JP2003287393A - Heat transfer pipe for condenser - Google Patents

Heat transfer pipe for condenser

Info

Publication number
JP2003287393A
JP2003287393A JP2002088317A JP2002088317A JP2003287393A JP 2003287393 A JP2003287393 A JP 2003287393A JP 2002088317 A JP2002088317 A JP 2002088317A JP 2002088317 A JP2002088317 A JP 2002088317A JP 2003287393 A JP2003287393 A JP 2003287393A
Authority
JP
Japan
Prior art keywords
heat transfer
fin
tube
groove
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002088317A
Other languages
Japanese (ja)
Inventor
宏行 ▲高▼橋
Hiroyuki Takahashi
Chikara Saeki
主税 佐伯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002088317A priority Critical patent/JP2003287393A/en
Publication of JP2003287393A publication Critical patent/JP2003287393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe for condenser capable of obtaining superior heat transfer performance even when using a refrigerant corresponding to fleon regulation. <P>SOLUTION: This heat transfer pipe has a fin 1 arranged on an outside surface of a pipe body 3, and extending in the orthogonal or inclined direction to the pipe axis, and a rib 7 formed on an inside surface. The fin 1 has a plurality of first grooves 5 formed by dividing the top thereof in the direction parallel to the fin, and a plurality of second grooves 2 for dividing the fin 1 in the lengthwise direction, and an angle θ<SB>1</SB>formed by a side surface of the second grooves is 55° or less. A pipe circumferential directional pitch P<SB>1</SB>(a straight line distance of the groove bottom) of the second grooves 2 is 0.15 to 0.71 mm. When the depth of the second grooves 2 is set to h<SB>1</SB>, and the height of the fin 1 is set to h<SB>2</SB>, the ratio h<SB>1</SB>/h<SB>2</SB>of h<SB>1</SB>to h<SB>2</SB>is 0.11 to 0.72. The rib 7 extends in a spiral shape by inclining in the pipe axis direction, and its lead angle θ<SB>2</SB>is 42 to 48°. The rib 7 is 1.6 to 4.0 mm in a pitch P<SB>2</SB>in a cross section parallel to the pipe axis direction. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明はターボ冷凍機又はス
クリュー冷凍機等の蒸気圧縮式冷凍機の凝縮器に組み込
まれ、特に冷媒蒸気中に外表面が接触し、冷媒蒸気を凝
縮させるために使用される凝縮器用伝熱管に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is incorporated in a condenser of a vapor compression refrigerator such as a turbo refrigerator or a screw refrigerator, and is particularly used for condensing a refrigerant vapor by contacting an outer surface with the refrigerant vapor. The present invention relates to a heat transfer tube for a condenser.

【0002】[0002]

【従来の技術】従来より、冷凍機等においては、外面に
フィンが設けられた伝熱管が使用されており、特に、フ
ィンの形状を規定することにより、伝熱性能の向上を図
った伝熱管が考案されている(実開昭59−42477
号公報)。図12は従来の伝熱管の形状を示す斜視図で
ある。図12に示すように、管本体23の外面には、複
数本のフィン21が形成されている。このフィン21に
は、その山頂をフィンに平行な方向に沿って分割する2
本の溝25が設けられている。従って、フィン21はそ
の頭部に三方向に分岐した枝部24を有している。ま
た、フィン21には、これを長手方向に分割する複数個
の切欠き22が設けられている。
2. Description of the Related Art Conventionally, heat transfer tubes having fins on their outer surfaces have been used in refrigerators and the like, and in particular, heat transfer tubes having improved heat transfer performance by defining the shape of the fins. Has been devised (Shokai 59-42477)
Issue). FIG. 12 is a perspective view showing the shape of a conventional heat transfer tube. As shown in FIG. 12, a plurality of fins 21 are formed on the outer surface of the pipe body 23. This fin 21 has its peaks divided along a direction parallel to the fin 2
A book groove 25 is provided. Therefore, the fin 21 has a branch portion 24 on its head, which branches in three directions. Further, the fin 21 is provided with a plurality of notches 22 that divide the fin 21 in the longitudinal direction.

【0003】このように構成された伝熱管26において
は、伝熱管26の表面で凝縮された冷媒が枝部24間の
溝25に流れ、その後、冷媒は溝25から切欠き22を
通過してフィン21間に落ちる。このように、フィン2
1の上部で冷媒が滞留することがないので、良好な伝熱
性能を得ることができる。
In the heat transfer tube 26 thus constructed, the refrigerant condensed on the surface of the heat transfer tube 26 flows into the grooves 25 between the branch portions 24, and then the refrigerant passes from the grooves 25 through the notches 22. It falls between the fins 21. Like this, fin 2
Since the refrigerant does not stay in the upper part of 1, it is possible to obtain good heat transfer performance.

【0004】また、伝熱性能の向上を図った伝熱管とし
て、切欠き(ノッチ)の形成方向、深さ及び密度等が規
定された伝熱管が提案されている(特開平8−2196
75号公報)。
As a heat transfer tube with improved heat transfer performance, there has been proposed a heat transfer tube in which a notch (notch) forming direction, depth, density and the like are defined (Japanese Patent Laid-Open No. 8-2196).
No. 75).

【0005】ところで、近時のフロン規制に伴って、伝
熱管の表面側で凝縮される冷媒として、塩素を含有する
クロロジフルオロメタン等を使用したものから、塩素を
全く含有しない冷媒、例えば1,1,1,2−テトラフ
ルオロエタン等を使用したものへの移管が進められてい
る。
By the way, due to the recent regulation of CFCs, chlorodifluoromethane or the like containing chlorine is used as the refrigerant condensed on the surface side of the heat transfer tube. The transfer to those using 1,1,2-tetrafluoroethane or the like is under way.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
伝熱管において、表面で凝縮される冷媒としてフロン規
制に対応した冷媒を使用すると、例えば、クロロジフル
オロメタンを冷媒として使用した場合と比較して、伝熱
性能が低下するという問題点が発生する。また、図4に
示す従来の伝熱管においては、フィンの頭部に切欠きを
設けることにより、フィンの頭部における液切れ性は向
上するが、この切欠きは、フィン間の溝に滞留した凝縮
冷媒の排出には寄与しない。特に、密度が小さい冷媒
(例えば、1,1,1,2−テトラフルオロエタン等)
では、この傾向が顕著に現れる。更に、管内面も同時に
性能の向上を図った伝熱管も提案されているが、必ずし
も管内面の性能が十分満足できるものではない。このた
め、従来、更に一層の性能の向上が要望されている。
However, in a conventional heat transfer tube, when a refrigerant that complies with CFC regulations is used as the refrigerant condensed on the surface, for example, as compared with the case where chlorodifluoromethane is used as the refrigerant, There is a problem that heat transfer performance is deteriorated. Further, in the conventional heat transfer tube shown in FIG. 4, the cutouts are retained in the grooves between the fins although the cutouts are provided in the fin heads to improve the liquid drainage property at the fin heads. It does not contribute to the discharge of condensed refrigerant. In particular, refrigerants with low density (eg 1,1,1,2-tetrafluoroethane etc.)
Then, this tendency becomes remarkable. Further, there has been proposed a heat transfer tube in which the inner surface of the tube is improved in performance at the same time, but the performance of the inner surface of the tube is not always sufficiently satisfactory. Therefore, further improvement in performance has been conventionally demanded.

【0007】本発明はかかる問題点に鑑みてなされたも
のであって、フロン規制に対応した冷媒を使用した場合
であっても、良好な伝熱性能を得ることができる凝縮器
用伝熱管を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a heat transfer tube for a condenser capable of obtaining good heat transfer performance even when a refrigerant compatible with CFC regulations is used. The purpose is to do.

【0008】[0008]

【課題を解決するための手段】本発明に係る凝縮器用伝
熱管は、管本体と、この管本体の外面に設けられ管軸方
向に直交又は傾斜する方向に延びるフィンと、前記管本
体の内面に形成されたリブとを有し、前記フィンは、そ
の山頂をフィンに平行な方向に沿って分割することによ
り形成される複数個の第1溝と、前記フィンをその長手
方向に分割する複数個の第2溝とを有し、前記第2溝の
側面のなす角度は55゜以下であり、前記第2溝の深さ
をh1、前記フィンの高さをh2としたとき、h1とh
2との比h1/h2が0.11乃至0.72であること
を特徴とする。この、第2溝の側面のなす角度は40゜
以下であることが好ましい。
A heat transfer tube for a condenser according to the present invention comprises a tube body, fins provided on an outer surface of the tube body and extending in a direction orthogonal or inclined to a tube axis direction, and an inner surface of the tube body. A plurality of first grooves formed by dividing the peak of the fin along a direction parallel to the fin, and a plurality of fins dividing the fin in its longitudinal direction. The second groove has an angle of 55 ° or less, and the depth of the second groove is h1 and the height of the fin is h2.
The ratio h1 / h2 of 2 is 0.11 to 0.72. The angle formed by the side surfaces of the second groove is preferably 40 ° or less.

【0009】なお、本発明において、第2溝の側面のな
す角度とは、第2溝を設けることにより形成される突起
部において、この第2溝により形成される突起部の両側
面のなす角度をいう。
In the present invention, the angle formed by the side surface of the second groove means the angle formed by both side surfaces of the projection formed by the second groove in the projection formed by providing the second groove. Say.

【0010】また、第2溝の管周方向のピッチP1(溝
底の直線距離)が0.15〜0.71mmであることが
望ましい。
Further, it is desirable that the pitch P1 (the linear distance of the groove bottom) of the second groove in the pipe circumferential direction is 0.15 to 0.71 mm.

【0011】更にまた、前記リブは、管軸方向に対して
傾斜して螺旋状に延び、そのリード角が42〜48°で
あることが望ましい。
Furthermore, it is preferable that the rib extends in a spiral shape with an inclination with respect to the tube axis direction, and the lead angle is 42 to 48 °.

【0012】更にまた、前記リブは、管軸方向に平行な
断面におけるピッチP2が1.6乃至4.0mmである
ことが望ましい。
Furthermore, it is desirable that the ribs have a pitch P2 of 1.6 to 4.0 mm in a cross section parallel to the tube axis direction.

【0013】本願発明者等は、フロン規制に対応した冷
媒(例えば、1,1,1,2−テトラフルオロエタン)
等を使用した場合であっても、良好な伝熱性能を得るこ
とができる伝熱管を開発すべく種々実験を行った。その
結果、冷媒の変更による性能低下は、冷媒の密度の違い
によるものであることを見出した。そこで、本願発明者
等は、フィンの山頂をフィンに平行な方向に沿って分割
する第1溝の角度及びフィンをその長手方向に分割する
第2溝の側面のなす角度、第2溝の長手方向のピッチ及
び第2溝の深さをh1、前記フィンの高さをh2とした
とき、h1とh2との比h1/h2が管の凝縮伝熱性能
に大きく影響を与えることを見出した。
The inventors of the present application have found that a refrigerant (for example, 1,1,1,2-tetrafluoroethane) complying with CFC regulations.
Various experiments were conducted in order to develop a heat transfer tube capable of obtaining a good heat transfer performance even when using the above. As a result, they have found that the performance deterioration due to the change of the refrigerant is due to the difference in the density of the refrigerant. Therefore, the inventors of the present application have found that the angle of the first groove dividing the crest of the fin along the direction parallel to the fin, the angle formed by the side surface of the second groove dividing the fin in the longitudinal direction, and the length of the second groove. It was found that the ratio h1 / h2 of h1 and h2 has a great influence on the condensation heat transfer performance of the tube, where h1 is the pitch in the direction and the depth of the second groove is h2 and the height of the fin is h2.

【0014】また、管内面に形成されたリブの長手方向
に直角な断面における斜面の角度も伝熱性能に大きく影
響することを見出した。
It has also been found that the angle of the inclined surface in the cross section perpendicular to the longitudinal direction of the rib formed on the inner surface of the tube has a great influence on the heat transfer performance.

【0015】[0015]

【発明の実施の形態】以下、本発明の実施例について添
付の図面を参照して具体的に説明する。図1は本発明の
実施例に係る凝縮器用伝熱管の斜視図、図2は同じくそ
の管軸に直交する断面の断面図、図3は管軸に平行の断
面の断面図である。管本体3の外面にはフィン1が形成
されている。このフィン1は、管本体3の周方向に沿っ
て、即ち管軸方向に直交する方向に伸びる複数本のフィ
ンであるか、又は管本体3の管軸方向に傾斜する方向に
螺旋状に延びるフィンである。また、フィン1には、そ
の山頂をフィン1に平行な方向に沿って分割する第1溝
5が形成されており、更に、フィンをその長手方向に分
割する第2溝2が設けられている。従って、フィン1の
頭部はフィンに直交する断面で2方向に分岐した形状と
なっていると共に、第2溝2が設けられることにより、
フィンに平行な断面で複数個の突起部4に分割されてい
る。なお、図2に示すように、第2溝2の側面2aは角
度θ1をなして傾斜し、この角度θ1は55゜以下であ
る。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. 1 is a perspective view of a heat transfer tube for a condenser according to an embodiment of the present invention, FIG. 2 is a sectional view of a section which is also orthogonal to the tube axis, and FIG. 3 is a sectional view of a section which is parallel to the tube axis. Fins 1 are formed on the outer surface of the tube body 3. The fins 1 are a plurality of fins extending along the circumferential direction of the pipe body 3, that is, in the direction orthogonal to the pipe axis direction, or spirally extending in a direction inclined in the pipe axis direction of the pipe body 3. It is a fin. In addition, the fin 1 is formed with a first groove 5 that divides the peak of the fin 1 along a direction parallel to the fin 1, and is further provided with a second groove 2 that divides the fin in the longitudinal direction. . Therefore, the head of the fin 1 has a shape branched in two directions in a cross section orthogonal to the fin, and the second groove 2 is provided,
It is divided into a plurality of protrusions 4 in a cross section parallel to the fins. As shown in FIG. 2, the side surface 2a of the second groove 2 is inclined at an angle θ1, and the angle θ1 is 55 ° or less.

【0016】また、管内面には、リブ7が形成されてい
る。このリブ7は管軸方向に直交する方向に延びるか、
又は管軸方向に角度θ2で傾斜して螺旋状に延びるもの
であり(図3は後者の例)、管軸方向に平行な方向にお
ける配設ピッチP2は1.6乃至4.0mmである。ま
た、リブの長手方向に直交する断面における斜面の傾斜
角度θ3は42乃至48°である。
A rib 7 is formed on the inner surface of the tube. This rib 7 extends in a direction orthogonal to the tube axis direction,
Alternatively, it extends in a spiral shape inclined at an angle θ2 in the tube axis direction (the latter example in FIG. 3), and the arrangement pitch P2 in the direction parallel to the tube axis direction is 1.6 to 4.0 mm. The inclination angle θ3 of the slope in the cross section orthogonal to the longitudinal direction of the rib is 42 to 48 °.

【0017】このように構成された伝熱管6において
は、第2溝2の側面2aのなす角度θ1を適切に規定し
ているので、従来の伝熱管と比較して突起部4の面積を
小さくすることができ、この突起部4の表面で液化した
冷媒が濡れ広がりにくくなる。従って、冷媒が突起部4
の端面から滴下されやすくなり、伝熱性能を向上させる
ことができる。
In the heat transfer tube 6 thus constructed, the angle θ1 formed by the side surface 2a of the second groove 2 is appropriately defined, so that the area of the protrusion 4 is smaller than that of the conventional heat transfer tube. Therefore, the liquefied refrigerant on the surface of the protrusion 4 is less likely to spread. Therefore, the refrigerant is
It becomes easy to be dripped from the end face of, and heat transfer performance can be improved.

【0018】次に、本発明における数値限定理由につい
て説明する。先ず、第2溝2の側面のなす角度θ1は5
5゜以下である。θ1が55°を超えると、突起部4の
表面で液化した冷媒が濡れ広がりにくくなり、突起部4
の端面において液を排出するための液保持量が多くな
る。従って、突起部4の端面に冷媒が溜まるまでに時間
が短くなり、冷媒が排出されやすくなる。この第2溝の
側面のなす角度θ1は40゜以下であることが好まし
い。なお、前述のごとく、第2溝の側面のなす角度と
は、第2溝を設けることにより形成される突起部におい
て、この第2溝により形成される突起部の両側面のなす
角度をいう。
Next, the reason for limiting the numerical values in the present invention will be explained. First, the angle θ1 formed by the side surface of the second groove 2 is 5
It is 5 ° or less. When θ1 exceeds 55 °, the liquefied refrigerant on the surface of the protrusion 4 is less likely to wet and spread, and the protrusion 4
The liquid holding amount for discharging the liquid increases at the end face of the. Therefore, it takes less time for the refrigerant to collect on the end faces of the protrusions 4, and the refrigerant is easily discharged. The angle θ1 formed by the side surface of the second groove is preferably 40 ° or less. As described above, the angle formed by the side surfaces of the second groove means the angle formed by both side surfaces of the protrusion formed by the second groove in the protrusion formed by providing the second groove.

【0019】また、第2溝2の管周方向のピッチP1
(溝底の直線距離)が0.15〜0.71mmであるこ
とが望ましい。ピッチP1が0.71mmよりも大きく
なると、凝縮した冷媒の滴下ポイントが少なくなり、外
表面が液冷媒で覆われてしまい、冷媒の液切れ性が低下
して性能が低下する。また、ピッチP1が0.15mm
未満になると、凝縮した冷媒の滴下ポイントが多くなる
ものの、液冷媒が保持されて外表面が液冷媒で覆われて
しまい、冷媒の液切れ性が低下し、性能が低下する。
Further, the pitch P1 of the second groove 2 in the pipe circumferential direction
(Linear distance of groove bottom) is preferably 0.15 to 0.71 mm. When the pitch P1 is larger than 0.71 mm, the number of points where the condensed refrigerant is dropped is reduced, the outer surface is covered with the liquid refrigerant, and the liquid drainage of the refrigerant is deteriorated to deteriorate the performance. Also, the pitch P1 is 0.15 mm
When the number is less than the above, the number of dropping points of the condensed refrigerant increases, but the liquid refrigerant is retained and the outer surface is covered with the liquid refrigerant, so that the liquid drainage of the refrigerant decreases and the performance decreases.

【0020】更に、第2溝2の深さをh1、前記フィン
の高さをh2としたとき、h1とh2の比h1/h2が
0.11乃至0.72であることが必要である。比h1
/h2が0.72よりも大きくなると、凝縮した液冷媒
が第2溝の溝部分で纏わり付き、外表面が液冷媒で覆わ
れてしまい、性能が低下する。また、h1/h2が0.
11よりも小さくなると、凝縮した液冷媒が第2溝の溝
部分で濡れ広がって外表面が液冷媒で覆われて熱抵抗と
なり、性能が低下する。このため、h1/h2比を0.
11乃至0.72とする。
Further, when the depth of the second groove 2 is h1 and the height of the fin is h2, the ratio h1 / h2 of h1 and h2 must be 0.11 to 0.72. Ratio h1
When / h2 is larger than 0.72, the condensed liquid refrigerant is collected in the groove portion of the second groove, the outer surface is covered with the liquid refrigerant, and the performance is deteriorated. Also, h1 / h2 is 0.
When it becomes smaller than 11, the condensed liquid refrigerant wets and spreads in the groove portion of the second groove, the outer surface is covered with the liquid refrigerant, and becomes thermal resistance, and the performance deteriorates. Therefore, the h1 / h2 ratio is set to 0.
It is set to 11 to 0.72.

【0021】更にまた、前記リブ7は、そのリード角、
即ち、管軸方向に平行の方向に対して傾斜して螺旋状に
延びるときの管軸方向に平行な方向とリブが延びる方向
とのなす角度θ2が42〜48°であることが望まし
い。θ2が42°よりも小さいと、リブ間の溝への冷却
水が流れる量が多くなり、リブ間の溝部にて温度境界層
が発達し、性能が低下する。θ2が48°よりも大きい
と、リブの凸部を超えて冷却水が流れる量の割合が多く
なり、リブが抵抗となって圧力損失が増加する。
Furthermore, the rib 7 has a lead angle,
That is, it is desirable that the angle θ2 formed by the direction parallel to the tube axis direction and the direction in which the rib extends when extending spirally while being inclined with respect to the direction parallel to the tube axis direction is 42 to 48 °. When θ2 is smaller than 42 °, the amount of cooling water flowing into the grooves between the ribs increases, a temperature boundary layer develops in the groove portions between the ribs, and the performance deteriorates. When θ2 is larger than 48 °, the ratio of the amount of cooling water flowing over the convex portions of the ribs increases, and the ribs become resistance to increase the pressure loss.

【0022】更にまた、前記リブ7は、管軸方向に平行
な断面におけるピッチP2が1.6乃至4.0であるこ
とが望ましい。ピッチP2が1.6よりも小さいと、リ
ブ先端での温度境界層が発達し、性能が低下する。ピッ
チP2が4.0よりも大きいと、リブ溝部での温度境界
層が発達し、性能が低下する。
Furthermore, it is desirable that the rib 7 has a pitch P2 of 1.6 to 4.0 in a cross section parallel to the tube axis direction. If the pitch P2 is smaller than 1.6, the temperature boundary layer develops at the rib tips, and the performance deteriorates. If the pitch P2 is larger than 4.0, the temperature boundary layer develops in the rib groove portion, and the performance deteriorates.

【0023】なお、図1に示す本実施例においては、1
本のフィンあたりに1本の第1溝5を形成したが、本発
明においては第1溝5の数は限定されず、2本以上の複
数本の溝をフィン1の山頂に形成してもよい。また、フ
ィン1は、管軸に直交する方向に環状に管本体の外面に
設けられていも、管軸に傾斜する方向に螺旋状に管本体
の外面に設けられていてもよい。更に、本発明において
は、伝熱管の材料は特に限定されず、例えば、銅、銅合
金、アルミニウム、チタン、鋼及びステンレス等の種々
の材料を使用することができる。
In the present embodiment shown in FIG. 1, 1
Although one first groove 5 is formed for each fin, the number of the first grooves 5 is not limited in the present invention, and even if two or more grooves are formed at the top of the fin 1. Good. The fins 1 may be annularly provided on the outer surface of the tube body in a direction orthogonal to the tube axis, or may be provided spirally on the outer surface of the tube body in a direction inclined to the tube axis. Further, in the present invention, the material of the heat transfer tube is not particularly limited, and various materials such as copper, copper alloy, aluminum, titanium, steel and stainless can be used.

【0024】[0024]

【実施例】以下、本発明に係る凝縮器用伝熱管の実施例
についてその比較例と比較して具体的に説明する。図4
は性能評価に使用したテスト装置を示す。この性能評価
装置は、内径が333mm、長さが974mmのSUS
製シェルアンドチューブ熱交換器の凝縮器40及び蒸発
器48を配管で接続した装置であり、冷媒は温度差によ
り自然循環する構造となっている。蒸発器48には、容
量10kwの電気ヒーター49が設置されており、この
ヒーター49によりチューブ48内の冷媒を昇温・昇圧
し、蒸気を発生させて冷媒蒸気出口50から凝縮器40
に供給する。
EXAMPLES Examples of a heat transfer tube for a condenser according to the present invention will be specifically described below in comparison with comparative examples. Figure 4
Indicates the test equipment used for performance evaluation. This performance evaluation device is a SUS with an inner diameter of 333 mm and a length of 974 mm.
This is a device in which the condenser 40 and the evaporator 48 of the shell-and-tube heat exchanger made of steel are connected by piping, and the refrigerant has a structure in which it naturally circulates due to a temperature difference. An electric heater 49 having a capacity of 10 kw is installed in the evaporator 48. The heater 49 heats and pressurizes the refrigerant in the tube 48 to generate steam, and the condenser 40 is discharged from the refrigerant vapor outlet 50.
Supply to.

【0025】凝縮器40内には、供試管41が水平に設
置され、供試管41の管端部はOリングを介して凝縮器
40のチューブに気密的に固定され、管端部がこの凝縮
器40から外部に導出されている。凝縮器40内には蒸
発器48から冷媒蒸気入口42を介して供給される冷媒
蒸気が直接供試管41に当たらないように、冷媒蒸気入
口42に邪魔板62が設けられている。供試管41の表
面で凝縮した液冷媒は、凝縮器40の冷媒液体出口46
から排出され、自重にて蒸発器48に戻り、冷媒液体入
口47から蒸発器48内に供給されるようになってい
る。
A test tube 41 is horizontally installed in the condenser 40, and a tube end portion of the test tube 41 is airtightly fixed to a tube of the condenser 40 via an O-ring, and the tube end portion is condensed. It is led out from the container 40. In the condenser 40, a baffle plate 62 is provided at the refrigerant vapor inlet 42 so that the refrigerant vapor supplied from the evaporator 48 via the refrigerant vapor inlet 42 does not directly hit the test tube 41. The liquid refrigerant condensed on the surface of the test tube 41 is cooled by the refrigerant liquid outlet 46 of the condenser 40.
The liquid is discharged from the refrigerant, returns to the evaporator 48 by its own weight, and is supplied into the evaporator 48 from the refrigerant liquid inlet 47.

【0026】供試管41内には冷却水が入口60から供
給され、出口61から排出される。この冷却水の入口温
度及び出口温度は、夫々、供試管41の両管端に設置さ
れた白金測温抵抗体44a、44bにより測定される。
冷却水の流量は、電磁流量計45により測定される。そ
して、供試管41に供給される冷却水は、冷却水タンク
(図示せず)内に設けた冷却コイルと、電気ヒータによ
り、一定温度になるように制御される。また、凝縮器4
0内の圧力は、歪みゲージ式圧力変換器43により測定
される。そして、伝熱係数は各測定器の信号を、ハイブ
リットレコーダーにて取り込んで数値変換し、次の手順
で算出した。
Cooling water is supplied into the test tube 41 from the inlet 60 and discharged from the outlet 61. The inlet temperature and the outlet temperature of this cooling water are measured by platinum resistance temperature detectors 44a and 44b installed at both ends of the test tube 41, respectively.
The flow rate of the cooling water is measured by the electromagnetic flow meter 45. The cooling water supplied to the test tube 41 is controlled to have a constant temperature by a cooling coil provided in a cooling water tank (not shown) and an electric heater. Also, the condenser 4
The pressure inside 0 is measured by the strain gauge type pressure transducer 43. Then, the heat transfer coefficient was calculated by the following procedure by capturing the signal of each measuring device with a hybrid recorder and converting it numerically.

【0027】(1)冷却水伝熱量Q 冷却水流量及び冷却水出入口温度より、下記数式1に基
づいて算出した。
(1) Cooling Water Heat Transfer Amount Q It was calculated from the cooling water flow rate and the cooling water inlet / outlet temperature according to the following formula 1.

【0028】[0028]

【数1】 Q=G・Cp・(Tout−Tin)[Equation 1] Q = G · Cp · (Tout−Tin)

【0029】(2)対数平均温度差ΔTm 冷却水出入口温度及び冷媒凝縮温度より、下記数式2に
基づいて算出した。なお、冷媒凝縮温度Tsは、凝縮圧
力より換算して算出した数値を使用した。
(2) Logarithmic mean temperature difference ΔTm Calculated from the cooling water inlet / outlet temperature and the refrigerant condensing temperature according to the following mathematical formula 2. As the refrigerant condensing temperature Ts, a value calculated by converting from the condensing pressure was used.

【0030】[0030]

【数2】 ΔTm=(Tout−Tin)/ln[(T
s−Tin)/(Ts−Tout)]
ΔTm = (Tout-Tin) / ln [(T
s-Tin) / (Ts-Tout)]

【0031】(3)管外表面積Ao 管外表面積は、供試管フィン加工部外径を基準とし、下
記数式3により算出した。
(3) External Surface Area Ao The external surface area of the pipe was calculated by the following mathematical formula 3 with reference to the outer diameter of the test pipe fin processed portion.

【0032】[0032]

【数3】 Ao=π・Do・Lh[Formula 3] Ao = π · Do · Lh

【0033】(4)総括伝熱係数Ko(外表面積基準) 上記数式1乃至3により算出した数値を使用して下記数
式4に基づいて算出した。
(4) Overall heat transfer coefficient Ko (based on external surface area) The numerical values calculated by the above formulas 1 to 3 were used to calculate based on the following formula 4.

【0034】[0034]

【数4】 Ko=Q/(ΔTm・Ao)[Formula 4] Ko = Q / (ΔTm · Ao)

【0035】この凝縮伝熱性能試験は、冷媒として、代
替フロンである1,1,1,2−テトラフルオロエタン
を使用し、凝縮温度を40℃、伝熱管内に通流する冷却
水の入口温度を35℃とし、管内の冷却水の流速を変化
させて評価した。
In this condensation heat transfer performance test, 1,1,1,2-tetrafluoroethane, which is an alternative CFC, is used as the refrigerant, the condensation temperature is 40 ° C., and the inlet of the cooling water flowing through the heat transfer tube is used. The temperature was set to 35 ° C., and the flow rate of the cooling water in the pipe was changed for evaluation.

【0036】凝縮伝熱性能の評価条件を以下に示す。The conditions for evaluating the condensation heat transfer performance are shown below.

【0037】 冷媒:1,1,1,2−テトラフルオロエタン 器内圧力:1.253MPa abs 凝縮温度:40℃ 冷却水流速:1.0〜3.5m/s(実施例1)、2.
0m/s(実施例2〜5) 冷却水入口温度:35℃ 伝熱管試験本数:1本
Refrigerant: 1,1,1,2-tetrafluoroethane Internal pressure: 1.253 MPa abs Condensation temperature: 40 ° C. Cooling water flow rate: 1.0 to 3.5 m / s (Example 1), 2.
0 m / s (Examples 2 to 5) Cooling water inlet temperature: 35 ° C Number of heat transfer tube tests: 1

【0038】図5は、第4実施例にて圧力損失を評価す
る際に使用したテスト装置を示す。この評価装置は、冷
却水が入口60から供試管50内に供給され、出口61
から排出される。供試管50の両管端には、ドリルによ
り直径0.5mmの孔が夫々4個所開口されており、こ
れらの孔をひずみゲージ式圧力変換器からなる差圧計5
1に接続して差圧を測定するようになっている。
FIG. 5 shows a test apparatus used for evaluating pressure loss in the fourth embodiment. In this evaluation device, cooling water is supplied from the inlet 60 into the test tube 50, and the outlet 61
Emitted from. Four holes each having a diameter of 0.5 mm are drilled at both ends of the test tube 50 by a drill, and these holes are formed by a differential pressure gauge 5 composed of a strain gauge type pressure transducer.
1 is connected to measure the differential pressure.

【0039】供試管50内に供給される冷却水は、冷却
水タンク内に設けられた冷却コイルと電気ヒータにより
一定温度に調節され、冷却水の出入口温度は夫々供試管
50の両管端に設置された白金測温抵抗体52a、52
bにより測定される。また、冷却水流量は電磁流量計5
5により測定される。
The cooling water supplied into the test tube 50 is adjusted to a constant temperature by a cooling coil and an electric heater provided in the cooling water tank, and the inlet and outlet temperatures of the cooling water are respectively applied to both ends of the test tube 50. Platinum resistance thermometer 52a, 52 installed
measured by b. The flow rate of cooling water is 5
5 is measured.

【0040】評価は、供試管の管内に入口水温一定にし
た冷却水を流し、各冷却水流量での温度および差圧が安
定した事を確認した後に、差圧及び管内冷却水流量を測
定し、各測定器にて測定した信号をハイブリットレコー
ダーにて取り込んで数値変換し、その数値を使用してレ
イノルズ数〔Re〕に対する管摩擦係数〔f〕を算出
し、その数値を用いて1m当たりの管内圧力損失値を算
出した。算出に使用した計算式を、下記数式5及び6に
示す。
The evaluation was carried out by injecting cooling water with a constant inlet water temperature into the test tube, confirming that the temperature and the differential pressure at each cooling water flow rate were stable, and then measuring the differential pressure and the cooling water flow rate in the tube. , The signal measured by each measuring device is taken in by the hybrid recorder and converted into a numerical value, and the numerical value is used to calculate the pipe friction coefficient [f] with respect to the Reynolds number [Re]. The pressure loss value in the pipe was calculated. The calculation formulas used for the calculation are shown in the following formulas 5 and 6.

【0041】(5)レイノズル数 レイノズル数は下記数式5に基づいて算出した。(5) Reynolds number The Reynolds number was calculated based on the following Equation 5.

【0042】[0042]

【数5】 Re=Vi・Dimax/ν 但し、Reはレイノルズ数である。[Equation 5] Re = Vi · Dimax / ν However, Re is a Reynolds number.

【0043】(6)管内水流速 管内水流速は下記数式6に基づいて算出した。(6) Flow velocity of water in pipe The water flow velocity in the pipe was calculated based on the following Equation 6.

【0044】[0044]

【数6】 Vi=G/(3600・γ・Dimax
π/4) 但し、Viは管内水流速である。
[Equation 6] Vi = G / (3600 · γ · Dimax 2 ·
π / 4) However, Vi is the water velocity in the pipe.

【0045】(7)管摩擦係数 管摩擦係数は下記数式7に基づいて算出した。(7) Friction coefficient of pipe The pipe friction coefficient was calculated based on the following Equation 7.

【0046】[0046]

【数7】 f=98.07・ΔP・(Dimax/L
p)・(2g/Vi)・1/γ 但し、fは管摩擦係数である。
## EQU00007 ## f = 98.07.ΔP. (Dimax / L
p) · (2g / Vi 2 ) · 1 / γ where f is the friction coefficient of the pipe.

【0047】管内圧力損失評価条件は、冷却水流速が
2.0m/s、冷却水入口温度が25.0℃のもとで評
価した。
The conditions for evaluating the pressure loss in the pipe were evaluated under the conditions that the cooling water flow velocity was 2.0 m / s and the cooling water inlet temperature was 25.0 ° C.

【0048】なお、上述の各計算式中の記号は以下の内
容を示す。 Q:冷却水伝熱量(kW) G:冷却水流量(kg/h) Cp:冷却水比熱(kJ/kg/K) Tin:冷却水入口温度(℃) Tout:冷却水出口温度(℃) ΔTm:対数平均温度差(℃) Ts:冷媒凝縮温度(℃) Ko:総括伝熱係数(kW/mK) Ao:供試管フィン加工部外表面積(m) Do:供試管フィン加工部外径(m) Dimax:供試管フィン加工部最大内径(m) Lh:伝熱有効長(m) Re:レイノルズ数(−) Vi:冷却水流速(m/s) ν:冷却水動粘性係数(m/s) γ:冷却水比重(kg/m) f:管摩擦係数(−) ΔP:管内圧力損失(差圧)(kPa) Lp:差圧部有効長(m) g:重力加速度(m/s
The symbols in each of the above formulas have the following contents. Q: Cooling water heat transfer amount (kW) G: Cooling water flow rate (kg / h) Cp: Cooling water specific heat (kJ / kg / K) Tin: Cooling water inlet temperature (° C) Tout: Cooling water outlet temperature (° C) ΔTm : Logarithmic mean temperature difference (° C) Ts: Refrigerant condensing temperature (° C) Ko: Overall heat transfer coefficient (kW / m 2 K) Ao: External surface area of test tube fin processed part (m 2 ) Do: Outside of test tube fin processed part Diameter (m) Dimax: Maximum inner diameter (m) of test pipe fin processed part Lh: Effective heat transfer length (m) Re: Reynolds number (-) Vi: Cooling water flow velocity (m / s) ν: Cooling water dynamic viscosity coefficient ( m 2 / s) γ: specific gravity of cooling water (kg / m 3 ) f: friction coefficient of pipe (−) ΔP: pressure loss in pipe (differential pressure) (kPa) Lp: effective length of differential pressure part (m) g: acceleration of gravity (M / s 2 )

【0049】第1実施例 図1に示す形状のフィン1において、第2溝2の側面2
aのなす角度θ1を種々変化させた伝熱管を作製し、凝
縮伝熱性能試験を実施した。実施例及び比較例の伝熱管
寸法を、下記表1及び表2に示す。なお、比較例No.2
は、内面平滑面での評価であり、リブ数等は「−」と記し
た。
First Embodiment In the fin 1 having the shape shown in FIG. 1, the side surface 2 of the second groove 2 is formed.
A heat transfer tube having various angles θ1 formed by a was manufactured, and a condensation heat transfer performance test was performed. The heat transfer tube dimensions of Examples and Comparative Examples are shown in Tables 1 and 2 below. Comparative example No. 2
Is the evaluation on the inner smooth surface, and the number of ribs and the like are described as "-".

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】図6は縦軸に総括伝熱係数をとり、横軸に
冷却水流速をとって、実施例及び比較例における伝熱管
の伝熱性能の評価結果を示すグラフ図である。図6に示
すように、実施例No.1〜4は比較例No.1及び2
と比較して、極めて優れた伝熱性能を得ることができ
た。
FIG. 6 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the cooling water flow rate. As shown in FIG. 1 to 4 are comparative example Nos. 1 and 2
It was possible to obtain an extremely excellent heat transfer performance as compared with.

【0053】第2実施例 図1に示す形状のフィン1において、第2溝2の長手方
向のピッチP1を変化させた伝熱管を作製し、凝縮伝熱
性能試験を実施した。実施例比較例の伝熱管の寸法を、
下記表3及び表4に示す。
Second Example In the fin 1 having the shape shown in FIG. 1, a heat transfer tube in which the pitch P1 in the longitudinal direction of the second groove 2 was changed was produced, and a condensation heat transfer performance test was carried out. The dimensions of the heat transfer tube of the comparative example are
The results are shown in Tables 3 and 4 below.

【0054】[0054]

【表3】 [Table 3]

【0055】[0055]

【表4】 [Table 4]

【0056】図7は縦軸に総括伝熱係数をとり、横軸に
ピッチP1をとって、実施例及び比較例における伝熱管
の伝熱性能の評価結果を示すグラフ図である。図7に示
すように、実施例No.1およびNo.5〜7は比較例
No.3及び4と比較して、極めて優れた伝熱性能を得
ることができた。
FIG. 7 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, with the vertical axis representing the overall heat transfer coefficient and the horizontal axis representing the pitch P1. As shown in FIG. 1 and No. 5 to 7 are comparative example Nos. As compared with 3 and 4, extremely excellent heat transfer performance could be obtained.

【0057】第3実施例 図1に示す形状のフィン1において、第2溝2の深さを
h1、前記フィンの高さをh2としたとき、h1とh2
との比を変化させた伝熱管を作製し、凝縮伝熱性能試験
を実施した。実施例比較例の伝熱管の寸法を、下記表5
及び表6に示す。
Third Embodiment In the fin 1 having the shape shown in FIG. 1, when the depth of the second groove 2 is h1 and the height of the fin is h2, h1 and h2
The heat transfer tubes with different ratios to and were produced, and the condensation heat transfer performance test was conducted. The dimensions of the heat transfer tube of the comparative example are shown in Table 5 below.
And shown in Table 6.

【0058】[0058]

【表5】 [Table 5]

【0059】[0059]

【表6】 [Table 6]

【0060】図8は縦軸に総括伝熱係数をとり、横軸に
h1/h2比をとって、実施例及び比較例における伝熱
管の伝熱性能の評価結果を示すグラフ図である。図8に
示すように、実施例No.1およびNo.8〜10は比
較例No.5及び6と比較して、極めて優れた伝熱性能
を得ることができた。
FIG. 8 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, with the vertical axis representing the overall heat transfer coefficient and the horizontal axis representing the h1 / h2 ratio. As shown in FIG. 1 and No. Nos. 8 to 10 are comparative example Nos. As compared with 5 and 6, extremely excellent heat transfer performance could be obtained.

【0061】第4実施例 図1に示す形状のフィン1において、内面リブのリード
角度θ2を変化させた伝熱管を作製し、凝縮伝熱性能試
験を実施した。また、同じく圧力損失も比較評価した。
実施例比較例の伝熱管の寸法を、下記表7及び表8に示
す。
Fourth Example In the fin 1 having the shape shown in FIG. 1, a heat transfer tube was produced in which the lead angle θ2 of the inner rib was changed, and a condensation heat transfer performance test was carried out. Similarly, the pressure loss was also comparatively evaluated.
Examples The dimensions of the heat transfer tubes of the comparative examples are shown in Tables 7 and 8 below.

【0062】[0062]

【表7】 [Table 7]

【0063】[0063]

【表8】 [Table 8]

【0064】図9は縦軸に総括伝熱係数をとり、横軸に
内面リブのリード角θ2をとって、実施例及び比較例に
おける伝熱管の伝熱性能の評価結果を示すグラフ図であ
る。
FIG. 9 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the lead angle θ2 of the inner ribs. .

【0065】また、図10は縦軸に1m当たりの圧力損
失をとり、横軸に内面リブのリード角θ2をとって、実
施例及び比較例における伝熱管の圧力損失の評価結果を
示すグラフ図である。
FIG. 10 is a graph showing the evaluation results of the pressure loss of the heat transfer tubes in the examples and the comparative examples, in which the vertical axis represents the pressure loss per 1 m and the horizontal axis represents the lead angle θ2 of the inner rib. Is.

【0066】図9に示すように、実施例No.1および
No.11〜13は比較例No.7と比較して、極めて
優れた伝熱性能を得ることができた。しかし、比較例N
O.8は伝熱性能が向上するものの、図10に示すよう
に圧力損失が増加した。
As shown in FIG. 1 and No. 11 to 13 are comparative example Nos. As compared with No. 7, it was possible to obtain extremely excellent heat transfer performance. However, Comparative Example N
O. In No. 8, the heat transfer performance was improved, but the pressure loss was increased as shown in FIG.

【0067】第5実施例 図1に示す形状のフィン1において、内面リブの長手方
向に平行な断面におけるピッチP2を変化させた伝熱管
を作製し、凝縮伝熱性能試験を実施した。比較した伝熱
管寸法仕様を、下記表9及び表10に示す。
Fifth Example In the fin 1 having the shape shown in FIG. 1, a heat transfer tube was produced in which the pitch P2 in the cross section parallel to the longitudinal direction of the inner surface rib was changed, and a condensation heat transfer performance test was conducted. The heat transfer tube size specifications for comparison are shown in Tables 9 and 10 below.

【0068】[0068]

【表9】 [Table 9]

【0069】[0069]

【表10】 [Table 10]

【0070】図11は縦軸に総括伝熱係数をとり、横軸
に内面リブのピッチをとって、実施例及び比較例におけ
る伝熱管の伝熱性能の評価結果を示すグラフ図である。
図11に示すように、実施例No.1及びNo.14〜
16は比較例No.9及び10と比較して、極めて優れ
た伝熱性能を得ることができた。
FIG. 11 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the pitch of the inner ribs.
As shown in FIG. 1 and No. 14 ~
No. 16 is a comparative example No. As compared with 9 and 10, extremely excellent heat transfer performance could be obtained.

【0071】[0071]

【発明の効果】以上詳述したように、本発明によれば、
フィンをその長手方向に分割する第2溝の側面のなす角
度を適切に規定すると共に、第2溝の深さh1と前記フ
ィンの高さh2との比を適切に規定したので、凝縮液の
排出性が向上し、また管内面にリブを設けたので、伝熱
性能が向上する。更に、管内面に設けたリブのリード
角、ピッチP2を適切に設定し、管周方向の第2溝のピ
ッチP1を適切に設定することにより、更に優れた伝熱
性能を有する凝縮器用伝熱管を得ることができる。
As described in detail above, according to the present invention,
Since the angle formed by the side surfaces of the second groove that divides the fin in the longitudinal direction is appropriately defined, and the ratio between the depth h1 of the second groove and the height h2 of the fin is appropriately defined, The discharge property is improved and the ribs are provided on the inner surface of the pipe, so that the heat transfer performance is improved. Further, by appropriately setting the lead angle and the pitch P2 of the ribs provided on the inner surface of the tube and the pitch P1 of the second groove in the tube circumferential direction, the heat transfer tube for a condenser having further excellent heat transfer performance. Can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る凝縮器用伝熱管を示す斜
視図である。
FIG. 1 is a perspective view showing a heat transfer tube for a condenser according to an embodiment of the present invention.

【図2】同じくその管軸に直交する断面の断面図であ
る。
FIG. 2 is likewise a sectional view of a section orthogonal to the tube axis.

【図3】同じくその管軸に平行の断面の断面図である。FIG. 3 is a sectional view of a section parallel to the tube axis of the same.

【図4】性能評価に使用したテスト装置を示す図であ
る。
FIG. 4 is a diagram showing a test apparatus used for performance evaluation.

【図5】実施例4にて圧力損失を評価する際に使用した
テスト装置を示す図である。
FIG. 5 is a diagram showing a test apparatus used for evaluating pressure loss in Example 4.

【図6】縦軸に総括伝熱係数をとり、横軸に冷却水流速
をとって、実施例及び比較例における伝熱管の伝熱性能
の評価結果を示すグラフ図である。
FIG. 6 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the cooling water flow rate.

【図7】縦軸に総括伝熱係数をとり、横軸にピッチP1
をとって、実施例及び比較例における伝熱管の伝熱性能
の評価結果を示すグラフ図である。
FIG. 7 shows the overall heat transfer coefficient on the vertical axis and the pitch P1 on the horizontal axis.
FIG. 6 is a graph diagram showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples.

【図8】縦軸に総括伝熱係数をとり、横軸にh1/h2
比をとって、実施例及び比較例における伝熱管の伝熱性
能の評価結果を示すグラフ図である。
[FIG. 8] The vertical axis represents the overall heat transfer coefficient, and the horizontal axis represents h1 / h2.
It is a graph which shows the evaluation result of the heat transfer performance of the heat transfer tube in an Example and a comparative example by taking a ratio.

【図9】縦軸に総括伝熱係数をとり、横軸に内面リブの
リード角をとって、実施例及び比較例における伝熱管の
伝熱性能の評価結果を示すグラフ図である。
FIG. 9 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, where the vertical axis represents the overall heat transfer coefficient and the horizontal axis represents the lead angle of the inner ribs.

【図10】縦軸に1m当たりの圧力損失をとり、横軸に
内面リブのリード角をとって、実施例及び比較例におけ
る伝熱管の圧力損失の評価結果を示すグラフ図である。
FIG. 10 is a graph showing the evaluation results of the pressure loss of the heat transfer tubes in Examples and Comparative Examples, in which the vertical axis represents the pressure loss per meter and the horizontal axis represents the lead angle of the inner rib.

【図11】縦軸に総括伝熱係数をとり、横軸に内面リブ
のピッチをとって、実施例及び比較例における伝熱管の
伝熱性能の評価結果を示すグラフ図である。
FIG. 11 is a graph showing the evaluation results of the heat transfer performance of the heat transfer tubes in Examples and Comparative Examples, where the vertical axis is the overall heat transfer coefficient and the horizontal axis is the pitch of the inner ribs.

【図12】従来の伝熱管の形状を示す斜視図である。FIG. 12 is a perspective view showing the shape of a conventional heat transfer tube.

【符号の説明】[Explanation of symbols]

1;フィン 2;第2溝 2a;側面 3;管本体 4;突起部 5;第1溝 6;伝熱管 7:リブ 1; Fin 2; second groove 2a; side surface 3; Tube body 4; protrusion 5; first groove 6; Heat transfer tube 7: Rib

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 管本体と、この管本体の外面に設けられ
管軸方向に直交又は傾斜する方向に延びるフィンと、前
記管本体の内面に形成されたリブとを有し、前記フィン
は、その山頂をフィンに平行な方向に沿って分割するこ
とにより形成される複数個の第1溝と、前記フィンをそ
の長手方向に分割する複数個の第2溝とを有し、前記第
2溝の側面のなす角度は55゜以下であり、前記第2溝
の深さをh1、前記フィンの高さをh2としたとき、h
1とh2との比h1/h2が0.11乃至0.72であ
ることを特徴とする凝縮器用伝熱管。
1. A pipe main body, a fin provided on an outer surface of the pipe main body, the fin extending in a direction orthogonal or inclined to the pipe axis direction, and a rib formed on an inner surface of the pipe main body, wherein the fin comprises: A plurality of first grooves formed by dividing the crest along a direction parallel to the fin, and a plurality of second grooves dividing the fin in the longitudinal direction thereof; The angle formed by the side surface of the fin is 55 ° or less, and when the depth of the second groove is h1 and the height of the fin is h2, h
A heat transfer tube for a condenser, wherein a ratio h1 / h2 of 1 and h2 is 0.11 to 0.72.
【請求項2】 前記第2溝の側面のなす角度は40゜以
下であることを特徴とする請求項1に記載の凝縮器用伝
熱管。
2. The heat transfer tube for a condenser according to claim 1, wherein an angle formed by a side surface of the second groove is 40 ° or less.
【請求項3】 前記第2溝の管周方向のピッチP1(溝
底の直線距離)が0.15〜0.71mmであることを
特徴とする請求項1又は2に記載の凝縮器用伝熱管。
3. The heat transfer tube for a condenser according to claim 1, wherein a pitch P1 (a linear distance of a groove bottom) in the tube circumferential direction of the second groove is 0.15 to 0.71 mm. .
【請求項4】 前記リブは、管軸方向に対して傾斜して
螺旋状に延び、そのリード角が42〜48°であること
を特徴とする請求項1乃至3のいずれか1項に記載の凝
縮器用伝熱管。
4. The rib according to claim 1, wherein the rib extends in a spiral shape while being inclined with respect to the tube axis direction, and has a lead angle of 42 to 48 °. Heat transfer tubes for condensers.
【請求項5】 前記リブは、管軸方向に平行な断面にお
けるピッチP2が1.6乃至4.0mmであることを特
徴とする請求項1乃至4のいずれか1項に記載の凝縮器
用伝熱管。
5. The condenser transmission according to claim 1, wherein the ribs have a pitch P2 of 1.6 to 4.0 mm in a cross section parallel to the tube axis direction. Heat tube.
JP2002088317A 2002-03-27 2002-03-27 Heat transfer pipe for condenser Pending JP2003287393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002088317A JP2003287393A (en) 2002-03-27 2002-03-27 Heat transfer pipe for condenser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002088317A JP2003287393A (en) 2002-03-27 2002-03-27 Heat transfer pipe for condenser

Publications (1)

Publication Number Publication Date
JP2003287393A true JP2003287393A (en) 2003-10-10

Family

ID=29234216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002088317A Pending JP2003287393A (en) 2002-03-27 2002-03-27 Heat transfer pipe for condenser

Country Status (1)

Country Link
JP (1) JP2003287393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338959B (en) * 2008-01-11 2011-06-08 高克联管件(上海)有限公司 Efficient shell and tube type condenser
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
CN104006579A (en) * 2014-05-20 2014-08-27 江苏萃隆精密铜管股份有限公司 Efficient heat-exchange tube for evaporator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588995A (en) * 1981-07-06 1983-01-19 Kobe Steel Ltd Heat conducting pipe
JPS59100396A (en) * 1982-11-30 1984-06-09 Kobe Steel Ltd Condensable heat exchanger tube
JPH0771889A (en) * 1993-07-07 1995-03-17 Kobe Steel Ltd Heat transfer tube for falling luquid film type evaporator
JPH08219674A (en) * 1994-11-17 1996-08-30 Carrier Corp Heat exchange tube
JPH08219675A (en) * 1994-11-17 1996-08-30 Carrier Corp Heat exchange tube
JPH11148747A (en) * 1997-11-19 1999-06-02 Kobe Steel Ltd Heat exchanger tube for evaporator of absorption refrigerating machine
JPH11183074A (en) * 1997-12-22 1999-07-06 Kobe Steel Ltd Heat transfer pipe for condenser
JPH11316096A (en) * 1998-03-04 1999-11-16 Kobe Steel Ltd Boiling type heat transfer pipe

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS588995A (en) * 1981-07-06 1983-01-19 Kobe Steel Ltd Heat conducting pipe
JPS59100396A (en) * 1982-11-30 1984-06-09 Kobe Steel Ltd Condensable heat exchanger tube
JPH0771889A (en) * 1993-07-07 1995-03-17 Kobe Steel Ltd Heat transfer tube for falling luquid film type evaporator
JPH08219674A (en) * 1994-11-17 1996-08-30 Carrier Corp Heat exchange tube
JPH08219675A (en) * 1994-11-17 1996-08-30 Carrier Corp Heat exchange tube
JPH11148747A (en) * 1997-11-19 1999-06-02 Kobe Steel Ltd Heat exchanger tube for evaporator of absorption refrigerating machine
JPH11183074A (en) * 1997-12-22 1999-07-06 Kobe Steel Ltd Heat transfer pipe for condenser
JPH11316096A (en) * 1998-03-04 1999-11-16 Kobe Steel Ltd Boiling type heat transfer pipe

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101338959B (en) * 2008-01-11 2011-06-08 高克联管件(上海)有限公司 Efficient shell and tube type condenser
CN102980432A (en) * 2012-11-12 2013-03-20 沃林/维兰德传热技术有限责任公司 Evaporation heat transfer pipe with hollow cavity body
CN104006579A (en) * 2014-05-20 2014-08-27 江苏萃隆精密铜管股份有限公司 Efficient heat-exchange tube for evaporator
CN104006579B (en) * 2014-05-20 2016-03-02 江苏萃隆精密铜管股份有限公司 A kind of high-efficient heat-exchanger of evaporimeter

Similar Documents

Publication Publication Date Title
Solanki et al. Condensation of R-134a inside dimpled helically coiled tube-in-shell type heat exchanger
Shin et al. Experimental study on forced convective boiling heat transfer of pure refrigerants and refrigerant mixtures in a horizontal tube
Han et al. Experiments on the characteristics of evaporation of R410A in brazed plate heat exchangers with different geometric configurations
Graham et al. Heat transfer and pressure drop during condensation of refrigerant 134a in an axially grooved tube
Eckels et al. Evaporation and Condensation of HFC-134a and CFC-12 in a Smooth Tube and a Micro-Fin Tube (RP-630)
Schael et al. Flow pattern and heat transfer characteristics during flow boiling of CO2 in a horizontal micro fin tube and comparison with smooth tube data
Jiang et al. Experimental study of boiling heat transfer in smooth/micro-fin tubes of four refrigerants
Zhong et al. In-tube performance evaluation of an air-cooled condenser with liquid–vapor separator
Solanki et al. Condensation of R-134a inside micro-fin helical coiled tube-in-shell type heat exchanger
Longo Hydrocarbon refrigerant vaporization inside a brazed plate heat exchanger
Ebisu et al. Heat transfer characteristics and correlations for R-410A flowing inside a horizontal smooth tube
Tang et al. Flow condensation in smooth and micro-fin tubes with HCFC-22, HFC-134a and HFC-410 refrigerants. Part II: design equations
Cao et al. Condensation heat transfer of R245fa in a shell-tube heat exchanger at slightly inclined angles
Pettersen et al. Heat transfer and pressure drop characteristics of evaporating carbon dioxide in microchannel tubes
JP2005195192A (en) Heat transfer pipe with grooved inner face
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
Kumar et al. Parametric variation studies of experimental flow boiling heat transfer phenomena using R407c inside an enhanced tube
Li Design and preliminary experiments of a novel heat pipe using a spiral coil as capillary wick
Chang et al. Condensing heat transfer characteristics of aluminum flat tube
JP2003287393A (en) Heat transfer pipe for condenser
JP4386813B2 (en) Heat transfer tube with inner groove for evaporator
Zeng et al. Ammonia spray evaporation heat transfer performance of single low-fin and corrugated tubes/Discussion
Kang et al. Experimental correlation of falling film condensation on enhanced tubes with HFC134a; low-fin and Turbo-C tubes
Spindler et al. Flow boiling heat transfer of R134a and R404A in a microfin tube at low mass fluxes and low heat fluxes
JP2003287392A (en) Boiling type heat transfer pipe

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050114

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071029

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129