JP5435460B2 - Heat transfer tube - Google Patents

Heat transfer tube Download PDF

Info

Publication number
JP5435460B2
JP5435460B2 JP2009129106A JP2009129106A JP5435460B2 JP 5435460 B2 JP5435460 B2 JP 5435460B2 JP 2009129106 A JP2009129106 A JP 2009129106A JP 2009129106 A JP2009129106 A JP 2009129106A JP 5435460 B2 JP5435460 B2 JP 5435460B2
Authority
JP
Japan
Prior art keywords
fin
tube
heat transfer
fins
projecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009129106A
Other languages
Japanese (ja)
Other versions
JP2010276270A (en
Inventor
真也 辻本
康敏 森
静夫 松崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2009129106A priority Critical patent/JP5435460B2/en
Priority to CN201080022922.2A priority patent/CN102449424B/en
Priority to KR1020117024844A priority patent/KR101695044B1/en
Priority to PCT/JP2010/058990 priority patent/WO2010137647A1/en
Publication of JP2010276270A publication Critical patent/JP2010276270A/en
Application granted granted Critical
Publication of JP5435460B2 publication Critical patent/JP5435460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/01Geometry problems, e.g. for reducing size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

この発明は、例えば冷凍機、空調機などの熱交換器に使用される伝熱管に関する。   The present invention relates to a heat transfer tube used in a heat exchanger such as a refrigerator or an air conditioner.

一般に空調機や冷凍機などに用いられる伝熱管は、管内の冷媒を蒸発または凝縮させて管外を流れる流体との間で熱交換を行なうもので、熱交換器の高効率化や省エネルギー化の観点から内面溝付管の使用が多くなっている。   In general, heat transfer tubes used in air conditioners, refrigerators, etc., perform heat exchange with the fluid flowing outside the tubes by evaporating or condensing the refrigerant in the tubes, which improves the efficiency and energy saving of the heat exchanger. From the viewpoint, the use of internally grooved tubes is increasing.

この内面溝付管は、管内面に微細な三角形断面や台形断面の溝が管軸に対して直線状もしくは螺旋状に形成されている。これらの溝を管内面に備えたことにより、平滑管に比べ伝熱面積が増大するとともに、冷媒液を撹拌させる攪拌作用によって伝熱性能を向上することができる。   In this internally grooved tube, a fine triangular or trapezoidal groove is formed on the inner surface of the tube linearly or spirally with respect to the tube axis. By providing these grooves on the inner surface of the tube, the heat transfer area is increased as compared with the smooth tube, and the heat transfer performance can be improved by the stirring action of stirring the refrigerant liquid.

近年、特に空調機用熱交換器に対して高性能化や小型軽量化が強く求められており、また省エネ法(エネルギーの使用の合理化に関する法律)の改正に伴って伝熱管の高性能化がより一層求められている。
しかしながら、従来の内面螺旋溝付管においては溝数、リード角、溝形状などの改良は行なわれているものの、上述したように求められている性能には不十分であった。
In recent years, there has been a strong demand for higher performance, smaller size, and lighter weight especially for heat exchangers for air conditioners, and with the revision of the Energy Conservation Law (Act on the Rational Use of Energy) There is more demand.
However, although the number of grooves, the lead angle, the groove shape, and the like have been improved in the conventional inner surface spiral grooved tube, the performance required as described above is insufficient.

そこで、これら従来の螺旋フィン付管に代わる伝熱管として、例えば、特許文献1には、冷媒液の攪拌作用を促進するため、管内面に主溝と、フィンを分断する深さの副溝とで形成したクロス溝付き伝熱管が開示されている。   Therefore, as a heat transfer tube that replaces these conventional spiral finned tubes, for example, in Patent Document 1, in order to promote the stirring action of the refrigerant liquid, a main groove on the inner surface of the tube and a sub-groove having a depth for dividing the fins are provided. A heat transfer tube with a cross groove formed in is disclosed.

このクロス溝付き伝熱管は、フィンを副溝によって分断した平面視略S字形状をした複数の三次元突起(3)を管内面に備えている。
より詳しくは、三次元突起(3)は、その先端部に、主溝に沿う冷媒流れを副溝の方向へ誘導可能に突出したバリ(3a)を備えるとともに、後端部に、該バリ(3a)と逆方向に突出したバリ(3b)を備えている。
This heat transfer tube with a cross groove is provided with a plurality of three-dimensional protrusions (3) having a substantially S-shape in plan view in which fins are divided by sub-grooves on the inner surface of the tube.
More specifically, the three-dimensional protrusion (3) includes a burr (3a) protruding at the front end thereof so that the refrigerant flow along the main groove can be guided toward the sub-groove, and the burr (3a) at the rear end. It has a burr (3b) protruding in the opposite direction to 3a).

特許文献1によれば、主溝を流れる冷媒をバリ(3a)によって副溝方向へ誘導することで、冷媒の複雑な流れによる攪拌作用を得ることができ、結果的に、熱伝達率を得ることができる旨の記載がされている。   According to Patent Document 1, the refrigerant flowing through the main groove is guided to the sub-groove direction by the burr (3a), so that the stirring action by the complicated flow of the refrigerant can be obtained, and as a result, the heat transfer coefficient is obtained. It is stated that it can be done.

しかし、特許文献1における伝熱管は、三次元突起(3)に備えたバリ(3a),(3b)により、冷媒の管内周面側付近での攪拌を図ることができるが、管の半径方向中心側を流れる冷媒については、攪拌されず、結果的に、上述した要求を満足する伝達性能を得ることができなかった。   However, in the heat transfer tube in Patent Document 1, the refrigerant can be stirred in the vicinity of the inner peripheral surface side of the refrigerant by the burrs (3a) and (3b) provided in the three-dimensional projection (3). The refrigerant flowing in the center side was not agitated, and as a result, the transmission performance satisfying the above-mentioned requirements could not be obtained.

特開平8−178574号公報JP-A-8-178574

この発明は、圧力損失の増大を抑制しつつ、管内熱伝達率の向上を図ることができる伝熱管を提供することを目的とする。   An object of the present invention is to provide a heat transfer tube capable of improving the heat transfer coefficient in the tube while suppressing an increase in pressure loss.

この発明は、管内面に、管軸方向に対して所定角度(β)を有する高さ(H)が0.1mm〜0.30mmの螺旋状のフィンが形成された外径7mmより小さい蒸発用伝熱管であって、前記管内面に、前記フィンを深さ(H)が0.1mm〜0.30mmの螺旋状の副溝によってフィン形成方向に分断されるとともに、該管内面に螺旋状に突出する複数のフィン構成部を形成し、前記フィン構成部の螺旋方向の上流側と下流側とのうち、少なくとも一方側で、隣り合う前記フィンとの間に突出する突出片を形成し、前記突出片には、前記フィン構成部の螺旋方向下流側で、前記管軸方向上流側で隣り合う前記フィンとの間に突出する第1突出片と、前記フィン構成部の管軸方向下流側で、前記第1突出片の有する側と反対側で隣り合う前記フィンとの間に突出する第2突出片と、前記フィン構成部の螺旋方向上流側で、前記第1突出片の有する側で隣り合う前記フィンとの間に突出する第3突出片と、前記フィン構成部の螺旋方向上流側で、前記第1突出片の有する側と反対側で隣り合う前記フィンとの間に突出する第4突出片とを備え、記突出片の、フィン間の間隔(W)に対する突出長さ(W)の割合(W/W)を0.3〜0.9で形成し、前記フィン構成部を、前記フィン形成方向におけるフィン構成部間の間隔(P )を5mm以上に形成し、前記フィンに対する前記突出片の角度(α)を、5°≦α≦20°に設定した蒸発用伝熱管であることを特徴とする。 In the present invention, a helical fin having a height (H f ) having a predetermined angle (β 1 ) with respect to the tube axis direction is formed on the inner surface of the tube, and the outer diameter is smaller than 7 mm. A heat transfer tube for evaporation , wherein the fin is divided on the inner surface of the tube in the direction of fin formation by a spiral sub-groove having a depth (H n ) of 0.1 mm to 0.30 mm. A plurality of fin constituent portions that project in a spiral shape are formed, and a projecting piece that projects between adjacent fins is formed on at least one of the upstream side and the downstream side in the spiral direction of the fin constituent portion. and, wherein the protruding piece is a spiral direction downstream side of the fin structure portion, the first projecting pieces out collision between the adjacent fins in the tube axial direction upstream side tube axis of the fin structure portion Adjacent on the downstream side in the direction opposite to the side having the first protruding piece A second projecting piece projecting between the fins and a third projecting piece projecting between the fins adjacent to the fins adjacent to the first projecting piece on the upstream side in the spiral direction the spiral direction upstream side of the fin structure portion, and a fourth projecting piece projecting between the adjacent fins on the opposite side to the side having the first projecting piece, before Symbol protruding pieces, between the fins the proportion of the interval (W 2) projecting length to (W 1) to (W 1 / W 2) is formed with 0.3 to 0.9, the fin forming portion, between the fins constituting portion in the fin-forming direction The evaporating heat transfer tube is characterized in that the interval (P f ) is 5 mm or more and the angle (α) of the protruding piece with respect to the fin is set to 5 ° ≦ α ≦ 20 ° .

本発明の特許請求の範囲及び明細書にて、「〜」の記号を使って記載される範囲は、記号の前に記載される数値と、記号の後に記載される数値とを含むものである。   In the claims and the specification of the present invention, the range described using the symbol “to” includes the numerical value described before the symbol and the numerical value described after the symbol.

前記伝熱管は、上述したようにフィン高さ(H)が0.1mm〜0.30mmの範囲内でも、特に0.1mm以上の前記フィン構成部の少なくとも螺旋方向下流側に、管軸方向上流側で隣り合う前記フィンとの間に、フィン形成方向に対して5°以上の角度で突出する突出片を備えた構成である。 As described above, the heat transfer tube has a fin height (H f ) in the range of 0.1 mm to 0.30 mm, particularly at least on the downstream side in the spiral direction of the fin component having a thickness of 0.1 mm or more. Between the fins adjacent on the upstream side, a protruding piece protruding at an angle of 5 ° or more with respect to the fin forming direction is provided.

係る構成により、前記フィン間を流れる冷媒の一部は、前記突出片に衝突し、管半径方向内側へかき上げられるため、三次元的な非定常流れを効果的に発生させることができる。また、突出片への衝突により冷媒が滞留し、主溝内を流れる冷媒の液膜の厚さがフィン形成方向において不均一化されるため、液膜の厚さの薄い部分で熱伝達性能が向上する。
したがって、単に、管内周面にクロス溝を形成した従来の伝熱管と比較して、管半径方向内側も含めた乱流促進や液冷媒の薄膜化を図ることができ、優れた熱伝達率を得ることができる。
With such a configuration, a part of the refrigerant flowing between the fins collides with the protruding piece and is scooped up inward in the pipe radial direction, so that a three-dimensional unsteady flow can be effectively generated. In addition, since the refrigerant stays due to the collision with the projecting piece and the thickness of the liquid film of the refrigerant flowing in the main groove becomes non-uniform in the fin forming direction, the heat transfer performance is reduced in the thin part of the liquid film. improves.
Therefore, compared to a conventional heat transfer tube with a cross groove formed on the inner peripheral surface of the tube, it is possible to promote turbulent flow including the inner side in the tube radial direction and to reduce the thickness of the liquid refrigerant, resulting in an excellent heat transfer coefficient. Can be obtained.

また、副溝深さ(H)が0.1mm〜0.30mmの範囲内でも、特に0.1mm以上で、突出片と主溝のなす角度(α)を70°より小さく形成することにより、前記フィン間を流れる冷媒の副溝への流入が容易に行われるため、フィンを跨いだ管内周面全体における冷媒攪拌を図ることができる。したがって、優れた乱流促進効果を得ることができるとともに、圧力損失の増大を防止することができる。 Further, even when the sub-groove depth (H n ) is in the range of 0.1 mm to 0.30 mm, the angle (α) formed by the protruding piece and the main groove is less than 70 °, particularly 0.1 mm or more. Since the refrigerant flowing between the fins easily flows into the sub-groove, the refrigerant can be stirred on the entire inner peripheral surface of the pipe across the fins. Therefore, an excellent turbulent flow promoting effect can be obtained and an increase in pressure loss can be prevented.

また、フィン高さ(H)が0.1mm〜0.30mmの範囲内でも、特に0.25mm以下であれば、小径管において内径が小さくなり過ぎず、圧力損失の増大を抑えることができる。 Even if the fin height (H f ) is in the range of 0.1 mm to 0.30 mm, the inner diameter of the small-diameter tube is not too small, and an increase in pressure loss can be suppressed if the height is particularly 0.25 mm or less. .

また、前記フィン形成方向におけるフィン構成部間の間隔(P)を1.5mm以上で形成することにより、フィンに沿った冷媒の流れを過度に阻害することなく、十分な旋回力による冷媒攪拌作用を得ることができる。また、機械拡管時に耐え得るフィン強度を確保することができる。 Further, by forming the interval (P f ) between the fin components in the fin forming direction to be 1.5 mm or more, the refrigerant is stirred by a sufficient turning force without excessively obstructing the flow of the refrigerant along the fin. The effect can be obtained. Moreover, the fin strength which can be endured at the time of machine expansion is ensured.

また、突出長さ(W)の割合(W/W)が0.3〜0.9の範囲内でも、特にW/W=0.4〜0.9であることが好ましい。詳しくは、外径が7mmより小さい小径管においては、上述の圧力損失の問題や加工上の制限からフィン高さ(H)が比較的低いため、突出片による冷媒のかき上げや副溝への誘導の効果を十分に得るためには、突出片のフィン間への突出長さ(W)の割合(W/W)を0.4以上にする必要がある。 Further, even when the ratio (W 1 / W 2 ) of the protrusion length (W 1 ) is within the range of 0.3 to 0.9, it is particularly preferable that W 1 / W 2 = 0.4 to 0.9. . Specifically, in a small-diameter tube having an outer diameter of less than 7 mm, the fin height (H f ) is relatively low due to the above-described pressure loss problem and processing limitations, so that the coolant is lifted up by the protruding piece or into the sub-groove. In order to obtain a sufficient induction effect, it is necessary to set the ratio (W 1 / W 2 ) of the protruding length (W 1 ) between the fins of the protruding pieces to 0.4 or more.

また、0.9以下とすることで、蒸発時にフィン間への液膜の供給が阻害されることがないため、ドライアウトによる蒸発熱伝達率の低下を防ぐことができる。また、外径が7mmより小さい小径管における圧力損失の増減については、フィン高さ(H)やリード角(β)、フィン構成部間の間隔(P)が支配的となり、突出長さ(W)の影響が比較的小さくなるため、上記の構成としても圧力損失を過度に増大させることなく、上述の伝熱促進効果が得られる Further, by setting the ratio to 0.9 or less, the supply of the liquid film between the fins is not hindered at the time of evaporation, so that it is possible to prevent a decrease in evaporation heat transfer coefficient due to dryout. In addition, regarding the increase or decrease of pressure loss in a small diameter tube having an outer diameter of less than 7 mm, the fin height (H f ), the lead angle (β 2 ), and the interval (P f ) between fin components are dominant, and the protrusion length Since the influence of the thickness (W 1 ) is relatively small, the above-described heat transfer promoting effect can be obtained without excessively increasing the pressure loss even with the above-described configuration .

た、この発明の蒸発用伝熱管は、上述したように、前記フィン高さ(H)を0.1mm以上、前記副溝深さ(H)を0.1mm以上、前記突出片のフィンに対する角度(α)を20°以下、管軸方向に対する副溝のリード角(β)を10°以上、フィン形成方向におけるフィン構成部間の間隔(P)を5mm以上として形成することができる。 Also, steam Hatsuyo heat exchanger tube of the present invention, as described above, the fin height (H f) of 0.1mm or more, the sub groove depth (H n) of 0.1mm or more, the projecting piece The angle (α) with respect to the fin is 20 ° or less, the lead angle (β 2 ) of the secondary groove with respect to the tube axis direction is 10 ° or more, and the interval (P f ) between the fin components in the fin forming direction is 5 mm or more. be able to.

前記蒸発用伝熱管は、フィン高さ(H)が0.10mm以上の蒸発管に適した構成を備えている。つまり、管内面の有効伝熱面積を増大させるとともに、フィン頂部付近で液膜を薄くする効果が十分に得られ蒸発性能を向上させる。 The evaporation heat transfer tube has a configuration suitable for an evaporation tube having a fin height (H f ) of 0.10 mm or more. That is, the effective heat transfer area on the inner surface of the tube is increased, and the effect of thinning the liquid film in the vicinity of the fin top is sufficiently obtained to improve the evaporation performance.

また、副溝深さ(H)が0.10mm以上、突出片と主溝のなす角度(α)が20°以下であれば、フィン間を流れる冷媒が副溝へと流れ込み易くなるため、フィンを跨いだ冷媒の拡がりが図られ、濡れ面積の増大による蒸発促進効果を得ることができる。また、管軸方向への冷媒流量が増大するため圧力損失の増大を防ぐことができる。 In addition, if the sub-groove depth (H n ) is 0.10 mm or more and the angle (α) between the protruding piece and the main groove is 20 ° or less, the refrigerant flowing between the fins easily flows into the sub-groove. The refrigerant spreads across the fins, and an evaporation promoting effect due to an increase in wetted area can be obtained. Moreover, since the refrigerant | coolant flow rate to a pipe-axis direction increases, the increase in pressure loss can be prevented.

また、フィン構成部間の間隔(P)が5mm以上であれば、冷媒流れを過度に妨げることなく、圧力損失増大を抑制できる。
また、菅軸に対する副溝のリード角(β)が10°以上と大きい場合には、管内に液が長く保有されるため蒸発が繰り返され、結果的に熱伝達率が向上する。
Moreover, if the space | interval ( Pf ) between fin structure parts is 5 mm or more, an increase in pressure loss can be suppressed, without disturbing a refrigerant | coolant flow excessively.
Further, when the lead angle (β 2 ) of the secondary groove with respect to the shaft is as large as 10 ° or more, since the liquid is retained in the tube for a long time, evaporation is repeated, and as a result, the heat transfer coefficient is improved.

この発明によれば、伝熱管による熱交換時において、圧力損失の増大を抑制しつつ、管内熱伝達率の向上を図ることができる。   According to this invention, it is possible to improve the heat transfer coefficient in the tube while suppressing an increase in pressure loss during heat exchange by the heat transfer tube.

本実施形態の伝熱管を示す部分拡大展開斜視図。The partial expansion expansion perspective view which shows the heat exchanger tube of this embodiment. 図1の伝熱管におけるフィン構成部を有する管内面の拡大平面図。The enlarged plan view of the pipe inner surface which has the fin structure part in the heat exchanger tube of FIG. 本発明伝熱管の他の例を示す部分拡大展開斜視図。The partial expansion expansion perspective view which shows the other example of this invention heat exchanger tube. 図3の伝熱管を示すフィン構成部を有する管内面の拡大平面図。The enlarged plan view of the pipe inner surface which has a fin structure part which shows the heat exchanger tube of FIG. 本実施形態の伝熱管の性能評価に用いた実験装置の概略図。Schematic of the experimental apparatus used for the performance evaluation of the heat exchanger tube of this embodiment. 本発明伝熱管のその他の例を示すフィン構成部を有する管内面の拡大平面図。The enlarged plan view of the pipe inner surface which has a fin structure part which shows the other example of this invention heat exchanger tube.

この発明の一実施形態を以下図面と共に説明する。   An embodiment of the present invention will be described below with reference to the drawings.

本実施形態における伝熱管11は、図1、図2に示すように、管内面10に、螺旋状のフィン12を形成している。   As shown in FIGS. 1 and 2, the heat transfer tube 11 in the present embodiment has spiral fins 12 formed on the tube inner surface 10.

なお、本実施形態における伝熱管11は、管内面10に螺旋状のフィン12を形成することによりフィン12間に、主溝13を備えている。   Note that the heat transfer tube 11 in the present embodiment includes the main grooves 13 between the fins 12 by forming the spiral fins 12 on the tube inner surface 10.

さらに、前記伝熱管11は、前記フィン12を、該フィン12の主溝螺旋方向D2(フィン形成方向)に分断することによって複数のフィン構成部12Aを形成している。   Further, the heat transfer tube 11 divides the fin 12 in the main groove spiral direction D2 (fin formation direction) of the fin 12 to form a plurality of fin constituent portions 12A.

なお、本実施形態における伝熱管11は、管内面10に副溝螺旋方向D3に向けて螺旋状に突出する突出片16を形成することにより、主溝螺旋方向D2のフィン構成部12Aの間には、副溝14によってフィン12を分断する副溝形成部分15を備えている。   In addition, the heat transfer tube 11 in this embodiment forms the protruding piece 16 which protrudes spirally toward the sub-groove spiral direction D3 on the tube inner surface 10, so that it is between the fin constituent portions 12A in the main groove spiral direction D2. Includes a sub-groove forming portion 15 that divides the fin 12 by the sub-groove 14.

図1は、本実施形態の伝熱管11の管内面10の様子を模式的に示した部分拡大展開斜視図であり、図2は、フィン構成部12A付近の拡大平面図である。なお、図2では、前記フィン構成部12A、前記突出片16の頂部のみを模式的に示している。   FIG. 1 is a partially enlarged perspective view schematically showing a state of the tube inner surface 10 of the heat transfer tube 11 of the present embodiment, and FIG. 2 is an enlarged plan view in the vicinity of the fin constituting portion 12A. In FIG. 2, only the fin constituent portions 12 </ b> A and the tops of the protruding pieces 16 are schematically shown.

さらに、前記フィン構成部12Aは、主溝螺旋方向下流側D2dに、管軸方向上流側D1uの前記主溝13に突出する突出片16(第1突出片16a)を備えている。   Furthermore, 12 A of said fin structure parts are provided with the protrusion 16 (1st protrusion 16a) which protrudes in the said main groove 13 of the pipe-axis direction upstream D1u in the main groove spiral direction downstream D2d.

前記伝熱管11は、外径が7mmより小さい範囲内である5mmの外径で形成している。
前記フィン12は、高さ(H)が0.1mm〜0.30mmの範囲内である0.15mmの高さで形成している。
The heat transfer tube 11 is formed with an outer diameter of 5 mm, which is in a range where the outer diameter is smaller than 7 mm.
The fins 12 are formed with a height (H f ) of 0.15 mm which is in the range of 0.1 mm to 0.30 mm.

前記副溝14は、深さ(H)が0.1mm〜0.30mmの範囲内である0.15mmの深さで形成している。
前記突出片16は、前記フィン12に対する角度(α)が5°≦α<70°の範囲内である34°の角度で形成している。
The sub-groove 14 is formed with a depth of 0.15 mm, the depth (H n ) being in the range of 0.1 mm to 0.30 mm.
The protruding piece 16 is formed at an angle of 34 °, where the angle (α) with respect to the fin 12 is in the range of 5 ° ≦ α <70 °.

前記フィン構成部12Aは、フィン形成方向におけるフィン構成部間の間隔(P)が1.5mm以上の範囲内である2.4mmで形成されている。 12 A of said fin structure parts are formed by 2.4 mm whose space | interval ( Pf ) between the fin structure parts in a fin formation direction exists in the range of 1.5 mm or more.

より詳しくは、本実施形態の伝熱管11において螺旋状のフィン12は、管軸方向D1に対して40°の角度(β)で形成している。さらに、管周あたりのフィン数を56、フィン高さ(H)を0.15mm、フィン12の断面形状を略台形形状で形成している。 More specifically, in the heat transfer tube 11 of the present embodiment, the spiral fins 12 are formed at an angle (β 1 ) of 40 ° with respect to the tube axis direction D1. Further, the number of fins per pipe circumference is 56, the fin height (H f ) is 0.15 mm, and the cross-sectional shape of the fins 12 is formed in a substantially trapezoidal shape.

副溝14は、管軸方向D1に対して6°の角度(β)で形成され、副溝螺旋方向D3に沿って形成している。さらに、フィン形成方向における副溝幅(W)が0.15mmである逆三角断面の溝形状で形成している。 The secondary groove 14 is formed at an angle (β 2 ) of 6 ° with respect to the tube axis direction D1, and is formed along the secondary groove spiral direction D3. Furthermore, it is formed in a groove shape having an inverted triangular cross section with a sub groove width (W 3 ) in the fin forming direction of 0.15 mm.

副溝14の深さ(H)は、副溝螺旋方向D3の副溝螺旋方向上流側D3uから副溝螺旋方向下流側D3dに向けて同一の溝深さで形成している。 The depth (H n ) of the sub-groove 14 is formed at the same groove depth from the upstream D3u in the sub-groove spiral direction D3u in the sub-groove spiral direction D3 toward the downstream D3d in the sub-groove spiral direction.

また、突出片16は、前記主溝13の幅(W)に対して0.5の割合(W/W)から成る前記主溝13への突出長さ(W)で形成している。 The protruding piece 16 is formed with a protruding length (W 1 ) to the main groove 13 having a ratio (W 1 / W 2 ) of 0.5 to the width (W 2 ) of the main groove 13. ing.

さらに、前記フィン構成部12Aは、主溝螺旋方向下流側D2dに、管軸方向下流側D1dの前記主溝13に突出する突出片16(第2突出片16b)を備えている。   Further, the fin component 12A includes a protruding piece 16 (second protruding piece 16b) protruding into the main groove 13 on the downstream side D1d in the tube axis direction on the downstream side D2d in the main groove spiral direction.

一方、前記フィン構成部12Aは、主溝螺旋方向上流側D2uにも、それぞれ管軸方向上流側D1uの前記主溝13に突出する突出片16(第3突出片16c)、管軸方向下流側D1dの前記主溝13に突出する突出片16(第4突出片16d)を備えている。   On the other hand, the fin component 12A is also provided on the upstream side D2u in the main groove spiral direction, the protruding piece 16 (third protruding piece 16c) protruding in the main groove 13 on the upstream side D1u in the tube axis direction, and on the downstream side in the tube axis direction A projecting piece 16 (fourth projecting piece 16d) projecting into the main groove 13 of D1d is provided.

従って、図2に示すように、フィン構成部12Aは、平面視するとHの文字を傾けた形状(傾斜型H形状)で形成している。   Therefore, as shown in FIG. 2, the fin component portion 12 </ b> A is formed in a shape in which the letter “H” is inclined (inclined H shape) in plan view.

上述した伝熱管11は、以下のような様々な作用、効果を得ることができる。
本実施形態の伝熱管11は、上述したように、前記フィン構成部12Aの少なくとも主溝螺旋方向下流側D2dに、管軸方向上流側D1uの前記主溝13に突出する前記第1突出片16aを備えている。
The heat transfer tube 11 described above can obtain various actions and effects as follows.
As described above, the heat transfer tube 11 of the present embodiment has the first protruding piece 16a that protrudes at least on the downstream side D2d in the main groove spiral direction D2d of the fin component 12A and on the main groove 13 on the upstream side D1u in the tube axis direction. It has.

このため、前記主溝13を流れる冷媒の一部は、前記第1突出片16aに衝突し、管半径方向内側へかき上げられるため、三次元的な非定常流れを発生させることができる。   For this reason, a part of the refrigerant flowing through the main groove 13 collides with the first projecting piece 16a and is scooped up in the pipe radial direction, so that a three-dimensional unsteady flow can be generated.

従って、管の半径方向内側も含めた乱流促進効果を得ることができるため、単に、管内面にクロス溝を形成した従来の伝熱管や、副溝近傍にバリを有した従来の伝熱管と比較して、更なる熱伝達率の向上を図ることができる。   Therefore, since the effect of promoting turbulent flow including the inside in the radial direction of the tube can be obtained, a conventional heat transfer tube in which a cross groove is formed on the inner surface of the tube, or a conventional heat transfer tube having a burr in the vicinity of the sub groove, In comparison, the heat transfer rate can be further improved.

さらに、上述したように螺旋状の前記フィン12は、特に、前記フィン構成部12Aの少なくとも主溝螺旋方向上流側D2uに、管軸方向上流側D1uの主溝13側へ突出した第3突出片16cを備えているため、前記主溝13を流れる冷媒が前記副溝14に、より一層、流れ込み易くなるため、二次流れが発生し、特に管内周面付近において冷媒の攪拌効果を得ることができるとともに、圧力損失の増大を防止することができる。   Further, as described above, the spiral fin 12 is, in particular, a third protruding piece that protrudes toward the main groove 13 on the upstream side D1u in the tube axis direction at least on the upstream side D2u in the main groove spiral direction of the fin component 12A. 16c, the refrigerant flowing through the main groove 13 is more easily flown into the sub-groove 14, so that a secondary flow is generated, and a stirring effect of the refrigerant can be obtained particularly near the inner peripheral surface of the pipe. In addition, it is possible to prevent an increase in pressure loss.

また、本実施形態の伝熱管11は、前記突出片16を、上述したように前記主溝13に対して34°の角度(α)で形成している。
このため、前記主溝13を流れる冷媒の流れを過度に妨げることがなく、その一部を前記突出片16に衝突させて主溝13から副溝14へと流れ込ませることが可能となるため、より大きな冷媒攪拌作用によって熱伝達率の向上を図ることができる。
In the heat transfer tube 11 of the present embodiment, the protruding piece 16 is formed at an angle (α) of 34 ° with respect to the main groove 13 as described above.
For this reason, it is possible to cause a part of the refrigerant to collide with the protruding piece 16 and flow into the sub groove 14 from the main groove 13 without excessively hindering the flow of the refrigerant flowing through the main groove 13. The heat transfer coefficient can be improved by a larger refrigerant stirring action.

さらに、管軸方向D1への冷媒流量が増大するため、圧力損失の増大を防止することができる。   Furthermore, since the refrigerant flow rate in the tube axis direction D1 increases, an increase in pressure loss can be prevented.

また、本実施形態の伝熱管11は、上述したようにフィン形成方向におけるフィン構成部間の間隔(P)を2.4mmで形成することにより、十分な冷媒攪拌作用を得することができるとともに、機械拡管時に耐え得るフィン強度を得ることができる。 In addition, as described above, the heat transfer tube 11 of the present embodiment can obtain a sufficient refrigerant stirring action by forming the interval (P f ) between the fin constituent portions in the fin forming direction at 2.4 mm. The fin strength that can be endured during mechanical tube expansion can be obtained.

また、本実施形態の伝熱管11は、上述したように、前記突出片16を前記主溝13の幅(W)に対して0.5の割合(W/W)から成る前記主溝13への突出長さ(W)で形成することにより、半径方向内側への冷媒のかき上げが促進され、優れた冷媒攪拌作用を得ることができ、結果的に熱伝達率の向上を図ることができる。 Further, as described above, in the heat transfer tube 11 of the present embodiment, the projecting piece 16 has a ratio (W 1 / W 2 ) of 0.5 to the width (W 2 ) of the main groove 13. By forming the groove 13 with the protruding length (W 1 ), the scooping of the refrigerant inward in the radial direction is promoted, and an excellent refrigerant stirring action can be obtained, resulting in an improvement in the heat transfer coefficient. Can be planned.

また、前記副溝14の深さ(H)は、本実施形態の伝熱管11のように、0.1mm以上かつ主溝13の深さの40〜100%で構成することが好ましい。 Further, the depth (H n ) of the sub-groove 14 is preferably 0.1 mm or more and 40 to 100% of the depth of the main groove 13 as in the heat transfer tube 11 of the present embodiment.

副溝14を、深さ0.1mm以上かつ主溝13の深さの40%以上で構成することにより、主溝13を流れる冷媒が副溝14へ流れ込み易くなり、優れた熱伝達率を得ることができるとともに、圧力損失の増大を防止することができる。   By configuring the sub-groove 14 with a depth of 0.1 mm or more and 40% or more of the depth of the main groove 13, the refrigerant flowing through the main groove 13 can easily flow into the sub-groove 14 and obtain an excellent heat transfer coefficient. And increase in pressure loss can be prevented.

一方、副溝14を、主溝13の深さの100%以下の深さで構成することにより、管肉厚に主溝深さよりも深い切り込みを形成することがないため、管の品質(底肉厚の仕様)を保つことができる。   On the other hand, by forming the sub-groove 14 at a depth of 100% or less of the depth of the main groove 13, the tube thickness does not form a notch deeper than the main groove depth. (Thickness specification) can be maintained.

以上、本発明の一実施形態である伝熱管11について詳述したが、続いて、本発明の伝熱管11の性能を検証するために行った実験について説明する。   As described above, the heat transfer tube 11 according to an embodiment of the present invention has been described in detail. Next, an experiment performed for verifying the performance of the heat transfer tube 11 of the present invention will be described.

本実験では、本発明の伝熱管として実施例1乃至9までの9種類を製作するとともに、比較対象として用いる伝熱管を、比較例1乃至4までの4種類製作した。
実施例1乃至9までの伝熱管は、それぞれ表1に示すような外径、フィン、副溝、突出片を有する形状に製作している。
In this experiment, nine types of Examples 1 to 9 were manufactured as heat transfer tubes of the present invention, and four types of heat transfer tubes used for comparison were manufactured.
The heat transfer tubes of Examples 1 to 9 are each formed into a shape having an outer diameter, fins, sub grooves, and protruding pieces as shown in Table 1.

Figure 0005435460
ここで、実施例2の伝熱管は、表1に示した各部の形状からも明らかなとおり、前述した実施形態の伝熱管11と同じ形状の伝熱管を用いている。
Figure 0005435460
Here, the heat transfer tube of Example 2 uses a heat transfer tube having the same shape as the heat transfer tube 11 of the above-described embodiment, as is apparent from the shape of each part shown in Table 1.

また、実施例1、2、8、9の伝熱管は、いずれも平面視傾斜型H形状をした複数の分断されたフィン構成部12Aを備えて形成している。一方、実施例3乃至7の伝熱管21は、図3、及び、図4に示すように、平面視したとき、J字形をした形状(平面視J形状)をした複数のフィン構成部42Aを備えて形成している。   In addition, the heat transfer tubes of Examples 1, 2, 8, and 9 are each provided with a plurality of divided fin components 12 </ b> A having an inclined H shape in a plan view. On the other hand, as shown in FIGS. 3 and 4, the heat transfer tubes 21 of Examples 3 to 7 include a plurality of fin constituent portions 42 </ b> A having a J-shaped shape (J shape in plan view) when viewed in plan. In preparation.

より詳しくは、実施例3乃至7の伝熱管21における、平面視J形状をした分断されたフィン構成部42Aは、該フィン構成部42Aに第1突出片16aを備えるに加えて、第2突出片16b、及び、第3突出片16cを備えた形態である。   More specifically, in the heat transfer tube 21 of the third to seventh embodiments, the divided fin component 42A having a J shape in plan view includes the first protrusion 16a in the fin component 42A, and the second protrusion It is the form provided with the piece 16b and the 3rd protrusion piece 16c.

ここで、図3は、実施例3乃至7の伝熱管21の管内面10の様子を模式的に示した部分拡大展開斜視図であり、図4は、実施例3乃至7の伝熱管21の管内面10の分断したフィン近傍の拡大平面図である。なお、図4では、前記フィン構成部42A、前記突出片16の頂部のみを模式的に示している。
なお、比較例については、比較例1乃至3が平面視傾斜型H形状、比較例4が平面視J形状のフィン構成部を備えた伝熱管である。
Here, FIG. 3 is a partially expanded perspective view schematically showing a state of the tube inner surface 10 of the heat transfer tube 21 of Examples 3 to 7, and FIG. 4 is a view of the heat transfer tube 21 of Examples 3 to 7. It is an enlarged plan view of the fin vicinity of the pipe inner surface divided. In FIG. 4, only the fin component 42 </ b> A and the top of the protruding piece 16 are schematically shown.
In addition, about a comparative example, the comparative examples 1 to 3 are the heat transfer tubes provided with the fin configuration portion in the plan view inclined type H shape and the comparative example 4 in the plan view J shape.

この実験では、伝熱管の管内の凝縮性能を検証する凝縮実験を図5(a)に示すような管内凝縮性能測定装置50Aを用いて行うとともに、蒸発性能を検証する蒸発実験を図5(b)に示すような管内蒸発性能測定装置50Bを用いて行った。
なお、図5(a),(b)は、それぞれ管内凝縮性能測定装置50A,管内蒸発性能測定装置50Bの概略図を示し、いずれの装置50A,50Bにおいても、一般の空調機と同様に全体が冷凍サイクルにより構成されている。
In this experiment, a condensation experiment for verifying the condensation performance in the tube of the heat transfer tube is performed using the in-tube condensation performance measuring apparatus 50A as shown in FIG. 5A, and an evaporation experiment for verifying the evaporation performance is performed in FIG. This was performed using an in-tube evaporation performance measuring apparatus 50B as shown in FIG.
5 (a) and 5 (b) show schematic views of the in-pipe condensing performance measuring device 50A and the in-pipe evaporating performance measuring device 50B, respectively. In any of the devices 50A and 50B, the whole is similar to a general air conditioner. Is constituted by a refrigeration cycle.

詳しくは、凝縮実験では、実施例1乃至9、比較例1乃至4までの伝熱管と、それぞれの伝熱管の管内面にフィンを形成しているが、該フィンに副溝(フィン形成部)を形成していない伝熱管、すなわち従来の内面螺旋溝付管を用意し、図5(a)に示すように凝縮器に供試管44として組み込んだ。   Specifically, in the condensation experiment, fins are formed on the heat transfer tubes of Examples 1 to 9 and Comparative Examples 1 to 4 and the inner surfaces of the respective heat transfer tubes, and sub-grooves (fin forming portions) are formed in the fins. As shown in FIG. 5 (a), a heat transfer tube that does not form a heat transfer tube, that is, a conventional internally grooved tube, was prepared and incorporated in a condenser as a test tube 44.

この場合における、実施例1乃至9、及び、比較例1乃至4の伝熱管の熱伝達率(α)と、それぞれと同じ形状の主溝のみを備える伝熱管の熱伝達率(αBASE)との比(α/αBASE)をとることで、本発明の凝縮性能に対する効果の検証を行った。また、圧力損失の比(ΔP/ΔPBASE)についても同様の比較を行った。 In this case, the heat transfer coefficient (α i ) of the heat transfer tubes of Examples 1 to 9 and Comparative Examples 1 to 4 and the heat transfer coefficient (α BASE ) of the heat transfer tube having only the main grooves of the same shape as each of them. The effect on the condensation performance of the present invention was verified by taking the ratio (α i / α BASE ). The same comparison was made for the pressure loss ratio (ΔP / ΔP BASE ).

蒸発実験では、実施例1乃至9、比較例1乃至4までの伝熱管と、それぞれの伝熱管の管内面にフィンを形成しているが、該フィンに副溝(フィン形成部)を形成していない伝熱管、すなわち従来の内面螺旋溝付管を用意し、図5(b)に示すように蒸発器に供試管44として組み込んだ。   In the evaporation experiment, fins are formed on the heat transfer tubes of Examples 1 to 9 and Comparative Examples 1 to 4 and the inner surfaces of the respective heat transfer tubes. Sub-grooves (fin forming portions) are formed on the fins. A heat transfer tube, i.e., a conventional internally spiral grooved tube, was prepared and incorporated in the evaporator as a test tube 44 as shown in FIG.

この場合における、実施例1乃至9、及び、比較例1乃至4の伝熱管の熱伝達率(α)と、それぞれと同じ形状の主溝のみを備える伝熱管の熱伝達率(αBASE)との比(α/αBASE)をとることで、本発明の蒸発性能に対する効果の検証を行った。また、圧力損失の比(ΔP/ΔPBASE)についても同様の比較を行った。 In this case, the heat transfer coefficient (α i ) of the heat transfer tubes of Examples 1 to 9 and Comparative Examples 1 to 4 and the heat transfer coefficient (α BASE ) of the heat transfer tube having only the main grooves of the same shape as each of them. The effect on the evaporation performance of the present invention was verified by taking the ratio (α i / α BASE ). The same comparison was made for the pressure loss ratio (ΔP / ΔP BASE ).

図5(a),(b)に示すように、管内凝縮性能測定装置50A,管内蒸発性能測定装置50Bにおけるテストセクションは、二重管式熱交換器で構成しており、供試管44内に冷媒を流し、外側シェルを構成する環状部45の内部には、その冷媒流れと対向する方向へ熱交換用の水(以下、「熱交換用水」という。)を流して供試管44の有効長さを2mに設定して熱交換を行った。
なお、凝縮実験における熱交換用水としては、低温水を流し、蒸発実験における熱交換用水としては、高温水を流している。
As shown in FIGS. 5A and 5B, the test sections in the in-tube condensing performance measuring device 50A and the in-tube evaporating performance measuring device 50B are composed of a double-tube heat exchanger, and are provided in the test tube 44. An effective length of the test tube 44 is obtained by flowing heat exchange water (hereinafter referred to as “heat exchange water”) in a direction opposite to the refrigerant flow in the annular portion 45 constituting the outer shell. Heat was exchanged with the thickness set to 2 m.
Note that low-temperature water is flown as heat exchange water in the condensation experiment, and high-temperature water is flown as heat exchange water in the evaporation experiment.

また、図5(a),(b)に示すように、テストセクションの各所定部位には、温度計、圧力計、流量計を配設している。なお、図5(a),(b)中、Tは、温度計、Pは、圧力計、Gは、流量計を示す。   Further, as shown in FIGS. 5 (a) and 5 (b), a thermometer, a pressure gauge, and a flow meter are arranged at each predetermined portion of the test section. 5A and 5B, T is a thermometer, P is a pressure gauge, and G is a flow meter.

続いて、供試管44の冷媒の入口と出口とにおける実験条件として、凝縮実験では、冷媒入口過熱度、冷媒出口過冷却度を、蒸発実験では、冷媒入口乾き度、冷媒出口過熱度を、それぞれ表2に示すように設定した。   Subsequently, as the experimental conditions at the refrigerant inlet and outlet of the test tube 44, in the condensation experiment, the refrigerant inlet superheat degree and the refrigerant outlet supercooling degree, and in the evaporation experiment, the refrigerant inlet dryness and the refrigerant outlet superheat degree, respectively. Settings were made as shown in Table 2.

Figure 0005435460
これら凝縮実験、蒸発実験における実験条件は、いずれも空調機の熱交換器入口条件と同一となるように、水温を調節した後に測定を行った。
さらまた、供試管44の入口と出口における冷媒平均飽和温度は、表2に示すように凝縮実験では48℃に設定するとともに、蒸発実験では5℃に設定した。
Figure 0005435460
Measurement was performed after adjusting the water temperature so that the experimental conditions in these condensation experiments and evaporation experiments were the same as the heat exchanger inlet conditions of the air conditioner.
Furthermore, as shown in Table 2, the average refrigerant saturation temperature at the inlet and outlet of the test tube 44 was set to 48 ° C. in the condensation experiment and 5 ° C. in the evaporation experiment.

冷媒には、代替フロンとしてR410Aを使用し、該R410Aは混合冷媒であるため実験中に圧縮機出口部に設置している冷媒採取部(図5(a),(b)参照)で冷媒を採取し、ガスクロマトグラフにより冷媒組成比を測定しながら実験を行った。
なお、ガスクロマトグラフの分析結果は、計算により後述のts1とts2に反映している。
As the refrigerant, R410A is used as an alternative chlorofluorocarbon, and since this R410A is a mixed refrigerant, the refrigerant is collected at the refrigerant sampling section (see FIGS. 5A and 5B) installed at the compressor outlet during the experiment. The sample was collected and experimented while measuring the refrigerant composition ratio by gas chromatography.
Incidentally, the analysis results of gas chromatography, reflects the t s1 and t s2 below by calculation.

凝縮性能、蒸発性能を示す供試管44の管内での圧力損失(ΔP、ΔPBASE)、及び、熱伝達率(α、αBASE)は、以下のようにして求めている。
先ず管内での圧力損失は、供試管44の入口、出口の圧力差として求めている。
管内での熱伝達率は、本実験での測定値をもとに式(1)から式(4)を用いて算出する。
The pressure loss (ΔP, ΔP BASE ) and heat transfer coefficient (α i , α BASE ) in the test tube 44 showing the condensation performance and the evaporation performance are obtained as follows.
First, the pressure loss in the tube is obtained as the pressure difference between the inlet and outlet of the test tube 44.
The heat transfer coefficient in the tube is calculated using equations (1) to (4) based on the measured values in this experiment.

Figure 0005435460
Figure 0005435460

Figure 0005435460
Figure 0005435460

Figure 0005435460
Figure 0005435460

Figure 0005435460
ここで、数式(1)中のQは、交換熱量(kW)、Aは、供試管外表面積(m)、tは、対数平均温度(K)、αは、管外熱伝達率(kW/m・K)を示す。
Figure 0005435460
Here, in Equation (1), Q is the amount of exchange heat (kW), A is the external surface area (m 2 ) of the test tube, t m is the logarithmic average temperature (K), and α O is the external heat transfer coefficient. (KW / m 2 · K).

数式(2)中のGは、熱交換用水の流量(kg/s)、Cは、熱交換用水の比熱(kJ/kg・K)、tW1は、熱交換用水の入口温度(K)、tW2は、熱交換用水の出口温度(K)を示す。 In Equation (2), G is the flow rate of heat exchange water (kg / s), CP is the specific heat of heat exchange water (kJ / kg · K), and t W1 is the inlet temperature of heat exchange water (K). , T W2 indicates the outlet temperature (K) of the water for heat exchange.

数式(3)中のtS1は、冷媒入口飽和温度(K)を示し、tS2は、冷媒出口飽和温度(K)を示す。 In formula (3), t S1 represents the refrigerant inlet saturation temperature (K), and t S2 represents the refrigerant outlet saturation temperature (K).

数式(4)中のkは、熱交換用水の熱伝導率(kW/m・K)、Dは、環状部相当直径(m)を示す。Dは、シェル内径(m)を示し、dは、供試管外径(m)、Rは、熱交換用水のレイノルズ数、Pは、熱交換用水のプラントル数を示す。 In Equation (4), k represents the thermal conductivity (kW / m · K) of heat exchange water, and De represents the annular portion equivalent diameter (m). D represents a shell inside diameter (m), d is subjected試管outer diameter (m), R e is the Reynolds number of the heat exchange water, P r represents the Prandtl number of the heat exchange water.

すなわち、温度などの測定値、設定パラメータをもとに数式(2)よりQ、数式(3)より凝縮時、蒸発時のt、数式(4)よりαを算出し、これら算出した値を数式(1)に代入することにより管内熱伝達率を算出することができる。
かくして得られた凝縮性能および蒸発性能の評価結果を表3に示す。
That is, based on measured values such as temperature and setting parameters, Q is calculated from Equation (2), t m at the time of condensation is calculated from Equation (3), α O is calculated from Equation (4), and α O is calculated from Equation (4). By substituting into equation (1), the in-tube heat transfer coefficient can be calculated.
Table 3 shows the evaluation results of the condensation performance and evaporation performance thus obtained.

Figure 0005435460
表3より明らかなように、熱伝達率に関しては、実施例1乃至9のいずれの伝熱管においても、凝縮性能、蒸発性能ともに、従来の螺旋溝付管より高い熱伝達性能を示した。
Figure 0005435460
As is clear from Table 3, with regard to the heat transfer coefficient, in any of the heat transfer tubes of Examples 1 to 9, both the condensation performance and the evaporation performance showed higher heat transfer performance than the conventional spiral grooved tube.

これにより、前記主溝を流れる冷媒の一部が、特に第1突出片に衝突し、管半径方向内側へかき上げられることによる管半径方向内側も含めた顕著な乱流促進や液冷媒の薄膜化の効果、前記主溝を流れる冷媒の一部が、前記副溝に流れ込むことによる管内周面全体への冷媒拡散効果を実証することができた。   As a result, a part of the refrigerant flowing through the main groove collides with the first projecting piece and is scooped inwardly in the radial direction of the pipe. It was possible to demonstrate the effect of the diffusion of the refrigerant on the entire inner peripheral surface of the pipe caused by a part of the refrigerant flowing through the main groove flowing into the sub-groove.

また、実施例1と比較例2の結果より、性能の向上には副溝深さ(H)が0.1mm以上必要であること、さらに、実施例1、2、3の比較により、凝縮性能の向上には副溝深さ(H)が0.12mmより大きいことが必要であり、深さが深いほど熱伝達率比は向上することがわかる。これは、副溝深さが浅い場合には、冷媒の副溝への流入量が不足することが要因と考えられる。 Further, from the results of Example 1 and Comparative Example 2, it is necessary to improve the performance by sub-groove depth (H n ) of 0.1 mm or more. In order to improve the performance, it is necessary that the sub-groove depth (H n ) is larger than 0.12 mm, and it can be seen that the heat transfer coefficient ratio increases as the depth increases. This is considered to be caused by a shortage of the amount of refrigerant flowing into the sub-groove when the sub-groove depth is shallow.

また、実施例1、5、7、8、9及び比較例1の結果より、凝縮、蒸発ともにフィン形成方向におけるフィン構成部間の間隔(P)が1.5mm以上のときに熱伝達率比が向上し、4mm付近でピークをとることがわかる。一方、圧力損失比については、フィン構成部間の間隔(P)が大きいほど低下する。 Further, from the results of Examples 1, 5, 7, 8, 9 and Comparative Example 1, the heat transfer coefficient is obtained when the interval (P f ) between the fin constituent portions in the fin forming direction is 1.5 mm or more for both condensation and evaporation. It can be seen that the ratio is improved and peaks at around 4 mm. On the other hand, the pressure loss ratio decreases as the distance between the fin components (P f ) increases.

特に実施例8、9については、蒸発圧力損失比が100以下となっており、圧力損失が重要視される蒸発管として使用した場合に優れた性能を発揮する管といえる。これはフィン構成部間の間隔(P)が大きいことに加えて、主溝と突出片の角度差(α)が10°と小さいことにより、副溝への冷媒流入が容易に行われ、管軸方向への冷媒流量が増加したことが要因と考えられる。 In particular, Examples 8 and 9 have an evaporation pressure loss ratio of 100 or less, and can be said to exhibit excellent performance when used as an evaporation tube in which pressure loss is regarded as important. This is because the gap between the fin components (P f ) is large, and the angle difference (α) between the main groove and the protruding piece is as small as 10 °, so that the refrigerant can easily flow into the sub groove, The reason is thought to be an increase in the refrigerant flow rate in the tube axis direction.

また、実施例1と比較例3の結果より、主溝と突出片をなす角度(α)が70°以上の場合には、圧力損失が極端に増大することがわかる。これは主溝内を流れる冷媒が大きく方向を変えて副溝内へと流入する必要があるためで、圧力損失の増大を抑制しつつ、熱伝達率を向上させるためには、主溝と突出片の角度差(α)を70°未満として形成することが好ましいといえる。   Moreover, it can be seen from the results of Example 1 and Comparative Example 3 that the pressure loss is extremely increased when the angle (α) between the main groove and the protruding piece is 70 ° or more. This is because the refrigerant flowing in the main groove needs to change the direction to flow into the sub-groove, and in order to improve the heat transfer rate while suppressing the increase in pressure loss, the main groove protrudes from the main groove. It can be said that it is preferable that the angle difference (α) of the pieces is less than 70 °.

実施例5、6及び比較例4の結果より、突出片のフィン間への突出長さ(W)の割合(W/W)は大きいほど熱伝達率比の向上が大きく、W/W=0.2の場合にはほとんど効果がないことがわかる。 From the results of Examples 5 and 6 and Comparative Example 4, as the ratio (W 1 / W 2 ) of the protruding length (W 1 ) between the fins of the protruding piece increases, the improvement in the heat transfer coefficient ratio increases, and W 1 It can be seen that there is almost no effect when / W 2 = 0.2.

実施例1では熱伝達率の向上が見られることから、十分な効果を得るためには突出長さ(W)の割合は0.3以上とする必要があり、また、圧力損失比については、突出長さ(W)を長くしてもそれほど増大していないことから、外径7mm未満の小径管においては突出長さ(W)を大きく設定することが好ましいことが確認できた。 Since the heat transfer coefficient is improved in Example 1, the ratio of the protrusion length (W 1 ) needs to be 0.3 or more in order to obtain a sufficient effect, and the pressure loss ratio is about Since the protrusion length (W 1 ) was not increased so much, it was confirmed that it is preferable to set the protrusion length (W 1 ) large in a small-diameter tube having an outer diameter of less than 7 mm.

実施例4、6の比較により、副溝のリード角(β)が大きく、主溝と突出片の角度差(α)が小さいほど、より大きな蒸発熱伝達率の向上効果が得られることが確認できた。 According to the comparison between Examples 4 and 6, the larger the lead angle (β 2 ) of the sub-groove and the smaller the angle difference (α) between the main groove and the protruding piece, the greater the effect of improving the evaporation heat transfer coefficient can be obtained. It could be confirmed.

これは、実施例8、9がフィン構成部間の間隔(P)の大きさの割に、蒸発熱伝達比の向上が大きいことからも、比較的大きい副溝のリード角(β)による液の保有、主溝と突出片の角度差が小さいことによるフィンを跨いだ液膜の拡がりが蒸発促進に繋がることが確認できた。 This is because, in Examples 8 and 9, the improvement in the evaporative heat transfer ratio is large for the size of the interval (P f ) between the fin components, and therefore, the lead angle (β 2 ) of the relatively large secondary groove. It was confirmed that the liquid retention due to the liquid and the expansion of the liquid film across the fins due to the small angle difference between the main groove and the protruding piece lead to evaporation promotion.

また、本発明は、上述した実施例1乃至9の伝熱管に限らず、様々な形態、態様で構成することができる。
例えば、本発明の伝熱管は、上述した実施形態(実施例1、2、8、9)の伝熱管11、或いは、実施例3乃至7の伝熱管21のように、前記フィン構成部12A,42Aに、少なくとも第1突出片16aを備えた構成で形成することができる。
The present invention is not limited to the heat transfer tubes of the first to ninth embodiments described above, and can be configured in various forms and modes.
For example, the heat transfer tube of the present invention is similar to the heat transfer tube 11 of the above-described embodiment (Examples 1, 2, 8, 9) or the heat transfer tube 21 of Examples 3 to 7, and the fin components 12A, 42A can be formed with a configuration including at least the first protruding piece 16a.

このように、前記第1突出片16aを備えることにより、主溝13を流れる冷媒の一部が前記第1突出片16aに衝突し、管半径方向へかき上げられ、三次元的な非定常流れを発生させ、更なる乱流促進による熱伝達率の向上を図ることができるからである。   As described above, by providing the first projecting piece 16a, a part of the refrigerant flowing through the main groove 13 collides with the first projecting piece 16a and is scooped up in the pipe radial direction, so that a three-dimensional unsteady flow is achieved. This is because the heat transfer rate can be improved by further promoting turbulence.

具体的には、本発明の伝熱管は、例えば、図6に示すように、平面視するとZの字形を傾斜させた形状(平面視傾斜型Z形状)をした複数のフィン構成部52Aを備えた伝熱管31として形成することもできる。
なお、図6は、平面視Z形状をしたフィン構成部52Aを有する管内面の拡大平面図である。但し、図6中、前記フィン構成部52A、前記突出片16の頂部のみを模式的に示している。
Specifically, for example, as shown in FIG. 6, the heat transfer tube of the present invention includes a plurality of fin components 52 </ b> A having a Z-shaped shape (planar inclined Z shape) when viewed in plan. Alternatively, the heat transfer tube 31 can be formed.
FIG. 6 is an enlarged plan view of the inner surface of the tube having the fin constituting portion 52A having a Z shape in plan view. However, in FIG. 6, only the top part of the said fin structure part 52A and the said protrusion piece 16 is shown typically.

平面視Z形状をした分断されたフィン構成部52Aは、該フィン構成部52Aに第1突出片16aを備えるに加えて、第4突出片16dを備えた形態である。   The divided fin structure 52A having a Z shape in plan view is a form in which the fin structure 52A includes the first protrusion 16a and the fourth protrusion 16d.

さらに、前記伝熱管31は、管軸方向D1の上流側と下流側を図6に示した方向と逆にして、冷媒を流しても、第4突出片16dが前記フィン構成部52Aの主溝螺旋方向下流側D2dに、管軸方向上流側D1uの前記主溝13に突出した構成となる(図6中、括弧内に示した矢印参照)。   Further, even if the heat transfer tube 31 has the upstream side and the downstream side in the tube axis direction D1 opposite to the directions shown in FIG. 6 and the refrigerant flows, the fourth projecting piece 16d remains in the main groove of the fin component 52A. In the spiral direction downstream side D2d, the main groove 13 is projected on the upstream side in the tube axis direction D1u (see the arrow in parentheses in FIG. 6).

すなわち、上述した構成の伝熱管31は、管内に、管軸方向D1の一方側と他方側のいずれの側を上流側として下流側へ冷媒を流しても、第1突出片16a、第4突出片16dのいずれか一方が必ず、前記フィン構成部52Aの主溝螺旋方向下流側D2dに、管軸方向上流側D1uの前記主溝13に突出した構成となる。   That is, in the heat transfer tube 31 having the above-described configuration, the first projecting piece 16a and the fourth projecting member are not affected even if the refrigerant flows through the tube to the downstream side with either one of the tube axis direction D1 and the other side as the upstream side. Either one of the pieces 16d necessarily protrudes to the main groove spiral direction downstream side D2d of the fin component 52A and protrudes to the main groove 13 on the upstream side D1u in the tube axis direction.

よって、前記構成の伝熱管は、熱交換器への取り付け方向に関らず、上述した優れた性能を確保することができ、取り付け方向を意識することなく容易に熱交換器に対して取り付けることができる。   Therefore, the heat transfer tube having the above configuration can ensure the above-described excellent performance regardless of the mounting direction to the heat exchanger, and can be easily mounted on the heat exchanger without being aware of the mounting direction. Can do.

本発明は、上述した本実施形態のように様々な構成により形成することができるが、上述した構成に限定されるものではなく、多くの実施形態を得ることができる。
なお、上述した実施形態と、この発明の構成との対応において、この実施形態の主溝13は、この発明のフィン間に対応するものとする。
The present invention can be formed by various configurations as in the above-described embodiment, but is not limited to the above-described configuration, and many embodiments can be obtained.
In the correspondence between the above-described embodiment and the configuration of the present invention, the main groove 13 of this embodiment corresponds to between the fins of the present invention.

10…管内面
11,21,31…伝熱管
12,42,52…フィン
12A,42A,52A…フィン構成部
13…主溝
14…副溝
15…副溝形成部分
16…突出片
D1…管軸方向
D2…主溝螺旋方向
D3…副溝螺旋方向
DESCRIPTION OF SYMBOLS 10 ... Tube inner surface 11, 21, 31 ... Heat-transfer tube 12, 42, 52 ... Fin 12A, 42A, 52A ... Fin component 13 ... Main groove 14 ... Sub groove 15 ... Sub groove forming part 16 ... Projection piece D1 ... Tube axis Direction D2 ... Main groove spiral direction D3 ... Sub groove spiral direction

Claims (1)

管内面に、管軸方向に対して所定角度(β)を有する高さ(H)が0.1mm〜0.30mmの螺旋状のフィンが形成された外径7mmより小さい蒸発用伝熱管であって、
前記管内面に、前記フィンを深さ(H)が0.1mm〜0.30mmの螺旋状の副溝によってフィン形成方向に分断されるとともに、該管内面に螺旋状に突出する複数のフィン構成部を形成し、
前記フィン構成部の螺旋方向の上流側と下流側とのうち、少なくとも一方側で、隣り合う前記フィンとの間に突出する突出片を形成し、
前記突出片には、
前記フィン構成部の螺旋方向下流側で、前記管軸方向上流側で隣り合う前記フィンとの間に突出する第1突出片と、
前記フィン構成部の管軸方向下流側で、前記第1突出片の有する側と反対側で隣り合う前記フィンとの間に突出する第2突出片と、
前記フィン構成部の螺旋方向上流側で、前記第1突出片の有する側で隣り合う前記フィンとの間に突出する第3突出片と、
前記フィン構成部の螺旋方向上流側で、前記第1突出片の有する側と反対側で隣り合う前記フィンとの間に突出する第4突出片とを備え、
記突出片の、フィン間の間隔(W)に対する突出長さ(W)の割合(W/W)を0.3〜0.9で形成し、
前記フィン構成部を、前記フィン形成方向におけるフィン構成部間の間隔(P )を5mm以上に形成し、
前記フィンに対する前記突出片の角度(α)を、5°≦α≦20°に設定した
蒸発用伝熱管。
A heat transfer tube for evaporation smaller than an outer diameter of 7 mm in which a spiral fin having a height (H f ) of 0.1 mm to 0.30 mm having a predetermined angle (β 1 ) with respect to the tube axis direction is formed on the inner surface of the tube. Because
It said inner surface, a plurality of fins that protrude while being divided in the fin forming direction by the fin depth (H n) is spiral minor groove of 0.1Mm~0.30Mm, helically tube inner surface Forming the component,
Forming a projecting piece projecting between the adjacent fins on at least one of the upstream side and the downstream side in the spiral direction of the fin component,
In the protruding piece,
A first projecting pieces out collision between a spiral direction downstream side of the fin structure part, and the fins adjacent to each other in the tube axial direction upstream side,
A second projecting piece projecting between the fins adjacent to the fin on the downstream side in the tube axis direction on the opposite side of the first projecting piece;
A third projecting piece projecting between the fins adjacent to the fin on the upstream side in the spiral direction on the side of the first projecting piece;
A fourth projecting piece projecting between the fins adjacent to the fin on the upstream side in the spiral direction on the opposite side to the side having the first projecting piece ;
Before Symbol protruding piece protruding length to the spacing between the fins (W 2) the ratio of (W 1) (W 1 / W 2) is formed at 0.3 to 0.9,
The fin component portion is formed with a spacing (P f ) between the fin component portions in the fin formation direction of 5 mm or more,
The angle (α) of the protruding piece with respect to the fin was set to 5 ° ≦ α ≦ 20 °.
Heat transfer tube for evaporation .
JP2009129106A 2009-05-28 2009-05-28 Heat transfer tube Active JP5435460B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009129106A JP5435460B2 (en) 2009-05-28 2009-05-28 Heat transfer tube
CN201080022922.2A CN102449424B (en) 2009-05-28 2010-05-27 Heat-transfer pipe
KR1020117024844A KR101695044B1 (en) 2009-05-28 2010-05-27 Heat transmission tube
PCT/JP2010/058990 WO2010137647A1 (en) 2009-05-28 2010-05-27 Heat transmission tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009129106A JP5435460B2 (en) 2009-05-28 2009-05-28 Heat transfer tube

Publications (2)

Publication Number Publication Date
JP2010276270A JP2010276270A (en) 2010-12-09
JP5435460B2 true JP5435460B2 (en) 2014-03-05

Family

ID=43222752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009129106A Active JP5435460B2 (en) 2009-05-28 2009-05-28 Heat transfer tube

Country Status (4)

Country Link
JP (1) JP5435460B2 (en)
KR (1) KR101695044B1 (en)
CN (1) CN102449424B (en)
WO (1) WO2010137647A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102679791B (en) * 2011-03-10 2015-09-23 卢瓦塔埃斯波公司 For the heat-transfer pipe of heat exchanger
KR102230073B1 (en) * 2016-07-07 2021-03-19 지멘스 악티엔게젤샤프트 Steam generator pipe with turbine mounting body
JP6803061B2 (en) * 2016-09-26 2020-12-23 伸和コントロールズ株式会社 Heat exchanger
JP6961224B2 (en) * 2017-12-28 2021-11-05 ホクシン産業株式会社 Fuel oil transfer device
CN109944677B (en) * 2019-03-01 2024-03-01 冀凯河北机电科技有限公司 Novel engine fin for air engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332034A (en) * 1992-12-16 1994-07-26 Carrier Corporation Heat exchanger tube
EP0720713A1 (en) * 1993-09-30 1996-07-10 Siemens Aktiengesellschaft Internally ribbed tube for a steam generator, and a steam generator using such tubes
CN1084876C (en) * 1994-08-08 2002-05-15 运载器有限公司 Heat transfer tube
JP3323682B2 (en) * 1994-12-28 2002-09-09 株式会社日立製作所 Heat transfer tube with internal cross groove for mixed refrigerant
KR100245383B1 (en) * 1996-09-13 2000-03-02 정훈보 Pipe with crossing groove and manufacture thereof
JPH1183368A (en) * 1997-09-17 1999-03-26 Hitachi Cable Ltd Heating tube having grooved inner surface
EP1845327B1 (en) * 2002-06-10 2008-10-29 Wolverine Tube Inc. Method of manufacturing a heat transfer tube
CN201173728Y (en) * 2007-12-14 2008-12-31 华南理工大学 Seamless inner thread heat transfer tube

Also Published As

Publication number Publication date
KR20130131499A (en) 2013-12-04
CN102449424A (en) 2012-05-09
JP2010276270A (en) 2010-12-09
WO2010137647A1 (en) 2010-12-02
KR101695044B1 (en) 2017-01-10
CN102449424B (en) 2015-09-30

Similar Documents

Publication Publication Date Title
JP4679542B2 (en) Finned tube heat exchanger, heat exchanger unit using the same, and air conditioner
ES2449091T3 (en) Grooved tubes for reversible use in heat exchangers
JP5435460B2 (en) Heat transfer tube
WO2007017969A1 (en) Air conditioner and method of producing air conditioner
US7267166B2 (en) Grooved tubes for heat exchangers that use a single-phase fluid
JP4119836B2 (en) Internal grooved heat transfer tube
JP2018021756A (en) Heat transfer tube for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
WO2013187156A1 (en) Heat transfer pipe for fin-and-tube type heat exchanger, and fin-and-tube type heat exchanger
JP4897968B2 (en) Heat transfer tube and method of manufacturing heat transfer tube
JP2011075122A (en) Aluminum internally-grooved heat transfer tube
JP2009186130A (en) Heat transfer tube for radiator with inner face fin
JP2011112315A (en) Fin tube type heat exchanger and air conditioner using the same
JP4826343B2 (en) Heat transfer tube for refrigerant of heat pump type heat exchange device and gas cooler using the same
JP6104357B2 (en) Heat exchange device and refrigeration cycle device provided with the same
JP2006098033A (en) Return bent tube, and fin and tube type heat exchanger
JP2009243722A (en) Internally grooved pipe
JP6141514B2 (en) Refrigeration cycle equipment
JP6177195B2 (en) Heat transfer tube for supercooled double tube heat exchanger
JP2012122692A (en) Heat transfer tube with grooved inner surface
JP2012093053A (en) Heat exchanger, method for manufacturing the same, refrigerator, and air conditioner
JP5566001B2 (en) Internally grooved heat transfer tube for gas coolers using carbon dioxide refrigerant
JP4729088B2 (en) Heat transfer tube and method of manufacturing the heat transfer tube
JP2018071895A (en) Heat exchanger
JP4143973B2 (en) Air conditioner
JP2010096453A (en) Heat-transfer tube for heat exchanger of heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131203

R151 Written notification of patent or utility model registration

Ref document number: 5435460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250