JPS6027917B2 - Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning - Google Patents

Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning

Info

Publication number
JPS6027917B2
JPS6027917B2 JP12404881A JP12404881A JPS6027917B2 JP S6027917 B2 JPS6027917 B2 JP S6027917B2 JP 12404881 A JP12404881 A JP 12404881A JP 12404881 A JP12404881 A JP 12404881A JP S6027917 B2 JPS6027917 B2 JP S6027917B2
Authority
JP
Japan
Prior art keywords
groove
tube
heat transfer
depth
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12404881A
Other languages
Japanese (ja)
Other versions
JPS5758088A (en
Inventor
正昭 伊藤
秀行 木村
邦男 藤江
恒 中山
民雄 印南
武彦 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12404881A priority Critical patent/JPS6027917B2/en
Publication of JPS5758088A publication Critical patent/JPS5758088A/en
Publication of JPS6027917B2 publication Critical patent/JPS6027917B2/en
Expired legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は、フロン系冷煤を用いた空気調和機や冷凍機
等の空調用圧縮式冷凍サイクルの蒸発器に使用される伝
熱管に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to heat transfer tubes used in evaporators of compression refrigeration cycles for air conditioning such as air conditioners and refrigerators that use fluorocarbon-based cold soot. be.

〔発明の背景〕[Background of the invention]

フロン系冷煤を用いた空気調和機や冷凍機等の空調用圧
縮式冷凍サイクルの主要構成機器は、圧縮機、凝縮機、
膨脹機構および蒸発器である。
The main components of compression refrigeration cycles for air conditioning such as air conditioners and refrigerators that use fluorocarbon-based cold soot are compressors, condensers,
an expansion mechanism and an evaporator.

従来、上記蒸発器の伝熱管には、管内にフィンを設けた
フィン付管あるいは溝を設けた溝付き管がある。これら
は、フィンまたは溝を設けることによって管内伝熱面積
を増加させ、かつ管内流れの乱れを大きくして熱伝達率
の向上を図ろうとするものであった。そのため、フィン
高さまたは溝深さは、ある程度以上に大きくすることが
必要と考えられていた。このような伝熱管は、大きな圧
力損失を伴うことは避けられなかった。圧力損失が大き
いということは、伶媒を循環させるための圧縮機(ポン
プ手段)のポンプ動力を大きく増大させるうえ、冷凍サ
イクルの面では、凝縮温度、蒸発温度の変化をひき起し
、熱伝達率が向上したことによる性能向上分を相殺して
しまうのでこの種の伝熱管の使用を妨げていた。〔発明
の目的〕 この発明の目的は、管内を流れるフロン系冷煤が蒸発し
ていく過程における熱伝達率が高くかつ圧力損失が平滑
管と同程度の蒸発器用伝熱管を提供することにある。
Conventionally, heat transfer tubes of the evaporator include finned tubes in which fins are provided or grooved tubes in which grooves are provided. These attempts were to increase the heat transfer area within the tube by providing fins or grooves, and to increase the turbulence of the flow within the tube to improve the heat transfer coefficient. Therefore, it has been considered necessary to increase the fin height or groove depth to a certain extent or more. Such a heat exchanger tube inevitably involves a large pressure loss. A large pressure loss means that the pump power of the compressor (pump means) for circulating the medium increases significantly, and in terms of the refrigeration cycle, it causes changes in the condensing temperature and evaporation temperature, which reduces heat transfer. This has precluded the use of this type of heat exchanger tube because it offsets the performance improvement due to the increased heat exchange rate. [Object of the Invention] The object of the invention is to provide a heat exchanger tube for an evaporator that has a high heat transfer coefficient and a pressure loss comparable to that of a smooth tube in the process of evaporation of cold fluorocarbon soot flowing inside the tube. .

〔発明の概要〕[Summary of the invention]

1番目の発明の特徴は、蒸発器用伝熱管の内面に形成さ
れたらせん溝の深さhを0.02帆〜0.2肋、隣接し
た溝同士間のピッチpを0.1柳〜0.5側、溝幅wに
対する溝深さhの比(h/w)が0.4より大きいU字
形にし、これによって熱伝達率を高くしかつ圧力損失を
平滑管と同程度としたものである。
The first feature of the invention is that the depth h of the spiral groove formed on the inner surface of the evaporator heat exchanger tube is 0.02 to 0.2 ribs, and the pitch p between adjacent grooves is 0.1 to 0. On the .5 side, the ratio of the groove depth h to the groove width w (h/w) is U-shaped, which is larger than 0.4, thereby increasing the heat transfer coefficient and making the pressure loss comparable to that of a smooth pipe. be.

2番目の発明の特徴は、1番目の発明の特徴に管軸に対
する傾き角度8を4o〜1yにしたことを加えたもので
、これによって、溝形成による伝熱面積の増加分以上に
熱伝達率を向上させたものである。
The feature of the second invention is that the feature of the first invention is added that the inclination angle 8 with respect to the tube axis is set to 4o to 1y. This improves the rate.

、に 恒の′、について、・べる。, about Tsune's ′, ・Bell.

溝の深さh‘こついて; 空調用圧縮式冷凍サイクルでは、一般に冷煤としてR−
22,R−12等のフロン系冷煤が使用され循環流量(
伝熱管1本当りの重量流量)としては、30〜80k9
/Hrの範囲で運転されている。
Groove depth h'; In compression refrigeration cycles for air conditioning, generally cold soot is R-
Freon-based cold soot such as 22, R-12 is used and the circulating flow rate (
The weight flow rate per heat transfer tube is 30 to 80k9.
/Hr.

冷媒液は、蒸発器に流入する前に膨脹機構によって減圧
されるので蒸発器の伝熱管に流入する際には、蒸気と液
との二相流の状態であり、また冷媒は、圧縮機で強制的
に循環されるので、かなりの速度で流れる。そのため管
内の冷嬢は、液が管の内壁面にへばり付いた状態で流れ
、蒸気が管中心部を流れる環状流、または環状流に近い
半環状流となる。一方、伝熱管内に二相流の状態で流入
した冷媒は、管内を流れる間に管外から熱を奪いながら
蒸発していくから、環状流の状態となっている袷煤液の
液膜厚さは徐々に薄くなっていくが、その平均液膜厚さ
は、0.2伽程度である。
The refrigerant liquid is depressurized by the expansion mechanism before flowing into the evaporator, so when it flows into the heat transfer tube of the evaporator, it is in a two-phase flow state of vapor and liquid. Because it is forced into circulation, it flows at a considerable speed. Therefore, in the cooling chamber inside the pipe, the liquid flows while clinging to the inner wall surface of the pipe, and the steam flows in the center of the pipe in an annular flow or a semi-annular flow similar to an annular flow. On the other hand, the refrigerant that flows into the heat exchanger tube in a two-phase flow evaporates while taking heat from outside the tube while flowing inside the tube, so the liquid film thickness of the soot liquid in the annular flow state Although the liquid film thickness gradually becomes thinner, the average liquid film thickness is about 0.2 degrees.

溝深さ(フィン高さ)を前記平均液膜厚さより大きくす
ると、フィン先端が冷煤液膜から突出し、この突出した
部分は袷煤液との熱交換には直接有効に寄与しない。従
って、溝深さは、管内の冷媒液の平均液膜厚さもしくは
それ以下にするのが望ましい。
When the groove depth (fin height) is made larger than the average liquid film thickness, the fin tips protrude from the cold soot liquid film, and this protruding portion does not directly and effectively contribute to heat exchange with the soot liquid. Therefore, it is desirable that the groove depth be equal to or less than the average liquid film thickness of the refrigerant liquid in the pipe.

前記の通り、本発明の対象となる冷凍サイクルは、冷媒
を強制循環させるもので循環の際の圧力損失が小さいほ
ど圧縮機のポンプ動力を小さくできる。
As described above, the refrigeration cycle to which the present invention is applied is one in which refrigerant is forced to circulate, and the smaller the pressure loss during circulation, the lower the pump power of the compressor can be.

第6図に示すように、実験結果によれば溝深さが02肋
までは圧力損失が平滑管と同程度であり、溝深さが0.
2岬を越えた範囲で圧力損失が上昇している。この理由
は、平均液膜厚さを越えてフィン先端が流速の大さし、
冷煤蒸気に突出するためである。上記のように、溝深さ
の上限値0.2側は管内の冷煤液の平均液膜厚さと同程
度の値および圧力損失が平滑管と同程度となる溝深さの
値としたものである。
As shown in FIG. 6, the experimental results show that the pressure loss is comparable to that of a smooth pipe when the groove depth is up to 02 ribs, and when the groove depth is 0.
Pressure loss increases beyond Cape 2. The reason for this is that the flow velocity at the fin tip exceeds the average liquid film thickness.
This is because it protrudes into cold soot vapor. As mentioned above, the upper limit value of the groove depth of 0.2 is set to a value comparable to the average liquid film thickness of the cold soot liquid inside the pipe, and a value of the groove depth at which the pressure loss is comparable to that of a smooth pipe. It is.

溝の深さhの下限値について: 蒸発器における伝熱管内の冷媒の流れは、液が蒸発しさ
って蒸気だけになった場合、管内の中央部の流速が大き
く、管壁に近づくにともなって流速は小さくなっていく
Regarding the lower limit of groove depth h: When the liquid evaporates into only vapor, the flow of refrigerant in the heat transfer tube in the evaporator is such that the flow velocity is high in the center of the tube, and as it approaches the tube wall. The flow velocity becomes smaller.

管内中央部の流速の大きい範囲が乱流域、管壁面近傍の
流速が急激に低下する範囲が層流底層と呼ばれている。
乱流域の流速が大きくても層流底層の流速は小さくなる
ので、たとえ、溝の中に冷媒液が存在したとしても、こ
の液の中に層流底層の袷煤蒸気の流れを利用して渦を発
生させることはできない。
The region where the flow velocity is high at the center of the pipe is called the turbulent region, and the region near the pipe wall where the flow velocity rapidly decreases is called the laminar bottom layer.
Even if the flow velocity in the turbulent region is high, the flow velocity in the laminar bottom layer is small, so even if there is refrigerant liquid in the groove, the flow of soot vapor in the laminar bottom layer can be used in this liquid. It is not possible to generate vortices.

従って、溝深さは、層流底層の厚さより深いことが必要
である。前記層流底層の深さは、次の【1}式で求める
ことができ、この‘1’式は、甲藤好郎著株式会社養賢
堂発行の「伝熱概論」第104ページに掲載されている
Therefore, the groove depth needs to be deeper than the thickness of the laminar bottom layer. The depth of the laminar flow bottom layer can be determined by the following formula [1], and this '1' formula is published on page 104 of "Introduction to Heat Transfer" written by Yoshiro Koto and published by Yokendo Co., Ltd. ing.

¥‐貴為 .・・.・・‘11 m式において、rは伝熱管の半径(内径の半分)、Re
dはしィノルズ数で冷煤蒸気の平均流速Um,伝熱管の
内蚤d、袷煤蒸気の動粘性係数しを使って次の‘2}式
より求められる。
¥-Kitai .・・・. ...'11 In the m formula, r is the radius of the heat exchanger tube (half the inner diameter), Re
d is the Shinolds number, and can be determined from the following equation '2'' using the average flow velocity Um of cold soot steam, the inner lining of the heat transfer tube d, and the kinematic viscosity coefficient of soot steam.

Red=U宅・d ……‘21今、空調用
圧縮式冷凍サイクルで一般式に使用されている代表的な
条件(冷煤R−22、蒸発温度000、蒸発圧力4k9
/塊G,d=1仇岬,Um=7.2の/sec)で(2
)式により計算すると、Redの値は、Red=1.3
×1ぴとなる。
Red=U house・d...'21 Typical conditions currently used in the general formula for compression refrigeration cycles for air conditioning (cold soot R-22, evaporation temperature 000, evaporation pressure 4k9
/ block G, d = 1 Qianqi, Um = 7.2 /sec) and (2
) calculation, the value of Red is Red=1.3
×1 pi.

この値を{1}式に代入すると、 6c− 123 r (1.3×1び)7/s 電撃;=o●oo4 となる。Substituting this value into the {1} formula, we get 6c- 123 r (1.3×1 bi)7/s Electric shock:=o●oo4.

伝熱管の半径rは、5側であるから、このときの層流底
層の厚さ6cを求めると、6‘=0.02肋となる。
Since the radius r of the heat exchanger tube is on the 5 side, the thickness 6c of the laminar flow bottom layer at this time is found to be 6'=0.02 ribs.

圧縮式冷凍サイクルでは一般に、伝熱管の内径dが7〜
12肋、冷煤蒸気の平均流速Umが7〜lmh/sec
であり、これらの値から前記と同様に層流底層の厚さ6
cを求めると、0.016〜0.021柳となり、平均
的な層流底層の厚さは0.02肋となる。上記のように
、溝深さhの下限値0.02肋は、層流底層の厚さから
定めたものである。
Generally, in a compression type refrigeration cycle, the inner diameter d of the heat transfer tube is 7~
12 ribs, average flow velocity Um of cold soot vapor is 7 to lmh/sec
From these values, the thickness of the laminar bottom layer 6 is calculated as above.
If c is calculated, it will be 0.016 to 0.021 willow, and the average thickness of the laminar bottom layer will be 0.02 ribs. As mentioned above, the lower limit value of 0.02 ribs for the groove depth h is determined from the thickness of the laminar bottom layer.

溝の形状(U字形溝の溝幅wに対する溝深さhの比h/
w及びV字形溝の頂角)について;伝熱性能を向上させ
るには、伝熱面積を増加させること及び冷蝶の流れを乱
すこと、とくに管内中心部の冷媒蒸気の流れを利用して
各溝の中の冷媒液に渦を発生させるのが効果的である。
Groove shape (ratio of groove depth h to groove width w of U-shaped groove h/
w and the apex angle of the V-shaped groove): To improve the heat transfer performance, it is necessary to increase the heat transfer area and disturb the flow of the cooling butterfly, especially by utilizing the flow of refrigerant vapor in the center of the pipe. It is effective to generate vortices in the refrigerant liquid in the grooves.

U字形溝のh/wの値を零から次第に増していったとき
溝の中に発生する渦が溝深さいつぱに形成されるのは、
U字形溝の中の冷煤液の深さと溝の中の冷煤液が冷媒蒸
気と接している長さとの比、すなわち溝深さhと溝幅w
との比(h/w)が0.4のときである。h/wが04
より小さいと、液の深さに対して袷媒蒸気と接する長さ
が大きくなり過ぎて、袷媒蒸気の流れによって溝の中の
冷煤液が溝の側壁を乗り越えて隣の溝に流れ込むため禍
の大きさは、溝の深さよりも急激に小さくなる。
When the h/w value of the U-shaped groove is gradually increased from zero, the vortices that occur in the groove are formed at the groove depth as follows.
The ratio of the depth of the cold soot liquid in the U-shaped groove to the length of the cold soot liquid in the groove in contact with the refrigerant vapor, that is, the groove depth h and the groove width w
This is when the ratio (h/w) is 0.4. h/w is 04
If it is smaller, the length of contact with the liner vapor will be too large compared to the depth of the liquid, and the flow of the liner vapor will cause the cold soot in the groove to flow over the side wall of the groove and into the adjacent groove. The size of the disaster becomes much smaller than the depth of the trench.

h/wを0.4から次第に大きくしていくと、溝の中の
冷煤液が冷媒蒸気と接する長さは小さくなるので、袷媒
液が溝の側壁を乗り越えることはなく、溝深さいっぱい
の渦が安定して発生し、さらにh/wを1以上にすると
溝幅いっぱいの渦が安定して発生する。尚、溝幅いっぱ
いまたは、溝深さいっぱいに形成された渦にことを以下
単に最大級の渦という。また、V字形溝の場合、溝の底
が先細り1こなっているので、h/wがU字形溝よりも
若干大きい値(約0.5)で溝の中の冷媒液に最大級の
渦が発生する。一方、V字形溝の場合、溝深さh対溝幅
wを頂角ッを使って表わすことができ、前記のh/w=
0.5から頂角yを求めると、y=900となる。従っ
て、溝の形状は、管中央部の袷煤蒸気の流れを利用して
溝の中の冷嬢液に最大級の渦を発生させられる限界に基
づいて定めたもので、十字形溝の場合、頂角y≦90o
とし、U字形溝の場合、h/wZO.4としたものであ
る。
When h/w is gradually increased from 0.4, the length of contact between the cold soot liquid in the groove and the refrigerant vapor becomes smaller, so the liner liquid does not go over the side walls of the groove, and the groove depth increases. A full vortex is stably generated, and when h/w is set to 1 or more, a vortex is stably generated throughout the groove width. A vortex formed over the full width of the groove or the full depth of the groove is hereinafter simply referred to as the largest vortex. In addition, in the case of a V-shaped groove, since the bottom of the groove is tapered, the h/w value is slightly larger than that of a U-shaped groove (approximately 0.5), creating the largest vortex in the refrigerant liquid in the groove. occurs. On the other hand, in the case of a V-shaped groove, the groove depth h versus the groove width w can be expressed using the apex angle, and the above h/w=
If the apex angle y is calculated from 0.5, y=900. Therefore, the shape of the groove is determined based on the limit of generating the maximum vortex in the cooling liquid in the groove by utilizing the flow of soot vapor in the center of the pipe. , vertical angle y≦90o
and in the case of a U-shaped groove, h/wZO. 4.

溝のピッチpの上限値について; 溝深さが0.2肋で頂角が90″のV字形溝を形成する
と、このときの溝の幅が最も広いところ(最大幅という
)は、0.4脚となる。
Regarding the upper limit of the pitch p of the groove: When forming a V-shaped groove with a groove depth of 0.2 ribs and an apex angle of 90'', the width of the groove at this time is the widest point (referred to as the maximum width). It will have four legs.

このV字形溝の最大値と溝ピッチとを同じ‘こすればV
字形溝の頂角を900にしたものの中でV字形溝が最も
密のものが得られ、伝熱面積が最大のものとなる。また
、実際のV字形溝の成形加工の際には、溝と隣の溝との
間に若干の距離を設けるのが、成形工具の製作、成形加
工の容易さ、加工精度の維持の面で有利である。
If the maximum value of this V-shaped groove and the groove pitch are the same, V
Among those in which the apex angle of the grooves is 900, the one with the densest V-shaped grooves is obtained, and the heat transfer area is the largest. In addition, when actually forming a V-shaped groove, it is recommended to provide a slight distance between one groove and the adjacent groove in order to manufacture the forming tool, facilitate the forming process, and maintain processing accuracy. It's advantageous.

このような実用性を考慮してV字形溝の溝ピッチの上限
値を前記最大幅0.4肌より若干大きい0.5側とした
ものである。溝の中の冷媒液に発生する渦が最大級とな
る前記h/wの値に、伝熱面積を増加させるため溝の数
をできるだけ多くすることを考え合わせると、溝深さが
0.2脚のときの最4・の溝幅は、約0.5側となり、
この値をU字形溝の溝ピッチpの上限値としたものであ
る。溝のピッチpの下限値について: フィンで隔てられた溝を有する管内に袷煤液を流した場
合、フィン剥離した流れが、フィン高さの5〜1の音の
下流位置で管壁に再び付着し、この再付着点での熱伝達
率が高いことが観測されたと報告されている。
In consideration of such practicality, the upper limit value of the groove pitch of the V-shaped groove is set to 0.5, which is slightly larger than the maximum width of 0.4. Considering the value of h/w at which the vortex generated in the refrigerant liquid in the grooves is at its maximum, and considering that the number of grooves should be as large as possible in order to increase the heat transfer area, the groove depth is 0.2. The width of the groove at the maximum of 4 when it is a leg is about 0.5 side,
This value is taken as the upper limit value of the groove pitch p of the U-shaped groove. Regarding the lower limit of the pitch p of the grooves: When soot liquid is flowed into a pipe having grooves separated by fins, the flow that has separated the fins will return to the pipe wall at a downstream position of 5 to 1 pitch of the fin height. It has been reported that a high heat transfer coefficient was observed at this reattachment point.

このことに前述した伝熱面積を出来るだけ増加させて熱
伝達率を向上させることを考え合わせ、フィンから再付
着点までの距離の最小値を採用し、この値に溝深さの下
限値を掛けたもの(5×0.02=0.1肋)をV字形
溝およびU字形溝における溝ピッチpの下限値としたも
のである。管軸に対する傾き角度8について; 管内中央部の冷煤蒸気の流れを利用して各溝の中で冷煤
液が溝に沿って流れながら渦を巻くようにすることが熱
伝達率を一層向上させる上で効果的であることを見出し
た。
Considering this and the aforementioned aim of increasing the heat transfer area as much as possible to improve the heat transfer coefficient, we adopted the minimum value of the distance from the fin to the reattachment point, and set the lower limit of the groove depth to this value. The value multiplied by (5×0.02=0.1 ribs) is taken as the lower limit value of the groove pitch p in the V-shaped groove and the U-shaped groove. Regarding the inclination angle 8 with respect to the tube axis; heat transfer coefficient is further improved by making the cold soot liquid swirl in each groove while flowing along the grooves by utilizing the flow of cold soot vapor in the center of the tube. We have found that this method is effective in

第7図に示すように、圧縮式冷凍サイクルで一般に使用
されている代表的な条件で行なった実験結果では、管軸
に対する頬き角度8が4o〜15oの範囲で、溝形成に
よる伝熱面積の増加分以上に熱伝達率が向上している。
As shown in Figure 7, the results of experiments conducted under typical conditions commonly used in compression refrigeration cycles show that when the cheek angle 8 to the tube axis ranges from 4o to 15o, the heat transfer area due to groove formation is The heat transfer coefficient has improved by more than the increase in .

これは、冷媒蒸気の流れは冷煤液の流れより速く、しか
も溝と40〜15oの角度をもって流れるので、溝の中
の冷媒液は、液の表面を通して回転力と溝に沿って進む
力を受けるためである。〔発明の実施例〕 以下この発明の実施例を第1図〜第9図により説明する
This is because the flow of refrigerant vapor is faster than the flow of cold soot liquid and flows at an angle of 40 to 15 degrees with the groove, so the refrigerant liquid in the groove receives rotational force and force moving along the groove through the surface of the liquid. It is to receive. [Embodiments of the Invention] Examples of the invention will be described below with reference to FIGS. 1 to 9.

第1図および第2図にしめすように、平滑管1の内壁面
にV字に近い形状のらせん溝2を設け、この溝2の深さ
hを0.02側〜0.2伽、ピッチpを0.1側〜0.
5帆、溝の断面形状(溝に直角な断面)は、第3図およ
び第4図に示すように、V字形溝の場合は頂角yを鋭角
(90o以下)とし、U字形溝の場合は幅wに対する深
さhの比h/wを0.4より大きくする。
As shown in FIGS. 1 and 2, a spiral groove 2 having a shape close to a V-shape is provided on the inner wall surface of the smooth tube 1, and the depth h of this groove 2 is set at a pitch of 0.02 to 0.2 ca. p from 0.1 side to 0.
5. The cross-sectional shape of the sail and groove (cross section perpendicular to the groove) is as shown in Figures 3 and 4. In the case of a V-shaped groove, the apex angle y is an acute angle (90 degrees or less), and in the case of a U-shaped groove, makes the ratio h/w of depth h to width w greater than 0.4.

これによって隣接する溝同士のピッチを小さくし、伝熱
面積を大きくするとともに各溝の中の冷媒液に、管中央
部の冷煤蒸気の流れを利用して渦を発生させる。また、
管軸に対する溝の傾き角度8を40〜15oにし、熱伝
達率を溝形成による伝熱面積増加分以上に向上させる。
This reduces the pitch between adjacent grooves, increases the heat transfer area, and generates vortices in the refrigerant liquid in each groove by utilizing the flow of cold soot vapor at the center of the tube. Also,
The inclination angle 8 of the groove with respect to the tube axis is set to 40 to 15 degrees to improve the heat transfer coefficient more than the increase in heat transfer area due to the groove formation.

第5図および第6図は、従来の平滑管およびフィンまた
は溝付き管と、この発明による鋼製伝熱管について次に
示す条件によって実験した結果を示すものである。
FIGS. 5 and 6 show the results of experiments conducted on conventional smooth tubes, finned or grooved tubes, and steel heat exchanger tubes according to the present invention under the following conditions.

使用冷煤 ・・・・・・R−22
沸騰液の圧力 ・・・・・・4k9/仇G
沸騰液の流量(重量) ・・・・・・43k9/
Hr加えた熱流速 ・・・・・・5000kc
al/のHr第5図の実線aは、管内フィン高さまたは
溝の深さと熱伝達率との関係を示しており、横軸に管内
フィン高さまたは溝の深さhつまり表面の粗さをとり、
縦軸にこの発明の伝熱管の熱伝達率Qと平滑管の熱伝達
率Qoとの比(Q/Qo)をとったものである。
Cold soot used: R-22
Pressure of boiling liquid...4k9/KiG
Boiling liquid flow rate (weight)...43k9/
Heat flow rate with added Hr...5000kc
al/Hr The solid line a in Figure 5 shows the relationship between the tube fin height or groove depth and the heat transfer coefficient, and the horizontal axis represents the tube inner fin height or groove depth h, that is, the surface roughness. Take
The vertical axis represents the ratio (Q/Qo) between the heat transfer coefficient Q of the heat transfer tube of the present invention and the heat transfer coefficient Qo of the smooth tube.

○印は得られた実測値である。この結果によれば管内フ
ィン高さまたは溝の深さhが0.2側以下において平滑
管の数倍の沸騰熱伝達率が得られる。尚、破線bは管内
伝熱面積の増加率を示し、従来は破線bでも示される程
度の熱伝達率向上割合しか得られないと考えられていた
。第6図に管内フィン高さまたは溝の深さと圧力損失と
の関係を示しており、横軸に管内フィン高さまたは溝の
深さhつまり表面の粗さをとり、縦軸にこの発明の伝熱
管の圧力損失△pと平滑管の圧力損失△poとの比(△
p/△po)をとったもので、管内フィン高さまたは溝
の深さhが0.2脚以上では次第に圧力損失が大きくな
っていくが、溝の深さhが0.2側以下では圧力損失が
平滑管とほぼ等しく、熱伝達率が平滑管より高くなって
いる。
The ○ marks are the actual measured values obtained. According to this result, when the height of the fins in the tube or the depth h of the grooves is 0.2 or less, a boiling heat transfer coefficient several times that of a smooth tube can be obtained. Note that the broken line b indicates the rate of increase in the heat transfer area within the tube, and conventionally it was thought that only the rate of improvement in the heat transfer coefficient as indicated by the broken line b could be obtained. Figure 6 shows the relationship between the height of the pipe fins or the depth of the grooves and the pressure loss, where the horizontal axis represents the height of the pipe fins or the depth h of the grooves, that is, the surface roughness, and the vertical axis represents the Ratio of pressure loss △p in heat transfer tubes to pressure loss △po in smooth tubes (△
p/△po), the pressure loss gradually increases when the pipe fin height or groove depth h is 0.2 or more, but when the groove depth h is less than 0.2, the pressure loss gradually increases. The pressure loss is almost the same as that of a smooth tube, and the heat transfer coefficient is higher than that of a smooth tube.

第7図は、V字形のらせん溝の深さ0.2脚、ピッチ0
.5皿、内蓬11.2柳で一定とし、管軸に対する傾き
角度8をoo〜75oの範囲で変化させたアルミニウム
製伝熱管についての実験結果を示すものである。
Figure 7 shows a V-shaped spiral groove with a depth of 0.2 legs and a pitch of 0.
.. The results of experiments are shown for aluminum heat exchanger tubes in which the inclination angle 8 with respect to the tube axis was varied in the range of oo to 75 degrees, with 5 plates and 11.2 willows being constant.

横軸に管軸に対する懐き角度3(以下単に懐き角度8と
いう)をとり、縦軸に熱伝達率Qと圧力損失△pをとっ
ている。圧力損失△pは、煩き角度8の影響を受けずほ
ぼ一定であるのに対して熱伝達率Qは頭き角度8によっ
て大きく変化している。
The horizontal axis represents the angle 3 (hereinafter simply referred to as the angle 8) with respect to the tube axis, and the vertical axis represents the heat transfer coefficient Q and the pressure loss Δp. The pressure loss Δp is almost constant without being affected by the head angle 8, whereas the heat transfer coefficient Q varies greatly depending on the head angle 8.

比較の基準として平滑管の値を左端に示してある。熱伝
達率Qは傾き角度8が00すなわち、管軸と平行な縦溝
のきは、平滑管より小さくなり、煩き角度3が大きくな
るにしたがって次第に増加し、懐き角度8=7o近辺で
ピークに達し、再び減少して8=450付近で最低値を
とり、再び増加しはじめる。従って、最適傾き角度8は
7o付近にある。この発明に伝熱管の内側の表面積は、
V字形溝を螺旋状に切ったことにより平滑管よりも約3
5%増加している。
The values for the smooth tube are shown on the left as a basis for comparison. The heat transfer coefficient Q is smaller when the inclination angle 8 is 00, that is, when the vertical groove is parallel to the tube axis than when it is a smooth tube, and as the groove angle 3 increases, it gradually increases, and reaches a peak around the groove angle 8 = 7o. , it decreases again, reaches its lowest value around 8=450, and then begins to increase again. Therefore, the optimum tilt angle 8 is around 7o. In this invention, the inner surface area of the heat transfer tube is
By cutting the V-shaped groove into a spiral shape, it is approximately 3 times smaller than a smooth pipe.
It has increased by 5%.

35%の伝熱面積の増加と同じだけ熱伝達率が増加する
と考えると熱伝達率は第7図の点線Aまで上昇する。
Considering that the heat transfer coefficient increases by the same amount as the heat transfer area increases by 35%, the heat transfer coefficient increases to the dotted line A in FIG.

平滑管の熱伝達率35%増し以上の熱伝達率を示す傾き
角度8の範囲すなわち、熱伝達率が点線Aより高い値を
示す範囲は、額き角度B=4o〜1yである。この範囲
では、熱伝達率が溝形成による表面積増加分以上に高く
なる。第8図は、V字溝の頂角yの変化による熱伝達率
Qの変化を示す線図である。
The range of the inclination angle 8 in which the heat transfer coefficient of the smooth tube is 35% or more, that is, the range in which the heat transfer coefficient is higher than the dotted line A is the square angle B=4o to 1y. In this range, the heat transfer coefficient becomes higher than the increase in surface area due to groove formation. FIG. 8 is a diagram showing changes in the heat transfer coefficient Q due to changes in the apex angle y of the V-shaped groove.

この図の縦軸には熱伝達率Q(kcal/れh。0)を
とり、横軸には袷媒流量Gr(k9/h)をとってある
The vertical axis of this figure shows the heat transfer coefficient Q (kcal/reh.0), and the horizontal axis shows the medium flow rate Gr (k9/h).

曲線ッo は平滑管、曲線y6oは頂角y=900、曲
線y6oは頂角y=600、曲線y3oは頂角y=30
o の場合の熱伝達率を示している。この図からV字形
溝の頂角8が小さい程、高い熱伝達率を示すことがわか
る。このとき頂角yが4・さくなると溝ピッチpも小さ
くなる。第9図はU字に近いU字形溝の幅Wの変化によ
り熱伝達率Qの変化を示す線図である。
Curve o is a smooth tube, curve y6o is apex angle y = 900, curve y6o is apex angle y = 600, curve y3o is apex angle y = 30
It shows the heat transfer coefficient in the case of o. It can be seen from this figure that the smaller the apex angle 8 of the V-shaped groove, the higher the heat transfer coefficient. At this time, when the apex angle y decreases by 4.times., the groove pitch p also decreases. FIG. 9 is a diagram showing changes in heat transfer coefficient Q due to changes in width W of a U-shaped groove close to a U-shape.

この図の縦藤には熱伝達率Q(kcal/でh℃)をと
り、機軸には冷嬢流量Gr(kcal/h)をとってあ
る。曲線Woは平滑管、曲線W2は溝幅w=0.9肋、
曲線W2は溝幅w=0.55脚、曲線W3は溝幅w=0
.25肋の場合である。この図からU字形溝の幅wが小
さいほど高い熱伝達率を示すことがわかる。尚ピッチp
は幅wの約2倍に形成されている。上記実験結果のよう
に熱伝達率が表面積の増加分以上に向上するのは次の理
由による。
In this figure, the vertical axis shows the heat transfer coefficient Q (kcal/h°C), and the axis shows the cooling flow rate Gr (kcal/h). Curve Wo is a smooth pipe, curve W2 is a groove width w = 0.9 ribs,
The curve W2 has a groove width w=0.55 legs, and the curve W3 has a groove width w=0.
.. This is the case with 25 ribs. It can be seen from this figure that the smaller the width w of the U-shaped groove, the higher the heat transfer coefficient. Furthermore, pitch p
is formed approximately twice the width w. The reason why the heat transfer coefficient improves more than the increase in surface area as shown in the above experimental results is as follows.

すなわち、溝深さhが0.02肋、ピッチpが0.1肌
〜0.5側、煩き角度Pが4o〜15oの細かい溝をつ
けると沸騰(冷媒)液は、中心を流れるガス被膜を形成
しながら、溝の方向に強い回転力を受けて、溝方向に大
きな速度で流れる。
In other words, if you make fine grooves with a groove depth h of 0.02 degrees, a pitch p of 0.1 to 0.5 degrees, and a roughness angle P of 4o to 15o, the boiling (refrigerant) liquid will flow through the center of the gas. While forming a film, it receives a strong rotational force in the direction of the groove and flows at a high speed in the direction of the groove.

この大きな旋回流に乗って、溝方向に流れながら横の中
の沸騰(袷媒)液は、冷媒蒸気の流れ方向と溝の角度方
向が、わずかに異なるために小さな渦運動を行い、二次
的な旋回渦を形成する。この大きな旋回流と小さな渦運
動の結果、沸騰(冷煤)液と管壁の間には最も熱伝達率
が効果的に行なわれ、高い伝熱性能を発揮する。圧力損
失が従来の平滑管を同程度であるのは、溝深さが、管内
の冷蝶の平均液膜厚さ程度であるため、沸騰(冷蝶)液
が伝熱管の管壁に付着しながら流れる際、細かい溝の大
部分を冷媒液が覆って滑らかにし、平滑管と実質的に同
じような流れになっていることによる。
Riding on this large swirling flow, the boiling liquid inside the groove flows in the direction of the groove, and because the flow direction of the refrigerant vapor and the angular direction of the groove are slightly different, it makes a small vortex movement, resulting in secondary It forms a swirling vortex. As a result of this large swirling flow and small vortex motion, the heat transfer coefficient is most effective between the boiling (cold soot) liquid and the tube wall, and high heat transfer performance is achieved. The reason why the pressure loss is about the same as that of conventional smooth tubes is that the groove depth is about the same as the average liquid film thickness of the cold butterfly inside the tube, which prevents boiling (cold butterfly) liquid from adhering to the tube wall of the heat transfer tube. This is because when the refrigerant liquid flows, most of the fine grooves are covered and smoothed, creating a flow substantially similar to that of a smooth pipe.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この第1番目の発明によれば、熱
伝達率が平滑管よりも高く、かつ圧力損失が平滑管と同
程度に小さい空調用圧縮式冷凍サイクルの蒸発器におけ
る伝熱管を提供でき、第2番目の発明によれば、第1番
目の発明の効果に加え、熱伝達率が溝形成による伝熱面
積の増加分以上に高い空調用圧縮式冷凍サイクルの蒸発
器における伝熱管を提供できる。
As explained above, according to the first invention, a heat transfer tube in an evaporator of a compression refrigeration cycle for air conditioning, which has a higher heat transfer coefficient than a smooth tube and a pressure loss as small as a smooth tube, can be used. According to the second invention, in addition to the effects of the first invention, there is provided a heat transfer tube in an evaporator of a compression refrigeration cycle for air conditioning, in which the heat transfer coefficient is higher than the increase in heat transfer area due to groove formation. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明による伝熱管の一例の断面図、第2図
は第1図の0ーロ線に沿って切断した断面図、第3図は
、V字形溝の一例を示す要部拡大断面図、第4図は、U
字形溝の一例を示す要部拡大断面図、第5図〜第9図は
、この発明による伝熱管の性能実験の結果を示す線図で
ある。 1・・・・・・伝熱管、2・・・・・・溝。 第1図第2図 第5図 第3図 第6図 第4図 第7図 第8図 第9図
Fig. 1 is a sectional view of an example of a heat exchanger tube according to the present invention, Fig. 2 is a sectional view taken along the 0-Ro line in Fig. 1, and Fig. 3 is an enlarged view of essential parts showing an example of a V-shaped groove. The sectional view, Figure 4, is U
FIGS. 5 to 9, which are enlarged cross-sectional views of essential parts showing an example of the shape groove, are diagrams showing the results of performance experiments of the heat exchanger tube according to the present invention. 1... Heat exchanger tube, 2... Groove. Figure 1 Figure 2 Figure 5 Figure 3 Figure 6 Figure 4 Figure 7 Figure 8 Figure 9

Claims (1)

【特許請求の範囲】 1 相変化するフロン系冷媒が二相流の状態で管内をポ
ンプ手段によつて流されるもので、管の内壁にらせん状
の溝を有する空調用圧縮式冷凍サイクルの蒸発器におけ
る伝熱管において、らせん状の溝は、深さが0.02m
m〜0.2mm、隣接した溝同士間のピツチが0.1m
m〜0.5mm、溝に直角な断面形状は、溝深さ対溝幅
の比が0.4より大きいU字形に形成されていることを
特徴とする空調用圧縮式冷凍サイクルの蒸発器における
伝熱管。 2 相変化するフロン系冷媒が二相流の状態で管内をポ
ンプ手段によつて流されるもので、管の内壁にらせん状
の溝を有する空調用圧縮式冷凍サイクルの蒸発器におけ
る伝熱管において、らせん状の溝は、深さが0.02m
m〜0.2mm、隣接した溝同士間のピツチが0.1m
m〜0.5mm、管軸に対する傾き角度が4°〜15°
、溝に直角な断面形状は、溝深さ対溝幅の比が0.4よ
り大きいU字形に形成されていることを特徴とする空調
用圧縮式冷凍サイクルの蒸発器における伝熱管。
[Claims] 1. An evaporation system for an air conditioning compression refrigeration cycle in which a phase-changing fluorocarbon refrigerant is flowed through a pipe in a two-phase flow state by a pump means, and the pipe has a spiral groove on its inner wall. In the heat exchanger tube in the container, the spiral groove has a depth of 0.02 m.
m~0.2mm, pitch between adjacent grooves is 0.1m
In an evaporator for a compression refrigeration cycle for air conditioning, the cross-sectional shape perpendicular to the groove is formed in a U-shape with a ratio of groove depth to groove width greater than 0.4. heat exchanger tube. 2. In a heat transfer tube in an evaporator of a compression refrigeration cycle for air conditioning, in which a phase-changing fluorocarbon refrigerant is flowed through the tube in a two-phase flow state by a pump means, and the tube has a spiral groove on the inner wall. The depth of the spiral groove is 0.02m.
m~0.2mm, pitch between adjacent grooves is 0.1m
m~0.5mm, inclination angle to the tube axis is 4°~15°
A heat exchanger tube in an evaporator of a compression refrigeration cycle for air conditioning, characterized in that the cross-sectional shape perpendicular to the groove is formed in a U-shape with a groove depth to groove width ratio of greater than 0.4.
JP12404881A 1981-08-10 1981-08-10 Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning Expired JPS6027917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12404881A JPS6027917B2 (en) 1981-08-10 1981-08-10 Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12404881A JPS6027917B2 (en) 1981-08-10 1981-08-10 Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning

Publications (2)

Publication Number Publication Date
JPS5758088A JPS5758088A (en) 1982-04-07
JPS6027917B2 true JPS6027917B2 (en) 1985-07-02

Family

ID=14875695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12404881A Expired JPS6027917B2 (en) 1981-08-10 1981-08-10 Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning

Country Status (1)

Country Link
JP (1) JPS6027917B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60142195A (en) * 1983-12-28 1985-07-27 Hitachi Cable Ltd Heat transfer tube equipped with groove on internal surface thereof
US4938282A (en) * 1988-09-15 1990-07-03 Zohler Steven R High performance heat transfer tube for heat exchanger
MY110330A (en) * 1991-02-13 1998-04-30 Furukawa Electric Co Ltd Heat-transfer small size tube and method of manufacturing the same
FR2837270B1 (en) 2002-03-12 2004-10-01 Trefimetaux GROOVED TUBES FOR REVERSIBLE USE FOR HEAT EXCHANGERS
JP2003287392A (en) * 2002-03-28 2003-10-10 Kobe Steel Ltd Boiling type heat transfer pipe
FR2855601B1 (en) * 2003-05-26 2005-06-24 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS WITH TYPICALLY AQUEOUS MONOPHASIC FLUID
WO2019180817A1 (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device

Also Published As

Publication number Publication date
JPS5758088A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
JP2688406B2 (en) Heat exchange tube
KR100300640B1 (en) Refrigeration cycle for using a heat transfer tube for a zeotropic refrigerant mixture
RU2289076C2 (en) Pipes with grooves for reversible usage at heat exchangers
JPH0421117B2 (en)
JP3323682B2 (en) Heat transfer tube with internal cross groove for mixed refrigerant
IL201783A (en) Heat transfer tubes and methods of fabrication
JP2010532855A (en) Finned tube with stepped top
US5992513A (en) Inner surface grooved heat transfer tube
JPS6027917B2 (en) Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
CN111895685A (en) Heat exchange tube and dry evaporator
JPH0579783A (en) Heat transfer tube with inner surface groove
JPH04260793A (en) Heat transfer tube with inner surface groove
CN212870309U (en) Heat exchange tube and dry evaporator
JP3292043B2 (en) Heat exchanger
JPS62142995A (en) Heat transfer pipe with inner surface spiral groove
JP2912826B2 (en) Heat transfer tube with internal groove
JPH01150797A (en) Heat exchanger with internal fin
JP3415013B2 (en) Heat transfer tube for condenser
JPS5883189A (en) Heat-transmitting pipe
JP3417825B2 (en) Inner grooved pipe
JPS62102093A (en) Heat transfer tube equipped with internal grooves
JPH08105699A (en) Heat transfer tube with inside grooves