JP3415013B2 - Heat transfer tube for condenser - Google Patents

Heat transfer tube for condenser

Info

Publication number
JP3415013B2
JP3415013B2 JP35387797A JP35387797A JP3415013B2 JP 3415013 B2 JP3415013 B2 JP 3415013B2 JP 35387797 A JP35387797 A JP 35387797A JP 35387797 A JP35387797 A JP 35387797A JP 3415013 B2 JP3415013 B2 JP 3415013B2
Authority
JP
Japan
Prior art keywords
heat transfer
fin
tube
transfer tube
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35387797A
Other languages
Japanese (ja)
Other versions
JPH11183074A (en
Inventor
宏行 ▲高▼橋
主税 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP35387797A priority Critical patent/JP3415013B2/en
Publication of JPH11183074A publication Critical patent/JPH11183074A/en
Application granted granted Critical
Publication of JP3415013B2 publication Critical patent/JP3415013B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は冷凍機等に使用され
る伝熱管に関し、特に、伝熱性能を向上させることがで
きる凝縮器用伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat transfer tube used in a refrigerator or the like, and more particularly to a heat transfer tube for a condenser capable of improving heat transfer performance.

【0002】[0002]

【従来の技術】従来より、冷凍機等においては、外面に
フィンが設けられた伝熱管が使用されており、特に、フ
ィンの形状を規定することにより、伝熱性能の向上を図
った伝熱管が考案されている(実開昭59−42477
号公報)。図4は従来の伝熱管の形状を示す斜視図であ
る。図4に示すように、管本体23の外面には、複数本
のフィン21が形成されている。このフィン21には、
その山頂をフィンに平行な方向に沿って分割する2本の
溝25が設けられている。従って、フィン21はその頭
部に三方向に分岐した枝部24を有している。また、フ
ィン21には、これを長手方向に分割する複数個の切欠
き22が設けられている。
2. Description of the Related Art Conventionally, heat transfer tubes having fins on their outer surfaces have been used in refrigerators and the like, and in particular, heat transfer tubes having improved heat transfer performance by defining the shape of the fins. Has been devised (Shokai 59-42477)
Issue). FIG. 4 is a perspective view showing the shape of a conventional heat transfer tube. As shown in FIG. 4, a plurality of fins 21 are formed on the outer surface of the tube body 23. In this fin 21,
Two grooves 25 are provided to divide the peak along the direction parallel to the fins. Therefore, the fin 21 has a branch portion 24 on its head, which branches in three directions. Further, the fin 21 is provided with a plurality of notches 22 that divide the fin 21 in the longitudinal direction.

【0003】このように構成された伝熱管26において
は、伝熱管26の表面で凝縮された冷媒が枝部24間の
溝25に流れ、その後、冷媒は溝25から切欠き22を
通過してフィン21間に落ちる。このように、フィン2
1の上部で冷媒が滞留することがないので、良好な伝熱
性能を得ることができる。
In the heat transfer tube 26 thus constructed, the refrigerant condensed on the surface of the heat transfer tube 26 flows into the grooves 25 between the branch portions 24, and then the refrigerant passes from the grooves 25 through the notches 22. It falls between the fins 21. Like this, fin 2
Since the refrigerant does not stay in the upper part of 1, it is possible to obtain good heat transfer performance.

【0004】また、伝熱性能の向上を図った伝熱管とし
て、切欠き(ノッチ)の形成方向、深さ及び密度等が規
定された伝熱管が提案されている(特開平8−2196
75号公報)。
As a heat transfer tube with improved heat transfer performance, there has been proposed a heat transfer tube in which a notch (notch) forming direction, depth, density and the like are defined (Japanese Patent Laid-Open No. 8-2196).
No. 75).

【0005】ところで、近時のフロン規制に伴って、伝
熱管の表面側で凝縮される冷媒として、塩素を含有する
クロロジフルオロメタン等を使用したものから、塩素を
全く含有しない冷媒、例えば1,1,1,2−テトラフル
オロエタン等を使用したものへの移管が進められてい
る。
By the way, due to the recent regulation of CFCs, from a refrigerant containing chlorine-containing chlorodifluoromethane or the like as a refrigerant condensed on the surface side of a heat transfer tube, a refrigerant containing no chlorine, for example, 1, The transfer to those using 1,1,2-tetrafluoroethane etc. is in progress.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
伝熱管において、表面で凝縮される冷媒としてフロン規
制に対応した冷媒を使用すると、例えば、クロロジフル
オロメタンを冷媒として使用した場合と比較して、伝熱
性能が低下するという問題点が発生する。また、図4に
示す従来の伝熱管においては、フィンの頭部に切欠きを
設けることにより、フィンの頭部における液切れ性は向
上するが、この切欠きは、フィン間の溝に滞留した凝縮
冷媒の排出には寄与しない。特に、密度が小さい冷媒
(例えば、1,1,1,2−テトラフルオロエタン等)で
は、この傾向が顕著に現れる。
However, in a conventional heat transfer tube, when a refrigerant that complies with CFC regulations is used as the refrigerant condensed on the surface, for example, as compared with the case where chlorodifluoromethane is used as the refrigerant, There is a problem that heat transfer performance is deteriorated. Further, in the conventional heat transfer tube shown in FIG. 4, the cutouts are retained in the grooves between the fins although the cutouts are provided in the fin heads to improve the liquid drainage property at the fin heads. It does not contribute to the discharge of condensed refrigerant. In particular, with a refrigerant having a low density (for example, 1,1,1,2-tetrafluoroethane, etc.), this tendency becomes remarkable.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、フロン規制に対応した冷媒を使用した場合
であっても、良好な伝熱性能を得ることができる凝縮器
用伝熱管を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a heat transfer tube for a condenser capable of obtaining good heat transfer performance even when a refrigerant compatible with CFC regulations is used. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明に係る凝縮器用伝
熱管は、管本体と、この管本体の外面に設けられ管軸方
向に直交又は傾斜する方向に延びるフィンとを有する凝
縮器用伝熱管において、前記フィンは、その山頂を前記
フィンに平行な方向に沿って分割することにより形成さ
る第1溝と、前記フィンをその長手方向に分割する複
数個の第2溝とを有し、前記第2溝は、前記フィンの長
手方向を含む断面の形状が底部に頂点を持つ三角形状で
あり、側面のなす角度は55°以下であることを特徴と
する。
A heat transfer tube for a condenser according to the present invention has a tube main body and a heat transfer tube for a condenser having a fin provided on an outer surface of the tube main body and extending in a direction orthogonal to or inclined with respect to the tube axis direction. in the fin, a plurality of second grooves for dividing the first groove that will be formed by dividing along a direction parallel to its summit in the <br/> fins, the fins in the longitudinal direction And the second groove has a length of the fin.
The shape of the cross section including the hand direction is a triangle with a vertex at the bottom.
And the angle formed by the side surfaces is 55 ° or less.

【0009】この第2溝の側面のなす角度は40゜以下
であることが好ましい。
The angle formed by the side surface of the second groove is preferably 40 ° or less.

【0010】なお、本発明において、第2溝の側面のな
す角度とは、第2溝を設けることにより形成される突起
部において、この第2溝により形成される突起部の両側
面のなす角度をいう。
In the present invention, the angle formed by the side surface of the second groove means the angle formed by both side surfaces of the projection formed by the second groove in the projection formed by providing the second groove. Say.

【0011】本願発明者等は、フロン規制に対応した冷
媒(例えば、1,1,1,2−テトラフルオロエタン)を
使用した場合であっても、良好な伝熱性能を得ることが
できる伝熱管を開発すべく種々実験を行った。その結
果、冷媒の変更による性能低下は、冷媒の密度の違いに
よるものであることを見い出した。そこで、本願発明者
等は、フィンの山頂をフィンに平行な方向に沿って分割
する第1溝の角度及びフィンをその長手方向に分割する
第2溝の側面のなす角度が伝熱性能に与える影響につい
て検討した結果、この第2溝の側面のなす角度が、管の
伝熱性能に大きく影響を与えることを見い出した。
The inventors of the present application can obtain good heat transfer performance even when using a refrigerant (for example, 1,1,1,2-tetrafluoroethane) complying with CFC regulations. Various experiments were conducted to develop a heat tube. As a result, they found that the performance deterioration due to the change of the refrigerant was due to the difference in the density of the refrigerant. Then, the inventors of the present application give the heat transfer performance the angle formed by the first groove dividing the crest of the fin along the direction parallel to the fin and the angle formed by the side surface of the second groove dividing the fin in the longitudinal direction. As a result of examining the influence, it was found that the angle formed by the side surface of the second groove has a great influence on the heat transfer performance of the tube.

【0012】図3(a)及び3(b)は、伝熱管に形成
されたフィンの形状を示す正面図である。フィン11
a、11bには、フィンをその長手方向に分割する溝1
7a、17bが設けられることにより、突起部14a、
14bが形成されているものとする。なお、突起部14
aの側面12aのなす角度θ1は、突起部14bの側面
12bのなす角度θ2よりも大きいものとし、伝熱管の
サイズを大型化しないために、突起部14a、14bの
高さhは一定とする。
3 (a) and 3 (b) are front views showing the shape of the fins formed on the heat transfer tube. Fin 11
Grooves 1 that divide the fin in the longitudinal direction are provided in a and 11b.
By providing 7a and 17b, the protrusion 14a,
14b is formed. The protrusion 14
The angle θ 1 formed by the side surface 12a of a is larger than the angle θ 2 formed by the side surface 12b of the protrusion 14b, and the height h of the protrusions 14a and 14b is constant in order not to increase the size of the heat transfer tube. And

【0013】図3(a)及び3(b)に示すように、角
度θ1が角度θ2よりも大きいと、突起部14aの面積の
方が突起部14bの面積よりも大きくなるので、突起部
14aの表面で液化した冷媒が濡れ広がりやすくなり、
突起部14aの端面において液を排出するための液保持
量が少なくなる。従って、突起部14aの端面に冷媒が
溜まるまでに時間がかかり、冷媒が排出されにくくな
る。特に、密度が小さい冷媒を使用する場合には、排出
するための液保持量が多く必要となるので、突起部14
aでの液膜が厚くなり、これが熱抵抗となって性能が低
下する。また、この突起部14aでの排出性が低下する
ことにより、フィン間の溝に凝縮液膜が形成され、その
結果、伝熱管全体が凝縮液で覆われてしまう。
As shown in FIGS. 3 (a) and 3 (b), when the angle θ 1 is larger than the angle θ 2 , the area of the protrusion 14a becomes larger than the area of the protrusion 14b. The liquefied refrigerant easily wets and spreads on the surface of the portion 14a,
The liquid holding amount for discharging the liquid on the end face of the protrusion 14a is reduced. Therefore, it takes time for the refrigerant to collect on the end surface of the protrusion 14a, and the refrigerant is less likely to be discharged. In particular, when a refrigerant having a low density is used, a large amount of liquid is needed to be discharged, so that the protrusion 14
The liquid film at a becomes thick, and this becomes thermal resistance, and the performance deteriorates. Further, since the discharging property at the protrusion 14a is reduced, a condensed liquid film is formed in the groove between the fins, and as a result, the entire heat transfer tube is covered with the condensed liquid.

【0014】一方、突起部14bは突起部14aよりも
面積が小さく、表面における濡れ広がりが少ないので、
突起部14bの端面に液化した冷媒が溜まりやすくな
り、冷媒が短時間で容易に排出される。また、冷媒の排
出が良好になることにより、フィン間の溝及びフィンの
山頂に設けられた第1溝において凝縮された液が突起部
14bに導かれて、伝熱管全体が凝縮液で覆われにくく
なるので、伝熱性能を著しく向上させることができる。
On the other hand, since the protrusion 14b has a smaller area than the protrusion 14a and the wetting and spreading on the surface is small,
The liquefied refrigerant easily accumulates on the end surface of the protrusion 14b, and the refrigerant is easily discharged in a short time. Further, since the refrigerant is discharged well, the liquid condensed in the grooves between the fins and the first groove provided at the top of the fins is guided to the protrusions 14b, and the entire heat transfer tube is covered with the condensed liquid. Since it becomes difficult, the heat transfer performance can be significantly improved.

【0015】このように、突起部の側面、即ち第2溝の
側面のなす角度を従来よりも小さくすると、良好な伝熱
性能を有する伝熱管を得ることができる。具体的には、
第2溝の側面のなす角度θを55゜以下とすることによ
り、角度θが55゜を超える場合と比較して、極めて優
れた伝熱性能を得ることができ、この第2溝の側面のな
す角度θを40゜以下にすると、より一層伝熱性能を向
上させることができる。
As described above, when the angle formed by the side surface of the protrusion, that is, the side surface of the second groove is smaller than that of the conventional one, a heat transfer tube having good heat transfer performance can be obtained. In particular,
By setting the angle θ formed by the side surface of the second groove to be 55 ° or less, extremely excellent heat transfer performance can be obtained as compared with the case where the angle θ exceeds 55 °. When the formed angle θ is 40 ° or less, the heat transfer performance can be further improved.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施例に係る凝縮
器用伝熱管について、添付の図面を参照して具体的に説
明する。図1(a)は本発明の実施例に係る凝縮器用伝
熱管を示す斜視図であり、1(b)はその断面図であ
る。図1に示すように、管本体3の外面には、管本体3
の周方向に沿って、即ち管軸方向に直交する方向に伸び
る複数本のフィン1が設けられている。また、フィン1
には、その山頂をフィン1に平行な方向に沿って分割す
る第1溝5が形成されており、更に、フィンをその長手
方向に分割する第2溝2が設けられている。従って、フ
ィン1の頭部はフィンに直交する断面で2方向に分岐し
た形状となっていると共に、第2溝2が設けられること
により、フィンに平行な断面で複数個の突起部4に分割
されている。なお、図1(b)に示すように、第2溝2
の側面2aのなす角度θは55゜以下である。
BEST MODE FOR CARRYING OUT THE INVENTION A heat transfer tube for a condenser according to an embodiment of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1A is a perspective view showing a heat transfer tube for a condenser according to an embodiment of the present invention, and FIG. 1B is a sectional view thereof. As shown in FIG. 1, on the outer surface of the pipe body 3, the pipe body 3
A plurality of fins 1 extending along the circumferential direction, that is, in the direction orthogonal to the tube axis direction are provided. Also fin 1
Is formed with a first groove 5 that divides the mountain peak along a direction parallel to the fin 1, and further has a second groove 2 that divides the fin in the longitudinal direction. Therefore, the head of the fin 1 has a shape branched in two directions in a cross section orthogonal to the fin, and the second groove 2 is provided, so that the fin 1 is divided into a plurality of protrusions 4 in a cross section parallel to the fin. Has been done. As shown in FIG. 1B, the second groove 2
The angle θ formed by the side surface 2a of the above is 55 ° or less.

【0017】このように構成された伝熱管6において
は、第2溝2の側面2aのなす角度θを適切に規定して
いるので、従来の伝熱管と比較して突起部4の面積を小
さくすることができ、この突起部4の表面で液化した冷
媒が濡れ広がりにくくなる。従って、冷媒が突起部4の
端面から滴下されやすくなり、伝熱性能を向上させるこ
とができる。
In the heat transfer tube 6 thus constructed, the angle θ formed by the side surface 2a of the second groove 2 is appropriately defined, so that the area of the protrusion 4 is smaller than that of the conventional heat transfer tube. Therefore, the liquefied refrigerant on the surface of the protrusion 4 is less likely to spread. Therefore, the refrigerant is likely to be dripped from the end surface of the protrusion 4, and the heat transfer performance can be improved.

【0018】なお、図1に示す本実施例においては、1
本のフィンあたりに1本の第1溝を形成したが、本発明
においては第1溝の数は限定されず、2本以上の複数本
の溝をフィン1の山頂に形成してもよい。また、フィン
1は、管軸に直交する方向に環状に管本体の外面に設け
られていても、管軸に傾斜する方向に螺旋状に管本体の
外面に設けられていてもよい。更に、本発明において
は、伝熱管の材料は特に限定されず、例えば、銅、銅合
金、アルミニウム、チタン、鋼及びステンレス等の種々
の材料を使用することができる。
In the present embodiment shown in FIG. 1, 1
Although one first groove is formed for each fin, the number of first grooves is not limited in the present invention, and a plurality of two or more grooves may be formed at the top of the fin 1. Further, the fin 1 may be annularly provided on the outer surface of the tube body in a direction orthogonal to the tube axis, or may be spirally provided on the outer surface of the tube body in a direction inclined to the tube axis. Further, in the present invention, the material of the heat transfer tube is not particularly limited, and various materials such as copper, copper alloy, aluminum, titanium, steel and stainless can be used.

【0019】[0019]

【実施例】以下、本発明に係る凝縮器用伝熱管の実施例
についてその比較例と比較して具体的に説明する。図1
に示す形状のフィン1において、第2溝2の側面2aの
なす角度θを種々に変化させた伝熱管を作製し、凝縮伝
熱性能試験を実施した。この凝縮伝熱性能試験は、冷媒
として、代替フロンである1,1,1,2−テトラフルオ
ロエタンを使用し、凝縮温度を48℃、伝熱管内に通流
する冷却水の入口温度を35℃とし、管内の冷却水の流
速を変化させて評価した。作製した伝熱管の形状及びサ
イズを下記表1及び2に示す。なお、下記表1及び2に
おいて、フィン外径とは、伝熱管においてフィンが形成
されている部分のフィンを含む外径をいい、フィン数と
は管軸方向の1インチ(25.4mm)あたりに形成さ
れているフィン数をいう。また、底肉厚Tとは、伝熱管
においてフィンが形成されている部分の管本体3の肉厚
をいう。
EXAMPLES Examples of a heat transfer tube for a condenser according to the present invention will be specifically described below in comparison with comparative examples. Figure 1
In the fin 1 having the shape shown in Fig. 2, heat transfer tubes were produced in which the angle θ formed by the side surface 2a of the second groove 2 was variously changed, and a condensation heat transfer performance test was performed. In this condensation heat transfer performance test, 1,1,1,2-tetrafluoroethane, which is an alternative CFC, is used as the refrigerant, the condensation temperature is 48 ° C., and the inlet temperature of the cooling water flowing in the heat transfer tube is 35 ° C. C., and the flow rate of the cooling water in the pipe was changed for evaluation. The shapes and sizes of the produced heat transfer tubes are shown in Tables 1 and 2 below. In Tables 1 and 2 below, the fin outer diameter refers to the outer diameter including the fins of the heat transfer tube where the fins are formed, and the number of fins is 1 inch (25.4 mm) in the tube axis direction. The number of fins formed on the Further, the bottom wall thickness T refers to the wall thickness of the tube body 3 in the portion where the fins are formed in the heat transfer tube.

【0020】[0020]

【表1】 [Table 1]

【0021】[0021]

【表2】 [Table 2]

【0022】図2は縦軸に総括伝熱係数をとり、横軸に
管内水流速をとって、実施例及び比較例における伝熱管
の伝熱性能の評価結果を示すグラフ図である。但し、図
2中において、実施例No.1は△、実施例No.2は
□、実施例No.3は■、実施例No.4は▽で示し、
比較例No.5は×で示す。図2に示すように、側面2
aのなす角度θが55゜以下である実施例No.1乃至
4は、角度θが60゜である比較例No.5と比較し
て、極めて優れた伝熱性能を得ることができた。即ち、
角度θを55゜以下として伝熱管を作製すると、優れた
伝熱性能を得ることができる。また、角度θを40℃以
下とすると、更に一層優れた伝熱性能を得ることができ
る。
FIG. 2 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the water flow velocity in the tube. However, in FIG. No. 1 is Δ, and Example No. 2 is □, Example No. No. 3 is ■, Example No. 4 is indicated by ▽,
Comparative Example No. 5 is indicated by x. As shown in FIG. 2, the side surface 2
Example No. 3 in which the angle θ formed by a is 55 ° or less. Comparative Examples Nos. 1 to 4 have an angle θ of 60 °. As compared with No. 5, extremely excellent heat transfer performance could be obtained. That is,
If the angle θ is set to 55 ° or less and a heat transfer tube is manufactured, excellent heat transfer performance can be obtained. Further, when the angle θ is set to 40 ° C. or less, further excellent heat transfer performance can be obtained.

【0023】[0023]

【発明の効果】以上詳述したように、本発明によれば、
フィンをその長手方向に分割する第2溝の側面のなす角
度を適切に規定しているので、凝縮液の排出性が向上し
て優れた伝熱性能を有する凝縮器用伝熱管を得ることが
できる。
As described in detail above, according to the present invention,
Since the angle formed by the side surface of the second groove that divides the fin in the longitudinal direction is appropriately defined, it is possible to obtain a heat transfer tube for a condenser with improved condensate drainage and excellent heat transfer performance. .

【図面の簡単な説明】[Brief description of drawings]

【図1】(a)は本発明の実施例に係る凝縮器用伝熱管
を示す斜視図であり、1(b)はその断面図である。
FIG. 1A is a perspective view showing a heat transfer tube for a condenser according to an embodiment of the present invention, and FIG. 1B is a sectional view thereof.

【図2】縦軸に総括伝熱係数をとり、横軸に管内水流速
をとって、実施例及び比較例における伝熱管の伝熱性能
の評価結果を示すグラフ図である。
FIG. 2 is a graph showing the evaluation results of the heat transfer performance of heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the water velocity in the tube.

【図3】伝熱管に形成されたフィンの形状を示す正面図
である。
FIG. 3 is a front view showing the shape of fins formed on the heat transfer tube.

【図4】従来の伝熱管の形状を示す斜視図である。FIG. 4 is a perspective view showing the shape of a conventional heat transfer tube.

【符号の説明】[Explanation of symbols]

1,11a,11b,21;フィン 22;切欠き 2a,12a,12b;側面 3,23;管本体 4,14a,14b;突起部 2,5,17a,17b,25;溝 6,26;伝熱管 24;枝部 1, 11a, 11b, 21; fins 22; notch 2a, 12a, 12b; side surface 3,23; tube body 4, 14a, 14b; protrusion 2, 5, 17a, 17b, 25; groove 6,26; Heat transfer tube 24; branch

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−231790(JP,A) 特開 昭51−24965(JP,A) 特開 平8−219675(JP,A) 特開 昭59−100396(JP,A) 特開 平5−215442(JP,A) 特開 平7−71889(JP,A) 実開 昭59−42477(JP,U) (58)調査した分野(Int.Cl.7,DB名) F28F 1/26 F25B 39/04 F28F 1/12 F28F 1/16 F28F 1/42 F25B 37/00 ─────────────────────────────────────────────────── --- Continuation of the front page (56) References JP-A-5-231790 (JP, A) JP-A-51-24965 (JP, A) JP-A-8-219675 (JP, A) JP-A-59- 100396 (JP, A) JP 5-215442 (JP, A) JP 7-71889 (JP, A) Actual development Sho 59-42477 (JP, U) (58) Fields investigated (Int.Cl. 7 , DB name) F28F 1/26 F25B 39/04 F28F 1/12 F28F 1/16 F28F 1/42 F25B 37/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 管本体と、この管本体の外面に設けられ
管軸方向に直交又は傾斜する方向に延びるフィンとを有
する凝縮器用伝熱管において、前記フィンは、その山頂
前記フィンに平行な方向に沿って分割することにより
形成される第1溝と、前記フィンをその長手方向に分割
する複数個の第2溝とを有し、前記第2溝は、前記フィ
ンの長手方向を含む断面の形状が底部に頂点を持つ三角
形状であり、側面のなす角度は55°以下であることを
特徴とする凝縮器用伝熱管。
And 1. A tube body, the condenser heat exchanger tube and a fin extending in a direction perpendicular or inclined to the provided tube axis direction on the outer surface of the tube body, the fins are parallel to the summit to the fin has a first groove that will be formed by dividing along the direction, and a plurality of second grooves for dividing the fin in a longitudinal direction, said second groove, said Fi
The shape of the cross section including the longitudinal direction of the triangle has a vertex at the bottom.
A heat transfer tube for a condenser , which has a shape and an angle formed by a side surface is 55 ° or less.
【請求項2】 前記第2溝の側面のなす角度は40°以
下であることを特徴とする請求項1に記載の凝縮器用伝
熱管。
2. The heat transfer tube for a condenser according to claim 1, wherein an angle formed by a side surface of the second groove is 40 ° or less.
JP35387797A 1997-12-22 1997-12-22 Heat transfer tube for condenser Expired - Lifetime JP3415013B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35387797A JP3415013B2 (en) 1997-12-22 1997-12-22 Heat transfer tube for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35387797A JP3415013B2 (en) 1997-12-22 1997-12-22 Heat transfer tube for condenser

Publications (2)

Publication Number Publication Date
JPH11183074A JPH11183074A (en) 1999-07-06
JP3415013B2 true JP3415013B2 (en) 2003-06-09

Family

ID=18433834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35387797A Expired - Lifetime JP3415013B2 (en) 1997-12-22 1997-12-22 Heat transfer tube for condenser

Country Status (1)

Country Link
JP (1) JP3415013B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006579A (en) * 2014-05-20 2014-08-27 江苏萃隆精密铜管股份有限公司 Efficient heat-exchange tube for evaporator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003287393A (en) * 2002-03-27 2003-10-10 Kobe Steel Ltd Heat transfer pipe for condenser
DK177178B1 (en) * 2011-01-06 2012-05-07 Tetra Laval Holdings & Finance Optimized surface for freezing cylinder
JP6198452B2 (en) * 2013-05-08 2017-09-20 株式会社神戸製鋼所 Intermediate medium vaporizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104006579A (en) * 2014-05-20 2014-08-27 江苏萃隆精密铜管股份有限公司 Efficient heat-exchange tube for evaporator
CN104006579B (en) * 2014-05-20 2016-03-02 江苏萃隆精密铜管股份有限公司 A kind of high-efficient heat-exchanger of evaporimeter

Also Published As

Publication number Publication date
JPH11183074A (en) 1999-07-06

Similar Documents

Publication Publication Date Title
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
KR100300640B1 (en) Refrigeration cycle for using a heat transfer tube for a zeotropic refrigerant mixture
KR100310588B1 (en) Falling film type heat exchanger tube
AU2003231750B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
WO2017073715A1 (en) Aluminum extruded flat perforated tube and heat exchanger
US7299863B2 (en) Louver fin type heat exchanger having improved heat exchange efficiency by controlling water blockage
JPH06185885A (en) Flat multi-holed condensing and heat transfer pipe
JPH1183368A (en) Heating tube having grooved inner surface
JP3331518B2 (en) Heat transfer tubes and heat exchangers with internal fins
JP3415013B2 (en) Heat transfer tube for condenser
JP3801771B2 (en) Heat transfer tube for falling film evaporator
JPH11148747A (en) Heat exchanger tube for evaporator of absorption refrigerating machine
JP3292043B2 (en) Heat exchanger
JPH08121984A (en) Heat transferring pipe for azeotropic mixed refrigerant and heat exchanger for mixed refrigerant, freezer and air conditioner using heat transfer pipe
JP2912826B2 (en) Heat transfer tube with internal groove
JPS6027917B2 (en) Heat exchanger tubes in the evaporator of compression refrigeration cycles for air conditioning
JP3417825B2 (en) Inner grooved pipe
JPH0579783A (en) Heat transfer tube with inner surface groove
JP3199636B2 (en) Heat transfer tube with internal groove
JP3992833B2 (en) Absorption heat exchanger heat exchanger tube
JP3199621B2 (en) Heat transfer tube with internal groove using mixed refrigerant
JPH06307787A (en) Inner surface processed heat transfer pipe
JPH11108579A (en) Pipe with grooved inner face
JPH08105699A (en) Heat transfer tube with inside grooves
JPH08145585A (en) Heat transfer tube for non-azeotropic mixture refrigerant and heat exchanger employing this heat transfer tube

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140404

Year of fee payment: 11

EXPY Cancellation because of completion of term