minutes, subtracted, ie S1= S0-(S2+ S3). The aperture ratio is the area S of each hole per meter of tube.1Is obtained as a ratio (%) obtained by dividing the area (a) by adding up the area (A) per 1 m of the tube.
[0042]
Next, another embodiment of the present invention will be described with reference to FIG. In the heat transfer tube 1 of this embodiment, grooves 5 extending in a direction orthogonal to the cavity 3 are intermittently provided at a predetermined pitch on the cavity 3 provided at a predetermined pitch. And the hole part 4 is provided in the part above this cavity part 3 and the groove part 5 is not provided. A hole 4 a is formed in the hole 4. The groove part 5 extends from above the cavity part 3 to above the adjacent fin part 2, and no groove part 5 is formed above the fin part 2 on the opposite side of the fin part 2 provided with the groove part 5. The convex portion 6 has the maximum diameter.
[0043]
The manufacturing method of the heat transfer tube shown in FIG. 16 is almost the same as that of the heat transfer tube of the embodiment shown in FIGS. The difference is that the shape of the gear disc is such that is only on one side.
[0044]
FIG. 17 shows still another embodiment of the present invention. In the heat transfer tube 1 of this embodiment, convex portions 6 continuously extending perpendicularly to the cavity portion 3 are provided at a predetermined pitch on the cavity portion 3 extending in the tube circumferential direction provided at a predetermined pitch. ing. In addition, grooves 5 on the fins 2 and holes 4 on the cavity 3 are alternately provided in a region sandwiched between the convex portions 6.
[0045]
The heat transfer tube shown in FIG. 16 or FIG. 17 configured in this manner also has the same effect as the heat transfer tube shown in FIG.
[0046]
Next, the results of actually manufacturing the boiling heat transfer tube shown in FIG. 1 by the above-described manufacturing method and evaluating the characteristics will be described.
[0047]
The boiling heat transfer tubes of Examples 1, 2 and 3 of the present invention use phosphorous deoxidized copper tubes having an outer diameter of 19.05 mm and a wall thickness of 1.19 mm, as shown in FIGS. 6 and 7. 19 is provided with a mandrel 17, and a disk group 15 is arranged on the outer surface of the pipe 19 at a center angle of 120 ° at three equal positions as shown in FIG. After forming the fin tube, the cavity 3, the hole 4 having the hole 4a, and the groove 5 in the tube axis direction were formed to manufacture the heat transfer tube 1 shown in FIG. When forming the cavity 3, the hole 4 and the groove 5, the outer diameter D is provided downstream of the disk group 15 arranged in three directions.2= 51.7 mm, the outer periphery has a substantially trapezoidal groove of 400 grooves, and the tooth groove depth h3= 0.25 mm, thickness W5= 2.5 mm gear disk 16 is arranged at two positions among the three equally spaced positions as shown in FIG. 8 via the support shaft 14a, and the remaining one position has an outer diameter D in order to suppress the bending of the heat transfer tube.3= A flat roll 18 of 51.2 mm was disposed via the support shaft 14b.
[0048]
Then, after the low fin tube is formed by the disk group 15, the tip of the fin is compressed by the cutting edge of the gear disk 16. The groove portion 5 in the tube axis direction is formed in the portion compressed by the cutting edge of the gear disk 16, and the tip of the fin compressed by the cutting edge of the gear disk 16 projects over the valley between the fins of the low fin tube. A sealed cavity portion 3 is formed, and the overhang portion forms an upper wall as the cavity upper portion 5a.
[0049]
Further, a hole 4 having a hole 4a is formed at a portion where the groove of the gear disk 16 and the valley between the fins of the low fin tube intersect.
[0050]
Height H of cavity 31Is the diameter D of the gear disc 162The upper opening area of the hole 4 is determined by the groove shape of the gear disk 16, that is, the blade width W.6,bladebeneathWidth W7And tooth pitchP 3 Adjustment is possible by changing.
[0051]
1 and FIG. 2, the groove portion 5 in the tube axis direction is continuous through the upper portion 5a of the cavity portion 3 in the tube circumferential direction, and the groove portion 5 is parallel to the tube axis and the height H of the cavity portion.1= 0.64 mm, opening ratio 17% Heat transfer tube and cavity height H of Example 1 of the present invention1= 0.35 mm, the aperture ratio is 17%, the heat transfer tube of Example 2 of the present invention, the low fin tube heat transfer tube of Conventional Example 1, and the cavity height H shown in Figs.2FIG. 12 shows the result of evaluating the heat transfer performance by comparing with the heat transfer tube of the conventional example 2 (Japanese Examined Patent Publication No. 53-25379) having == 0.35 mm and an aperture ratio of 17%.
[0052]
Moreover, the specification of the heat exchanger tube which evaluated this heat transfer performance is shown in Table 1 below. Table 1 also shows Examples 3 and 4 of the present invention and Conventional Example 3 (Japanese Patent Publication No. 64-2878).In addition, Example 1, 2, 3 is a heat exchanger tube shown in FIG. 1 among the heat exchanger tubes of the Example of this invention, and the groove part 5 is connected between the pipe outer surface side upper parts of a cavity part. Moreover, Example 4 is a heat exchanger tube shown in FIG. 16, and the groove part 5 is intermittently tied by the pipe outer surface side upper part of a cavity part.
[0053]
[Table 1]
Figure 0003606284
Figure 0003606284
[0054]
In Table 1, the ◯ marks indicate that the grooves are continuous or the grooves are parallel to the tube axis direction in the examples of the present invention. In the examples of the present invention, the crosses indicate that the groove portion is not continuous, or the groove is not parallel to the tube axis direction, or in the conventional example 3, the hollow portion in the tube axis direction is not continuous or parallel.
[0055]
As shown in FIG. 12, the first and second embodiments of the present invention have a groove portion 5 that is continuous and parallel to the tube axis direction even when the cavity height and the aperture ratio are the same as in the conventional example 2, so that the liquid refrigerant is It can be seen that the heat transfer performance is improved because the turbulent flow effect is increased by heating at the upper part of the groove and the cavity. Furthermore, the heat transfer performance of Example 1 of the present invention is improved compared to Example 2 due to the deep groove depth. Of course, the heat transfer performance of Examples 1 and 2 of the present invention is improved as compared with Conventional Example 1, and the performance is further improved even in the region where the degree of superheat ΔT is low.
[0056]
As shown in FIG.FruitExample 3Line segmentIs shown in FIG. 1 and FIG.likeThe groove portion 5 in the tube axis direction is continuous through the upper portion 5a of the hollow portion 3 in the tube circumferential direction.About heat transfer tubesHowever, the groove is not parallel to the tube axis and the cavity height H1= 0.64 mm, and the aperture ratio is 17%. on the other hand, RealExample 4Line segmentIs the heat transfer tube shown in FIG.AboutAnd shown in FIG. 1 and FIG.Unlike heat transfer tubes,The groove portion 5 in the tube axis direction is not continuous, the groove portion 5 is not parallel to the tube axis direction, and the cavity height H1= 0.64 mm, and the aperture ratio is 17%. The configuration in which the groove portions are not parallel as in the third and fourth embodiments is obtained by making the tooth twist angle γ of the gear disk 16 different from the twist angle β of the tube shaft of the support shafts 14a and 14b. .
[0058]
This state is repeated in the tube axis direction and the tube circumferential direction. That is, a groove is formed so as to connect the upper portion of the cavity and the hole. Except for the above points, Examples 3 and 4 of the present invention are the same as Example 1 as shown in Table 1.
[0059]
FIG. 13 shows the heat transfer tubes of the first, third, and fourth embodiments of the present invention, the conventional example 1, and the cavity height H.3= 0.64 mm, showing the evaluation results of the heat transfer performance in comparison with the heat transfer tube of the conventional example 3 (Japanese Examined Patent Publication No. 64-2878) having an aperture ratio (opening of only the hollow portion in the pipe circumferential direction) of 17%. is there.
[0060]
From FIG. 13, Example 4 of the present invention is the same as Example 3 in that the cavity height and aperture ratio are the same, and the groove and cavity in the tube axis direction are neither continuous nor parallel to the tube axis direction. However, the liquid refrigerant heated in the groove portion is adjacent to the axial direction on the other hand by having a groove portion that is not a hollow portion in the tube axis direction and that the upper portion of the cavity portion is hermetically sealed in the tube circumferential direction. It flows into the sealed upper part of the cavity, is heated further, flows into the hole, and flows into the adjacent hole in the axial direction, but both flow directly into the liquid refrigerant that is boiling in the cavity. Rather, it can be seen that the heat transfer performance has been improved because it flows into the cavity from the hole in a preheated state.
[0061]
Next, Example 3 is the same as Example 4 in that the cavity height and the aperture ratio are the same, and it is the same in that it has a groove that is not parallel to the tube axis direction, but it has a groove that is continuous in the tube axis direction. Due to the difference, as shown in FIG. 1, the liquid refrigerant that flows from the pipe outer surface of the fin upper portion 5a to the groove portion 5 and flows into the upper portion 5a of the hollow portion as shown by the arrow 7 flows into the hole 4a. For this reason, in Example 4, a part of the liquid refrigerant flows into the hole 4a as it is by heating only the groove 5, whereas in Example 3, the upper part 5a is heated and flows into the hole 4a. It can be seen that the performance has improved.
[0062]
Further, Example 1 differs from Example 3 in that it has the same cavity height and aperture ratio and has a groove part that is continuous in the tube axis direction, but has a groove part that is parallel to the tube axis direction. It can be seen that the heat transfer performance is improved because the turbulent flow effect of the liquid refrigerant is increased, and of course, Examples 1, 3, and 4 have improved heat transfer performance compared to Conventional Example 1. Thus, it can be seen that the heat transfer performance is further improved even in the region where the degree of superheat ΔT is low.
[0063]
In addition, FIG. 14 shows a prototype of a heat transfer tube using a hollow disk with a groove height of 0.20 mm, 0.27 mm, 0.35 mm, 0.64 mm, and 0.70 mm, with the groove shape changed, and the hole opening area. The results of changing the aperture ratio and changing the aperture ratio and evaluating the heat transfer performance are shown.
[0064]
From FIG. 14, it can be seen that when the aperture ratio deviates from 2% to 40%, the heat transfer performance decreases even when the cavity height is different.
[0065]
Further, FIG. 15 shows that heat transfer tubes having aperture ratios of 2%, 10%, 17%, 20%, and 40% are manufactured by changing the diameter of the gear disk, and heat transfer is performed by changing the height of the cavity. The evaluation result when performance evaluation is performed is shown.
[0066]
From FIG. 15, it can be seen that when the cavity height is lower than 0.27 mm, the heat transfer performance is lowered, and when the cavity height is around 0.70 mm, the heat transfer performance is saturated. In the case of the low fin tube of Conventional Example 1, the overall heat transfer coefficient is 3200 Kcal / m.2-H · ° C.
[0067]
Therefore, heat transfer performance superior to the low fin tube of Conventional Example 1 is obtained in the range of the aperture ratio of 2 to 40% and the cavity height of 0.27 to 0.70 mm. And as mentioned above, when the aperture ratio and the cavity height are the same for the conventional examples 2 and 3, the heat transfer performance of the present invention is superior.
[0069]
【The invention's effect】
As described above, in the heat transfer tube of the present invention, the liquid refrigerant efficiently heated in the groove portion in the tube axis direction flows into the cavity portion from the hole portion in the tube circumferential direction, and the upper portion of the cavity portion is sealed. As a result, the liquid refrigerant is less likely to be alienated directly from the upper part to nucleate boiling in the cavity, and the height of the cavity is 0.27 to 0.70 mm as a shape with the best heat transfer performance in this state. Since the hole has a total area corresponding to the outer surface of the pipe having a ratio to the total area of the outer surface of 2 to 40%, the heat transfer performance can be remarkably improved.
[0070]
Furthermore, by making the groove in the tube axis direction continuous through the upper part on the outer surface side of the hollow portion, or by making the groove parallel to the tube axis, more excellent heat transfer performance can be obtained.
[0071]
Therefore, it is possible to improve the heat transfer performance of the heat exchanger, reduce the size and weight, and further reduce the compressor power when used in a refrigerator or the like.
[0072]
Furthermore, the heat transfer tube of the present invention does not require a new process for forming cavities in the tube axis direction and the tube circumferential direction, for example, compared to the conventional heat transfer tube, and the manufacturing process can be simplified to improve productivity. Can be improved.
[Brief description of the drawings]
FIG. 1 is a partially enlarged view showing a heat transfer surface of a boiling heat transfer tube according to an embodiment of the present invention.
FIG. 2 is a front view and a plan view of the boiling heat transfer tube.
FIG. 3 is a partially enlarged local sectional view showing a heat transfer wall of a boiling heat transfer tube of Conventional Example 2.
4 is a plan view showing a heat transfer wall of a boiling heat transfer tube of Conventional Example 2. FIG.
5 is a partially enlarged perspective view of a heat transfer surface of a boiling heat transfer tube of Conventional Example 3. FIG.
FIG. 6 is a front view showing a part of an apparatus used for manufacturing a heat transfer tube according to an embodiment of the present invention.
FIG. 7 is also a front view showing a part of the manufacturing apparatus.
FIG. 8 is a side view showing the arrangement of the support shafts 14a and 14b and the heat transfer tubes in the manufacturing apparatus.
FIG. 9 is a front view and a side view of a gear disk.
10 is a partially enlarged view of the gear disk shown in FIG. 9;
FIG. 11 is a front view and a side view of a flat roll.
FIG. 12 is a graph showing heat transfer performance in the heat transfer tubes of Examples 1 and 2 of the present invention and Conventional Examples 1 and 2;
FIG. 13 is a graph showing the heat transfer performance in the heat transfer tubes of Examples 1, 3, 4 and Conventional Examples 1, 3 of the present invention.
FIG. 14 is a graph showing the heat transfer performance with respect to the aperture ratio of the heat transfer tube of the present invention.
FIG. 15 is a graph showing the heat transfer performance with respect to the cavity height of the heat transfer tube of the present invention.
FIG. 16 is a partially enlarged view showing a heat transfer surface of a heat transfer tube according to another embodiment of the present invention.
FIG. 17 is a partially enlarged view showing a heat transfer surface of a heat transfer tube according to still another embodiment of the present invention.
[Explanation of symbols]
1; Boiling heat transfer tube
2; Fin
2a; lower fin
2b; Fin top
3; cavity
4; hole
5; Groove
5a; upper part of the cavity of the groove
6; convex part
7: Flow direction of liquid refrigerant
W1; Bottom width of groove of boiling heat transfer tube
W2; The upper width of the groove of the boiling heat transfer tube
h1; Fin height of boiling heat transfer tube
h2; Height from the bottom of the groove of the boiling heat transfer tube to the outer surface of the tube
D1; Diameter on the outer surface of the boiling heat transfer tube
H1; Cylinder cavity height of boiling heat transfer tube
S1; One hole opening area (shaded part) of boiling heat transfer tube
S2, S3The area of the part where the fin upper part covers the hole opening from the upper part when projected from the outer surface side of the boiling heat transfer tube
P1; Fin pitch in the axial direction of boiling heat transfer tubes
P2; Tube pitch in the axial direction of boiling heat transfer tubes
W3; Bore axial direction hole width of boiling heat transfer tube
W4; Bore circumferential hole width of boiling heat transfer tube
8: Cavity
9; hole
10: Cavity in the pipe circumferential direction
11: Gap in the circumferential direction
12: Small cavity in the tube axis direction
13: Gap in the tube axis direction
H2; Cavity of the outer surface of the tube
H3; Cavity height in the pipe circumferential direction
14a, 14b; spindle
15: Disc group
16: Gear disk
17; Mandrel
18: Flat roll
D2; Outer diameter of gear disc
W5; Width of gear disc
P3; Tooth pitch of gear disc
W6, W7; Blade width of gear disc
h3; Tooth gap depth of gear disc
D3; Flat roll outer diameter
γ: Gear disk tooth helix angle

Claims (5)

管外表面の表層部に0.27乃至0.70mmの高さを有して設けられ管周方向に又はこの管周方向から傾斜する方向に延びる所定ピッチの空洞部と、管外表面に設けられこの空洞部に交差する方向に延びる所定ピッチの底面が平坦な溝部と、前記空洞部の上部の管外表面に断続的に設けられ前記空洞部と外部とを連通する孔部と、前記孔部と孔部との間又は前記孔部と溝部との間に設けられ表面が平坦であり上部が下部に対して管軸方向に延出している凸部と、を有し、この孔部は管最大外径を直径とする平滑管を仮定したときその外表面積の2乃至40%の総面積を有することを特徴とする沸騰型伝熱管。Provided on the outer surface of the pipe with a cavity having a predetermined pitch provided in the surface layer portion of the outer surface of the pipe and having a height of 0.27 to 0.70 mm and extending in the pipe circumferential direction or in a direction inclined from the pipe circumferential direction. A groove portion having a flat bottom surface with a predetermined pitch extending in a direction intersecting the cavity portion, a hole portion provided intermittently on the outer surface of the tube at the upper portion of the cavity portion and communicating the cavity portion with the outside, and the hole And a convex portion provided between the hole and the hole or between the hole and the groove and having a flat surface and an upper portion extending in the tube axis direction with respect to the lower portion. A boiling heat transfer tube characterized by having a total area of 2 to 40% of the outer surface area when a smooth tube having a maximum tube outer diameter is assumed. 前記溝部は連続しており、前記孔部は前記空洞部の上部における前記溝部が存在しない部分に設けられていることを特徴とする請求項1に記載の沸騰型伝熱管。2. The boiling heat transfer tube according to claim 1, wherein the groove portion is continuous, and the hole portion is provided in a portion where the groove portion does not exist in the upper portion of the cavity portion. 前記空洞部の上部には、前記孔部と前記溝部とが交互に配置されていることを特徴とする請求項1に記載の沸騰型伝熱管。The boiling heat transfer tube according to claim 1, wherein the hole portion and the groove portion are alternately arranged on an upper portion of the hollow portion. 前記空洞部の上部には、孔部が断続的に設けられ、前記空洞部間の上部には、溝部が断続的に設けられていることを特徴とする請求項1に記載の沸騰型伝熱管。The boiling heat transfer tube according to claim 1, wherein a hole is intermittently provided in an upper portion of the hollow portion, and a groove portion is intermittently provided in an upper portion between the hollow portions. . 前記溝部は前記管軸方向に平行であることを特徴とする請求項1乃至4のいずれか1項に記載の沸騰型伝熱管。The boiling groove heat transfer tube according to any one of claims 1 to 4, wherein the groove portion is parallel to the tube axis direction.
JP30067293A 1993-11-30 1993-11-30 Boiling type heat transfer tube Expired - Lifetime JP3606284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30067293A JP3606284B2 (en) 1993-11-30 1993-11-30 Boiling type heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30067293A JP3606284B2 (en) 1993-11-30 1993-11-30 Boiling type heat transfer tube

Publications (2)

Publication Number Publication Date
JPH07151485A JPH07151485A (en) 1995-06-16
JP3606284B2 true JP3606284B2 (en) 2005-01-05

Family

ID=17887687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30067293A Expired - Lifetime JP3606284B2 (en) 1993-11-30 1993-11-30 Boiling type heat transfer tube

Country Status (1)

Country Link
JP (1) JP3606284B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612426A (en) * 2017-05-12 2019-12-24 开利公司 Internally enhanced heat exchanger tube

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389565B2 (en) * 2003-12-02 2009-12-24 日立電線株式会社 Boiling heat transfer tube and manufacturing method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110612426A (en) * 2017-05-12 2019-12-24 开利公司 Internally enhanced heat exchanger tube
CN110612426B (en) * 2017-05-12 2022-05-17 开利公司 Heat transfer tube for heating, ventilating, air conditioning and refrigerating system

Also Published As

Publication number Publication date
JPH07151485A (en) 1995-06-16

Similar Documents

Publication Publication Date Title
US4715436A (en) Construction of a heat transfer wall of a heat transfer pipe
EP0206640B1 (en) Improved heat transfer tube having internal ridges
US4438807A (en) High performance heat transfer tube
US4330036A (en) Construction of a heat transfer wall and heat transfer pipe and method of producing heat transfer pipe
US20060075773A1 (en) Heat transfer tubes, including methods of fabrication and use thereof
US6167950B1 (en) Heat transfer tube
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH05106990A (en) Heat transfer tube with inner surface groove and manufacture thereof
US20010006106A1 (en) Heat-exchanger tube structured on both side and a method for its manufacture
US7866042B2 (en) Method for producing a split louver heat exchanger fin
JPH0670556B2 (en) Heat transfer tube and manufacturing method thereof
KR19980080288A (en) Heat transfer tube and its manufacturing method
JP3606284B2 (en) Boiling type heat transfer tube
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPS6011800B2 (en) Manufacturing method for condensing heat exchanger tubes
JPH0335011B2 (en)
JPS61291895A (en) Boiling heat transfer pipe and manufacture thereof
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JP3391167B2 (en) Heat transfer tube for heat sink and method of manufacturing the same
JP2628712B2 (en) Method of forming heat transfer surface
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
GB2160450A (en) Method of manufacture of an enhanced boiling surface heat transfer tube and the tube produced thereby
JP4587545B2 (en) Heat exchanger tube for absorber
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101015

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111015

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121015

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 9

EXPY Cancellation because of completion of term