JP2005195192A - Heat transfer pipe with grooved inner face - Google Patents

Heat transfer pipe with grooved inner face Download PDF

Info

Publication number
JP2005195192A
JP2005195192A JP2003435561A JP2003435561A JP2005195192A JP 2005195192 A JP2005195192 A JP 2005195192A JP 2003435561 A JP2003435561 A JP 2003435561A JP 2003435561 A JP2003435561 A JP 2003435561A JP 2005195192 A JP2005195192 A JP 2005195192A
Authority
JP
Japan
Prior art keywords
groove
heat transfer
tube
refrigerant
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003435561A
Other languages
Japanese (ja)
Other versions
JP4119836B2 (en
Inventor
Hideki Iwamoto
秀樹 岩本
Chikara Saeki
主税 佐伯
Tomio Higo
富夫 肥後
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco and Materials Copper Tube Ltd
Original Assignee
Kobelco and Materials Copper Tube Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco and Materials Copper Tube Ltd filed Critical Kobelco and Materials Copper Tube Ltd
Priority to JP2003435561A priority Critical patent/JP4119836B2/en
Publication of JP2005195192A publication Critical patent/JP2005195192A/en
Application granted granted Critical
Publication of JP4119836B2 publication Critical patent/JP4119836B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat transfer pipe with a grooved inner face using R32-R125 mixed refrigerant (R410A, e.g.) as refrigerant for improving heat transfer performance while avoiding excessive pressure loss of the mixed refrigerant even when the heat transfer pipe with the grooved inner face is longer. <P>SOLUTION: The heat transfer pipe with the grooved inner face having an outer diameter D of 6-10 mm uses the hydrofluorocarbon mixed refrigerant. It comprises spiral grooves and a plurality of fins formed between spiral grooves on the inner face of the pipe . Herein, a groove lead angle θ is over 30° but 55° or smaller, a groove depth h is 0.10-0.35 mm and a fin peak angle δ is 5-30°. A coefficient α calculated from α=S×cosθ using a cross section S of one groove and the groove lead angle θ is 0.05-0.10, and a coefficient β calculated from β=L×cosθ using a wetted perimeter L of all periphery and the groove lead angle θ is 27-40. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空調機器および冷凍機器用の熱交換器に組み込まれる内面溝付伝熱管に係り、特に、ハイドロフルオロカーボン系冷媒であるR32およびR125を混合した混合冷媒を使用する管の外径が6〜10mmの内面溝付伝熱管に関する。   The present invention relates to an internally grooved heat transfer tube incorporated in a heat exchanger for air conditioning equipment and refrigeration equipment. In particular, the outer diameter of a pipe using a mixed refrigerant in which R32 and R125, which are hydrofluorocarbon refrigerants, are mixed is 6. The present invention relates to a heat transfer tube with an inner groove of 10 mm.

内面溝付伝熱管は、空調機器および冷凍機器用の熱交換器に組み込まれる伝熱管として使用されている。そして、従来、内面溝付伝熱管の冷媒として、ハイドロクロロフルオロカーボン(以下、HCFCと称す)系の冷媒、代表的なものとしてR22が使用されてきた。しかしながら、オゾン層破壊や地球温暖化等の環境問題の深刻化により、R22に替わって、オゾン層の破壊係数が0であるハイドロフルオロカーボン(以下、HFCと称す)系の冷媒に移行することになった。   The internally grooved heat transfer tube is used as a heat transfer tube incorporated in a heat exchanger for air conditioning equipment and refrigeration equipment. Conventionally, a hydrochlorofluorocarbon (hereinafter referred to as HCFC) -based refrigerant, typically R22, has been used as a refrigerant for the internally grooved heat transfer tube. However, due to serious environmental problems such as ozone layer destruction and global warming, instead of R22, it will be shifted to a hydrofluorocarbon (hereinafter referred to as HFC) refrigerant having an ozone layer destruction coefficient of 0. It was.

HFC系冷媒としては、高沸点のHFC系冷媒(高沸点成分)と低沸点のHFC系冷媒(低沸点成分)とを混合した非共沸混合冷媒がよく使用されている。この非共沸混合冷媒は、その露点(液化開始温度)と沸点(液化終了温度)が異なる。例えば、空調機器用の冷媒として最近多用されるようになったR407Cは、それぞれ沸点(=露点)の大きく異なるR32(沸点:−52°C)、R125(沸点:−49°C)、およびR134a(沸点:−26°C)の3冷媒をそれぞれ質量比で23:25:52で混合した混合冷媒であり、混合冷媒としての沸点が−43.6°C、露点が−36.7°Cと、その差が6.9°Cにも及ぶ。その為、混合冷媒の凝縮および蒸発の際には、気液界面において高沸点成分が多く凝縮し、低沸点成分が気相側に濃縮される。これにより混合冷媒内の各成分の濃度が不均一となり濃度差が生じ、この濃度差が拡散抵抗および熱抵抗を惹起して、内面溝付伝熱管の伝熱性能(蒸発性能および凝縮性能)は、R32、R125およびR134aのそれぞれを単一冷媒として用いた場合よりも低下し、従来のR22(沸点および露点とも−40.8°C)を用いた場合と同等の伝熱性能が得られなかった。これらのことから、内面溝付伝熱管では、混合冷媒内の濃度差を無くすために、管内面の内面溝形状を特定することで、伝熱性能を向上させている。   As the HFC refrigerant, a non-azeotropic refrigerant mixture obtained by mixing a high boiling HFC refrigerant (high boiling component) and a low boiling HFC refrigerant (low boiling component) is often used. This non-azeotropic refrigerant mixture has a different dew point (liquefaction start temperature) and boiling point (liquefaction end temperature). For example, R407C, which has recently been widely used as a refrigerant for air conditioning equipment, has R32 (boiling point: −52 ° C.), R125 (boiling point: −49 ° C.), and R134a, which have greatly different boiling points (= dew points). 3 refrigerants (boiling point: −26 ° C.) mixed at a mass ratio of 23:25:52, respectively. The boiling point of the mixed refrigerant is −43.6 ° C. and the dew point is −36.7 ° C. And the difference reaches 6.9 ° C. Therefore, during the condensation and evaporation of the mixed refrigerant, a large amount of high-boiling components are condensed at the gas-liquid interface, and the low-boiling components are concentrated on the gas phase side. As a result, the concentration of each component in the mixed refrigerant becomes non-uniform, resulting in a difference in concentration. This concentration difference causes diffusion resistance and thermal resistance, and the heat transfer performance (evaporation performance and condensation performance) of the internally grooved heat transfer tube is , R32, R125, and R134a are lower than when each is used as a single refrigerant, and heat transfer performance equivalent to that when using conventional R22 (both boiling point and dew point is −40.8 ° C.) cannot be obtained. It was. For these reasons, in the inner surface grooved heat transfer tube, the heat transfer performance is improved by specifying the inner surface groove shape of the tube inner surface in order to eliminate the concentration difference in the mixed refrigerant.

一方、空調機器用のHFC系冷媒として最近多用されるようになったR410Aは、R32(沸点:−52°C)とR125(沸点:−49°C)とを質量比で50:50で混合した混合冷媒であり、各成分の沸点の差が小さいため、混合冷媒の沸点および露点はほぼ同一である(−51.6°C)。このように、R410Aは単一冷媒として取扱いが可能であることから、混合冷媒内の各成分の濃度差が生じない擬似共沸混合冷媒に分類されている。このように、R410Aは熱的にはR22と同様に取り扱いができるため、R22用に用いられていた内面溝付伝熱管がそのまま使用されている例も多い。   On the other hand, R410A, which has recently been widely used as an HFC refrigerant for air conditioning equipment, is a mixture of R32 (boiling point: -52 ° C) and R125 (boiling point: -49 ° C) at a mass ratio of 50:50. Since the difference in the boiling point of each component is small, the boiling point and dew point of the mixed refrigerant are almost the same (−51.6 ° C.). Thus, since R410A can be handled as a single refrigerant, it is classified as a pseudo-azeotropic refrigerant mixture that does not cause a difference in concentration of each component in the refrigerant mixture. As described above, since R410A can be thermally handled in the same manner as R22, there are many examples in which the internally grooved heat transfer tube used for R22 is used as it is.

以下に、非共沸混合冷媒および擬似共沸混合冷媒を使用した内面溝付伝熱管の例を示す。先ず、非共沸混合冷媒用の内面溝付伝熱管として、管内面に螺旋状の連続する溝を設け、螺旋方向に沿って前記溝間に形成されたフィンの高さが、前記溝の山部より高いハイフィンを一定のピッチで設けたものが提案されている。この内面溝付伝熱管においては、管内面にハイフィンが設けられていることにより、混合冷媒の流れが乱れ、混合冷媒内の各成分の濃度差が低減し、また、有効伝熱面積が拡大するため、伝熱性能が向上する(例えば、特許文献1参照)。   Below, the example of the heat transfer tube with an inner surface groove using a non-azeotropic mixed refrigerant and a pseudo azeotropic mixed refrigerant is shown. First, as a heat transfer tube with an inner surface groove for a non-azeotropic refrigerant mixture, a spiral continuous groove is provided on the inner surface of the tube, and the height of the fin formed between the grooves along the spiral direction is the peak of the groove. There has been proposed a structure in which high fins higher than the above are provided at a constant pitch. In this internally grooved heat transfer tube, by providing high fins on the tube inner surface, the flow of the mixed refrigerant is disturbed, the concentration difference of each component in the mixed refrigerant is reduced, and the effective heat transfer area is expanded. Therefore, heat transfer performance improves (for example, refer to patent documents 1).

また、非共沸混合冷媒用の内面溝付伝熱管として、管内面に螺旋状の山部(フィン)が形成され、その山部(フィン)の二つの底角を異なる角度としたものが提案されている。この内面溝付伝熱管においては、底角の異なる山部(フィン)を設けることにより、山部(フィン)の側面の傾斜角度が異なり、冷媒の流れ方向によって圧力損失が異なり、蒸発時には圧力損失が増加し、凝縮時には圧力損失が抑えられるため、伝熱性能が向上する(例えば、特許文献2参照)。   In addition, as an internally grooved heat transfer tube for non-azeotropic refrigerant mixtures, a spiral crest (fin) is formed on the inner surface of the tube, and the two bottom angles of the crest (fin) are different angles. Has been. In this internally grooved heat transfer tube, by providing ridges (fins) with different bottom angles, the inclination angle of the side surfaces of the ridges (fins) differs, and the pressure loss varies depending on the refrigerant flow direction. Since the pressure loss is suppressed at the time of condensation, the heat transfer performance is improved (see, for example, Patent Document 2).

また、非共沸混合冷媒用の内面溝付伝熱管として、管内面に設けた螺旋状の溝が管軸に対して45°以上の大きな角度で配置されたものが提案されている。また、非共沸混合冷媒としては、R407Cと同じHFC系であるHFC−32(R32)とHFC−134a(R134a)とを混合したものが記載されている。この内面溝付伝熱管においては、溝を45°以上の角度で配置することにより、溝内に渦度の大きな混合冷媒の渦が発生し、混合冷媒内の各成分の濃度差が低減するため、伝熱性能が向上する(例えば、特許文献3参照)。   In addition, as an internally grooved heat transfer tube for a non-azeotropic refrigerant mixture, a tube in which a spiral groove provided on the tube inner surface is arranged at a large angle of 45 ° or more with respect to the tube axis has been proposed. Moreover, what mixed HFC-32 (R32) and HFC-134a (R134a) which are the same HFC system as R407C is described as a non-azeotropic refrigerant mixture. In this internally grooved heat transfer tube, by arranging the groove at an angle of 45 ° or more, a mixed refrigerant vortex with a large vorticity is generated in the groove, and the concentration difference of each component in the mixed refrigerant is reduced. The heat transfer performance is improved (see, for example, Patent Document 3).

また、前記特許文献3の内面溝付伝熱管と同様に、螺旋状の溝が管軸に対して25°以上の角度で配置され、好ましくは、その溝の深さが0.15mm〜0.35mmである内面溝付伝熱管も提案されている。また、非共沸冷媒としてR407Cが記載されている(例えば、特許文献4参照)。   Similarly to the internally grooved heat transfer tube of Patent Document 3, the spiral groove is disposed at an angle of 25 ° or more with respect to the tube axis, and preferably the depth of the groove is 0.15 mm to 0.00. An internally grooved heat transfer tube of 35 mm has also been proposed. Further, R407C is described as a non-azeotropic refrigerant (see, for example, Patent Document 4).

また、R22(HCFC22)よりも低粘性冷媒、例えば、R407C(非共沸混合冷媒)、R410A(擬似共沸混合冷媒)の両冷媒のいずれも使用可能な内面溝付伝熱管として、管内面に螺旋状のフィンを設け、そのフィンピッチを0.22〜0.28mm、フィン高さを0.23〜0.28mm、または、それに加えて、フィンと管軸とがなすリード角を14〜30°としたものが提案されている。この内面溝付伝熱管においては、フィン形状を前記のように設定することにより、R22よりも低粘性の冷媒を用いた場合にも、冷媒が十分に攪乱されるため、伝熱性能が向上する(例えば、特許文献5参照)。   In addition, as an internally grooved heat transfer tube that can use any refrigerant that is less viscous than R22 (HCFC22), for example, both R407C (non-azeotropic refrigerant mixture) and R410A (pseudo azeotropic refrigerant mixture), A spiral fin is provided, the fin pitch is 0.22 to 0.28 mm, the fin height is 0.23 to 0.28 mm, or in addition, the lead angle between the fin and the tube axis is 14 to 30 What has been proposed. In this internally grooved heat transfer tube, by setting the fin shape as described above, the heat transfer performance is improved because the refrigerant is sufficiently disturbed even when a refrigerant having a viscosity lower than R22 is used. (For example, refer to Patent Document 5).

また、内面溝付伝熱管の他の例として、管軸に対して5〜45°の傾斜角を有する螺旋状の溝が管内面に形成されてなると共に、管外径D、管軸直角(直交)断面における溝1つ当たりの断面積a、溝深さd、および管軸を中心として溝間に形成されるフィンの先端に接する円の面積Aにて表される形状パラメータ:〔2(d/D)2・A/a〕が0.8以上2.0以下の範囲内に特定されたものが提案されている。また、使用冷媒としては、伝熱性能試験の冷媒としてR22を使用しているが、好ましい冷媒の例示はない(例えば、特許文献6参照)。 As another example of the internally grooved heat transfer tube, a spiral groove having an inclination angle of 5 to 45 ° with respect to the tube axis is formed on the tube inner surface, and the tube outer diameter D and the tube axis right angle ( A shape parameter represented by a cross-sectional area a per groove in the (orthogonal) cross section, a groove depth d, and an area A of a circle in contact with the tip of the fin formed between the grooves around the tube axis: [2 ( d / D) 2 · A / a] is specified within a range of 0.8 to 2.0. Further, as the refrigerant used, R22 is used as a refrigerant in the heat transfer performance test, but there is no example of a preferable refrigerant (for example, see Patent Document 6).

さらに、管内面に螺旋状の台形溝が形成され、管軸直角(直交)断面で台形溝間に形成された山形突起部(フィン)の頂角が10〜30°、溝深さHが管内径D1との比でH/D1=0.04〜0.05、各溝の断面積Sが溝深さHとの比でS/H=0.2〜0.4、かつ溝の傾斜部と溝底間に曲率半径Rの円弧状部が設けられ、この円弧状部が溝深さHとの比でH/R=4〜10に特定されたものが提案されている。また、使用冷媒としては、伝熱性能試験の冷媒としてR22を使用しているが、好ましい冷媒の例示はない(例えば、特許文献7参照)。 Further, a spiral trapezoidal groove is formed on the inner surface of the tube, and the apex angle of the angle protrusions (fins) formed between the trapezoidal grooves in a cross section perpendicular to the tube axis is 10 to 30 °, and the groove depth H is the tube. H / D 1 = 0.04 to 0.05 in terms of the ratio to the inner diameter D 1 , the sectional area S of each groove is S / H = 0.2 to 0.4 in terms of the ratio to the groove depth H, and An arcuate part having a radius of curvature R is provided between the inclined part and the groove bottom, and the arcuate part is specified as H / R = 4 to 10 in a ratio to the groove depth H. In addition, as the refrigerant used, R22 is used as a refrigerant for the heat transfer performance test, but there is no example of a preferable refrigerant (for example, see Patent Document 7).

特開平6−307787号公報(段落番号〔0001〕、〔0008〕、〔0013〕、図2および図3)JP-A-6-307787 (paragraph numbers [0001], [0008], [0013], FIG. 2 and FIG. 3) 特開平8−61877号公報(請求項1、段落番号〔0001〕、〔0010〕、〔0011〕、〔0018〕および図1)JP-A-8-61877 (Claim 1, paragraph numbers [0001], [0010], [0011], [0018] and FIG. 1) 特開平8−145585号公報(段落番号〔0007〕、〔0011〕、〔0017〕、図3および図7)JP-A-8-145585 (paragraph numbers [0007], [0011], [0017], FIGS. 3 and 7) 特開平9−42881号公報(段落番号〔0005〕、〔0008〕、〔0010〕および図1)JP-A-9-42881 (paragraph numbers [0005], [0008], [0010] and FIG. 1) 特開2001−343194号公報(段落番号〔0019〕〜〔0021〕、〔0045〕、〔0058〕、図2および図3)JP 2001-343194 (paragraph numbers [0019] to [0021], [0045], [0058], FIG. 2 and FIG. 3) 特開2001−33185号公報(段落番号〔0010〕、〔0054〕、図2および図3)JP 2001-33185 A (paragraph numbers [0010], [0054], FIGS. 2 and 3) 特許第2912826号公報(段落番号〔0008〕、〔0026〕、図1および図2)Japanese Patent No. 2912826 (paragraph numbers [0008], [0026], FIG. 1 and FIG. 2)

特許文献1〜5の内面溝付伝熱管においては、管内面に設けられたフィンのハイフィン化、非対称化、高密度化、または溝の高リード角化により、使用冷媒が非共沸混合冷媒の場合には、混合冷媒の蒸発及び凝縮の際に、混合冷媒が攪乱され、混合冷媒を構成する各成分の濃度差が低減され、十分な伝熱性能が得られる。しかしながら、本発明に使用されるR32及びR125を混合した冷媒(例えば、R410A)は、擬似共沸混合冷媒であって、混合冷媒内の各成分の沸点の差が小さいものである。従って、混合冷媒の蒸発及び凝縮の際に各成分に濃度差が生じないため、混合冷媒の攪乱による伝熱性能向上の効果は小さく、前記内面溝形状の特定だけでは十分な伝熱性能が得られないという問題があった。   In the heat transfer tubes with inner surface grooves of Patent Documents 1 to 5, the refrigerant used is a non-azeotropic refrigerant mixture due to high fining, asymmetrical, high density, or high lead angle of the fins provided on the inner surface of the tube. In such a case, the mixed refrigerant is disturbed during the evaporation and condensation of the mixed refrigerant, the concentration difference of each component constituting the mixed refrigerant is reduced, and sufficient heat transfer performance is obtained. However, the refrigerant (for example, R410A) in which R32 and R125 used in the present invention are mixed is a pseudo-azeotropic refrigerant mixture, and has a small difference in boiling point between the components in the refrigerant mixture. Therefore, there is no difference in the concentration of each component during the evaporation and condensation of the mixed refrigerant. Therefore, the effect of improving the heat transfer performance due to the disturbance of the mixed refrigerant is small, and sufficient heat transfer performance can be obtained only by specifying the shape of the inner surface groove. There was a problem that it was not possible.

また、前記内面溝付伝熱管を空調機器用の熱交換器に組み込んで使用する際には、内面溝付伝熱管の管長が長くなる。このような管長の長い内面溝付伝熱管においては、前記内面溝形状の特定だけでは、溝部断面積を大きくすることができず、混合冷媒の圧力損失が大きくなる。その結果、十分な伝熱性能が得られないという問題があった。   In addition, when the internal grooved heat transfer tube is used by being incorporated in a heat exchanger for an air conditioner, the length of the internal grooved heat transfer tube is increased. In such an internally grooved heat transfer tube having a long tube length, the groove sectional area cannot be increased only by specifying the inner groove shape, and the pressure loss of the mixed refrigerant increases. As a result, there was a problem that sufficient heat transfer performance could not be obtained.

また、前記内面溝形状の特定だけでは、気液界面の有効伝熱面積に大きな影響を与える管内面の濡縁長さを長くすることができず、有効伝熱面積を十分大きくすることができない。その結果、十分な伝熱性能が得られないという問題があった。特に、本発明に使用されるR32及びR125を混合した混合冷媒(例えば、R410A)は、R22およびR407Cと比べて粘性が低いため、この濡縁長さが伝熱性能に与える影響は大きい。   Further, only by specifying the inner surface groove shape, it is not possible to increase the wet edge length of the inner surface of the tube, which greatly affects the effective heat transfer area of the gas-liquid interface, and the effective heat transfer area cannot be sufficiently increased. As a result, there was a problem that sufficient heat transfer performance could not be obtained. In particular, since the mixed refrigerant (for example, R410A) in which R32 and R125 used in the present invention are mixed has a lower viscosity than R22 and R407C, the wet edge length has a great influence on the heat transfer performance.

また、特許文献6、7の内面溝付伝熱管においては、管内面の溝部断面積を用いた形状パラメータの特定により、気液界面の有効伝熱面積を大きくすることで伝熱性能を向上させている。しかしながら、特許文献6、7の内面溝形状の特定だけでは、前記特許文献1〜5と同様に、濡縁長さを長くすることができず、有効伝熱面積を十分大きくすることができない。その結果、十分な伝熱性能が得られないという問題があった。   In addition, in the heat transfer tubes with inner groove in Patent Documents 6 and 7, the heat transfer performance is improved by increasing the effective heat transfer area at the gas-liquid interface by specifying the shape parameter using the groove cross-sectional area of the inner surface of the tube. ing. However, just by specifying the shape of the inner surface groove in Patent Documents 6 and 7, as in Patent Documents 1 to 5, the wet edge length cannot be increased, and the effective heat transfer area cannot be sufficiently increased. As a result, there was a problem that sufficient heat transfer performance could not be obtained.

本発明は、冷媒としてR32及びR125を混合した混合冷媒(例えば、R410A)を使用し、内面溝付伝熱管の管長を長くしても、混合冷媒の圧力損失が過大とならず、かつ、優れた伝熱性能を得ることができる内面溝付伝熱管を提供することを目的とする。より具体的に一例を挙げて説明すると、冷媒質量速度300kg/m2sのとき、伝熱性能である蒸発性能が0.054kW/m2K以上、かつ凝縮性能が0.033kW/m2K以上である内面溝付伝熱管を提供する。 The present invention uses a mixed refrigerant (for example, R410A) in which R32 and R125 are mixed as the refrigerant, and even if the tube length of the inner surface grooved heat transfer tube is increased, the pressure loss of the mixed refrigerant does not become excessive and is excellent. It is an object of the present invention to provide an internally grooved heat transfer tube capable of obtaining high heat transfer performance. More specifically, an example will be described. When the refrigerant mass rate is 300 kg / m 2 s, the evaporation performance as the heat transfer performance is 0.054 kW / m 2 K or more and the condensation performance is 0.033 kW / m 2 K. Provided is an internally grooved heat transfer tube as described above.

本発明に係る内面溝付伝熱管は、ハイドロフルオロカーボン系の冷媒であるR32およびR125を混合した混合冷媒を使用する管の外径Dが6mm以上10mm以下の内面溝付伝熱管において、前記内面溝付伝熱管の管内面に、螺旋状の溝及び前記溝間に形成されたフィンを複数有し、前記溝と管軸とがなす溝リード角θが30°を超え55°以下、管軸直交断面における前記溝の溝深さhが0.10mm以上0.35mm以下、前記フィンのフィン山頂角δが5°以上30°以下であって、前記管内面の管軸直交断面における溝1つの溝部断面積S、および前記溝リード角θを用いてα=S×cosθで計算される係数αが0.05以上0.10以下、前記管内面の管軸直交断面における全周の濡縁長さL、および前記溝リード角θを用いてβ=L×cosθで計算される係数βが27以上40以下である内面溝付伝熱管として構成したものである。   The inner surface grooved heat transfer tube according to the present invention is an inner surface grooved heat transfer tube having an outer diameter D of 6 mm or more and 10 mm or less using a mixed refrigerant obtained by mixing R32 and R125 which are hydrofluorocarbon refrigerants. The inner surface of the heat transfer tube has a spiral groove and a plurality of fins formed between the grooves, and the groove lead angle θ formed by the groove and the tube axis exceeds 30 ° and is 55 ° or less, orthogonal to the tube axis. The groove depth h of the groove in the cross section is 0.10 mm or more and 0.35 mm or less, the fin crest angle δ of the fin is 5 ° or more and 30 ° or less, and one groove portion in the tube axis orthogonal cross section of the tube inner surface The coefficient α calculated by α = S × cos θ using the cross-sectional area S and the groove lead angle θ is 0.05 or more and 0.10 or less, and the wet edge length L of the entire circumference in the tube axis orthogonal cross section of the tube inner surface , And β = × coefficients calculated by cos [theta] beta are those configured as a heat transfer tube with inner surface grooves is 27 or more and 40 or less.

前記の構成によれば、溝リード角θ、溝深さh、フィン山頂角δ、溝部断面積Sおよび溝リード角θで計算される係数α、濡縁長さLおよび溝リード角θで計算される係数βを所定範囲とすることで、溝部成形可能領域で溝部断面積が大きくなり、混合冷媒の圧力損失が過大とならない。また、溝部成形可能領域で濡縁長さLが長くなり気液界面の有効伝熱面積が大きくなる。   According to the above configuration, the groove lead angle θ, the groove depth h, the fin peak angle δ, the groove cross-sectional area S, the coefficient α calculated by the groove lead angle θ, the wet edge length L, and the groove lead angle θ are calculated. By setting the coefficient β to a predetermined range, the groove cross-sectional area is increased in the groove moldable region, and the pressure loss of the mixed refrigerant does not become excessive. In addition, the wet edge length L is increased in the groove formable region, and the effective heat transfer area at the gas-liquid interface is increased.

このような内面溝付伝熱管においては、冷媒としてR32及びR125を混合した混合冷媒(例えば、R410A)を使用し、空調機器用の熱交換器への組み込みにより内面溝付伝熱管の管長が長くなっても、混合冷媒の圧力損失が過大とならず、かつ、優れた伝熱性能を得ることできる。また、混合冷媒の圧力損失が過大とならないため、内面溝付伝熱管の入出口での混合冷媒温度に温度差が生じない。そのため、混合冷媒のコンプレッサ等を小型化でき、空調機器(熱交換器)を小型化することが可能となる。また、消費電力が削減され、空調機器(熱交換器)のエネルギー消費効率COP(Coefficient
of Performance)を向上させることが可能となる。
In such an internally grooved heat transfer tube, a mixed refrigerant (for example, R410A) in which R32 and R125 are mixed as a refrigerant is used, and the length of the internally grooved heat transfer tube is increased by incorporation into a heat exchanger for an air conditioner. Even so, the pressure loss of the mixed refrigerant does not become excessive, and excellent heat transfer performance can be obtained. Further, since the pressure loss of the mixed refrigerant does not become excessive, there is no temperature difference in the mixed refrigerant temperature at the inlet / outlet of the inner surface grooved heat transfer tube. Therefore, the compressor of the mixed refrigerant can be downsized, and the air conditioner (heat exchanger) can be downsized. In addition, the power consumption is reduced and the energy consumption efficiency COP (Coefficient) of the air conditioner (heat exchanger)
of Performance).

以下、本発明の実施形態について図面を参照して具体的に説明する。図1は内面溝付伝熱管の断面形状を示す管軸方向に破断した時の一部拡大断面図であり、図2(a)は図1のA−A線における断面図、(b)は(a)の一部拡大断面図、図3(a)は内面溝付伝熱管を組み込んだ熱交換器を示す正面図、(b)は(a)の熱交換器をUベンド管側から見た図、(c)は(a)の熱交換器をヘアピン管側から見た図、図4は、内面溝付伝熱管を組み込んだ熱交換器の伝熱性能、圧力損失を測定する際に使用する吸引型風洞の模式図であり、図5は図4の吸引型風洞に冷媒を供給する冷媒供給装置の模式図である。   Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 is a partially enlarged cross-sectional view showing a cross-sectional shape of an internally grooved heat transfer tube when broken in the tube axis direction, FIG. 2 (a) is a cross-sectional view taken along the line AA in FIG. (A) is a partially enlarged sectional view, FIG. 3 (a) is a front view showing a heat exchanger incorporating an internally grooved heat transfer tube, and (b) is a view of the heat exchanger of (a) from the U-bend tube side. (C) is a view of the heat exchanger of (a) as viewed from the hairpin tube side, and FIG. 4 is a graph for measuring heat transfer performance and pressure loss of a heat exchanger incorporating an internally grooved heat transfer tube. FIG. 5 is a schematic view of a suction type wind tunnel to be used, and FIG. 5 is a schematic view of a refrigerant supply device that supplies a refrigerant to the suction type wind tunnel of FIG.

図1、図2(a)(b)に示すように、本発明の内面溝付伝熱管1は、空調機器用の伝熱管として使用されることから、管の管外径Dは、内面溝付伝熱管1として主流である6mm以上10mm以下のものが使用され、管内面には、前記管内における冷媒の蒸発や凝縮による熱伝導率を向上させるための内面溝形状を有している。また、内面溝付伝熱管1の管内面に供給される冷媒はHFC系冷媒であるR32およびR125を混合した混合冷媒が使用される。また、内面溝付伝熱管1の素管の材質としては、銅または銅合金などが使用され、例えばJISH3300に規定された合金番号C1220、C1201等のりん脱酸銅である。なお、内面溝付伝熱管1の内面溝形状の形成方法は、転造加工法、圧延法などがあるが、特に限定されるものではない。   As shown in FIGS. 1, 2 (a) and 2 (b), the internally grooved heat transfer tube 1 of the present invention is used as a heat transfer tube for an air conditioner. The main heat transfer tube 1 has a main flow of 6 mm or more and 10 mm or less, and the inner surface of the tube has an inner surface groove shape for improving the thermal conductivity by evaporation and condensation of the refrigerant in the tube. Moreover, the refrigerant | coolant supplied to the pipe | tube inner surface of the inner surface grooved heat exchanger tube 1 uses the mixed refrigerant | coolant which mixed R32 and R125 which are HFC type refrigerant | coolants. Moreover, as a material of the raw tube of the inner surface grooved heat transfer tube 1, copper or a copper alloy is used, for example, phosphorus deoxidized copper such as alloy numbers C1220 and C1201 defined in JISH3300. The method for forming the inner surface groove shape of the inner surface grooved heat transfer tube 1 includes a rolling method and a rolling method, but is not particularly limited.

(管外径D)
管外径Dは、前記したように、空調機器用の伝熱管として主流である6mm以上10mmが要求されている。管外径Dが6mm未満である場合には、冷媒としてR32及びR125を混合した混合冷媒(例えば、R410A)を使用し、空調機器用の熱交換器10に組み込んで使用した際(図3参照、図3において内面溝付伝熱管1はヘアピン状に曲げ加工されたヘアピン管1aとして記載されている)、内面溝付伝熱管1の管長が長いため混合冷媒の圧力損失が過大となり、内面溝付伝熱管1の伝熱性能、特に、蒸発性能が低下する。また、管外径Dが10mmを越える場合には、内面溝付伝熱管1の重量が重くなり、内面溝付伝熱管1を組み込む空調機器(熱交換器10、図3参照)が軽量化できない。
(Pipe outer diameter D)
As described above, the pipe outer diameter D is required to be 6 mm or more and 10 mm, which is the mainstream as a heat transfer pipe for an air conditioner. When the pipe outer diameter D is less than 6 mm, a mixed refrigerant (for example, R410A) in which R32 and R125 are mixed is used as a refrigerant, and is used by being incorporated in the heat exchanger 10 for an air conditioner (see FIG. 3). In FIG. 3, the inner grooved heat transfer tube 1 is described as a hairpin tube 1a bent into a hairpin shape), and since the inner grooved heat transfer tube 1 is long, the pressure loss of the mixed refrigerant becomes excessive, and the inner groove The heat transfer performance, particularly the evaporation performance, of the attached heat transfer tube 1 is lowered. Moreover, when the pipe outer diameter D exceeds 10 mm, the inner surface grooved heat transfer tube 1 becomes heavy, and the air conditioner (the heat exchanger 10, see FIG. 3) incorporating the inner surface grooved heat transfer tube 1 cannot be reduced in weight. .

(混合冷媒)
混合冷媒としては、2種のHFC系冷媒であるR32およびR125が質量比で50:50で混合された擬似共沸混合冷媒であるR410Aが最も多く使用される。R410Aは、近年のオゾン層破壊や地球環境温暖化の原因となる塩素を含むR22(HCFC系冷媒)に替わる冷媒として、塩素を含まず水素を含む冷媒である。そして、R32、R125の沸点は、それぞれ−52(C、−49(Cであり冷媒の沸点が互いに近いため、混合冷媒の状態によりR32:R125=50:50の質量比が変わり難く、混合冷媒内の濃度差が生じない。
(Mixed refrigerant)
As the mixed refrigerant, R410A, which is a pseudo-azeotropic mixed refrigerant in which R32 and R125, which are two types of HFC refrigerants, are mixed at a mass ratio of 50:50 is most often used. R410A is a refrigerant that does not contain chlorine and contains hydrogen as a refrigerant that replaces R22 (HCFC-based refrigerant) containing chlorine that causes the recent destruction of the ozone layer and global warming. The boiling points of R32 and R125 are −52 (C and −49 (C, respectively), and the boiling points of the refrigerants are close to each other. Therefore, the mass ratio of R32: R125 = 50: 50 hardly changes depending on the state of the mixed refrigerant. There is no difference in density.

(内面溝形状)
内面溝形状は、連続した螺旋状の溝2および溝2間に形成されたフィン3から構成されている。また、各溝2はフィン山頂曲線部3aと、これに滑らかにつながるフィン斜面直線部3bと、各フィン斜面直線部3b同士をつなぐ溝底部2aとから構成される。なお、溝底部2aは直線部と任意のフィン根元半径Rで滑らかに連続したものであって、直線部なしに任意のフィン根元半径R同士が滑らかに連続したものでもよい(図示せず)。
(Inner groove shape)
The inner surface groove shape is composed of a continuous spiral groove 2 and fins 3 formed between the grooves 2. Moreover, each groove | channel 2 is comprised from the fin peak summit curve part 3a, the fin slope straight line part 3b connected smoothly to this, and the groove bottom part 2a which connects each fin slope straight line part 3b. In addition, the groove bottom part 2a is smoothly continuous with a straight part and an arbitrary fin root radius R, and the arbitrary fin root radius R may be smoothly continuous without a straight part (not shown).

そして、溝2と管軸とがなす溝リード角θが30°を超え55°以下、管軸直交断面における溝2の溝深さhが0.10mm以上0.35mm以下、フィン3のフィン山頂角δが5°以上30°以下であって、管内面の管軸直交断面における溝1つの溝部断面積Sおよび溝リード角θを用いてα=S×cosθで計算される係数αが0.05以上0.10以下、管内面の管軸直交断面における全周の濡縁長さLおよび溝リード角θを用いてβ=L×cosθで計算される係数βが27以上40以下である。   The groove lead angle θ formed by the groove 2 and the tube axis is more than 30 ° and not more than 55 °, the groove depth h of the groove 2 in the cross section perpendicular to the tube axis is 0.10 mm or more and 0.35 mm or less, and the fin peak of the fin 3 The angle δ is 5 ° or more and 30 ° or less, and the coefficient α calculated by α = S × cos θ using the groove cross-sectional area S of one groove and the groove lead angle θ in the cross section orthogonal to the tube axis on the inner surface of the tube is 0. The coefficient β calculated from β = L × cos θ using the wet edge length L and the groove lead angle θ in the tube axis orthogonal cross section of the tube inner surface is 27 or more and 40 or less.

以下、内面溝形状における前記数値限定の根拠について説明する。   Hereinafter, the grounds for limiting the numerical values in the inner groove shape will be described.

(溝リード角θ)
溝リード角θは、30°を超え55°以下であることが要求されている。溝リード角θが30°以下の場合には、内面溝付伝熱管を空調機器用の熱交換器10(図3参照)に組み込んだ際の蒸発性能が0.054kW/m2K未満、かつ凝縮性能が0.033kW/m2K未満(冷媒質量速度300kg/m2s)となり、伝熱性能が低下する。また、溝リード角θが55°を超える場合には、転造加工により管内面に溝2を形成する際の速度が極端に低下してしまい、安定して長尺の内面溝付伝熱管1の製造ができなくなる。
(Groove lead angle θ)
The groove lead angle θ is required to be more than 30 ° and not more than 55 °. When the groove lead angle θ is 30 ° or less, the evaporation performance when the internally grooved heat transfer tube is incorporated in the heat exchanger 10 for air conditioning equipment (see FIG. 3) is less than 0.054 kW / m 2 K, and The condensation performance becomes less than 0.033 kW / m 2 K (refrigerant mass velocity: 300 kg / m 2 s), and the heat transfer performance decreases. In addition, when the groove lead angle θ exceeds 55 °, the speed at which the groove 2 is formed on the inner surface of the tube by the rolling process is extremely reduced, and the long inner surface grooved heat transfer tube 1 is stably formed. Cannot be manufactured.

(溝深さh)
溝深さhは、0.10mm以上0.35mm以下であることが要求される。溝深さhが0.10mm未満の場合には、内面溝付伝熱管1の管内面の溝2間に形成されたフィン3が、管内面における作動冷媒の凝縮液面より低くなり、前記凝縮液に埋没する。そのため、管内面の有効伝熱面積が著しく減少し、伝熱性能が低下する。また、溝深さhが0.35mmを超える場合には、管内面に溝2を成形する際に、溝成形用工具(例えば、溝付プラグ)が破損し、管内面に安定して溝2を成形することができない。
(Groove depth h)
The groove depth h is required to be 0.10 mm or more and 0.35 mm or less. When the groove depth h is less than 0.10 mm, the fins 3 formed between the grooves 2 on the inner surface of the inner surface grooved heat transfer tube 1 become lower than the condensate liquid level of the working refrigerant on the inner surface of the tube. Immersed in liquid. For this reason, the effective heat transfer area on the inner surface of the pipe is remarkably reduced, and the heat transfer performance is lowered. Further, when the groove depth h exceeds 0.35 mm, when the groove 2 is formed on the inner surface of the tube, the groove forming tool (for example, a grooved plug) is damaged, and the groove 2 is stably formed on the inner surface of the tube. Can not be molded.

(フィン山頂角δ)
フィン山頂角δは、5°以上30°以下であることが要求される。フィン山頂角δが5°未満の場合には、フィン3の幅が狭くなり、内面溝付伝熱管1を空調機器用の熱交換器10(図3参照)に組み込む際の拡管時(図示せず)に、フィン3の先端部のつぶれ、フィン3の倒れやゆがみが生じる。また、前記フィン3形成のために管内面に溝2を成形する際に、溝成形用工具が破損し、管内面に安定して溝2を成形することができない。また、フィン山頂角δが30°を超えた場合には、溝2の溝部断面積Sが著しく小さくなり伝熱性能が低下する。また、フィン3の断面積(内面溝付伝熱管1の底肉厚T)が大きくなり、内面溝付伝熱管1の重量が重くなるため、内面溝付伝熱管1を組み込む空調機器(熱交換器10、図3参照)が軽量化できない。
(Fin peak angle δ)
The fin peak angle δ is required to be 5 ° or more and 30 ° or less. When the fin crest angle δ is less than 5 °, the width of the fin 3 is narrowed, and when the pipe is expanded when the inner surface grooved heat transfer tube 1 is incorporated into the heat exchanger 10 for air conditioning equipment (see FIG. 3). 2), the tip of the fin 3 is crushed, and the fin 3 is collapsed or distorted. Further, when the groove 2 is formed on the inner surface of the tube for forming the fin 3, the groove forming tool is damaged, and the groove 2 cannot be stably formed on the inner surface of the tube. Further, when the fin peak angle δ exceeds 30 °, the groove section sectional area S of the groove 2 is remarkably reduced, and the heat transfer performance is deteriorated. In addition, since the cross-sectional area of the fin 3 (the bottom wall thickness T of the internally grooved heat transfer tube 1) is increased and the weight of the internally grooved heat transfer tube 1 is increased, an air conditioner incorporating the internally grooved heat transfer tube 1 (heat exchange) The container 10 (see FIG. 3) cannot be reduced in weight.

(係数α)
管軸直交断面における溝1つの溝部断面積S、および溝リード角θを用いてα=S×cosθで計算される係数αが0.05以上0.10以下であることが要求される。ここで、溝部断面積Sは、管外径D、底肉厚T、溝深さh、フィン先端半径r、フィン根元半径R、溝数、フィン山頂角δから算出される。
(Coefficient α)
The coefficient α calculated by α = S × cos θ using the groove cross-sectional area S of one groove in the cross section perpendicular to the tube axis and the groove lead angle θ is required to be 0.05 or more and 0.10 or less. Here, the groove cross-sectional area S is calculated from the pipe outer diameter D, the bottom wall thickness T, the groove depth h, the fin tip radius r, the fin root radius R, the number of grooves, and the fin peak angle δ.

また、係数αが0.05未満である場合には、溝リード角θが大きくなり、混合冷媒の圧力損失が過度に大きくなる。また、溝部断面積Sが小さくなることにより、有効伝熱面積が小さくなる。その結果、伝熱性能、特に蒸発性能が低下する。   On the other hand, when the coefficient α is less than 0.05, the groove lead angle θ becomes large, and the pressure loss of the mixed refrigerant becomes excessively large. Further, the effective heat transfer area is reduced by reducing the groove cross-sectional area S. As a result, the heat transfer performance, particularly the evaporation performance is reduced.

また、係数αが0.10を超える場合には、溝部断面積Sが過度に大きくなるため、溝2の溝数が極端に少なくなり、または、溝2の溝深さhが深くなる。そのため、管内面に溝2を成形する際に、溝成形用工具が破損し、管内面に安定して溝2を成形することができない。   On the other hand, when the coefficient α exceeds 0.10, the groove cross-sectional area S becomes excessively large, so that the number of grooves 2 becomes extremely small, or the groove depth h of the grooves 2 becomes deep. For this reason, when the groove 2 is formed on the inner surface of the tube, the groove forming tool is damaged, and the groove 2 cannot be stably formed on the inner surface of the tube.

(係数β)
管軸直交断面における全周の濡縁流さL、および溝リード角θを用いてβ=L×cosθで計算される係数βが27以上40以下であることが要求される。ここで、濡縁長さLは、管外径D、底肉厚T、溝深さh、フィン先端半径r、フィン根元半径R、溝数、フィン山頂角δから算出される。
(Coefficient β)
The coefficient β calculated by β = L × cos θ using the wet edge flow L of the entire circumference in the cross section perpendicular to the tube axis and the groove lead angle θ is required to be 27 or more and 40 or less. Here, the wet edge length L is calculated from the pipe outer diameter D, the bottom wall thickness T, the groove depth h, the fin tip radius r, the fin root radius R, the number of grooves, and the fin peak angle δ.

また、係数βが27未満である場合には、濡縁長さLが短く、気液界面での有効伝熱面積が小さくなり、伝熱性能が低下する。   On the other hand, when the coefficient β is less than 27, the wet edge length L is short, the effective heat transfer area at the gas-liquid interface is reduced, and the heat transfer performance is lowered.

また、係数βが40を超える場合には、濡縁長さLが過度に長くなり、管内面の溝数が極端に多くなり、または、溝2の溝深さhが深くなる。そのため、管内面に溝2を成形する際に、溝成形用工具が破損し、管内面に安定して溝2を成形することができない。   On the other hand, when the coefficient β exceeds 40, the wet edge length L becomes excessively long, the number of grooves on the inner surface of the pipe becomes extremely large, or the groove depth h of the groove 2 becomes deep. For this reason, when the groove 2 is formed on the inner surface of the tube, the groove forming tool is damaged, and the groove 2 cannot be stably formed on the inner surface of the tube.

次に、溝部断面積Sおよび濡縁長さLの算出に用いられる底肉厚T、フィン先端半径r、フィン根元半径R、溝数について説明する。また、算出に用いられる管外径D、溝深さh、フィン山頂角δについては前記の通りであるので、説明を省略する。   Next, the bottom wall thickness T, the fin tip radius r, the fin root radius R, and the number of grooves used to calculate the groove cross-sectional area S and the wet edge length L will be described. Further, the pipe outer diameter D, the groove depth h, and the fin crest angle δ used for the calculation are as described above, and thus the description thereof is omitted.

(底肉厚T)
底肉厚Tは、内面溝付伝熱管1の耐圧強度、重量等を考慮して適宜設定する。
(Bottom thickness T)
The bottom wall thickness T is appropriately set in consideration of the pressure strength, weight, and the like of the internally grooved heat transfer tube 1.

(フィン先端半径r)
フィン先端半径rは、溝深さhの0.05以上0.15未満の範囲とすることが好ましい。フィン先端半径rが溝深さhの0.05未満である場合には、フィン先端半径rが小さくなることから、フィン3が高くなった場合にフィン3(溝2)の成形性が悪くなり、所定形状のフィン3が得られ難く、また管内面の溝2に当接する溝成形用工具に破損が発生しやすくなる。また、フィン先端半径rが、溝深さhの0.15以上の場合には、フィン先端半径rが大きくなることから、フィン3の断面積が大きくなり、内面溝付伝熱管1の重量が重くなる。
(Fin tip radius r)
The fin tip radius r is preferably in the range of 0.05 or more and less than 0.15 of the groove depth h. When the fin tip radius r is less than 0.05 of the groove depth h, the fin tip radius r decreases, so that the moldability of the fin 3 (groove 2) deteriorates when the fin 3 becomes high. It is difficult to obtain the fin 3 having a predetermined shape, and the groove forming tool that comes into contact with the groove 2 on the inner surface of the pipe is easily damaged. Further, when the fin tip radius r is 0.15 or more of the groove depth h, the fin tip radius r is increased, so that the cross-sectional area of the fin 3 is increased, and the weight of the internally grooved heat transfer tube 1 is increased. Become heavier.

(フィン根元半径R)
フィン根元半径Rは、溝深さhの1/5以上2/3未満の範囲とすることが好ましい。フィン根元半径Rが溝深さhの1/5未満である場合には、フィン根元半径Rが小さくなることから、フィン3が高くなった場合にフィン3(溝2)の成形性が悪くなり、所定形状のフィン3が得られ難く、また管内面の溝2の根元に当接する溝成形用工具に破損が発生しやすくなる。また、フィン根元半径Rが溝深さhの2/3以上の場合には、フィン根元半径Rが大きくなることから、フィン3の断面積が大きくなり、管の底肉厚Tが増加して、内面溝付伝熱管1の重量が重くなる。
(Fin root radius R)
The fin root radius R is preferably in the range of 1/5 or more and less than 2/3 of the groove depth h. When the fin root radius R is less than 1/5 of the groove depth h, the fin root radius R is small, so that the moldability of the fin 3 (groove 2) is deteriorated when the fin 3 is high. It is difficult to obtain the fin 3 having a predetermined shape, and the groove forming tool that comes into contact with the root of the groove 2 on the inner surface of the pipe is easily damaged. Further, when the fin root radius R is 2/3 or more of the groove depth h, the fin root radius R increases, so that the cross-sectional area of the fin 3 increases, and the bottom wall thickness T of the pipe increases. The inner grooved heat transfer tube 1 is heavier.

(溝数)
溝数は30以上100以下が好ましい。溝数が30未満、または、100を超える場合には、管内面に溝2を成形する際に、溝成形性が極端に低下したり、溝成形用工具が破損し、管内面に安定して溝2を成形することができない。
(Number of grooves)
The number of grooves is preferably 30 or more and 100 or less. When the number of grooves is less than 30 or more than 100, when forming the groove 2 on the inner surface of the tube, the groove formability is extremely lowered, or the groove forming tool is damaged, and the inner surface of the tube is stabilized. The groove 2 cannot be formed.

また、管外径D、溝深さh、フィン山頂角δ、底肉厚T、フィン先端半径r、フィン根元半径R、溝数等から算出される溝底幅wについて説明する。
(溝底幅w)
溝底幅wについては、0.18mm以上が好ましい。0.18mm未満の場合は、凝縮液溜りが生じ、有効伝熱面積が小さくなり凝縮性能が低下する。溝底幅wは、1つの溝2に隣接する2つのフィン3の斜面直線部3bと溝底部2aとの延長線の交点間とを結ぶ線分の長さとする。
The groove bottom width w calculated from the pipe outer diameter D, groove depth h, fin peak angle δ, bottom wall thickness T, fin tip radius r, fin root radius R, number of grooves, etc. will be described.
(Groove bottom width w)
The groove bottom width w is preferably 0.18 mm or more. When it is less than 0.18 mm, a condensate pool is generated, the effective heat transfer area is reduced, and the condensation performance is lowered. The groove bottom width w is the length of the line segment connecting the inclined straight line portion 3b of two fins 3 adjacent to one groove 2 and the intersection of the extension lines of the groove bottom portion 2a.

次に、本発明の内面溝付伝熱管を組み込んだ熱交換器の作製方法について、空調機器の熱交換器の大半であるプレートフィンチュ−ブ型熱交換器を例にとって説明する。図3(a)(b)(c)に示すように、まず、内面溝付伝熱管を、その中央部で所定の曲げピッチPaでヘアピン状に曲げ加工してU字形の複数本のヘアピン管1aを作製する。つぎに、複数本のヘアピン管1aを、所定の間隔(フィンピッチPb)をおいて相互に平行に配置されたアルミニウム又はアルミニウム合金製の複数枚のフィン材11に挿通して、両者を接合する。そして、隣接するヘアピン管1aの管端に、予め曲げ加工を施してあるUベンド管12を嵌合して、ろう付けすることにより、複数本のヘアピン管1aを、複数本のUベンド管12を介して、所定の段方向ピッチ(前記曲げピッチPaと同一)および列方向ピッチPcで複数段および複数列に直列に全て連結する。これにより、複数枚のフィン材11間に有効伝熱管長の長い内面溝付伝熱管が配置された熱交換器10が作製される。   Next, the manufacturing method of the heat exchanger incorporating the inner surface grooved heat transfer tube of the present invention will be described by taking a plate fin tube type heat exchanger which is the majority of the heat exchanger of the air conditioner as an example. As shown in FIGS. 3A, 3B, and 3C, first, a plurality of U-shaped hairpin tubes are formed by bending an inner-grooved heat transfer tube into a hairpin shape at a center portion with a predetermined bending pitch Pa. 1a is produced. Next, a plurality of hairpin tubes 1a are inserted through a plurality of fin materials 11 made of aluminum or aluminum alloy arranged in parallel with each other at a predetermined interval (fin pitch Pb), and both are joined. . Then, a plurality of hairpin tubes 1a are joined to a plurality of U-bend tubes 12 by fitting and brazing U-bend tubes 12 which have been previously bent to the tube ends of adjacent hairpin tubes 1a. Through a plurality of stages and a plurality of rows are connected in series at a predetermined step direction pitch (same as the bending pitch Pa) and a row direction pitch Pc. Thereby, the heat exchanger 10 by which the internal heat transfer tube with a long effective heat transfer tube length is arrange | positioned between the several fin materials 11 is produced.

次に、前記内面溝付伝熱管の製造方法について説明する。本発明の内面溝付伝熱管の製造は、図示しない従来から公知の製造装置を用いて行われ、前記内面溝付伝熱管の素材である素管の第1の縮径加工を行う第1の工程と、前記第1の工程で得られた縮径された素管の第2の縮径加工を行うと共に、前記素管の内面に螺旋状の溝を形成する第2の工程と、前記第2の工程で螺旋状の溝が形成された素管の第3の縮径加工を行う第3の工程を含むものである。そして素管を抽伸方向に引抜くことにより、第1の工程、第2の工程、および第3の工程がこの順で行われ、素管が内面溝付伝熱管に加工される。ここで、第1の工程、第2の工程、および第3の工程を順に説明する。   Next, a method for manufacturing the inner surface grooved heat transfer tube will be described. The production of the internally grooved heat transfer tube of the present invention is performed using a conventionally known production apparatus (not shown), and the first diameter reduction processing is performed on the raw tube which is the material of the internally grooved heat transfer tube. A second step of performing a second diameter reduction process on the reduced diameter pipe obtained in the first step, and forming a spiral groove on an inner surface of the raw pipe, This includes a third step of performing a third diameter reduction processing of the raw tube in which the spiral groove is formed in the step of 2. Then, by pulling the raw tube in the drawing direction, the first step, the second step, and the third step are performed in this order, and the raw tube is processed into an internally grooved heat transfer tube. Here, a 1st process, a 2nd process, and a 3rd process are demonstrated in order.

(第1の工程)
内面溝付伝熱管の素材である素管が、縮径ダイスと縮径プラグの間を通過するように引抜かれることにより、素管に第1の縮径加工が施される。
(第2の工程)
第1の工程で縮径された前記素管を、複数個の転造ボールまたは転造ロールで素管内に挿入された溝付プラグを押圧することにより、前記素管に第2の縮径加工を施すと共に、縮径された素管の内面に溝付プラグの溝形状が転写され、螺旋状の溝が形成される。
(第3の工程)
第2の工程で内面に螺旋状の溝が形成された素管を、整形ダイスにて第3の縮径加工を施し、内面溝付伝熱管を製造する。
(First step)
The raw pipe, which is the material of the inner surface grooved heat transfer pipe, is drawn out so as to pass between the reduced diameter die and the reduced diameter plug, whereby the first diameter reduction process is performed on the raw pipe.
(Second step)
The raw pipe reduced in the first step is pressed with a grooved plug inserted into the raw pipe with a plurality of rolling balls or rolls, whereby a second diameter reduction processing is performed on the raw pipe. In addition, the groove shape of the grooved plug is transferred to the inner surface of the reduced diameter pipe, and a spiral groove is formed.
(Third step)
The base tube having a spiral groove formed on the inner surface in the second step is subjected to a third diameter reduction process by a shaping die to produce an inner grooved heat transfer tube.

以下、本発明の実施例について、具体的に説明する。
(第1の実施例)
内面溝形状の形状パラメータである管外径D、溝リード角θ、溝深さh、フィン山頂角δ、係数α=溝部断面積S×cosθ(溝リード角)および係数β=濡縁流さL×cosθ(溝リード角)の全てが本発明の請求範囲を満足する供試管(実施例1〜4)と、前記形状パラメータの少なくとも1つが本発明の請求範囲を満足しない供試管(比較例1〜5)を作製した。また、前記供試管の作製方法は、先ず、JISH3300に規定された合金番号C1220のりん脱酸銅を溶解し、鋳造し、熱間押出し、冷間圧延し、冷間抽伸加工を施して素管を作製した。次に、前記素管に第1の縮径加工を施し、縮径された素管に前記内面溝形状の螺旋溝を形成しながら第2の縮径加工を施し、螺旋溝が形成された素管に第3の縮径加工を施して、外径(管外径D)7mmの供試管を作製した。実施例1〜4、比較例1〜4の形状パラメータの値を表1に示す。
Examples of the present invention will be specifically described below.
(First embodiment)
Pipe outer diameter D, groove lead angle θ, groove depth h, fin crest angle δ, coefficient α = groove cross section S × cos θ (groove lead angle) and coefficient β = wet edge flow L × Test tubes (Examples 1 to 4) in which all of cos θ (groove lead angle) satisfy the claims of the present invention (Examples 1 to 4), and test tubes (Comparative Examples 1 to 4) in which at least one of the shape parameters does not satisfy the claims of the present invention. 5) was produced. The test tube is prepared by first melting, casting, hot-extrusion, cold-rolling, cold drawing, and cold drawing, melting and dephosphorating copper of alloy number C1220 defined in JISH3300. Was made. Next, a first diameter reduction process is performed on the element pipe, a second diameter reduction process is performed while forming the inner surface groove-shaped spiral groove on the diameter-reduced element pipe, and the element in which the spiral groove is formed. The tube was subjected to a third diameter reduction process to prepare a test tube having an outer diameter (tube outer diameter D) of 7 mm. Table 1 shows values of shape parameters of Examples 1 to 4 and Comparative Examples 1 to 4.

次に、前記各供試管を用いて、図3(a)(b)(c)に示すプレートフィンチューブ型の熱交換器10を作製した。なお、熱交換器10の仕様は以下の通りとした。
(熱交換器10)
外形は、高さ250mm×長さ250mm×幅25.4mmとした。
(ヘアピン管1a)
前記供試管を用いて作製、2列12段(曲げピッチPa21mm、列方向ピッチPc12.7mm)に配置した(有効伝熱管長は約6.7mであった)。
(フィン材11)
JISH4000に規定された合金番号1N30のアルミニウムからなる板材で、板材の表面を樹脂で被覆したものである。また、フィン材11の厚さは100μmとした。そして、200枚のフィン材11をフィンピッチPb1.25mmで平行に配置した。
Next, the plate fin tube type heat exchanger 10 shown in FIGS. 3A, 3B, and 3C was manufactured using each of the test tubes. The specifications of the heat exchanger 10 were as follows.
(Heat exchanger 10)
The outer shape was 250 mm high × 250 mm long × 25.4 mm wide.
(Hairpin tube 1a)
Made using the test tube, and arranged in two rows and 12 steps (bending pitch Pa21 mm, row direction pitch Pc 12.7 mm) (effective heat transfer tube length was about 6.7 m).
(Fin material 11)
A plate material made of aluminum having an alloy number of 1N30 specified in JISH4000, and the surface of the plate material is coated with a resin. The thickness of the fin material 11 was 100 μm. Then, 200 fin materials 11 were arranged in parallel at a fin pitch Pb of 1.25 mm.

この熱交換器10を用いて伝熱性能(蒸発性能、凝縮性能)、圧力損失を測定し、その結果を表2に示した。ここで、蒸発性能および凝縮性能は、各々、総括熱伝達率を測定し記載した。また、圧力損失は、供試管(ヘアピン1a)の単位長さ当たりの蒸発圧力損失を測定し記載した。   Using this heat exchanger 10, heat transfer performance (evaporation performance, condensation performance) and pressure loss were measured, and the results are shown in Table 2. Here, the evaporation performance and the condensation performance are described by measuring the overall heat transfer coefficient. The pressure loss was described by measuring the evaporation pressure loss per unit length of the test tube (hairpin 1a).

また、図4に伝熱性能および圧力損失を測定する測定装置の模式図を示す。図4に示すように、測定装置は、恒温恒湿機能付きの吸引型風洞100、冷媒供給装置110(図5参照)及び空調機(図示せず)からなる。この吸引型風洞100においては、空気流入口108から流入されて空気排出口109から排出される空気の流通経路に熱交換器10が配置され、この熱交換器10の上流側および下流側に夫々エアーサンプラ101、102が配置されている。このエアーサンプラ101、102には夫々温湿度計測箱103、104が連結されている。この温湿度計測箱103、104は夫々エアーサンプラ101、102により採取された空気の乾球温度および湿球温度を測定することにより、この空気の温度及び湿度を測定するものである。また、エアーサンプラ102の下流側には誘引ファン105が設けられ、空気排出口109に空気を排出している。また、熱交換器10とエアーサンプラ102との間、およびエアーサンプラ102と誘引ファン105との間には、熱交換器10を通過した空気を整流する整流器106、106が設けられている。   Moreover, the schematic diagram of the measuring apparatus which measures heat-transfer performance and pressure loss in FIG. 4 is shown. As shown in FIG. 4, the measuring device includes a suction type wind tunnel 100 with a constant temperature and humidity function, a refrigerant supply device 110 (see FIG. 5), and an air conditioner (not shown). In the suction type wind tunnel 100, the heat exchanger 10 is arranged in the flow path of the air that flows in from the air inlet 108 and is discharged from the air outlet 109, and upstream and downstream of the heat exchanger 10, respectively. Air samplers 101 and 102 are arranged. The air samplers 101 and 102 are connected to temperature and humidity measuring boxes 103 and 104, respectively. The temperature and humidity measuring boxes 103 and 104 measure the temperature and humidity of the air by measuring the dry bulb temperature and the wet bulb temperature of the air collected by the air samplers 101 and 102, respectively. An induction fan 105 is provided on the downstream side of the air sampler 102 and discharges air to the air discharge port 109. Rectifiers 106 and 106 for rectifying the air that has passed through the heat exchanger 10 are provided between the heat exchanger 10 and the air sampler 102 and between the air sampler 102 and the induction fan 105.

また、図5に冷媒供給装置110の模式図を示す。図5において、107は冷媒配管、111はサイトグラス、112は液(冷媒)加熱および冷却用熱交換器、113はドライヤー、114は受液(冷媒)器、115は溶栓、116は凝縮器、117はオイルセパレータ、118はコンプレッサー、119はアキュームレータ、120は蒸発器、121は膨張弁、122は流量計である。そして、冷媒配管107を通じて、吸引型風洞100内に備えられた熱交換器10のヘアピン管1a(図3参照)の内部に、圧力および温度を調節した冷媒が供給される。また、熱交換器10の入口及び出口には、冷媒の温度および圧力を測定する圧力計123(温度は測定圧力相当飽和温度とする)が設けられている。さらに、空調機(図示せず)は、吸引型風洞100の空気流入口108に温度および湿度が制御された空気を供給するものである。   FIG. 5 shows a schematic diagram of the refrigerant supply device 110. In FIG. 5, 107 is a refrigerant pipe, 111 is a sight glass, 112 is a heat exchanger for heating and cooling liquid (refrigerant), 113 is a dryer, 114 is a liquid receiver (refrigerant), 115 is a plug, and 116 is a condenser. 117 is an oil separator, 118 is a compressor, 119 is an accumulator, 120 is an evaporator, 121 is an expansion valve, and 122 is a flow meter. And the refrigerant | coolant which adjusted the pressure and temperature is supplied into the inside of the hairpin pipe | tube 1a (refer FIG. 3) of the heat exchanger 10 with which the suction type wind tunnel 100 was equipped through the refrigerant | coolant piping 107. FIG. In addition, a pressure gauge 123 (the temperature is a saturation temperature corresponding to the measured pressure) is provided at the inlet and outlet of the heat exchanger 10 to measure the temperature and pressure of the refrigerant. Further, the air conditioner (not shown) supplies air with controlled temperature and humidity to the air inlet 108 of the suction type wind tunnel 100.

そして、測定条件は表3に示す通りとし、冷媒としてはR410Aを使用し、冷媒質量速度300kg/m2s(冷媒流量35kg/h)とした。また、蒸発性能測定の際の冷媒の流れと、凝縮性能測定の際の冷媒の流れとは、互いに異なる方向とした(図5に示す冷媒供給装置110の冷媒の流れ方向は、蒸発性能測定の際の冷媒の流れ方向を示している)。 The measurement conditions were as shown in Table 3, R410A was used as the refrigerant, and the refrigerant mass rate was 300 kg / m 2 s (refrigerant flow rate 35 kg / h). Further, the flow of the refrigerant at the time of measuring the evaporation performance and the flow of the refrigerant at the time of measuring the condensation performance are different from each other (the flow direction of the refrigerant in the refrigerant supply device 110 shown in FIG. Shows the flow direction of the refrigerant.

Figure 2005195192
Figure 2005195192

Figure 2005195192
Figure 2005195192

Figure 2005195192
Figure 2005195192

表2の結果より、本発明の実施例1〜4は、蒸発性能が目標値である0.054kw/m2Kを上回り、凝縮性能も目標値である0.033kw/m2K以上と優れた伝熱性能であった。また、圧力損失においても約0.8kPa/m程度で管外径7mm、有効伝熱管長約6.7mの伝熱管としては大きな圧力損失値ではなかった。 From the results in Table 2, Examples 1 to 4 of the present invention have an evaporation performance exceeding the target value of 0.054 kw / m 2 K, and the condensation performance is also excellent as 0.033 kw / m 2 K or more, which is the target value. The heat transfer performance was. In addition, the pressure loss was not about a large pressure loss value for a heat transfer tube having a tube outer diameter of about 7 mm and an effective heat transfer tube length of about 6.7 m at about 0.8 kPa / m.

また、比較例1では、係数αが本発明の請求範囲の上限値を超えるため、溝数が極端に少なくなり、溝成形不良が発生し、供試管(内面溝付伝熱管)の量産ができない状態であった。比較例2では、係数αが請求範囲の下限値未満であるため、溝数が多く、溝リード角θが大きくなり、蒸発性能が目標値である0.054kw/m2Kを下回り、圧力損失も実施例1〜4と比べて大きかった。比較例3では、溝リード角θが請求範囲の上限値を超えるため比較例1と同様に溝成形不良が発生した。比較例4では、係数αおよび係数βが請求範囲の下限値未満であるため、溝深さhが小さく、蒸発性能が目標値である0.054kw/m2Kを下回り、凝縮性能も目標値である0.033kw/m2Kを下回った。比較例5では、係数βが請求範囲の上限値を超えるため、溝数が極端に多くなり、溝成形不良が発生した。 Further, in Comparative Example 1, the coefficient α exceeds the upper limit value of the claims of the present invention, so the number of grooves is extremely reduced, groove forming failure occurs, and mass production of the test tube (inner grooved heat transfer tube) cannot be performed. It was in a state. In Comparative Example 2, since the coefficient α is less than the lower limit value of the claims, the number of grooves is large, the groove lead angle θ is large, the evaporation performance is less than the target value of 0.054 kw / m 2 K, the pressure loss Was larger than Examples 1-4. In Comparative Example 3, the groove lead angle θ exceeded the upper limit value of the claims, so that a groove forming defect occurred as in Comparative Example 1. In Comparative Example 4, since the coefficient α and the coefficient β are less than the lower limit value of the claims, the groove depth h is small, the evaporation performance is less than the target value of 0.054 kw / m 2 K, and the condensation performance is also the target value. This was below 0.033 kw / m 2 K. In Comparative Example 5, since the coefficient β exceeds the upper limit value of the claims, the number of grooves is extremely increased, and defective groove formation occurs.

(第2の実施例)
供試管の管外径Dとして6.35mm(実施例5、比較例6)、5mm(比較例7)を使用した以外は、第1の実施例と同様とした。供試管の形状パラメータの値を表4に、伝熱性能(蒸発性能、凝縮性能)及び圧力損失の測定結果を表5に示す。
(Second embodiment)
The test tube was the same as the first example except that 6.35 mm (Example 5, Comparative Example 6) and 5 mm (Comparative Example 7) were used as the outer diameter D of the test tube. Table 4 shows the values of the shape parameters of the test tubes, and Table 5 shows the measurement results of heat transfer performance (evaporation performance, condensation performance) and pressure loss.

Figure 2005195192
Figure 2005195192

Figure 2005195192
Figure 2005195192

表5の結果より、本発明の実施例5は、蒸発性能が目標値である0.054kw/m2Kを上回り、凝縮性能も目標値である0.033kw/m2Kを上回り優れた伝熱性能であった。また、圧力損失においても約1.3kPa/mで管外径6.35mm、有効伝熱管長約6.7mの伝熱管としては大きな圧力損失値ではなかった。 From the results of Table 5, Example 5 of the present invention has an excellent transmission performance in which the evaporation performance exceeds the target value of 0.054 kw / m 2 K and the condensation performance also exceeds the target value of 0.033 kw / m 2 K. It was thermal performance. Also, the pressure loss was not a large pressure loss value for a heat transfer tube having a tube outer diameter of 6.35 mm and an effective heat transfer tube length of about 6.7 m at a pressure loss of about 1.3 kPa / m.

また、比較例6では、溝リード角θおよび係数βが請求範囲の下限値未満であるため、溝深さhが小さく、蒸発性能が目標値である0.054kw/m2Kを下回り、凝縮性能も目標値である0.033kw/m2Kを下回った。比較例7では、管外径D、溝リード角θ、係数αおよび係数βが請求範囲の下限値未満であるため、溝深さhが小さく、蒸発性能が目標値である0.054kw/m2Kを下回り、圧力損失も約1.5kPa/mで管外径5mm、有効伝熱管長約6.7mの伝熱管としては大きな圧力損失値であった。 In Comparative Example 6, since the groove lead angle θ and the coefficient β are less than the lower limit values of the claims, the groove depth h is small, and the evaporation performance is less than the target value of 0.054 kw / m 2 K. The performance was also lower than the target value of 0.033 kw / m 2 K. In Comparative Example 7, since the pipe outer diameter D, the groove lead angle θ, the coefficient α, and the coefficient β are less than the lower limit values of the claims, the groove depth h is small and the evaporation performance is a target value of 0.054 kw / m. The pressure loss was less than 2 K, and the pressure loss was about 1.5 kPa / m, the outer diameter of the tube was 5 mm, and the effective heat transfer tube length was about 6.7 m.

本発明に係る内面溝付伝熱管の断面形状を示す管軸方向に破断した時の一部拡大断面図である。It is a partially expanded sectional view when it fractures | ruptures in the tube-axis direction which shows the cross-sectional shape of the heat transfer tube with an inner surface groove | channel based on this invention. (a)は図1のA−A線における断面図、(b)は(a)の一部拡大断面図である。(A) is sectional drawing in the AA of FIG. 1, (b) is a partially expanded sectional view of (a). (a)は本発明に係る内面溝付伝熱管を熱交換器に組み込んだ例を示す正面図、(b)は(a)の熱交換器をUベンド管側から見た図、(c)は(a)の熱交換器をヘアピン管側から見た図である。(A) is the front view which shows the example which incorporated the heat transfer tube with an inner surface groove | channel which concerns on this invention in the heat exchanger, (b) is the figure which looked at the heat exchanger of (a) from the U bend pipe side, (c) FIG. 3 is a view of the heat exchanger of (a) as viewed from the hairpin tube side. 本発明に係る内面溝付伝熱管を組み込んだ熱交換器の伝熱性能、圧力損失を測定する際に使用する吸引型風洞の模式図である。It is a schematic diagram of the suction type wind tunnel used when measuring the heat transfer performance and pressure loss of the heat exchanger incorporating the internally grooved heat transfer tube according to the present invention. 図4の吸引型風洞に冷媒を供給する冷媒供給装置の模式図である。It is a schematic diagram of the refrigerant | coolant supply apparatus which supplies a refrigerant | coolant to the suction type wind tunnel of FIG.

符号の説明Explanation of symbols

1 内面溝付伝熱管
2 溝
3 フィン
D 管外径
h 溝深さ
L 濡縁長さ
S 溝部断面積
δ フィン山頂角
θ 溝リード角
1 Heat transfer tube with inner groove 2 Groove 3 Fin D Tube outer diameter h Groove depth L Wet edge length S Groove cross section δ Fin peak angle θ Groove lead angle

Claims (1)

ハイドロフルオロカーボン系の冷媒であるR32およびR125を混合した混合冷媒を使用する管の外径Dが6mm以上10mm以下の内面溝付伝熱管において、
前記内面溝付伝熱管の管内面に、螺旋状の溝及び前記溝間に形成されたフィンを複数有し、前記溝と管軸とがなす溝リード角θが30°を超え55°以下、管軸直交断面における前記溝の溝深さhが0.10mm以上0.35mm以下、前記フィンのフィン山頂角δが5°以上30°以下であって、
前記管内面の管軸直交断面における溝1つの溝部断面積Sおよび前記溝リード角θを用いてα=S×cosθで計算される係数αが0.05以上0.10以下、
前記管内面の管軸直交断面における全周の濡縁長さLおよび前記溝リード角θを用いてβ=L×cosθで計算される係数βが27以上40以下であることを特徴とする内面溝付伝熱管。
In an internally grooved heat transfer tube having an outer diameter D of 6 mm or more and 10 mm or less using a mixed refrigerant obtained by mixing R32 and R125, which are hydrofluorocarbon refrigerants,
A plurality of fins formed between the groove and the spiral groove on the inner surface of the inner surface grooved heat transfer tube, and a groove lead angle θ formed by the groove and the tube axis is more than 30 ° and not more than 55 °; The groove depth h of the groove in the cross section perpendicular to the tube axis is 0.10 mm or more and 0.35 mm or less, and the fin crest angle δ of the fin is 5 ° or more and 30 ° or less,
A coefficient α calculated by α = S × cos θ using a groove cross-sectional area S of one groove in the tube axis orthogonal cross section of the tube inner surface and the groove lead angle θ is 0.05 or more and 0.10 or less,
An inner surface groove characterized in that a coefficient β calculated by β = L × cos θ using the wet edge length L of the entire circumference in the tube axis orthogonal cross section of the tube inner surface and the groove lead angle θ is 27 or more and 40 or less. Heat transfer tube.
JP2003435561A 2003-12-26 2003-12-26 Internal grooved heat transfer tube Expired - Lifetime JP4119836B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003435561A JP4119836B2 (en) 2003-12-26 2003-12-26 Internal grooved heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003435561A JP4119836B2 (en) 2003-12-26 2003-12-26 Internal grooved heat transfer tube

Publications (2)

Publication Number Publication Date
JP2005195192A true JP2005195192A (en) 2005-07-21
JP4119836B2 JP4119836B2 (en) 2008-07-16

Family

ID=34815603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003435561A Expired - Lifetime JP4119836B2 (en) 2003-12-26 2003-12-26 Internal grooved heat transfer tube

Country Status (1)

Country Link
JP (1) JP4119836B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178115A (en) * 2005-11-30 2007-07-12 Furukawa Electric Co Ltd:The Heat transfer tube for heat radiation and radiator
JP2007255742A (en) * 2006-03-20 2007-10-04 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove
JP2007271220A (en) * 2006-03-31 2007-10-18 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner groove for gas cooler
JP2008020150A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Return bend tube, and fin and tube type heat exchanger
JP2008249294A (en) * 2007-03-30 2008-10-16 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove for gas cooler using carbon dioxide refrigerant
JP2009063270A (en) * 2007-09-10 2009-03-26 Furukawa Electric Co Ltd:The Heat transfer tube with inner face fin
JP2010019489A (en) * 2008-07-10 2010-01-28 Sumitomo Light Metal Ind Ltd Heat transfer pipe with inner helical groove for evaporator
JP2014524560A (en) * 2011-08-15 2014-09-22 ジ アベル ファウンデーション, インコーポレイテッド Heat transfer between fluids
EP3355021A1 (en) * 2017-01-30 2018-08-01 Fujitsu General Limited Heat exchanger and refrigeration cycle device
WO2019180817A1 (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
US10844848B2 (en) 2010-01-21 2020-11-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
WO2021057916A1 (en) * 2019-09-27 2021-04-01 约克(无锡)空调冷冻设备有限公司 Heat exchange pipe, heat exchanger and air conditioning system using heat exchanger

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08158379A (en) * 1994-12-07 1996-06-18 Daikyo Home:Kk Construction of placing concrete at one time by using thermal-insulating board-receiving separator for form

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007178115A (en) * 2005-11-30 2007-07-12 Furukawa Electric Co Ltd:The Heat transfer tube for heat radiation and radiator
JP2007255742A (en) * 2006-03-20 2007-10-04 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove
JP2007271220A (en) * 2006-03-31 2007-10-18 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner groove for gas cooler
JP2008020150A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Return bend tube, and fin and tube type heat exchanger
JP2008249294A (en) * 2007-03-30 2008-10-16 Kobelco & Materials Copper Tube Inc Heat transfer tube with inner surface groove for gas cooler using carbon dioxide refrigerant
JP2009063270A (en) * 2007-09-10 2009-03-26 Furukawa Electric Co Ltd:The Heat transfer tube with inner face fin
JP2010019489A (en) * 2008-07-10 2010-01-28 Sumitomo Light Metal Ind Ltd Heat transfer pipe with inner helical groove for evaporator
US11859597B2 (en) 2010-01-21 2024-01-02 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US11371490B2 (en) 2010-01-21 2022-06-28 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
US10844848B2 (en) 2010-01-21 2020-11-24 The Abell Foundation, Inc. Ocean thermal energy conversion power plant
JP2014524560A (en) * 2011-08-15 2014-09-22 ジ アベル ファウンデーション, インコーポレイテッド Heat transfer between fluids
US10619944B2 (en) 2012-10-16 2020-04-14 The Abell Foundation, Inc. Heat exchanger including manifold
US10359201B2 (en) 2017-01-30 2019-07-23 Fujitsu General Limited Heat exchanger and refrigeration cycle device
JP2018123981A (en) * 2017-01-30 2018-08-09 株式会社富士通ゼネラル Heat exchanger and refrigeration cycle device
AU2018200690B2 (en) * 2017-01-30 2023-06-01 Fujitsu General Limited Heat exchanger and refrigeration cycle device
EP3355021A1 (en) * 2017-01-30 2018-08-01 Fujitsu General Limited Heat exchanger and refrigeration cycle device
CN111886459A (en) * 2018-03-20 2020-11-03 三菱电机株式会社 Heat exchanger, refrigeration cycle device, and air conditioner
WO2019180817A1 (en) * 2018-03-20 2019-09-26 三菱電機株式会社 Heat exchanger, refrigeration cycle device, and air conditioning device
JPWO2019180817A1 (en) * 2018-03-20 2021-01-07 三菱電機株式会社 Heat exchanger, refrigeration cycle device and air conditioner
WO2021057916A1 (en) * 2019-09-27 2021-04-01 约克(无锡)空调冷冻设备有限公司 Heat exchange pipe, heat exchanger and air conditioning system using heat exchanger

Also Published As

Publication number Publication date
JP4119836B2 (en) 2008-07-16

Similar Documents

Publication Publication Date Title
JP4759226B2 (en) Tube expansion tool and tube expansion method using the same
JP4728897B2 (en) Return bend and fin-and-tube heat exchangers
JP4119836B2 (en) Internal grooved heat transfer tube
US6655451B2 (en) Heat transfer tube for falling film type evaporator
KR100918216B1 (en) Heat transfer tube with inner surface grooves, used for high-pressure refrigerant
JP2008215733A (en) Fin and tube type heat exchanger
JP2000193389A (en) Outdoor unit of air-conditioner
JPH1183368A (en) Heating tube having grooved inner surface
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
JP5435460B2 (en) Heat transfer tube
JP4422590B2 (en) Return bend and fin-and-tube heat exchangers
WO2013094084A1 (en) Air conditioner
JP3829648B2 (en) Internal grooved heat transfer tube
JP4339665B2 (en) Manufacturing method of heat exchanger
JP3494625B2 (en) Internal grooved heat transfer tube
JP4119765B2 (en) Internal grooved heat transfer tube
JP6802697B2 (en) Inner surface grooved pipe
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JP5255249B2 (en) Heat transfer tube with internal fin
JPH0712483A (en) Heat transfer tube with inner surface groove
JP3417825B2 (en) Inner grooved pipe
JPH0968396A (en) Heat exchanger
WO2001092806A1 (en) Heating tube with internal grooves and heat exchanger
JP3199621B2 (en) Heat transfer tube with internal groove using mixed refrigerant
JP2003287393A (en) Heat transfer pipe for condenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051006

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070905

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080215

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080317

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080425

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4119836

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110502

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120502

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130502

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140502

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term