JP4389565B2 - Boiling heat transfer tube and manufacturing method thereof - Google Patents

Boiling heat transfer tube and manufacturing method thereof Download PDF

Info

Publication number
JP4389565B2
JP4389565B2 JP2003403679A JP2003403679A JP4389565B2 JP 4389565 B2 JP4389565 B2 JP 4389565B2 JP 2003403679 A JP2003403679 A JP 2003403679A JP 2003403679 A JP2003403679 A JP 2003403679A JP 4389565 B2 JP4389565 B2 JP 4389565B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
boiling
fin
fins
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003403679A
Other languages
Japanese (ja)
Other versions
JP2005164126A (en
Inventor
剛 中井
雅春 栗田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003403679A priority Critical patent/JP4389565B2/en
Priority to CNA2004100310466A priority patent/CN1624412A/en
Publication of JP2005164126A publication Critical patent/JP2005164126A/en
Application granted granted Critical
Publication of JP4389565B2 publication Critical patent/JP4389565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/06Methods for forging, hammering, or pressing; Special equipment or accessories therefor for performing particular operations
    • B21J5/068Shaving, skiving or scarifying for forming lifted portions, e.g. slices or barbs, on the surface of the material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、沸騰用伝熱管及びその製造方法に関し、特に、大型冷凍機の液冷媒中に浸漬された状態で前記液冷媒を加熱沸騰させるための伝熱管の伝熱性能を向上させることのできる沸騰用伝熱管及びその製造方法に関する。   The present invention relates to a heat transfer tube for boiling and a manufacturing method thereof, and in particular, can improve the heat transfer performance of a heat transfer tube for heating and boiling the liquid refrigerant in a state of being immersed in the liquid refrigerant of a large refrigerator. The present invention relates to a heat transfer tube for boiling and a manufacturing method thereof.

ターボ冷凍機やスクリュー冷凍機などの大型冷凍機は蒸発器を備えており、この蒸発器には沸騰用伝熱管が用いられている。沸騰用伝熱管は、冷媒液を加熱沸騰するために用いられ、蒸発器内の冷媒液中に浸漬される。沸騰用伝熱管で重要なことは、効果的に熱交換が行われることであり、そのために管外周面に螺旋状のフィンが形成されたものなどが提案されている。例えば、管の外表面にフィンを形成し、このフィンの先端に孔となる切り欠きを設け、そのフィン先端を倒して沸騰伝熱に有効な空洞を設けたものがある(例えば、特許文献1,2,3参照。)。   Large refrigerators such as turbo refrigerators and screw refrigerators are provided with an evaporator, and a heat transfer tube for boiling is used for the evaporator. The heat transfer tube for boiling is used to heat and boil the refrigerant liquid, and is immersed in the refrigerant liquid in the evaporator. What is important in the heat transfer tube for boiling is that heat exchange is performed effectively. For this reason, a tube in which a spiral fin is formed on the outer peripheral surface of the tube has been proposed. For example, a fin is formed on the outer surface of a tube, a notch that is a hole is provided at the tip of the fin, and a cavity effective for boiling heat transfer is provided by tilting the tip of the fin (for example, Patent Document 1). , 2, 3).

図4は、従来の沸騰用伝熱管を示す。この沸騰用伝熱管100は、特許文献1に示された技術思想に基づくものであり、一様な厚みで熱伝導性に優れる金属管101の表面近傍には、所定の断面形状を有する中空の空洞部102が所定間隔に形成されている。更に、空洞部102には、外部(冷媒液)に連通する孔103が所定間隔に空洞部102に直交する方向に形成されている。   FIG. 4 shows a conventional heat transfer tube for boiling. This boiling heat transfer tube 100 is based on the technical idea disclosed in Patent Document 1, and a hollow having a predetermined cross-sectional shape is formed in the vicinity of the surface of the metal tube 101 having a uniform thickness and excellent thermal conductivity. Cavities 102 are formed at a predetermined interval. Furthermore, holes 103 communicating with the outside (refrigerant liquid) are formed in the cavity 102 at a predetermined interval in a direction perpendicular to the cavity 102.

孔103の合計面積と外表面の総面積との割合は2〜50%に設定されている。また、空洞部102は沸騰を促進する機能を持ち、孔103の開口面積を適宜設定することによって空洞部102内の残存蒸気泡を確保することができる。   The ratio between the total area of the holes 103 and the total area of the outer surface is set to 2 to 50%. In addition, the cavity 102 has a function of promoting boiling, and by setting the opening area of the hole 103 as appropriate, residual vapor bubbles in the cavity 102 can be secured.

図5は、従来の他の沸騰用伝熱管を示す。この沸騰用伝熱管200は、略三角形の断面形状を成すと共に中空形状の空洞部202が、金属管201の表面近傍に所定間隔及び平行に溝状に形成されている。更に、空洞部202には、それぞれの頂部を相互に結ぶように所定の深さの間隙203,204(空洞部202内に連通する)が縦横に形成されており、それぞれは空洞部202に連通している(例えば、特許文献4参照。)。   FIG. 5 shows another conventional heat transfer tube for boiling. The boiling heat transfer tube 200 has a substantially triangular cross-sectional shape, and a hollow cavity 202 is formed in the vicinity of the surface of the metal tube 201 in a groove shape in parallel with a predetermined interval. Further, gaps 203 and 204 (which communicate with the inside of the cavity 202) having a predetermined depth are formed in the cavity 202 so as to connect the respective tops to each other, and each communicates with the cavity 202. (For example, refer to Patent Document 4).

空洞部202は、金属管201の外表面に螺旋状のU形溝を形成した後、U形溝の上端を圧縮変形することにより形成される。間隙203,204の幅を0.13mm以下とすることにより、残留蒸気泡を空洞部202内に確保することができる。   The cavity 202 is formed by forming a spiral U-shaped groove on the outer surface of the metal tube 201 and then compressively deforming the upper end of the U-shaped groove. By setting the widths of the gaps 203 and 204 to 0.13 mm or less, residual vapor bubbles can be secured in the cavity 202.

また、沸騰用伝熱管の製造方法としては、切込歯を傾斜させた切込溝形成ディスクを用い、前記切込歯を外面フィンに押圧し、この切込歯の押圧部でフィンの谷部と山部を円周方向に交互に形成すると同時に螺旋状に外面フィンを形成し、更に複数枚のフィン形成ディスクで外面フィンの先端部での断面積の減少を抑制しているものがある(例えば、特許文献3,5参照。)。これにより、フィン先端部の断面積の減少が抑制され、伝熱特性を効果的に高めることができる。
特公昭53−25379号公報 特開平11−316096号公報 特開平1−60332公報 特公昭64−2878号公報 特開平7−151485号公報
In addition, as a method of manufacturing a heat transfer tube for boiling, a notch groove forming disk having an inclined incising tooth is used, the incising tooth is pressed against an outer fin, and a trough portion of the fin is pressed by a pressing portion of the incising tooth. Are formed alternately in the circumferential direction, and at the same time the outer fins are formed in a spiral shape, and a plurality of fin-forming discs suppress the reduction of the cross-sectional area at the tip of the outer fins ( For example, see Patent Documents 3 and 5.) Thereby, the reduction | decrease of the cross-sectional area of a fin front-end | tip part is suppressed, and a heat-transfer characteristic can be improved effectively.
Japanese Patent Publication No.53-25379 Japanese Patent Laid-Open No. 11-316096 Japanese Patent Laid-Open No. 1-60332 Japanese Patent Publication No. 64-2878 JP-A-7-151485

しかし、従来の沸騰用伝熱管によると、近年における熱交換器の高性能化及び小型化の要望に対し、現状の伝熱性能では不十分であり、更なる性能向上が求められている。例えば、特許文献1の伝熱管の場合、空洞部による核沸騰(発泡点を核にして気泡が発生していく沸騰をいう。)は良好であるが、孔から離脱した蒸気泡や周囲の冷媒液が加熱され難いため、伝熱性能を向上させるのは困難である。   However, according to the conventional heat transfer tubes for boiling, the current heat transfer performance is insufficient to meet the recent demand for higher performance and smaller heat exchangers, and further performance improvement is required. For example, in the case of the heat transfer tube of Patent Document 1, nucleate boiling by the hollow portion (referring to boiling in which bubbles are generated with the foaming point as a nucleus) is good, but the vapor bubbles separated from the holes and the surrounding refrigerant Since the liquid is hardly heated, it is difficult to improve the heat transfer performance.

また、特許文献2,3,4の伝熱管の場合、空洞部が管軸方向にも形成されているため、この空洞部から管周方向(円周方向)の空洞部への冷媒液の流入は圧損が大きくなる。また、管軸方向の空洞部と管周方向の空洞部との交差部が開状態であり、核沸騰がなされている管周方向の空洞部に管軸方向の空洞部から冷媒液の一部が流入し、核沸騰がこの部分で阻害されやすくなる。   Further, in the case of the heat transfer tubes of Patent Documents 2, 3, and 4, since the hollow portion is also formed in the tube axis direction, the flow of the refrigerant liquid from the hollow portion to the hollow portion in the pipe circumferential direction (circumferential direction) Increases pressure loss. In addition, the intersection of the hollow portion in the pipe axis direction and the hollow portion in the pipe circumferential direction is in an open state, and a part of the refrigerant liquid passes from the hollow portion in the pipe axial direction to the hollow portion in the pipe circumferential direction where nucleate boiling is performed. Flows in and nucleate boiling is likely to be hindered in this area.

更に、上記した沸騰用伝熱管は、冷媒液が満たされたシェル内に多数の伝熱管を配置して使用される。そのため、上部に配置された伝熱管は下部に配置された伝熱管によって沸騰することで形成された蒸気泡により覆われるため、冷媒液の濡れ性が悪く、本来のパフォーマンスを発揮することができない。   Further, the above-described heat transfer tube for boiling is used by arranging a large number of heat transfer tubes in a shell filled with a refrigerant liquid. For this reason, the heat transfer tube disposed in the upper portion is covered with the vapor bubbles formed by boiling by the heat transfer tube disposed in the lower portion, so that the wettability of the refrigerant liquid is poor and the original performance cannot be exhibited.

したがって、本発明の目的は、冷媒液の濡れ性を改善し、核沸騰の促進により伝熱性能を向上させることのできる沸騰用伝熱管及びその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a heat transfer tube for boiling which can improve the wettability of the refrigerant liquid and improve the heat transfer performance by promoting nucleate boiling, and a method for manufacturing the same.

本発明は、上記の目的を達成するため、第1の特徴として、管本体と、前記管本体の外周面の円周方向に所定間隔で螺旋状又は環状に連続的に鋤起こして形成された複数のフィンと、前記フィンの先端部を抑圧して前記フィン間の空隙部の上部に所定間隔で形成された複数の覆蓋部及び外部に連通させる複数の孔と、前記空隙部の上部に前記フィンの先端部を抑圧し前記複数の覆蓋部を形成することにより形成された空洞部と、前記フィンの先端部の抑圧により前記フィンの表面に形成された溝部とを有し、さらに、前記外部に連通させる複数の孔の各開口縁において管軸からの距離が最も短い箇所が前記溝部の凹部と接していることを特徴とする沸騰用伝熱管を提供する。さらに、前記空洞部は、管軸方向に0.1〜0.8mmの間隔で設けられていることを特徴とする沸騰用伝熱管を提供する。さらに、前記溝は、管軸に対して10〜60°の角度を有すると共に、深さが0.1〜0.5mmであることを特徴とする沸騰用伝熱管を提供する。
In order to achieve the above object, the present invention is characterized in that, as a first feature, the tube body and the tube body and the outer peripheral surface of the tube body are continuously raised in a spiral or annular manner at a predetermined interval in the circumferential direction . A plurality of fins, a plurality of cover lid portions formed at predetermined intervals above the gaps between the fins by suppressing the tip portions of the fins and a plurality of holes communicating with the outside, and the tops of the gaps A cavity formed by suppressing the tip of the fin and forming the plurality of cover portions; a groove formed on the surface of the fin by suppressing the tip of the fin; and A boiling heat transfer tube is provided in which a portion having the shortest distance from the tube axis at each opening edge of a plurality of holes communicated with each other is in contact with the concave portion of the groove portion . Furthermore, the said hollow part is provided with the space | interval of 0.1-0.8 mm in the tube-axis direction, The heat exchanger tube for boiling characterized by the above-mentioned is provided. Further, the groove portion, which has an angle of 10 to 60 ° to the tube axis, the depth to provide a boiling heat transfer pipe, which is a 0.1 to 0.5 mm.

この構成によれば、管本体の外周面の円周方向に形成された空洞部が形成されるように、フィンが形成され、このフィンの先端部に溝が形成され、更に溝に孔が形成されていることにより、沸騰用伝熱管を浸漬している冷媒液が効率良く加熱され、冷媒液の沸騰が促進されると共に蒸気泡の離脱及び冷媒液の流入が円滑に行われるため、冷媒液の濡れ性が改善されることによって良好な伝熱性能が得られ、熱交換器の高性能化及び小型化が可能になる。
According to this configuration , the fin is formed so that a cavity formed in the circumferential direction of the outer peripheral surface of the pipe body is formed , a groove is formed at the tip of the fin, and a hole is further formed in the groove. As a result, the refrigerant liquid immersed in the heat transfer tube for boiling is efficiently heated, the boiling of the refrigerant liquid is promoted, and the vapor bubbles are separated and the refrigerant liquid is smoothly introduced. By improving the wettability of the heat exchanger, good heat transfer performance can be obtained, and the performance and size of the heat exchanger can be improved.

本発明は、上記の目的を達成するため、第2の特徴として、管本体の外周面の円周方向に所定間隔で螺旋状又は環状に連続的に鋤起こしてフィンを形成し、前記フィンの先端部を抑圧して前記フィンの表面に所定間隔で溝を形成すると共に、所定間隔で隣接するフィンへと傾倒させ接触させることにより覆蓋部および外部に連通させる複数のを形成し、前記フィンに隣接するフィンとの間を空洞部とすることを特徴とする沸騰用伝熱管の製造方法を提供する。さらに、前記溝は、管軸に対して10〜60°の角度を有すると共に、深さが0.1〜0.5mmであることを特徴とする沸騰用伝熱管の製造方法を提供する。
The present invention, in order to achieve the above object, as a second aspect, to form a fin undergoes spiral or annular continuous manner plow in the circumferential direction of the outer peripheral surface of the pipe body at predetermined intervals, the fins Forming a plurality of holes that communicate with the cover lid and the outside by tilting and contacting the adjacent fins at a predetermined interval, while suppressing the tip portion of the fin and forming grooves at a predetermined interval on the surface of the fin, Provided is a method of manufacturing a heat transfer tube for boiling, characterized in that a cavity is formed between fins adjacent to the fin . Furthermore, the groove has an angle of 10 to 60 ° with respect to the tube axis and has a depth of 0.1 to 0.5 mm, and provides a method of manufacturing a heat transfer tube for boiling.

この方法によれば、管本体の外周面の円周方向に形成された空洞部が形成されるように、にフィンをバイトにより形成し、更にフィンの先端部に溝付きロールにより溝を形成し、この溝に孔を形成することにより、沸騰用伝熱管を浸漬している冷媒液が効率良く加熱され、冷媒液の沸騰が促進されると共に蒸気泡の離脱及び冷媒液の流入が円滑に行われるため、冷媒液の濡れ性が改善され、良好な伝熱性能が得られる結果、熱交換器の高性能化及び小型化が可能になる。 According to this method , the fin is formed by the bite so that a cavity formed in the circumferential direction of the outer peripheral surface of the tube body is formed, and the groove is formed by the grooved roll at the tip of the fin. By forming a hole in this groove, the refrigerant liquid in which the heat transfer tube for boiling is immersed is efficiently heated, the boiling of the refrigerant liquid is promoted, the vapor bubbles are released and the refrigerant liquid is smoothly introduced. Therefore, the wettability of the refrigerant liquid is improved, and good heat transfer performance is obtained. As a result, the heat exchanger can be improved in performance and reduced in size.

本発明の沸騰用伝熱管及びその製造方法によれば、外周面に溝が円周方向に形成され、この溝によって冷媒液が効率良く加熱され、冷媒液の沸騰が促進されると共に核沸騰に伴う冷媒気泡の離脱及び冷媒液の流入が円滑に行われ、良好な伝熱性能が得られ、沸騰用伝熱管を用いた熱交換器の高性能化及び小型化が可能になる。   According to the heat transfer tube for boiling and the manufacturing method thereof of the present invention, the groove is formed in the circumferential direction on the outer peripheral surface, and the refrigerant liquid is efficiently heated by this groove, and the boiling of the refrigerant liquid is promoted and nucleate boiling is promoted. The accompanying refrigerant bubbles are smoothly separated and the refrigerant liquid is smoothly flowed in, so that good heat transfer performance is obtained, and the heat exchanger using the boiling heat transfer tube can be improved in performance and size.

図1及び図2は、本発明の実施の形態に係る沸騰用伝熱管を示す。沸騰用伝熱管1は、伝熱性に優れる銅、銅合金、アルミニウム等の金属管等を用いた管2と、この管2の表面近傍にバイト等の加工具により鋤起こされたフィン3とを備えて構成されている。   1 and 2 show a heat transfer tube for boiling according to an embodiment of the present invention. The heat transfer tube 1 for boiling includes a tube 2 using a metal tube such as copper, copper alloy, and aluminum having excellent heat transfer properties, and a fin 3 raised by a processing tool such as a tool near the surface of the tube 2. It is prepared for.

フィン3は、管2の円周方向に螺旋状又は環状に形成された空洞部31と、この空洞部31を所定の間隔で外部(冷媒液)に連通させる孔32とを備えている。フィン3の表面は、孔32と孔32との間に凸部33と凹部34とが順番に形成された凹凸面になっており、凸部33の片面には傾斜面が設けられている。   The fin 3 includes a hollow portion 31 that is formed in a spiral shape or an annular shape in the circumferential direction of the tube 2 and a hole 32 that allows the hollow portion 31 to communicate with the outside (refrigerant liquid) at a predetermined interval. The surface of the fin 3 is an uneven surface in which a convex portion 33 and a concave portion 34 are formed in order between the hole 32 and the hole 32, and an inclined surface is provided on one surface of the convex portion 33.

空洞部31は、管周方向に連続するように形成され、更に、管軸に対して直交し或いは傾斜するように設けられている。凸部33と凹部34により形成される溝35は、管軸に対して所定の角度(例えば、10〜60°)及び所定の深さ(例えば、0.1〜0.5mm)を有するように形成されており、この溝35の延長線上に孔32が存在する。   The cavity 31 is formed so as to be continuous in the pipe circumferential direction, and is further provided so as to be orthogonal to or inclined with respect to the pipe axis. The groove 35 formed by the convex portion 33 and the concave portion 34 has a predetermined angle (for example, 10 to 60 °) and a predetermined depth (for example, 0.1 to 0.5 mm) with respect to the tube axis. The hole 32 is formed on the extended line of the groove 35.

上記角度は、空洞部31からの蒸気泡の離脱と、空洞部31への水等の冷媒液の流入とを円滑に行うのに最適な値である。離脱した蒸気泡は、重力とは逆の方向に動くため、管軸と平行(0°)では凸部33が抵抗になって蒸気泡の離脱が円滑に行えなくなる。また、60°以上では孔32が細長く形成され、やはり蒸気泡の離脱が円滑に行えなくなる。したがって、10〜60°の角度が適している。また、凹部34の深さは、浅すぎると表面積が減少し、逆に、深すぎると孔32を溝付きロール等により形成する際の抵抗が大きくなり、空洞部31の加工が困難になる。したがって、溝35の深さは、0.1〜0.5mmが妥当である。   The angle is an optimal value for smoothly performing the separation of the vapor bubbles from the cavity 31 and the inflow of a coolant such as water into the cavity 31. Since the detached vapor bubbles move in the direction opposite to the gravity, the convex portion 33 becomes a resistance when parallel to the tube axis (0 °), and the vapor bubbles cannot be smoothly separated. Further, when the angle is 60 ° or more, the holes 32 are formed to be elongated, and the vapor bubbles cannot be removed smoothly. Therefore, an angle of 10-60 ° is suitable. On the other hand, if the depth of the recess 34 is too shallow, the surface area is reduced. Conversely, if the depth is too deep, resistance when the hole 32 is formed by a grooved roll or the like increases, and the processing of the cavity 31 becomes difficult. Therefore, it is appropriate that the depth of the groove 35 is 0.1 to 0.5 mm.

更に、空洞部31は、管軸方向に所定の間隔により形成されている。管軸方向の間隔が短すぎると核沸騰領域が減少し、逆に、間隔が広すぎると伝熱壁からの熱伝達が悪くなる。このため、管軸方向の間隔は、0.1〜0.8mmが妥当である。   Further, the cavity 31 is formed at a predetermined interval in the tube axis direction. If the interval in the tube axis direction is too short, the nucleate boiling region decreases, and conversely, if the interval is too wide, heat transfer from the heat transfer wall is deteriorated. For this reason, the interval in the tube axis direction is suitably 0.1 to 0.8 mm.

水等の冷媒液は空洞部31の内壁面で加熱される。この加熱によって冷媒液は沸騰し、空洞部31内から蒸気泡が活発に発生する。この蒸気泡は、或る程度の大きさまで成長すると、複数の孔32を通って離脱し始めるが、孔32の大きさを小さくすることにより、蒸気泡の全てが離脱するのではなく、蒸気泡の一部が小さな蒸気泡となって空洞部31内に残留する。   The refrigerant liquid such as water is heated on the inner wall surface of the cavity 31. By this heating, the refrigerant liquid boils, and steam bubbles are actively generated from inside the cavity 31. When this vapor bubble grows to a certain size, it begins to detach through the plurality of holes 32. However, by reducing the size of the hole 32, not all of the vapor bubbles detach, A part of the gas becomes small vapor bubbles and remains in the cavity 31.

一方、凸部33及び凹部34においては、平滑な面よりも表面積が増すため、冷媒液を効率よく加熱することができる。また、空洞部31内には、離脱した蒸気泡に対応する量の冷媒液が凹部34から流入する。空洞部31内に新たに流入する冷媒液は、流入する前に予め外の溝35の側壁面で加熱されて温度が上昇しているため、少ない熱量によって沸騰温度に到達する。従って、空洞部31に残留した蒸気泡を核として、蒸気泡は急速に成長する。   On the other hand, in the convex part 33 and the recessed part 34, since a surface area increases rather than a smooth surface, a refrigerant | coolant liquid can be heated efficiently. Further, an amount of refrigerant liquid corresponding to the detached vapor bubbles flows into the cavity 31 from the recess 34. The refrigerant liquid newly flowing into the hollow portion 31 is heated on the side wall surface of the outer groove 35 in advance before flowing in, and thus reaches a boiling temperature with a small amount of heat. Therefore, the vapor bubble grows rapidly with the vapor bubble remaining in the cavity 31 as a nucleus.

空洞部31内から離脱する蒸気泡は、冷媒液よりも密度が小さいため、上方へ移動する。この蒸気泡に対応する冷媒液は、凹部34から空洞部31内に流入するが、この部分が窪んでいるため、空洞部31内から蒸気泡が出て行く進路と、加熱された液が空洞部31内へ流入していく進路とが異なるため、冷媒液の空洞部31内への流入は円滑に行われる。   Since the vapor bubbles that leave the cavity 31 have a lower density than the refrigerant liquid, they move upward. The refrigerant liquid corresponding to the vapor bubbles flows into the hollow portion 31 from the recess 34, but since this portion is depressed, the path through which the vapor bubbles emerge from the hollow portion 31, and the heated liquid is hollow. Since the course of flowing into the portion 31 is different, the refrigerant liquid smoothly flows into the hollow portion 31.

一般に、水用途の伝熱管は、シェル内に多数本が組み込まれるが、上記した構成による沸騰用伝熱管1によれば、外周にスパイラル状に微細な溝35が形成されているため、熱交換器の上方に組み込まれた場合であっても、下方で発生した蒸気泡は凹部34に侵入しにくくなり、冷媒液の濡れが良好になるため、伝熱効率を従来構成に比べて向上させることができる。   In general, many heat transfer tubes for water use are incorporated in the shell. However, according to the heat transfer tube 1 for boiling having the above-described configuration, since the fine groove 35 is formed in a spiral shape on the outer periphery, heat exchange is performed. Even when incorporated in the upper part of the vessel, the vapor bubbles generated in the lower part are less likely to enter the recess 34 and the refrigerant liquid is better wetted, so that the heat transfer efficiency can be improved compared to the conventional configuration. it can.

図3は沸騰用伝熱管1の製造工程におけるフィンの溝加工及び孔加工を示す。図3に基づいて沸騰用伝熱管1の製造方法を以下に説明する。   FIG. 3 shows groove processing and hole processing of the fin in the manufacturing process of the heat transfer tube 1 for boiling. Based on FIG. 3, the manufacturing method of the heat exchanger tube 1 for boiling is demonstrated below.

まず、外周面が平滑で内面に溝2aが加工済みの管2を準備した。溝2aは、所定間隔に螺旋状又は環状に形成されたリブ2bによって形成されている。このリブ2bは、管内流体の伝熱促進に必要不可欠なものである。   First, a tube 2 having a smooth outer peripheral surface and a groove 2a on the inner surface was prepared. The groove 2a is formed by ribs 2b formed in a spiral shape or an annular shape at a predetermined interval. The rib 2b is indispensable for promoting heat transfer of the fluid in the pipe.

次に、図3の(a)に示すように、刃先角が60°のバイト41を使用し、所定の切込角度、切込量、及び形成されるフィン3の間隔が所定寸法になるように、バイト41を管2の円周方向に回転させると共に管2を管軸方向に移動させ、フィン3を鋤起こした。ここでは、バイト41の切込角度を24°とし、切込量を0.35mmとした。また、バイト41の回転速度及び管2の送り速度は、管軸方向の空洞部31の間隔が0.5mmになるように調整した。以上のような形状及び使用法によるバイト41によってフィン3が鋤起こされるため、フィン3の先端部は管軸に対して垂直ではなく、バイト41の刃先角に応じて傾斜した形状に形成される。   Next, as shown in FIG. 3A, a cutting tool 41 having a cutting edge angle of 60 ° is used so that the predetermined cutting angle, the cutting amount, and the interval between the fins 3 to be formed have predetermined dimensions. In addition, the cutting tool 41 was rotated in the circumferential direction of the tube 2 and the tube 2 was moved in the tube axis direction to raise the fins 3. Here, the cutting angle of the cutting tool 41 was 24 °, and the cutting amount was 0.35 mm. Further, the rotational speed of the cutting tool 41 and the feed speed of the pipe 2 were adjusted so that the interval between the hollow portions 31 in the pipe axis direction was 0.5 mm. Since the fin 3 is raised by the cutting tool 41 having the shape and usage as described above, the tip of the fin 3 is not perpendicular to the tube axis, but is formed in a shape inclined according to the cutting edge angle of the cutting tool 41. .

次に、フィンの凸部を押圧し、フィン間の空隙部上に、覆蓋部および孔を形成し、このことにより空隙部を空洞部へと変化させる。具体的には、図3の(b)に示す様に、斜めの溝42aが円周方向に所定間隔に設けられた溝付きロール42を管2の外表面、すなわち、フィン3上に押圧する。溝付きロール42を、管2を抑圧しながら管2の円周方向に回転させると共に、管12を管軸方向に引き抜き、フィン3の先端部を溝付きロール42よって抑圧する。これにより、管2の外周面、すなわちフィン3上には、深さが0.2mmの溝35が管軸に対して45°で形成されると共に、空洞部31が形成される。この際、外周溝35の凸部33は溝付きロール42の溝42aに拘束されながら折り曲げられ、隣接する凸部33に向かって張り出す。この張り出し量が隣接する凸部33に達し、かつ空洞部31と外部を連絡する孔32が塞がらないように溝付きロール42の押し込む量の調整を行う。すなわち、凸部33は、隣接する凸部33へとその先端が接触し、空洞部の一部を部分(覆蓋部)と、塞がないである孔が、所定間隔で形成される。 Next, the convex part of a fin is pressed, a cover part and a hole are formed on the space | gap part between fins, and this changes a space | gap part into a cavity part. Specifically, as shown in FIG. 3B, the grooved roll 42 in which the oblique grooves 42 a are provided at predetermined intervals in the circumferential direction is pressed onto the outer surface of the tube 2 , that is, on the fins 3. . The grooved roll 42, is rotated in the circumferential direction of the tube 2 while suppressing the tube 2, pull the tube 12 in the axial direction of the tube, thus suppressing the front end portion of the fin 3 in the grooved roll 42. As a result, a groove 35 having a depth of 0.2 mm is formed at 45 ° with respect to the tube axis and a cavity 31 is formed on the outer peripheral surface of the tube 2 , that is, on the fin 3 . At this time, the convex portion 33 of the outer circumferential groove 35 is bent while being restrained by the groove 42 a of the grooved roll 42, and projects toward the adjacent convex portion 33. The amount by which the grooved roll 42 is pushed in is adjusted so that the protruding amount reaches the adjacent convex portion 33 and the hole 32 connecting the cavity portion 31 and the outside is not blocked. That is, the tip of the convex portion 33 comes into contact with the adjacent convex portion 33, and a part of the hollow portion (cover lid portion) and a hole that is not closed are formed at a predetermined interval.

このようにして、管周方向に連続する空洞部31が、管軸に対し傾斜して延びている図1及び図2に示す様な沸騰用伝熱管1が得られる。空洞部31内に流入した冷媒液は空洞部31内で加熱されることにより沸騰し、蒸気泡が活発に発生する。また、管軸に対して角度をもって形成された凸部33と凹部34により、空洞部31内から蒸気泡が出て行く進路と加熱された液が流入する進路とが異なるため、離脱した蒸気泡に応じた量の冷媒液が流入し、冷媒液の空洞部31への流入が円滑に行われると共に効率よく冷媒液が加熱される。したがって、空洞部31内に残留した蒸気泡を核として、蒸気泡は急速に成長する。また、沸騰用伝熱管1は、外表面部に凸部33と凹部34によって微細な溝35が螺旋状に形成されているため、空洞部31内から離脱した蒸気泡は攪拌されながら上方へ移動するのに伴って周囲の冷媒液が攪拌され、冷媒液の温度ムラを少なくすることができる。以上により、本発明の実施の形態に係る沸騰用伝熱管1では、伝熱効率の向上が可能になる。   In this way, the boiling heat transfer tube 1 as shown in FIGS. 1 and 2 is obtained in which the hollow portion 31 continuous in the tube circumferential direction extends while being inclined with respect to the tube axis. The refrigerant liquid that has flowed into the cavity 31 boils by being heated in the cavity 31, and steam bubbles are actively generated. Further, due to the convex part 33 and the concave part 34 formed at an angle with respect to the tube axis, the path through which the vapor bubbles come out from the cavity 31 and the path through which the heated liquid flows in are different, so the separated vapor bubbles The amount of the refrigerant liquid corresponding to the flow of the refrigerant liquid flows smoothly into the cavity 31 and the refrigerant liquid is efficiently heated. Therefore, the vapor bubble grows rapidly with the vapor bubble remaining in the cavity 31 as a nucleus. In addition, since the heat transfer tube 1 for boiling has a fine groove 35 formed in a spiral shape by the convex portion 33 and the concave portion 34 on the outer surface portion, the vapor bubble separated from the cavity portion 31 moves upward while being stirred. As a result, the surrounding refrigerant liquid is agitated, and the temperature unevenness of the refrigerant liquid can be reduced. As described above, in the heat transfer tube 1 for boiling according to the embodiment of the present invention, the heat transfer efficiency can be improved.

本発明の実施の形態に係る沸騰用伝熱管を示す斜視図である。It is a perspective view which shows the heat exchanger tube for a boiling which concerns on embodiment of this invention. 図1の沸騰用伝熱管の平面図である。It is a top view of the heat exchanger tube for boiling of FIG. 本発明の実施の形態に係る沸騰用伝熱管の製造工程におけるフィンの溝加工及び孔加工を示し、(a)はフィンの溝加工を示す斜視図、(b)は溝付きロールによる孔加工を示す斜視図である。The groove processing of a fin and the hole processing in the manufacturing process of the heat exchanger tube for boiling concerning an embodiment of the invention are shown, (a) is a perspective view showing the groove processing of a fin, (b) is the hole processing by a slotted roll. It is a perspective view shown. 従来の沸騰用伝熱管を示す斜視図である。It is a perspective view which shows the conventional heat exchanger tube for boiling. 従来の他の沸騰用伝熱管を示す斜視図である。It is a perspective view which shows the other conventional heat exchanger tube for boiling.

符号の説明Explanation of symbols

1 沸騰用伝熱管
2 管
2a 溝
2b リブ
3 フィン
31 空洞部
32 孔
33 凸部
34 凹部
35 溝
41 バイト
42 溝付きロール
42a 溝
100 沸騰用伝熱管
101 金属管
102 空洞部
103 孔
200 沸騰用伝熱管
201 金属管
202 空洞部
203,204 間隙
DESCRIPTION OF SYMBOLS 1 Boiling heat transfer tube 2 Tube 2a Groove 2b Rib 3 Fin 31 Cavity part 32 Hole 33 Convex part 34 Concave part 35 Groove 41 Byte 42 Grooved roll 42a Groove 100 Boiling heat transfer pipe 101 Metal tube 102 Cavity part 103 Hole 200 Boiling transfer Heat tube 201 Metal tube 202 Cavity 203, 204 Gap

Claims (5)

管本体と、
前記管本体の外周面の円周方向に所定間隔で螺旋状又は環状に連続的に鋤起こして形成された複数のフィンと、
前記フィンの先端部を抑圧して前記フィン間の空隙部の上部に所定間隔で形成された複数の覆蓋部及び外部に連通させる複数の孔と、
前記空隙部の上部に前記フィンの先端部を抑圧し前記複数の覆蓋部を形成することにより形成された空洞部と、
前記フィンの先端部の抑圧により前記フィンの表面に形成された溝部とを有し、
さらに、前記外部に連通させる複数の孔の各開口縁において管軸からの距離が最も短い箇所が前記溝部の凹部と接している
ことを特徴とする沸騰用伝熱管。
A tube body;
A plurality of fins formed by continuously raising spirally or annularly at predetermined intervals in the circumferential direction of the outer peripheral surface of the tube body;
A plurality of cover portions formed at predetermined intervals on the upper portion of the gap between the fins by suppressing the tip of the fins and a plurality of holes communicating with the outside;
A cavity formed by suppressing the tip of the fin at the upper part of the cavity and forming the plurality of cover parts ;
A groove formed on the surface of the fin by suppressing the tip of the fin;
Further, the boiling heat transfer tube is characterized in that at each opening edge of the plurality of holes communicating with the outside, a portion having the shortest distance from the tube axis is in contact with the concave portion of the groove portion .
前記空洞部は、管軸方向に0.1〜0.8mmの間隔で設けられていることを特徴とする請求項1記載の沸騰用伝熱管。   The heat transfer tube for boiling according to claim 1, wherein the hollow portions are provided at intervals of 0.1 to 0.8 mm in the tube axis direction. 前記溝は、管軸に対して10〜60°の角度を有すると共に、深さが0.1〜0.5mmであることを特徴とする請求項1記載の沸騰用伝熱管。 The groove portion, which has an angle of 10 to 60 ° to the tube axis, boiling heat transfer tube according to claim 1, wherein the depth of 0.1 to 0.5 mm. 管本体の外周面の円周方向に所定間隔で螺旋状又は環状に連続的に鋤起こしてフィンを形成し、
前記フィンの先端部を抑圧して前記フィンの表面に所定間隔で溝を形成すると共に、
所定間隔で隣接するフィンへと傾倒させ接触させることにより覆蓋部および外部に連通させる複数の孔を形成し、
前記フィンに隣接するフィンとの間を空洞部とする
ことを特徴とする沸騰用伝熱管の製造方法。
The fins are formed by continuously raising spirally or annularly at predetermined intervals in the circumferential direction of the outer peripheral surface of the tube body,
To form a groove portion at predetermined intervals on the surface of the fin by suppressing the tip of the fin,
Forming a plurality of holes to communicate with the cover and the outside by tilting and contacting the adjacent fins at a predetermined interval,
A method for manufacturing a heat transfer tube for boiling, wherein a space is formed between the fins adjacent to the fins.
前記溝は、管軸に対して10〜60°の角度を有すると共に、深さが0.1〜0.5mmであることを特徴とする請求項4記載の沸騰用伝熱管の製造方法。 The groove portion, which has an angle of 10 to 60 ° to the tube axis, the manufacturing method of the boiling heat transfer tube according to claim 4, wherein the depth of 0.1 to 0.5 mm.
JP2003403679A 2003-12-02 2003-12-02 Boiling heat transfer tube and manufacturing method thereof Expired - Fee Related JP4389565B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003403679A JP4389565B2 (en) 2003-12-02 2003-12-02 Boiling heat transfer tube and manufacturing method thereof
CNA2004100310466A CN1624412A (en) 2003-12-02 2004-04-12 Boiling heat-transfer tube and making method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003403679A JP4389565B2 (en) 2003-12-02 2003-12-02 Boiling heat transfer tube and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005164126A JP2005164126A (en) 2005-06-23
JP4389565B2 true JP4389565B2 (en) 2009-12-24

Family

ID=34726918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003403679A Expired - Fee Related JP4389565B2 (en) 2003-12-02 2003-12-02 Boiling heat transfer tube and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4389565B2 (en)
CN (1) CN1624412A (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338987B (en) * 2007-07-06 2011-05-04 高克联管件(上海)有限公司 Heat transfer pipe for condensation
DE102009007446B4 (en) * 2009-02-04 2012-03-29 Wieland-Werke Ag Heat exchanger tube and method for its production
CN102152072B (en) * 2011-02-25 2012-11-07 天津商业大学 Method for machining porous-surface heat-exchange pipe for boiling heat-transfer equipment
CN102735089A (en) * 2011-04-02 2012-10-17 珠海格力节能环保制冷技术研究中心有限公司 Heat transfer pipe, and heat and mass transfer equipment having heat transfer pipe
JP5618419B2 (en) 2011-06-13 2014-11-05 株式会社日立製作所 Boiling cooling system
CN103047891B (en) * 2012-12-20 2014-11-05 苏州新太铜高效管有限公司 Falling film evaporating pipe with netlike outer surface
US10816273B2 (en) 2016-01-08 2020-10-27 Mitsubishi Electric Corporation Boiling cooling device and boiling cooling system
CN105716467B (en) * 2016-02-25 2017-11-17 浙江大学 A kind of intelligent boiling surface and its regulation and control boiling method
CN110612426B (en) * 2017-05-12 2022-05-17 开利公司 Heat transfer tube for heating, ventilating, air conditioning and refrigerating system
CN107131785B (en) * 2017-06-17 2023-05-16 福建德兴节能科技有限公司 High-efficiency rotational flow spoiler
CN107192294B (en) * 2017-07-05 2022-12-06 江苏萃隆精密铜管股份有限公司 High-fin heat exchange tube
CN109099741B (en) * 2018-06-05 2020-04-24 东南大学 Heat exchange structure for enhancing boiling
CN109974513B (en) * 2019-03-28 2020-05-19 大连理工大学 Micro-scale cooperative surface structure for enhancing boiling heat exchange
CN110849196A (en) * 2019-12-09 2020-02-28 江苏萃隆精密铜管股份有限公司 High-efficient type flooded heat exchange tube
JP7164557B2 (en) * 2020-02-25 2022-11-01 株式会社Kmct Boiling heat transfer tube
CN113218111A (en) * 2021-06-03 2021-08-06 珠海格力电器股份有限公司 Evaporator heat exchange tube, evaporator and air conditioning unit

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325379B2 (en) * 1974-10-21 1978-07-26
JPS60181593U (en) * 1984-05-11 1985-12-02 株式会社日立製作所 heat exchange wall
JPS63172892A (en) * 1987-01-12 1988-07-16 Sumitomo Light Metal Ind Ltd Heat transfer pipe for evaporation and its manufacture
JPH04369391A (en) * 1991-06-14 1992-12-22 Kobe Steel Ltd Structure of heat transfer pipe for boiling
JPH06323778A (en) * 1993-05-12 1994-11-25 Kobe Steel Ltd Heating tube for use in boiling
JP3606284B2 (en) * 1993-11-30 2005-01-05 株式会社神戸製鋼所 Boiling type heat transfer tube
JP2003287392A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd Boiling type heat transfer pipe

Also Published As

Publication number Publication date
CN1624412A (en) 2005-06-08
JP2005164126A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4389565B2 (en) Boiling heat transfer tube and manufacturing method thereof
KR940007194B1 (en) Heat transmission tube
US20030173071A1 (en) Reversible grooved tubes for heat exchangers
JP4822238B2 (en) Heat transfer tube with internal groove for liquid medium and heat exchanger using the heat transfer tube
US8281850B2 (en) Evaporator tube with optimized undercuts on the groove base
JP2008261566A (en) Double-pipe heat exchanger
JP3947158B2 (en) Heat exchanger
JP2009243715A (en) Leakage detecting tube and heat exchanger
JP4925597B2 (en) Heat pipe for heat pipe and heat pipe
JP2010256000A (en) Internally-grooved pipe for heat pipe, and heat pipe
US20160305717A1 (en) Metal heat exchanger tube
JP2006189232A (en) Heat transfer pipe for heat pipe, and heat pipe
JP2009243864A (en) Inner surface grooved pipe for heat pipe, and heat pipe
JP2008241180A (en) Heat transfer tube for heat pipe and heat pipe
JP2011106746A (en) Heat transfer tube, heat exchanger, and processed product of heat transfer tube
JP2008190858A (en) Leakage detecting tube
JP2006130558A (en) Method for manufacturing heat exchanger
JP2005291599A (en) Tube with internal groove for heat pipe and heat pipe
JP2008045868A (en) Heat exchanger for water heater, and its manufacturing method
JP2009243863A (en) Internally grooved pipe for heat pipe, and heat pipe
JP2008267625A (en) Heat transfer tube for falling liquid film-type refrigerating machine and its manufacturing method
JP2009121738A (en) Air-cooled heat exchanger
JP2010133581A (en) Inner helically grooved tube for heat pipe and the heat pipe
JP5243831B2 (en) Inner grooved tube for heat pipe and heat pipe
KR20190015205A (en) Heat exchanger tube

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090928

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121016

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4389565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131016

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees