JPH03207995A - Butt seam welded heat transfer tube and manufacture thereof - Google Patents

Butt seam welded heat transfer tube and manufacture thereof

Info

Publication number
JPH03207995A
JPH03207995A JP103390A JP103390A JPH03207995A JP H03207995 A JPH03207995 A JP H03207995A JP 103390 A JP103390 A JP 103390A JP 103390 A JP103390 A JP 103390A JP H03207995 A JPH03207995 A JP H03207995A
Authority
JP
Japan
Prior art keywords
groove
main
sub
heat transfer
grooves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP103390A
Other languages
Japanese (ja)
Other versions
JP2580353B2 (en
Inventor
Masanobu Aso
麻生 正信
Yuji Maki
裕二 牧
Tetsuya Kato
鉄也 加藤
Makoto Shimizu
真 清水
Yoshinori Watanabe
吉典 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001033A priority Critical patent/JP2580353B2/en
Publication of JPH03207995A publication Critical patent/JPH03207995A/en
Application granted granted Critical
Publication of JP2580353B2 publication Critical patent/JP2580353B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To enhance both boiling heat transfer properties and condensing heat transfer properties and to raise a processing efficiency by tuning after a predetermined process by crossing main and sub grooves on the inner wall of a tube, and extruding the part to become a protrusion between the grooves from both sides to the main groove side to form a dovetail cavity. CONSTITUTION:Main grooves 11 and 12 are crossed on the inner surface of a butt seam welded heat transfer tube 100, and a crest 13 is formed therebetween. When the crest 13 is pressed by a wedge-shaped forging roll having a sharp end, the part of the crest 13 is extruded to the trough 11b of the main groove to form a dovetail cavity 14 having a narrower opening than the width of the groove bottom of the groove 11. The desired shapes of the cavity formed by the main and sub groove rolls and a sub groove 12b are such that the ratio of the sectional area S (mm<2>) of the cavity to the opening width d(mm) is S/d <=2, and the cavity of d<=0.1mm is effective to accelerate evaporating heat transfer. When the sectional area of the shaded part is A and the circumferential length is L, an equivalent diameter de is obtained. The de = 0.15 - 0.35mm is effective to accelerate the condensing heat transfer.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は空調用熱交換器に用いる伝熱管及びその製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat exchanger tube used in an air conditioning heat exchanger and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来の空調用伝熱管の外観を第12図に、同空調用伝熱
管の内面溝を拡大した図を第l3図に示し、伝熱管の代
表的な寸法を表1に示す.これらの図において、ヒート
ポンプ式空調機に用いる伝熱管lOは高効率、コンパク
ト化などの観点から主として内面溝付管が使われている
。これは第13図に示すように、管内面に微細な三角形
状の溝lをらせん状に転造加工により刻んだものである
。らせん溝1を形成することにより、内表面積の増大を
図り、かつ、内部流体をかく拌し、管頂部まで液をかき
揚げ、液膜厚さを均等化の作用で、管内側の夷発熱伝達
率を向上させている。
Figure 12 shows the external appearance of a conventional heat exchanger tube for air conditioning, Figure 13 shows an enlarged view of the internal grooves of the heat exchanger tube for air conditioning, and Table 1 shows typical dimensions of the heat exchanger tube. In these figures, the heat exchanger tubes 1O used in the heat pump air conditioner are mainly internally grooved tubes from the viewpoint of high efficiency and compactness. As shown in FIG. 13, this is a tube in which fine triangular grooves 1 are helically carved on the inner surface of the tube by rolling. By forming the spiral groove 1, the inner surface area is increased, the internal fluid is stirred, the liquid is scraped up to the top of the tube, and the thickness of the liquid film is equalized, thereby increasing the heat transfer rate inside the tube. is improving.

また、ヒートポンプ空調機用熱交換器に用いられる伝熱
管には製品の特性から高い沸騰熱伝達及び高い凝縮熱伝
達がともに求められている。この点から、メンキ法、焼
結法、機械加工法等による高性能伝熱面が数多く提案さ
れているが、まだ安価で実用に供されたものはない。
Further, heat transfer tubes used in heat exchangers for heat pump air conditioners are required to have both high boiling heat transfer and high condensing heat transfer due to the characteristics of the product. From this point of view, many high-performance heat transfer surfaces have been proposed using the Menki method, sintering method, machining method, etc., but none have yet been put into practical use at low cost.

メッキ法のl例として、特開昭63−273790号公
報で出願されたものがある。これは銅管内に硫酸銅溶液
を流しながら、電気分解により鋼管内壁に多孔メッキ層
を形成する工法である。この工法では、沸騰熱伝達率は
溝付管対比約2倍以上と向上するが、凝縮熱伝達率は溝
付管よりむしろやや低下する。これはa縮液が多孔質層
の中の微小空洞にホールドされ、伝熱面の大部分が熱抵
抗の大きなフロン系冷媒で覆われるため伝熱性能が低下
するためである。また、多孔質層の空隙が狭いために、
沸騰液中に含まれている不純物が析出し、空隙に目詰り
が生じ、性能劣化を招ねくなどの欠点がある。
An example of a plating method is the one filed in Japanese Patent Laid-Open No. 63-273790. This is a method of forming a porous plating layer on the inner wall of a steel pipe by electrolysis while flowing a copper sulfate solution into the pipe. In this construction method, the boiling heat transfer coefficient is improved to more than twice that of the grooved pipe, but the condensing heat transfer coefficient is rather lower than that of the grooved pipe. This is because the a-condensed liquid is held in microcavities in the porous layer, and most of the heat transfer surface is covered with a fluorocarbon-based refrigerant with high thermal resistance, resulting in a decrease in heat transfer performance. In addition, because the voids in the porous layer are narrow,
There are drawbacks such as impurities contained in the boiling liquid precipitate, clogging the voids and causing performance deterioration.

焼結法は金属粒子とバインダを混合したものを伝熱面に
加熱圧着することにより、多孔質層を形戒する方法であ
る。これもメンキ法によく似た構造のため、上記問題が
生しる. 機械加工法の代表的なものに特開昭51−45353号
公報に示す商品名「サーモエクセル」とよばれる伝熱面
がある。これは切削により溝加工を行ない、断面が矩形
状のフィンを戒形する。このフィンの先端を一定間隔で
V字状切欠きを作り、その後フィン先端をローラ等で折
曲げ、空洞部上ぶたに一定間隔で開口部を開けたトンネ
ル状空洞部を備えた伝熱面を形成する。トンネル内にホ
ールドされた冷媒液は加熱され華発し、開口部から気泡
となって離脱するが、この時他の不活性開口部から液が
侵入し、気泡発生が連続的に行なわれ、その結果沸騰熱
伝達が促進される。サーモエクセルは構造上、沸騰熱伝
達には有効であるが、凝縮にはトンネル空洞内に凝縮液
が詰まり凝縮熱伝達はむしろ悪くなる。
The sintering method is a method of forming a porous layer by hot-pressing a mixture of metal particles and a binder onto a heat transfer surface. This also has a structure similar to the Menki method, so the above problem occurs. A typical example of the machining method is a heat transfer surface known as "Thermo Excel" as disclosed in Japanese Patent Application Laid-Open No. 51-45353. This is done by cutting grooves to form fins with a rectangular cross section. V-shaped notches are made at the tips of the fins at regular intervals, and then the fin tips are bent with a roller to form a heat transfer surface with tunnel-like cavities with openings made at regular intervals on the upper lid of the cavity. Form. The refrigerant liquid held in the tunnel is heated and blooms, forming bubbles and leaving the opening. At this time, liquid enters from other inert openings, and bubbles are continuously generated. Boiling heat transfer is promoted. Due to its structure, ThermoExcel is effective for boiling heat transfer, but for condensation, the tunnel cavity is clogged with condensate, making condensation heat transfer worse.

があった。即ち、ヒートポンプ式空調機に用いるフィン
アンドチューブ形熱交換器はl種類の熱交換器で芸発あ
るいは凝縮のいずれかの熱交換作用を行うため、蒸発及
び凝縮ともに伝熱性能が優れたものが要求されるが、そ
の両方を満足するものがなかった。
was there. In other words, the fin-and-tube heat exchanger used in a heat pump air conditioner is one type of heat exchanger that performs either a heat exchange action or a condensation action, so one that has excellent heat transfer performance in both evaporation and condensation is important. However, there was nothing that could satisfy both requirements.

また、従来の空調用銅管はフローティングプラグと呼ば
れる外面に溝を刻んだ砲弾状工具を管内に挿入し、転造
加工により製造していたため、加工速度に限界があり、
せいぜい20〜30m/minで製造コストが高かった
。従って、従来工法を上まわる加工速度を達或する低コ
ストの製造方法の実現が望まれているが、現在に至るも
それが達威されていない。
In addition, conventional copper pipes for air conditioning were manufactured by inserting a bullet-shaped tool called a floating plug with a groove on the outside into the pipe and rolling process, which had a limit on processing speed.
The manufacturing cost was high because the speed was 20 to 30 m/min at most. Therefore, it is desired to realize a low-cost manufacturing method that can achieve processing speeds higher than conventional methods, but this has not been achieved to date.

(課題を解決するための手段〕 本発明は上記課題の解決手段として、次の(1)〜(3
)項に記載の各伝熱管及び(4)項に記載の伝熱管の製
造方法を提供しようとするものである。
(Means for Solving the Problems) The present invention provides the following (1) to (3) as means for solving the above problems.
The present invention aims to provide each heat exchanger tube described in item (4) and a method for manufacturing the heat exchanger tube described in item (4).

(1)管内壁に規則的に形成された主溝と、同主溝に規
則的に交差し、かつ、同主溝より浅く形戒された副溝と
、前記主溝間の一部の相対する突起部が前記副溝の塑性
加工により前記主溝内へ押出されてその側断面が鳩尾状
の空洞部を形成すると共に同側断面の断面積をSmm”
、近接する双方の突起部間の開口幅をcJmmとしたと
き、d≦0.1mmの条件下でS/d≦2をなす関係と
を具備してなることを特徴とする伝熱管。
(1) A main groove regularly formed on the inner wall of the pipe, a minor groove that regularly intersects the main groove and is shallower than the main groove, and a part of the relationship between the main grooves. The protrusion is extruded into the main groove by plastic working of the minor groove to form a cavity whose side cross section is dovetail-shaped, and the cross-sectional area of the same side cross section is Smm''.
A heat exchanger tube having the following relationship: S/d≦2 under the condition of d≦0.1 mm, where cJmm is the opening width between both adjacent protrusions.

(2)管内壁に規則的に形成された主溝と同主溝に規則
的に交差し、かつ、同主溝より浅く形成された副溝と、
前記主溝間の一部の相対する突起部が前記副溝の塑性加
工により前記主溝内へ押出されてその側断面が鳩尾状を
なす空洞部と、前記副溝の形状がその溝断面積をAIl
lI12、溝周長をLwmとしたとき、その等価直径d
e (de = 4^/いが0,15〜0.35mをな
す関係とを具備してなることを特徴とする伝熱管。
(2) a main groove regularly formed on the inner wall of the pipe, and a sub-groove that regularly intersects with the main groove and is shallower than the main groove;
A part of the opposing protrusion between the main grooves is pushed out into the main groove by plastic working of the sub-groove, and the side cross section thereof is dovetail-shaped. AIl
lI12, when the groove circumference is Lwm, its equivalent diameter d
A heat exchanger tube characterized in that it has a relationship of 0.15 to 0.35 m.

(3)上記(1)に記載の空洞部と上記(2)に記載の
副溝とを具備してなることを特徴とする伝熱管。
(3) A heat exchanger tube comprising the cavity described in (1) above and the sub-groove described in (2) above.

(4)帯状金属板の表面に主溝ロールと副溝ロールとに
より規則的な主溝と、同主溝に規則的に交差し、かつ同
主溝より浅い副溝とを形成し、前記主溝間の突起部の一
部を前記副溝の副溝ロールによる塑性加工時に前記主溝
内に押出して鳩尾状の空洞部と前記突起部とを成形した
後、前記帯状金属板をフォーミングロールで管状に戒形
し、同金属板の縁同志を接合して管とすることを特徴と
する伝熱管の製造方法。
(4) Form regular main grooves and sub-grooves that regularly intersect the main grooves and are shallower than the main grooves by using main groove rolls and sub-groove rolls on the surface of the strip-shaped metal plate, and A part of the protrusion between the grooves is extruded into the main groove during plastic working with a sub-groove roll of the sub-groove to form a dovetail-shaped cavity and the protrusion, and then the band-shaped metal plate is formed with a forming roll. A method for producing a heat exchanger tube, characterized by forming the same metal plate into a tube shape and joining the edges of the same metal plate to form a tube.

〔作 用] 本発明は上記のように構或されるので次の作用を有する
[Function] Since the present invention is constructed as described above, it has the following function.

即ち、本発明の電縫伝熱管は管内壁に主溝と副溝を交差
状に備え、かつ、主溝間の突起部が主溝間ペ押出されて
鳩尾状の空洞部を形成するため、冷媒の蒸発及び凝縮伝
熱促進が計られる。蒸発の場合、鳩尾状空洞部は溝底幅
に対して、先端の開口幅が狭まく、かつ関口幅を0.1
m++以下にすると、表面張力の小さいフロン系冷媒で
は空洞部内に気泡核が安定的に存在する。伝熱壁面を通
した伝熱により気泡核が加熱されると、気泡界面からの
蒸発により、蒸気泡の容積が増大し、葵気泡内の圧力も
上昇する。蒸気泡内圧が空洞内に安定して存在する限界
圧を越えると、空洞開口部から気泡が離脱し、それ以外
の不活性な開口部から飽和液が侵入し、トンネル状の空
洞内を通って飽和液が供給される。以上の発泡サイクル
が連続して行なわれ、沸騰伝熱促進が飛躍的に向上する
。また、主溝と副溝とによって台形状の突起が生しるが
凝縮の場合、台形状突起は突起の頂角が鋭角で、かつ、
副溝底幅の平坦部が長いほど、表面張力の小さいフロン
系冷媒では突起における凝縮液膜が副溝底に強く引寄せ
られ、副溝の谷が凝縮液の液はけ溝として作用する結果
、突起部の平均液膜厚さが薄くなり凝縮伝熱が促進され
る。
That is, the electric resistance welded heat exchanger tube of the present invention has main grooves and sub-grooves intersecting on the inner wall of the tube, and the protrusion between the main grooves is pushed out between the main grooves to form a dovetail-shaped cavity. The evaporation and condensation heat transfer of the refrigerant is promoted. In the case of evaporation, the opening width at the tip of the dovetail cavity is narrower than the width of the groove bottom, and the width of the entrance is 0.1.
When it is less than m++, bubble nuclei stably exist within the cavity in a fluorocarbon-based refrigerant having a small surface tension. When the bubble nucleus is heated by heat transfer through the heat transfer wall surface, the volume of the vapor bubble increases due to evaporation from the bubble interface, and the pressure inside the Aoi bubble increases. When the internal pressure of the vapor bubble exceeds the critical pressure that exists stably within the cavity, the bubble separates from the cavity opening, and the saturated liquid enters from the other inert opening and passes through the tunnel-shaped cavity. Saturated liquid is supplied. The above foaming cycle is performed continuously, and the promotion of boiling heat transfer is dramatically improved. In addition, a trapezoidal projection is formed by the main groove and the minor groove, but in the case of condensation, the trapezoidal projection has an acute apex angle, and
The longer the flat part of the sub-groove bottom width is, the more the condensate film on the protrusions is attracted to the sub-groove bottom for fluorocarbon-based refrigerants with low surface tension, and the valleys of the sub-groove act as drainage grooves for condensate. , the average liquid film thickness of the protrusions becomes thinner and condensation heat transfer is promoted.

以上の結果、一種類の伝熱管をたとえばフィンアンドチ
ューブ式空気熱交換器に用いた場合、凝縮と蒸発の両機
能が共に十分に発揮される.従って、年間を通して冷暖
房空調を行うヒートボンブ式空調機の効率を一層向上さ
せる. また、本発明の製造方法によれば予め帯状金属板の表面
に主溝ロールと副溝ロールとにより、交差状の溝を設け
、かつ、上記伝熱管が備える鳩尾状の空洞部を形成した
後、管として成形するので加工能率が著しく高まり、加
工コストが下る。
As a result of the above, when one type of heat transfer tube is used in, for example, a fin-and-tube air heat exchanger, both condensation and evaporation functions can be fully demonstrated. Therefore, the efficiency of heat bomb type air conditioners, which provide heating, cooling, and air conditioning throughout the year, will be further improved. Further, according to the manufacturing method of the present invention, after forming cross-shaped grooves in advance on the surface of the band-shaped metal plate using a main groove roll and a sub-groove roll, and forming a dovetail-shaped cavity provided in the heat exchanger tube, Since it is formed into a tube, processing efficiency is significantly increased and processing costs are reduced.

[実施例〕 本発明の一実施例に係る電縫伝熱管詳しくは内壁に交差
溝を有する伝熱管を第1図ないし第11図により説明す
る。
[Embodiment] An electric resistance welded heat exchanger tube according to an embodiment of the present invention, specifically a heat exchanger tube having intersecting grooves on its inner wall, will be explained with reference to FIGS. 1 to 11.

先ず、本実施例の基本概念を第7図によって説明すると
、後述する第1図のような主溝1l、副溝12の交差溝
を金属平板にエンボス加工後、第7図に示すように管状
に戒形し、縁9】同士を高周波溶接し、電縫伝熱管10
0を得るものである。その際、副溝12の溝深さを主溝
l1の溝深さよりも浅くし、主溝l1同士の間の台形状
の突起、即ち山13の一部が副溝l2の塑性加工により
主溝Il内に押出されて山13同士との間に鳩尾状の空
洞部14を形成し、凝縮促進用の台形状フィン、即ち山
13と、蒸発促進用の空洞部14とが備わるものである
First, the basic concept of this embodiment will be explained with reference to FIG. 7. After embossing intersecting grooves of the main groove 1l and the sub-groove 12 as shown in FIG. The edges 9] are high-frequency welded together, and the ERW heat exchanger tube 10 is
0 is obtained. At that time, the groove depth of the sub-groove 12 is made shallower than that of the main groove l1, and a part of the trapezoidal protrusion between the main grooves l1, that is, a part of the peak 13, is formed in the main groove by plastic working of the sub-groove l2. It is extruded into Il to form a dovetail-shaped cavity 14 between the peaks 13, and is provided with trapezoidal fins or peaks 13 for promoting condensation and a cavity 14 for promoting evaporation.

次に本実施例の詳細について説明する.第1図は第7図
の電縫伝熱管1ooの内面の部分拡大図で、主溝1lと
副溝l2とが交差状に施され、それらの間には自然に山
13が形成される。なお、図中、Dは主溝の方向、Eは
副溝の方向である。
Next, details of this example will be explained. FIG. 1 is a partial enlarged view of the inner surface of the electric resistance welded heat exchanger tube 1oo shown in FIG. 7, in which the main groove 1l and the sub-groove l2 are formed in an intersecting manner, and a mountain 13 is naturally formed between them. In addition, in the figure, D is the direction of the main groove, and E is the direction of the minor groove.

第2図は第1図の平面展開図を概念的に表わした図であ
る。
FIG. 2 is a diagram conceptually representing the developed plan view of FIG. 1.

第3図は第2図の■一■矢視断面図で第4図に示すよう
な台形状断面の転造ロールで主溝1lを形成し、その後
、第6図のような三角形状の転造ロールで交差状にエン
ボス加工すると、山13を先端の鋭角なくさび状の転造
ロールで押圧ずることになり山l3の一部が主溝の谷1
lbへ押出されて、主溝11の溝底幅に対して、上方の
開口部の幅が狭くなった鳩尾状の空洞部14を形成する
。なお、12bは副漠の谷である。
Figure 3 is a cross-sectional view taken along arrows 1 and 2 in Figure 2, and the main groove 1l is formed with a rolling roll having a trapezoidal cross section as shown in Figure 4, and then a triangular rolling roll as shown in Figure 6 is used. When embossing is carried out in a cross shape with forming rolls, the ridges 13 are pressed by the wedge-shaped forming rolls with acute angles, and a part of the ridges 13 become the valleys 1 of the main groove.
1b to form a dovetail-shaped cavity 14 in which the width of the upper opening is narrower than the width of the bottom of the main groove 11. Note that 12b is a desert valley.

このときに主溝11を加工する転造ロールの波形は第4
図の台形状波形で、台形の頂角が10゜〜30’とでき
るだけ小さく、斜面ができるだけ垂直に近い切立った矩
形に近い断面プロフィルをもつ場合が空洞部14を形戒
しやすい。
At this time, the waveform of the rolling roll that processes the main groove 11 is the fourth
In the trapezoidal waveform shown in the figure, it is easy to determine the shape of the cavity 14 when the apex angle of the trapezoid is as small as possible, 10° to 30', and the slope is as vertical as possible and has a cross-sectional profile close to a steep rectangle.

山13は副溝12の加工前では断面が一定の直線状の台
形状フィンが形成されたま\であるが、副溝l2の加工
により台形状フィンが一定間隔で中断され、台形状突起
の山13が形成される。副溝12を加工する転造ロール
の波形は第6図に示す先端が鋭角な三角形波状の断面プ
ロフィルが山13を塑性変形させ、鳩尾状の空洞部l4
を形成させやすいが、副溝12の底幅をある程度確保す
るためには第4図の台形状、第5図の正弦波状の何れで
もよい。
Before machining the sub-grooves 12, the ridges 13 are straight trapezoidal fins with a constant cross section, but by machining the sub-grooves 12, the trapezoidal fins are interrupted at regular intervals, and the crests of trapezoidal projections are formed. 13 is formed. The waveform of the rolling roll for forming the sub-groove 12 has a triangular wavy cross-sectional profile with an acute angle as shown in FIG.
However, in order to ensure the bottom width of the sub-groove 12 to a certain extent, either the trapezoidal shape shown in FIG. 4 or the sinusoidal shape shown in FIG. 5 may be used.

これら主溝ロール、副溝ロール及びそれらによって形成
される空洞部、副溝の望ましい形状を示すと下記のとお
りである。
Desirable shapes of the main groove roll, the sub-groove roll, the cavity formed by them, and the sub-groove are as follows.

主溝ロール(第8図(a)参照); 溝直角断面形状一−一一一一台形状 l1 台形上辺寸法l1と溝高さh1との比,一玉1h+ 台形頂角θ. −−−−− 30゜以下溝高さt++ 
 −−−−−0.3mm以下pI 溝ピッチIl+と溝高さh+との比    ≧1.5h 副溝ロール(第8図但)参照); 溝直角断面形状一一−一−三角形状 押込先端幅Wと溝高さh2との比−≦0.3h2 溝頂角θz  −−−−−706以下 溝高さtLz  −−−−−0.4肋以下pz 溝ビンチp2と溝高さh2との比    ≧1.5h2 上記主溝ロールと副溝ロールを組合せて転造加工をした
結果、下記構造の空洞部と副溝を得た。
Main groove roll (see FIG. 8(a)); Groove perpendicular cross-sectional shape 1-111 trapezoid shape l1 Ratio of trapezoid upper side dimension l1 to groove height h1, one ball 1h + trapezoid apex angle θ. −−−−− Groove height t++ less than 30°
----0.3mm or less pI Ratio of groove pitch Il+ to groove height h+ ≧1.5h Sub-groove roll (see Fig. 8); Groove right-angled cross-sectional shape 1-1-triangular pushing tip Ratio of width W and groove height h2 -≦0.3h2 Groove apex angle θz ------706 or less groove height tLz ------0.4 rib or less pz Groove pin p2 and groove height h2 ratio ≧1.5h2 As a result of rolling processing using the above-mentioned main groove roll and sub-groove roll in combination, a hollow portion and a sub-groove having the following structure were obtained.

空洞部(第8図(Cl参照): 主溝と副溝の交点で、主溝に直角な断面において、空洞
部の断面積Sと開口幅dとの間に下記の関係を満たす空
洞部構造とする. S/d≦2(d≦0.1閣) 副溝; 第9図(C)に示す副溝形状において、斜線で囲った溝
通路断面積をA、周長をLとすると、副溝4A の等価直径deはde=一となる。転造加工後L の副溝の形状がde=0.15〜0.35mmとなるよ
うに、加工条件、ロール形状を調整する。
Cavity (see Figure 8 (Cl)): A cavity structure that satisfies the following relationship between the cross-sectional area S of the cavity and the opening width d in a cross section perpendicular to the main groove at the intersection of the main groove and the minor groove. S/d≦2 (d≦0.1) Minor groove: In the minor groove shape shown in Fig. 9 (C), if the cross-sectional area of the groove passage surrounded by diagonal lines is A, and the circumference is L, then The equivalent diameter de of the minor groove 4A is de = 1. The processing conditions and roll shape are adjusted so that the shape of the minor groove L after rolling becomes de = 0.15 to 0.35 mm.

上記のようにして得られた実施例について、外径9.5
2mmφの電縫伝熱管の内面に第1図に示すような交差
溝を備え、かつ、空洞部l4の形状の異なる数種類の供
試管を用意し、蒸発及び凝縮伝熱特性を調査した結果は
次通りであった。(但し、符号は省略する) 即ち、第9図(a)は空洞部の断面積S(m”)と開口
輻d(lIIII+)の比を横軸に草発熱伝達比(ベア
管対比の熱伝達率比)を縦軸に試験データを整理した結
果であるが、S/d=0.5付近にピーク値が存在し、
S/dが大きくなるほど熱伝達率が低下することが分っ
た。従って、S/d≦2でd≦0.1鵬という条件を満
たすような空洞部は蒸発熱伝達促進に有効である。
Regarding the example obtained as described above, the outer diameter was 9.5
We prepared several types of test tubes with intersecting grooves as shown in Figure 1 on the inner surface of 2 mmφ electric resistance welded heat transfer tubes, and with different shapes of cavity l4, and investigated the evaporation and condensation heat transfer characteristics.The results are as follows. It was on the street. (However, the numbers are omitted.) In other words, Fig. 9(a) shows the grass heat transfer ratio (the heat transfer ratio compared to the bare tube) with the ratio of the cross-sectional area S (m'') of the cavity and the opening radius d (lIII+) as the horizontal axis. This is the result of organizing the test data along the vertical axis (transmission ratio), and there is a peak value near S/d = 0.5,
It was found that the larger the S/d, the lower the heat transfer coefficient. Therefore, a cavity that satisfies the conditions of S/d≦2 and d≦0.1 is effective in promoting evaporative heat transfer.

また、第9図(b)は副溝の等価直径をdeとし、第9
図(C)の斜線部の断面積をA、周長をLとして等価直
径deを求め、これを横軸に凝縮熱伝達比(ベア管対比
の熱伝達率比)を縦軸に、試験データを整理した結果で
ある, deが0.25■付近にピーク値が存在し、そ
の前後では熱伝達率が低下する傾向幅を定めると4!縮
熱伝達促進に有効である.なお、溝底幅を広げすぎると
、溝ピンチが広くなりすぎて、機械拡管により、台形状
突起の山がつぶれ易すくなり、広くすることにも限界が
ある。
In addition, in Fig. 9(b), the equivalent diameter of the minor groove is de, and the 9th
Determine the equivalent diameter de with the cross-sectional area of the shaded area in Figure (C) as A and the circumference as L, and use this as the horizontal axis and the condensing heat transfer ratio (heat transfer coefficient ratio compared to the bare tube) as the vertical axis, and test data. As a result of arranging the above, there is a peak value around de of 0.25■, and if we define the range in which the heat transfer coefficient tends to decrease before and after that, it is 4! It is effective in promoting heat transfer. Note that if the groove bottom width is made too wide, the groove pinch will become too wide, and the peaks of the trapezoidal protrusions will be easily crushed by mechanical tube expansion, so there is a limit to how wide the groove bottom can be made.

第12. 13図に示す従来のらせん溝付管と、本実施
例の伝熱性能を比較した結果を第10図と第1l図に示
す。両図とも縦軸はらせん溝付管との熱伝達率比率をあ
らわし、横軸は冷媒流量をあらわす。
12th. The results of comparing the heat transfer performance of this example with the conventional spiral grooved tube shown in FIG. 13 are shown in FIGS. 10 and 1l. In both figures, the vertical axis represents the heat transfer coefficient ratio with the spiral grooved tube, and the horizontal axis represents the refrigerant flow rate.

蒸発の場合はらせん溝付管の約2倍、凝縮の場合はらせ
ん溝付管の約1.5倍、熱伝達率が向上する。
In the case of evaporation, the heat transfer coefficient is approximately twice as high as that of a spirally grooved tube, and in the case of condensation, it is approximately 1.5 times as high as that of a spirally grooved tube.

また、加工上の効果についても調査した結果、従来の溝
付管の引抜加工(フローティングプラグによる転造加工
)の加工速度は約20〜30m/minであるが、本実
施例の加工に用いる工法では加工速度が約60〜80m
/Ilinで従来の引抜加工の約2〜3倍速くなり、従
って銅管コストが低下するという結果が得られた。
Furthermore, as a result of investigating the effects on processing, it was found that the processing speed of conventional drawing processing (forming processing using a floating plug) of a grooved tube is approximately 20 to 30 m/min, but the processing speed used in the processing of this example The machining speed is about 60 to 80 m.
/Ilin is about 2 to 3 times faster than conventional drawing, and therefore reduces the cost of copper tubes.

以上の通り、本実施例によれば、予め、金属平板に主溝
、副溝を交差させてエンボス加工し、それによって生し
る山(台形状の突起)同士を鳩尾状の空洞部を形収する
よう押出させるので沸騰熱伝達性及び凝縮熱伝達性共に
高い伝熱管が得られるという利点がある。また、加工能
率が高いので、伝熱管を低コストで得られるという利点
もある。
As described above, according to this embodiment, the main groove and the sub-groove are embossed in advance so as to intersect with each other on the metal plate, and the resulting peaks (trapezoidal protrusions) form a dovetail-shaped cavity. Since the tube is extruded so as to be concentrated, it has the advantage that a heat transfer tube with high boiling heat transfer properties and high condensation heat transfer properties can be obtained. Furthermore, since the processing efficiency is high, there is also the advantage that heat exchanger tubes can be obtained at low cost.

[発明の効果〕 本発明は上記のように構威されるので次の効果を有する
[Effects of the Invention] Since the present invention is structured as described above, it has the following effects.

即ち、管内壁に主溝と副溝とを交差させて施し、両溝間
の突起となる部分を一部、主溝側へ双方から押出して鳩
尾状の空洞部とするので、沸騰熱伝達性及び凝縮熱伝達
性共に高い、電縫伝熱管が得られる。
In other words, a main groove and a sub-groove are formed on the inner wall of the pipe so as to cross each other, and a part of the protrusion between the two grooves is pushed out from both sides toward the main groove to form a dovetail-shaped cavity, which improves boiling heat transfer. An electric resistance welded heat exchanger tube having high condensation heat transfer properties can be obtained.

また、予め、帯状金属板の表面に主溝、副溝を規則的、
かつ交差状に加工し、その他、所要の加工を施した後、
帯状金属板を管状に威形するので加工能率が高く、低コ
ストで電縫伝熱管が得られる。
In addition, the main grooves and sub-grooves are formed regularly on the surface of the band-shaped metal plate in advance.
After processing it into a cross shape and performing other necessary processing,
Since the band-shaped metal plate is shaped into a tubular shape, processing efficiency is high, and an electric resistance welded heat exchanger tube can be obtained at low cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る電縫伝熱管の展開斜視
図、第2図は第1図の展開平面図、第3図は第2図の■
一■矢視断面図、第4図,第5図第6図は上記実施例に
おける主溝、副溝等の転造加工ダイスの斜視図、第7図
は上記実施例の11伝熱管の斜視図、第8図は上記実施
例の加工に用いるロール等の形状及びそれらによって形
成された空洞部等の望ましい形状を定量的に示すための
図で、(a)は主溝ロールの一部断面図、(b)は副溝
ロールの一部断面図、(C)はそれらによって成形され
た電縫伝熱管内壁の空洞部の一部断面図、第9図は上記
実施例の特性図で、(a)は空洞部の沸騰熱伝達比を空
洞部の断面積S/開口輻dについて示した線図、(b)
は副溝の凝縮熱伝達比を副漠の等価直径deについて示
した線図、(C)は上記(ハ)に用いる等価直径deと
副溝の断面積A及び周長Lとの関係を示した模式図、第
lO図は従来例と上記実施例との蒸発熱伝達性能の比較
図、第11図は同しく凝縮熱伝達性能の比較図、第12
図は従来の溝付伝熱管の斜視図、第13図は第12図の
従来の溝付伝熱管の内面の部分拡大図である。 11・・・主溝 12・・・副溝 13・・・山 9l・・・縁 1lb・・・主溝の谷 !2b・・・副溝の谷 14・・・空洞部 100・・・電縫伝熱管。 代 理 人
Fig. 1 is a developed perspective view of an ERW heat exchanger tube according to an embodiment of the present invention, Fig. 2 is a developed plan view of Fig. 1, and Fig. 3 is a
1-2 arrow sectional view, Figures 4, 5, and 6 are perspective views of the rolling dies for main grooves, minor grooves, etc. in the above embodiment, and Figure 7 is a perspective view of 11 heat exchanger tubes in the above embodiment. Fig. 8 is a diagram for quantitatively showing the shape of the rolls used in the processing of the above embodiment and the desirable shape of the cavity formed by them, and (a) is a partial cross-section of the main groove roll. Fig. 9(b) is a partial cross-sectional view of the sub-groove roll, (C) is a partial cross-sectional view of the hollow part of the inner wall of the ERW heat exchanger tube formed by them, and Fig. 9 is a characteristic diagram of the above embodiment. (a) is a diagram showing the boiling heat transfer ratio of the cavity in relation to the cross-sectional area S/opening radius d of the cavity, (b)
is a diagram showing the condensation heat transfer ratio of the sub-groove with respect to the equivalent diameter de of the sub-groove, and (C) shows the relationship between the equivalent diameter de used in (c) above, the cross-sectional area A and the circumference L of the sub-groove. FIG. 11 is a comparison diagram of the condensing heat transfer performance, and FIG.
The figure is a perspective view of a conventional grooved heat exchanger tube, and FIG. 13 is a partially enlarged view of the inner surface of the conventional grooved heat exchanger tube of FIG. 12. 11... Main groove 12... Minor groove 13... Mountain 9l... Edge 1lb... Valley of main groove! 2b...Trough of sub-groove 14...Cavity portion 100...Electrence welded heat exchanger tube. agent

Claims (4)

【特許請求の範囲】[Claims] (1)管内壁に規則的に形成された主溝と、同主溝に規
則的に交差し、かつ、同主溝より浅く形成された副溝と
、前記主溝間の一部の相対する突起部が前記副溝の塑性
加工により前記主溝内へ押出されてその側断面が鳩尾状
の空洞部を形成すると共に同側断面の断面積をSmm^
2、近接する双方の突起部間の開口幅をdmmとしたと
き、d≦0.1mmの条件下でS/d≦2をなす関係と
を具備してなることを特徴とする伝熱管。
(1) A main groove regularly formed on the inner wall of the pipe, a sub-groove that regularly intersects with the main groove and is shallower than the main groove, and a part of the main groove that faces the main groove. The protrusion is pushed out into the main groove by plastic working of the minor groove, forming a cavity whose side cross section is dovetail-shaped, and the cross-sectional area of the same side cross section is Smm^.
2. A heat exchanger tube characterized by having the following relationship: S/d≦2 under the condition of d≦0.1 mm, where dmm is the opening width between both adjacent protrusions.
(2)管内壁に規則的に形成された主溝と同主溝に規則
的に交差し、かつ、同主溝より浅く形成された副溝と、
前記主溝間の一部の相対する突起部が前記副溝の塑性加
工により前記主溝内へ押出されてその側断面が鳩尾状を
なす空洞部と、前記副溝の形状がその溝断面積をAmm
^2、溝周長をLmmとしたとき、その等価直径de(
de=4A/L)が0.15〜0.35mmをなす関係
とを具備してなることを特徴とする伝熱管。
(2) a main groove regularly formed on the inner wall of the pipe, and a sub-groove that regularly intersects with the main groove and is shallower than the main groove;
A part of the opposing protrusion between the main grooves is pushed out into the main groove by plastic working of the sub-groove, and the side cross section thereof is dovetail-shaped. Amm
^2, When the groove circumference is Lmm, its equivalent diameter de(
de=4A/L) is 0.15 to 0.35 mm.
(3)請求項(1)に記載の空洞部と請求項(2)に記
載の副溝とを具備してなることを特徴とする伝熱管。
(3) A heat exchanger tube comprising the cavity according to claim (1) and the sub-groove according to claim (2).
(4)帯状金属板の表面に主溝ロールと副溝ロールとに
より規則的な主溝と、同主溝に規則的に交差し、かつ同
主溝より浅い副溝とを形成し、前記主溝間の突起部の一
部を前記副溝の副溝ロールによる塑性加工時に前記主溝
内に押出して鳩尾状の空洞部と前記突起部とを成形した
後、前記帯状金属板をフォーミングロールで管状に成形
し、同金属板の縁同志を接合して管とすることを特徴と
する伝熱管の製造方法。
(4) Form regular main grooves and sub-grooves that regularly intersect the main grooves and are shallower than the main grooves by using main groove rolls and sub-groove rolls on the surface of the strip-shaped metal plate, and A part of the protrusion between the grooves is extruded into the main groove during plastic working with a sub-groove roll of the sub-groove to form a dovetail-shaped cavity and the protrusion, and then the band-shaped metal plate is formed with a forming roll. A method for manufacturing a heat exchanger tube, characterized by forming the same metal plate into a tube shape and joining the edges of the same metal plate to form a tube.
JP2001033A 1990-01-09 1990-01-09 ERW heat transfer tube and its manufacturing method Expired - Lifetime JP2580353B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001033A JP2580353B2 (en) 1990-01-09 1990-01-09 ERW heat transfer tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001033A JP2580353B2 (en) 1990-01-09 1990-01-09 ERW heat transfer tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JPH03207995A true JPH03207995A (en) 1991-09-11
JP2580353B2 JP2580353B2 (en) 1997-02-12

Family

ID=11490256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001033A Expired - Lifetime JP2580353B2 (en) 1990-01-09 1990-01-09 ERW heat transfer tube and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2580353B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339530A (en) * 1991-05-16 1992-11-26 Kobe Steel Ltd Heat-transfer pipe and manufacture of the same
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
US5975196A (en) * 1994-08-08 1999-11-02 Carrier Corporation Heat transfer tube
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
WO2000034730A1 (en) * 1998-12-04 2000-06-15 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
US6412549B1 (en) * 1994-12-28 2002-07-02 Hitachi, Ltd. Heat transfer pipe for refrigerant mixture
JP2005351531A (en) * 2004-06-09 2005-12-22 Furukawa Electric Co Ltd:The Inner face grooved tube and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04339530A (en) * 1991-05-16 1992-11-26 Kobe Steel Ltd Heat-transfer pipe and manufacture of the same
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
US5458191A (en) * 1994-07-11 1995-10-17 Carrier Corporation Heat transfer tube
US5975196A (en) * 1994-08-08 1999-11-02 Carrier Corporation Heat transfer tube
US6412549B1 (en) * 1994-12-28 2002-07-02 Hitachi, Ltd. Heat transfer pipe for refrigerant mixture
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
WO2000034730A1 (en) * 1998-12-04 2000-06-15 Outokumpu Copper Franklin, Inc. Heat transfer tube with crack-like cavities to enhance performance thereof
JP2005351531A (en) * 2004-06-09 2005-12-22 Furukawa Electric Co Ltd:The Inner face grooved tube and its manufacturing method
JP4630005B2 (en) * 2004-06-09 2011-02-09 古河電気工業株式会社 Internal grooved tube and manufacturing method thereof

Also Published As

Publication number Publication date
JP2580353B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
US6026892A (en) Heat transfer tube with cross-grooved inner surface and manufacturing method thereof
CN1084873C (en) Heat transfer tube
RU2179292C2 (en) Heat-exchanger tube
US5682946A (en) Tube for use in a heat exchanger
US6298909B1 (en) Heat exchange tube having a grooved inner surface
EP0603108A1 (en) Heat exchanger tube
JPH05106990A (en) Heat transfer tube with inner surface groove and manufacture thereof
US6176301B1 (en) Heat transfer tube with crack-like cavities to enhance performance thereof
JPH06201286A (en) Heat transfer pipe
JPH03207995A (en) Butt seam welded heat transfer tube and manufacture thereof
JPS60216190A (en) Heat transfer pipe and manufacture thereof
JPH08168817A (en) Production of heat exchanger having inner groove
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2628712B2 (en) Method of forming heat transfer surface
JPH0968396A (en) Heat exchanger
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JPH10300379A (en) Heat exchanger tube having groove in internal surface
JP2749673B2 (en) Heat transfer tube and method of manufacturing the same
JP2731624B2 (en) Heat exchange equipment
JPH06101986A (en) Heat exchanger tube with grooved internal wall
JP4630005B2 (en) Internal grooved tube and manufacturing method thereof
JPH02280933A (en) Heat transfer tube and manufacture thereof
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP3130964B2 (en) Heat transfer tube with inner groove and method of manufacturing the same