JPS62142995A - Heat transfer pipe with inner surface spiral groove - Google Patents
Heat transfer pipe with inner surface spiral grooveInfo
- Publication number
- JPS62142995A JPS62142995A JP28368285A JP28368285A JPS62142995A JP S62142995 A JPS62142995 A JP S62142995A JP 28368285 A JP28368285 A JP 28368285A JP 28368285 A JP28368285 A JP 28368285A JP S62142995 A JPS62142995 A JP S62142995A
- Authority
- JP
- Japan
- Prior art keywords
- groove
- fin
- tube
- heat transfer
- pipe
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Metal Extraction Processes (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、空気調和機、冷凍別、ボイラー等の熱交換器
の中で、ポンプ手段によって移送される管内流体が相変
化を行う用途に適した内面らけん溝付伝熱管(以下「内
面溝付管」という)の改良に関するものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to applications in which the fluid in the pipes transferred by pump means undergoes a phase change in a heat exchanger such as an air conditioner, a refrigerator, or a boiler. The present invention relates to the improvement of a suitable internally grooved heat exchanger tube (hereinafter referred to as "internally grooved tube").
[従来技術とその問題点1
内面溝付管は、鋼管の如き金属管の内面に、多数のらせ
ん状溝を設けたものである。この内面溝付管の溝部の仕
様は、溝付管の伝熱特性のみならず、その製造コストに
も深い影響を持つため、従来から種々の仕様が提案され
てきた。[Prior art and its problems 1 An internally grooved tube is a metal tube such as a steel tube with a large number of spiral grooves provided on its inner surface. Since the specifications of the groove portion of this internally grooved tube have a profound effect not only on the heat transfer characteristics of the grooved tube but also on its manufacturing cost, various specifications have been proposed in the past.
その中で、頂角の比較的小さな断面三角形のフィンによ
って隔てられた断面が略U字形の溝を設けたものが実用
的であるとして使用されている。しかし、この内面溝付
管の1つの欠点として、熱交換器組立て時のプラグ拡管
作業において、内面に形成された頂角の小さい三角フィ
ンの先端が変形し易く、これによる金属粉、例えば管材
が銅の場合、銅粉の発生は冷凍1ナイクルへ重大な影響
をJ3よぼしかねない。この金属粉は微細なフィン間に
挟まれて、通常の洗浄作業では落らにくく、繁雑な洗浄
の繰返しも必要となってきている。Among these, a groove having a generally U-shaped cross section separated by fins having a triangular cross section with a relatively small apex angle is used as it is practical. However, one drawback of this internally grooved tube is that the tips of the triangular fins with small apex angles formed on the inside are easily deformed during plug expansion work when assembling the heat exchanger. In the case of copper, the generation of copper powder could have a serious impact on the frozen 1 day cycle. This metal powder is caught between the fine fins and is difficult to remove with normal cleaning operations, necessitating repeated and complicated cleaning operations.
[発明の目的]
本発明の目的は、前記した従来技術の欠点を低減させる
と共に、製造コストの増加を最小に抑えながら、より蒸
発性能の高い、高性能な内面溝付管を12供することに
ある。[Object of the Invention] The object of the present invention is to provide a high-performance internally grooved tube with higher evaporation performance while reducing the drawbacks of the prior art described above and minimizing an increase in manufacturing costs. be.
[発明の概要]
本発明の要旨は、頂角の小さいフィン形状を先端幅の小
さい台形とすることを骨子とし、その先端側の寸法、頂
角及び溝面積等についてより効果的な寸法範囲を選定し
たことにある。[Summary of the Invention] The gist of the present invention is to make the fin shape with a small apex angle into a trapezoid with a small tip width, and to find a more effective size range for the size of the tip side, the apex angle, the groove area, etc. This is due to the selection.
即ち、本発明は、管の最小内径(Di)に対する溝ff
す(Hf)(7)比(Hf/Di)が0.02〜0.0
3、溝の管軸に対するねじれ角が7°〜30°、溝深さ
くH[)に対する個々の溝部の軸直角断面積(S)の比
(S/Hf)が0.25〜0,40である多数の断面が
略U字形のら住ん状溝を有し、その溝部に位置するフィ
ンは、溝直角断面における頂角が30°〜50°、先端
の平坦部長さが0.02〜0.10m、先端両側の角部
が半径0゜02s以下の台形断面であることを特徴とす
るものである。That is, the present invention provides grooves ff for the minimum inner diameter (Di) of the tube.
(Hf) (7) Ratio (Hf/Di) is 0.02 to 0.0
3. The helix angle of the groove with respect to the tube axis is 7° to 30°, and the ratio (S/Hf) of the axis-perpendicular cross-sectional area (S) of each groove to the groove depth H[) is 0.25 to 0.40. A certain number of grooves have a substantially U-shaped cross section, and the fins located in the grooves have an apex angle of 30° to 50° in a cross section perpendicular to the grooves, and a flat length of 0.02 to 0.5° at the tip. It is characterized by a trapezoidal cross section with a radius of 0°02s or less at the corners on both sides of the tip.
次に各数値の意義について述べる。Next, we will discuss the significance of each numerical value.
(1) 満深さの影響について
溝深さくH「=フィン高さ)は、内側表面積の増加、内
部流体の乱流促進、その信金ての点で伝熱性能への影響
が大きい。(1) Regarding the influence of full depth Groove depth (H = fin height) has a large influence on heat transfer performance in terms of increasing the inner surface area, promoting turbulence in the internal fluid, and the like.
溝深さくH「=フィン高さ)を管の最小内径(Di)と
の比で、熱伝達率と圧力損失を平滑管と比べてみると、
Hf/Dtの値を零から次第に増して行ったとき、熱伝
達率は増加するものの、その増加はHf/Di =0.
02〜0.03付近から緩慢となる。一方、圧力損失は
Hf/Di =0.03付近から急激に増大する傾向を
示す。Comparing the heat transfer coefficient and pressure loss with a smooth tube using the ratio of the groove depth H (= fin height) to the minimum inner diameter of the tube (Di),
When the value of Hf/Dt is gradually increased from zero, the heat transfer coefficient increases, but the increase is limited to Hf/Di = 0.
It becomes slow from around 0.02 to 0.03. On the other hand, the pressure loss shows a tendency to increase rapidly from around Hf/Di = 0.03.
従って、圧力損失が平滑管と大差ない範囲で、できる限
り高い伝熱性能を得るには、渦の深さくHf)は、管の
最小内径(Di)との比にしてH170i = 0 、
02〜0.03の範囲とすることが望ましい。Therefore, in order to obtain the highest possible heat transfer performance within a range where the pressure loss is not much different from that of a smooth pipe, the depth of the vortex (Hf) is the ratio of the minimum inner diameter (Di) of the pipe to H170i = 0,
It is desirable to set it as the range of 02-0.03.
(2)溝のねじれ角の影響について
最も一般的に使用されている条件で行なった実験結果か
ら、溝のねじれ角と熱伝達率比との関係を見ると、蒸発
時は、溝の管軸に対するねじれ角が7°〜20°に僅か
なピークを持ち、菱縮時はねじれ角の増加と共に性能が
漸増する傾向を示す。(2) Regarding the influence of the groove torsion angle Based on the experimental results conducted under the most commonly used conditions, looking at the relationship between the groove torsion angle and the heat transfer coefficient ratio, it is found that during evaporation, the tube axis of the groove There is a slight peak in the torsion angle between 7° and 20°, and the performance tends to gradually increase as the torsion angle increases during rhombus contraction.
しかし、このねじれ角の増加は管製造時の加工性低下を
In <ことを考え併往ると、溝の管軸に対するねじれ
角は、7°〜30°程度の範囲に留めることが好ましい
。しかも、この範囲内においては、蒸発・凝縮性能の差
はあまりないので、両性能のバランスの要求されるヒー
トポンプタイプへの適用も可能である。However, considering that this increase in the helix angle reduces the workability during tube manufacturing, it is preferable that the helix angle of the groove with respect to the tube axis is kept within a range of about 7° to 30°. Moreover, within this range, there is not much difference in evaporation and condensation performance, so it can also be applied to heat pump types that require a balance between both performances.
(3) 溝部断面積の影響について
占深さが一定の場合、管内壁(溝部)での液膜挙動が性
能への大きな影響要因となってくる。即ち、溝深さを一
定として、溝の幅を変えて溝の断面積と冷媒流量の関係
をみると、溝の幅を大きくした場合、溝面積が大きくな
りすぎて液膜が薄くなり、フィン先端の乾いた部分は蒸
発に寄与しなくなる。また満の幅を小さくした場合、溝
面積が小さくなりすぎて、溝内をかき上げられるべき液
の絶対b)が加熱量に対して不足し、蒸発性能が低下す
ることになる。一方、凝縮については、前者のようにで
きるだけ乾いた部分が多いことが望ましいが、前者の場
合は、溝ピッチの増大に伴う総表面積の減少が著しいた
め、蒸発・凝縮の両性能を低下させる方向となる。(3) Regarding the influence of groove cross-sectional area When the depth is constant, the behavior of the liquid film on the inner wall of the pipe (groove) becomes a major influencing factor on performance. In other words, if we look at the relationship between the cross-sectional area of the groove and the refrigerant flow rate by changing the groove width while keeping the groove depth constant, we can see that when the groove width is increased, the groove area becomes too large, the liquid film becomes thin, and the fins become thinner. The dry part of the tip no longer contributes to evaporation. Furthermore, if the width of the groove is made small, the groove area becomes too small, and the absolute amount b) of the liquid to be scooped up in the groove becomes insufficient relative to the amount of heating, resulting in a decrease in evaporation performance. On the other hand, regarding condensation, it is desirable to have as many dry areas as possible, as in the former case, but in the former case, the total surface area decreases significantly as the groove pitch increases, which tends to reduce both evaporation and condensation performance. becomes.
従って、液膜挙動と内表面積とのバランスにおいて最適
な溝断面積値が存在するはずである。Therefore, there should be an optimal groove cross-sectional area value that balances the liquid film behavior and the inner surface area.
そこで、第7図に示ずように、フィンの断面形状を一定
とし、そのピッチを変えて溝の断面積の影響をみた結果
、蒸発性能は、溝深さく Hf)に対する溝断面積(S
)の比(S/l−1f)が0.3付近にピークがあり、
これ以上での急激な性能低下に比べ、0.3以下での性
能低下は緩やかである。一方、凝縮性能は、S/Hfの
値が小さくなるほど上昇している。Therefore, as shown in Fig. 7, the influence of the cross-sectional area of the groove was examined by changing the pitch while keeping the cross-sectional shape of the fin constant. As a result, the evaporation performance was determined by
) has a peak around 0.3 (S/l-1f),
Compared to the rapid performance drop above this value, the performance drop below 0.3 is gradual. On the other hand, the condensing performance increases as the value of S/Hf decreases.
これらの両性能の傾向を見ると、S/H[が小さいはと
性能的に安定しているように思われるが、S/Hfが小
さくなることは、フィン数の増加による単位長さ当りの
重量(以下単車という)の増加が茗しいことも忘れては
ならない。従って、性能と単重を総合的に考えると、溝
断面積(S)は溝深さ(Hf)との関係においてS/H
fの値が0.25〜0.4の範囲にあることが望ましい
。Looking at the trends in both of these performances, it seems that the smaller S/H[ is, the more stable the performance is, but the smaller S/Hf is due to the increase in the number of fins per unit length. It must also be remembered that the weight (hereinafter referred to as a motorcycle) increases considerably. Therefore, when considering performance and unit weight comprehensively, the groove cross-sectional area (S) is S/H in relation to the groove depth (Hf).
It is desirable that the value of f is in the range of 0.25 to 0.4.
(4) フィン形状の影フ!について一般に三角形フ
ィンは、大なり小なりその先端に丸味をもっている。何
故なら溝付加工工具の製作、加工粘度の維持等の実用性
を考慮すると、フィンの先端が丸味をもつことは避けら
れないからである。しかも、フィン先端の丸味はフィン
頂角が小さいものほど大きくなってくる。内面溝付管が
使用されている代表的な仕様条件のものでみると、その
フィン先端の丸味は半径0.03〜0.05mとなる。(4) Shadow of fin shape! In general, triangular fins have a more or less rounded tip. This is because, considering practicalities such as manufacturing a grooved processing tool and maintaining processing viscosity, it is inevitable that the tips of the fins have a rounded shape. Moreover, the roundness of the fin tip increases as the fin apex angle decreases. Under typical specification conditions in which an internally grooved tube is used, the radius of the fin tip is 0.03 to 0.05 m.
この内面溝付管は熱交換器組立て時のプラグ拡管作業に
おいて通常の管外径を6%程度拡管する場合、溝深さく
フィン高さ)の減少量は約0.02mmであり、結果的
にフィンは先端に平坦部を持つ台形となる。When this internally grooved tube is expanded by about 6% from the normal tube outside diameter during plug expansion work when assembling a heat exchanger, the amount of decrease in groove depth (fin height) is approximately 0.02 mm, and as a result, The fins are trapezoidal with a flat section at the tip.
従って、そのことを想定して予めフィン形状を台形にて
おけば、フィン先端の面圧及び変形量を減少させ、金属
粉の発生迅も大幅に減少さぼることができる。Therefore, if the fin shape is made trapezoidal in advance with this in mind, the surface pressure and amount of deformation at the tip of the fin can be reduced, and the rate at which metal powder is generated can be greatly reduced.
この場合、フィン先端の平坦部長さは0.02mIR以
上は必要であるが、あまり極端なフィン先端幅の増大は
、当然単重の増加を招くので、上限としては0.1s程
度が望ましい。また、その先端角部は、平坦部の確保、
内部流体の流れ等の点も考慮すると、半径0.02rN
R以下であることが望ましい、。In this case, the length of the flat portion of the fin tip must be 0.02 mIR or more, but an excessive increase in the width of the fin tip naturally leads to an increase in unit weight, so the upper limit is preferably about 0.1 s. Also, ensure that the tip corner is flat,
Considering the flow of internal fluid, etc., the radius is 0.02 rN.
It is desirable that it be R or less.
内面溝付管が使用されている代表的な条件で、フィンの
先端幅を0.06mmとしてフィン714角を変えて行
なった実験結果では、第5図に示すようにフィン頂角(
α)が25゛〜50°の範囲では、表面積の差以上に蒸
発熱伝達率の向上が得られている。これは、フィン形状
により溝内を流れる冷媒液の流速が維持されるか、撹拌
による伝熱促進効果がもたらされたものと思われる。In the results of experiments conducted under typical conditions in which an internally grooved tube is used, the fin tip width is 0.06 mm, and the fin 714 angle is changed, the fin apex angle (
When α) is in the range of 25° to 50°, the evaporative heat transfer coefficient is improved more than the difference in surface area. This seems to be because the fin shape maintains the flow rate of the refrigerant liquid flowing in the grooves, or because stirring has an effect of promoting heat transfer.
[発明の実施例]
以下、本発明の実施例を第1図〜第8図により説明する
。[Embodiments of the Invention] Examples of the present invention will be described below with reference to FIGS. 1 to 8.
第1図及び第2図に示すように、管1の内面に断面が略
U字形をしたらせん状の溝2を設け、溝の深さくHr)
を、管の最小内径(Di)との関係(Hf/Di)にお
いて、0.02〜0.03、溝2の管軸に対するねじれ
角(β)を7〜30°、個々の溝部の軸直角断面積(S
)を溝深さIf)と(7)r%l(M (S/l−1f
)テ0.25〜0.40、各名聞に位置する頂角の小さ
い台形フィン3の溝直角断面における頂角を25°〜5
0°、フィン先端の平端部長さを0.02〜0.10m
、フィン先端両側の角部を半径0.02mm以下とする
。これによってフィン3形状を予め熱交換器組立て時の
プラグ拡管作業を行なつ:だ後の形状に近いものとし、
殆ど製造コストの増加なしに、熱伝達率を向上さぜるこ
とができる。第3図及び第4図は銅製の内面溝付管につ
いて、次に示す条件で実験した結果を示すが、以下に示
す伝熱性能データは、特に断りのない限り同じ条件にて
測定したものである。As shown in FIGS. 1 and 2, a spiral groove 2 with a substantially U-shaped cross section is provided on the inner surface of the tube 1, and the depth of the groove is Hr).
The relationship (Hf/Di) with the minimum inner diameter (Di) of the pipe is 0.02 to 0.03, the torsion angle (β) of groove 2 with respect to the pipe axis is 7 to 30°, and the axis perpendicularity of each groove Cross-sectional area (S
) to the groove depth If) and (7) r%l(M (S/l-1f
) Te 0.25 to 0.40, the apex angle in the cross section perpendicular to the groove of the trapezoidal fin 3 with a small apex angle located at each position is 25° to 5
0°, the length of the flat end of the fin tip is 0.02 to 0.10 m
, the corners on both sides of the fin tip should have a radius of 0.02 mm or less. By doing this, the shape of the fins 3 can be made in advance to be similar to the shape after expanding the plug when assembling the heat exchanger.
The heat transfer coefficient can be improved with almost no increase in manufacturing costs. Figures 3 and 4 show the results of experiments conducted on copper internally grooved tubes under the following conditions.The heat transfer performance data shown below were measured under the same conditions unless otherwise specified. be.
(1) 冷 媒 :R−22(2沸騰
液の圧カニ 4 Ko/cm2G(3)沸騰液流FL
: 200Ka/m2S(4)平均乾き度=0.6
(5) 熱 流 束: 10にw/ m”(
6]蒸気圧カニ14.6にo/cm2G(7)入口過熱
度:50℃
(8)出口過冷却度=5℃ 1
第3図は、管内の溝深さくフィン高さ)と熱伝達率及び
圧力損失との関係を示しており、横軸に最小内径(Di
)に対する溝深さくHf)の比率〈トIf/Di)をと
り、縦軸に熱伝達率と圧力損失を平滑管との比でとった
ものである。この結果によれば、熱伝達率の増加は、H
f/D iの値が0.02〜0.03イ]近から緩慢と
′/、【るが、圧力損失はHr/Diのl+ljが0,
03付近から急激に増大する傾向にあり、1−1f/D
i=Oつ02〜0.03の範囲において圧力損失が平滑
管と大差ない範囲で高い性能が得られることが判る。(1) Refrigerant: R-22 (2 Boiling liquid pressure crab 4 Ko/cm2G (3) Boiling liquid flow FL
: 200Ka/m2S (4) Average dryness = 0.6 (5) Heat flux: 10 w/m” (
6] Steam pressure 14.6 o/cm2G (7) Inlet superheating degree: 50℃ (8) Outlet supercooling degree = 5℃ 1 Figure 3 shows the groove depth in the tube (fin height) and heat transfer coefficient The horizontal axis shows the minimum inner diameter (Di
The ratio of the groove depth (Hf) to ) is taken (If/Di), and the vertical axis shows the heat transfer coefficient and pressure loss as a ratio to that of a smooth pipe. According to this result, the increase in heat transfer coefficient is due to H
The value of f/D i is 0.02 to 0.03 i] and is slow from 0.02 to 0.03, but the pressure loss is 0,
It tends to increase rapidly from around 03, and 1-1f/D
It can be seen that high performance can be obtained in the range of i=02 to 0.03 in which the pressure loss is not much different from that of a smooth pipe.
第4図は、最も一般的な外径9.52mm、最小内径(
Di)8.52mm、溝深さく Hf)0 、20mm
の内面溝付鋼管について、溝のねじれ角(β)と熱伝達
率比との関係を見たしのである。Figure 4 shows the most common outer diameter of 9.52 mm and the smallest inner diameter (
Di) 8.52mm, groove depth Hf) 0, 20mm
We looked at the relationship between the helix angle (β) of the groove and the heat transfer coefficient ratio for the internally grooved steel pipe.
本図によれば、蒸発時は7°〜20°に僅かなピークを
持ら、凝縮時はねじれ角(β)の増加と共に、性能が漸
増する。しかし、ねじれ角の増加は管製造時の加工性低
下を1?1りことを考え併せると、ねじれ角(β)は7
°〜30°稈度の範囲に留めることが好ましい。According to this figure, during evaporation, there is a slight peak between 7° and 20°, and during condensation, the performance gradually increases as the twist angle (β) increases. However, considering that an increase in the twist angle reduces workability during pipe manufacturing by 1?1, the twist angle (β) is 7
It is preferable to keep the culm degree within the range of 30° to 30°.
第5図は、外径9.52調、 D i =8.52m。In Fig. 5, the outer diameter is 9.52 scale and Di = 8.52 m.
Hf =0.20mm、溝数60.ねじれ角(β)18
°、フィン先端幅0.60mとし、フィン頂角(α)を
変化させた台形フィンを有する内面溝付銅管についての
実験結果を示すものである。Hf = 0.20mm, number of grooves 60. Torsion angle (β) 18
3 shows experimental results for an internally grooved copper tube having trapezoidal fins with a fin tip width of 0.60 m and a varying fin apex angle (α).
横軸にフィン頂角(α)をとり、縦軸に蒸発熱伝達率を
平滑管との比でとっている。なお、比較例としての従来
品は、先端に半径0.04調程度の丸味のある頂角の小
さい三角フィンを設けたものである。The horizontal axis represents the fin apex angle (α), and the vertical axis represents the evaporative heat transfer coefficient as a ratio to the smooth tube. The conventional product as a comparative example has a rounded triangular fin with a radius of about 0.04 degrees and a small apex angle at the tip.
本図によれば、フィン頂角(α)が30°〜50’の範
囲で約10%の性能向上が得られる。According to this figure, a performance improvement of about 10% is obtained when the fin apex angle (α) is in the range of 30° to 50′.
台形フィンと三角フィンとの間の表面積差はほんの僅か
であるので、ここに見られる性能向上は、次のような理
由によるものと思われる。Since the difference in surface area between the trapezoidal fin and the triangular fin is very small, the performance improvement seen here is likely due to the following reasons.
即ち、三角フィンと台形フィンの近傍においては、第6
図に示すように、溝2内を溝に沿ってかき上げられる蒸
発液の流れ(イ)は、フィン3の先端近傍になると管軸
方向への主流(ロ)の影響を受けてフィン3を乗り越え
ようとする。このとき、先端に丸味のあるフィンの場合
(a)は、スムーズに乗り越えて行く(ハ)に対し、角
の張った台形フィンの場合(b)は、乗り越えられずに
溝方向向う流れ(ニ)や、乗り越える前後に、ミクロ的
な渦流を発生する流れ(ホ)等を生じ、これらが溝内流
の流速を維持するか、撹拌による伝熱促進効果をもたら
ずものと思われる。That is, in the vicinity of the triangular fin and the trapezoidal fin, the sixth
As shown in the figure, the flow of evaporated liquid (a) that is scraped up along the inside of the groove 2 is influenced by the main flow (b) in the tube axis direction when it comes near the tip of the fin 3. try to get over it. At this time, in the case of a fin with a rounded tip (a), the fin moves over the groove smoothly (c), whereas in the case of a trapezoidal fin with a sharp corner (b), the fin flows in the direction of the groove without being able to get over the tip (c). ), and a flow that generates microscopic eddies (e) before and after overcoming the groove, and these seem to either maintain the flow velocity of the flow in the groove or have no effect on promoting heat transfer due to stirring.
第7図は、フィン頂角(α)40°、溝数を除く他の寸
法諸元を前例と同じくし、フィンピッチを変えた内面溝
付銅管について、溝断面積の影響を見たものである。本
図の横軸には溝深さくH[)に対する溝部断面積(S)
の比率(S/Hf)をとり、縦軸には熱伝達率を平滑管
との比でとっである。Figure 7 shows the influence of the groove cross-sectional area on an internally grooved copper tube with a fin apex angle (α) of 40° and other dimensions other than the number of grooves as the previous example, but with a different fin pitch. It is. The horizontal axis of this figure shows the groove cross-sectional area (S) relative to the groove depth H[).
The ratio (S/Hf) is taken, and the vertical axis shows the heat transfer coefficient as a ratio to that of a smooth tube.
なお、比較例としての従来品は前例と同じである。Note that the conventional product as a comparative example is the same as the previous example.
本図によれば、本発明によるものは蒸発性能において従
来品より高いが、S/Hfに対しては従来品と同様の傾
向とピークを持ち、また凝縮性能は従来品と殆ど変らな
い。According to this figure, although the product according to the present invention has higher evaporation performance than the conventional product, it has the same trends and peaks for S/Hf as the conventional product, and the condensation performance is almost the same as the conventional product.
これは、フィン先端の液切れ性の点で本発明品は従来品
に劣るものの、フィン先端で凝縮に最も有効に働く部分
の面積が大ぎいため、これらが相殺されたものではない
かと思われる。This seems to be because although the product of the present invention is inferior to conventional products in terms of liquid drainage at the fin tips, the area of the fin tips that is most effective for condensation is large, so these factors are offset. .
第8図は、総合的なコストメリットを、横軸にS/ l
−1rをパラメータとして示す。ここでは、代表的な用
途例であるルームエアコン用フィンコイル型熱交換器を
想定し、ルーバースリット型アルミフィンを含めた管外
側熱抵抗と、頂角が大きい三角フィンを持つ内面溝付銅
管を使用したときの管内側熱抵抗どの比を75対25と
仮定した。この条件で、管のみを頂角が小さい三角フィ
ンをもつ従来品と、頂角が小ざい台形フィンをもつ本発
明品に切替えたときの全然通過率向上分をBに、単重量
減少率をAに示づ゛。なお、比較に供給した管材は何れ
も銅製で、第1表に示す寸法諸元のものを用いた。Figure 8 shows the overall cost benefit as S/l on the horizontal axis.
−1r is shown as a parameter. Here, assuming a fin-coil type heat exchanger for a room air conditioner, which is a typical application example, we will introduce the tube outer heat resistance including louver-slit aluminum fins, and the inner grooved copper tube with triangular fins with a large apex angle. It was assumed that the ratio of the tube inner thermal resistance was 75:25. Under these conditions, B is the total improvement in passage rate when switching only the tube from the conventional product with triangular fins with a small apex angle to the inventive product with trapezoidal fins with a small apex angle, and B is the unit weight reduction rate. Shown in A. The tube materials supplied for comparison were all made of copper and had the dimensions shown in Table 1.
第 1 表
ここで、Bの熱通過率向上弁だけ管材の長さを短かくし
たとすれば、この分がそのままコストメリットとなる。Table 1 Here, if the length of the pipe material is shortened by the amount of heat transfer rate improving valve B, this will directly result in a cost advantage.
またAの単車減少分も加工性の低下を考えなければ、は
ぼこれに近いコストメリットとなる。従って、A十Bが
大まかながら管材購入側メリットの一つの目安となるで
あろう。Furthermore, the reduction in the number of motorcycles in A will result in a near-zero cost benefit, if we do not take into account the decrease in workability. Therefore, A + B may be a rough guide to the merits for the pipe material purchaser.
本発明はコストの増加を最小に抑えながら性能を向上さ
せることに力点をおいているため、性能向上の少ないS
/Hfの値が低い領域においては単重低減がその不利を
補っており、結果としてS/H[が0.25〜0.4の
範囲において従来品に比べて3〜4%のメリットが生じ
る。Since the present invention focuses on improving performance while minimizing cost increase, S
In the region where the /Hf value is low, the reduction in unit weight compensates for the disadvantage, resulting in a 3-4% advantage compared to conventional products in the range of S/H[0.25-0.4. .
本発明による内面溝付管は、当然のことながら拡管プラ
グによる機械的拡管に対しては、三角フィンの線接触か
ら台形フィンの面接触への改善に伴い、フィン先端の面
圧及び変形漬は減少する。Naturally, the internally grooved tube according to the present invention has improved mechanical expansion using a tube expansion plug from a line contact of triangular fins to a surface contact of trapezoidal fins, and the surface pressure and deformation of the fin tips are reduced. Decrease.
通常の管外径を6%程度拡管する場合において、従来品
のHf減少量は0.02mであるのに対し、7を発明品
の場合は0.01j!lI+と変形mが半減しており、
伝熱性能の低下も最小限度に抑えることができるだけで
なく、銅粉等の発生量も大幅に減少しており、冷凍サイ
クルへの影響も小ざくすることができる。When expanding the normal pipe outside diameter by about 6%, the amount of Hf reduction in the conventional product is 0.02m, while in the case of the invented product 7, it is 0.01j! lI+ and deformation m have been reduced by half,
Not only can the deterioration in heat transfer performance be minimized, but the amount of copper powder generated is also significantly reduced, and the impact on the refrigeration cycle can be minimized.
[発明の効果]
本発明によれば、殆ど管加工費等の増加なしに蒸発性能
にすぐれ、プラグ拡管作業を伴ってもその影響の少ない
高性能な伝熱管を提供でき、エアコン用伝熱管の需要の
多さから考えても効果の大きな伝熱管であるといえる。[Effects of the Invention] According to the present invention, it is possible to provide a high-performance heat exchanger tube that has excellent evaporation performance with almost no increase in tube processing costs, and is less affected by plug expansion work, and is suitable for heat exchanger tubes for air conditioners. Considering the high demand, it can be said that it is a highly effective heat exchanger tube.
勿論、高性能化を熱交換器の]ンバクト化だけに利用す
るのでなく、熱効率の向上にも利用すれば、低消費電力
という別のメリットをもった熱交換器とすることもでき
る。Of course, if the high performance is used not only to make the heat exchanger compact, but also to improve thermal efficiency, the heat exchanger can have another advantage of low power consumption.
第1図は、本発明に係る内面溝付管の一例の拡大断面図
、第2図は縦断面図、第3図は溝深さと性能の関係を示
す線図、第4図はねじれ角と性能の関係を示す線図、第
5図はフィン頂角と性能との関係を示す線図、第6図は
管内流れを示す模式図、第7図は渦面積と性能及び単重
との関係を示す線図、第8図は総合効果示す線図である
。
1・・・管。
2・・・溝。
3・・・フ ィ ン。
代理人 弁理士 佐 藤 不二雄
1ミ9!菅ざ9翠
イ石 、馴1暉補ト9H
第 4 図
清わUれ角β(@)
第 5 日
フィン環1!lKじ)
第 6 目
(α)(b)
1本1Fig. 1 is an enlarged sectional view of an example of an internally grooved tube according to the present invention, Fig. 2 is a longitudinal sectional view, Fig. 3 is a diagram showing the relationship between groove depth and performance, and Fig. 4 is a graph showing the relationship between the helix angle and Diagram showing the relationship between performance. Figure 5 is a diagram showing the relationship between fin apex angle and performance. Figure 6 is a schematic diagram showing the flow in the pipe. Figure 7 is the relationship between vortex area, performance, and unit weight. FIG. 8 is a diagram showing the overall effect. 1... tube. 2... Groove. 3...Fin. Agent Patent Attorney Fujio Sato 1st year 9th! Sugaza 9 Suiseki, 1st time addition 9H 4th figure clear U angle β (@) 5th day fin ring 1! lKji) 6th (α) (b) 1 piece 1
Claims (1)
を行う用途に適した内面らせん溝付伝熱管において、管
の最小内径(Di)に対する溝深さ(Hf)の比(Hf
/Di)が0.02〜0.03、溝の管軸に対するねじ
れ角が7°〜30°、溝深さ(Hf)に対する個々の溝
部の軸直角断面積(S)の比(S/Hf)が0.25〜
0.4である多数の断面が略U字形のらせん状溝を有し
、この溝部に位置するフィンは溝直角断面における頂角
が30°〜50°、先端の平坦部長さが0.02〜0.
10mm、先端両側の角部が半径0.02mm以下の台
形断面を有していることを特徴とする内面らせん溝付伝
熱管。(1) In a heat exchanger tube with internal spiral grooves suitable for use in which the internal fluid transferred by a pump undergoes a phase change, the ratio of the groove depth (Hf) to the minimum inner diameter (Di) of the tube (Hf
/Di) is 0.02 to 0.03, the helix angle of the groove with respect to the tube axis is 7° to 30°, and the ratio of the axis-perpendicular cross-sectional area (S) of each groove to the groove depth (Hf) (S/Hf ) is 0.25~
The fins located in these grooves have an apex angle of 30° to 50° in a cross section perpendicular to the grooves, and a flat end length of 0.02 to 50°. 0.
A heat exchanger tube with internal spiral grooves, characterized in that the corner portions on both sides of the tip have a trapezoidal cross section with a radius of 0.02 mm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28368285A JPS62142995A (en) | 1985-12-17 | 1985-12-17 | Heat transfer pipe with inner surface spiral groove |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28368285A JPS62142995A (en) | 1985-12-17 | 1985-12-17 | Heat transfer pipe with inner surface spiral groove |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62142995A true JPS62142995A (en) | 1987-06-26 |
Family
ID=17668706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28368285A Pending JPS62142995A (en) | 1985-12-17 | 1985-12-17 | Heat transfer pipe with inner surface spiral groove |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62142995A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2623893A1 (en) * | 1987-11-30 | 1989-06-02 | American Standard Inc | HEAT EXCHANGER HAVING TUBES HAVING INNER FINS |
JPH06201286A (en) * | 1992-10-02 | 1994-07-19 | Carrier Corp | Heat transfer pipe |
JPH06221788A (en) * | 1992-12-16 | 1994-08-12 | Carrier Corp | Pipe of heat exchanger |
JPH0849992A (en) * | 1994-08-04 | 1996-02-20 | Sumitomo Light Metal Ind Ltd | Heat transfer tube with internal groove |
WO2001063196A1 (en) * | 2000-02-25 | 2001-08-30 | The Furukawa Electric Co., Ltd. | Tube with inner surface grooves and method of manufacturing the tube |
WO2001092806A1 (en) * | 2000-05-31 | 2001-12-06 | Mitsubishi Shindoh Co., Ltd. | Heating tube with internal grooves and heat exchanger |
CZ301687B6 (en) * | 2008-11-14 | 2010-05-26 | Lapácek@František | Pressed-in joint of heating body pipe and lamella, process of its manufacture and tool for making the process |
-
1985
- 1985-12-17 JP JP28368285A patent/JPS62142995A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2623893A1 (en) * | 1987-11-30 | 1989-06-02 | American Standard Inc | HEAT EXCHANGER HAVING TUBES HAVING INNER FINS |
JPH06201286A (en) * | 1992-10-02 | 1994-07-19 | Carrier Corp | Heat transfer pipe |
JPH06221788A (en) * | 1992-12-16 | 1994-08-12 | Carrier Corp | Pipe of heat exchanger |
JPH0849992A (en) * | 1994-08-04 | 1996-02-20 | Sumitomo Light Metal Ind Ltd | Heat transfer tube with internal groove |
WO2001063196A1 (en) * | 2000-02-25 | 2001-08-30 | The Furukawa Electric Co., Ltd. | Tube with inner surface grooves and method of manufacturing the tube |
WO2001092806A1 (en) * | 2000-05-31 | 2001-12-06 | Mitsubishi Shindoh Co., Ltd. | Heating tube with internal grooves and heat exchanger |
CZ301687B6 (en) * | 2008-11-14 | 2010-05-26 | Lapácek@František | Pressed-in joint of heating body pipe and lamella, process of its manufacture and tool for making the process |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0421117B2 (en) | ||
Bergles | The implications and challenges of enhanced heat transfer for the chemical process industries | |
CA2474558C (en) | Slotted tube with reversible usage for heat exchangers | |
US5992513A (en) | Inner surface grooved heat transfer tube | |
Bergies | The imperative to enhance heat transfer | |
US7267166B2 (en) | Grooved tubes for heat exchangers that use a single-phase fluid | |
JPH08178574A (en) | Cross-grooved inside surface heat transfer tube for mixed refrigerant and heat exchanger using the same | |
KR20100123599A (en) | Metallic heat transfer tube | |
JPS62142995A (en) | Heat transfer pipe with inner surface spiral groove | |
JP2006322661A (en) | Heat transfer tube for heat dissipation, and radiator | |
JPS6011800B2 (en) | Manufacturing method for condensing heat exchanger tubes | |
JP3219811B2 (en) | Heat transfer tube with internal groove | |
JPH04260793A (en) | Heat transfer tube with inner surface groove | |
Bergles | New frontiers in enhanced heat transfer | |
JPS6027917B2 (en) | Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning | |
JPH0335011B2 (en) | ||
JPS6352310B2 (en) | ||
JPH051891A (en) | Heat transfer tube with internal groove | |
JP3417825B2 (en) | Inner grooved pipe | |
JPH0712483A (en) | Heat transfer tube with inner surface groove | |
JPS6252238B2 (en) | ||
JP6177195B2 (en) | Heat transfer tube for supercooled double tube heat exchanger | |
Bergles | Advanced enhancement for heat exchangers | |
JPS63172894A (en) | Heat exchanger | |
JPS60174496A (en) | Steam generating pipe |