JP2997189B2 - Condensation promoting type heat transfer tube with internal groove - Google Patents

Condensation promoting type heat transfer tube with internal groove

Info

Publication number
JP2997189B2
JP2997189B2 JP7198237A JP19823795A JP2997189B2 JP 2997189 B2 JP2997189 B2 JP 2997189B2 JP 7198237 A JP7198237 A JP 7198237A JP 19823795 A JP19823795 A JP 19823795A JP 2997189 B2 JP2997189 B2 JP 2997189B2
Authority
JP
Japan
Prior art keywords
heat transfer
groove
transfer tube
refrigerant
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7198237A
Other languages
Japanese (ja)
Other versions
JPH0942881A (en
Inventor
孝司 山本
利明 橋爪
康敏 森
哲也 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16387790&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2997189(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP7198237A priority Critical patent/JP2997189B2/en
Publication of JPH0942881A publication Critical patent/JPH0942881A/en
Application granted granted Critical
Publication of JP2997189B2 publication Critical patent/JP2997189B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Rigid Pipes And Flexible Pipes (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非共沸冷媒を用い
た、凝縮促進型の内面溝付伝熱管に関し、ルームエアコ
ン等の空調機用伝熱管等に使用される。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a condensation-promoting heat transfer tube having an inner groove using a non-azeotropic refrigerant, and is used for a heat transfer tube for an air conditioner such as a room air conditioner.

【0002】[0002]

【従来の技術】冷凍機や、ルームエアコン等の空調機用
の熱交換器に使用される伝熱管は、管内にフレオンガス
(フレオンは炭化水素のフルオルクロル置換体類に対す
るデュポン社の商品名)等の冷媒を流し、前記冷媒を蒸
発又は凝縮させて管外を流れる流体との間で熱交換を行
うものである。前記伝熱管には、図6イに示すように、
内面に微細な螺旋状の溝20を多数形成して伝熱特性を高
めた内面溝付伝熱管が多用されている(図6イで溝部分
は展開図で示してある)。この内面溝付伝熱管10には、
種々の溝形状のものが提案されている(特開昭60−1421
95号等)が、溝20の向きと管軸とのなすリード角θは、
通常20度付近に設計されている。図6ロは、螺旋溝の斜
視図である。図で20は螺旋溝、21は溝の山部である。と
ころで、冷媒には、従来よりフレオンR22、R12が用い
られているが、これらはオゾン層を破壊する為、環境保
全の上から全廃する計画が進められている。フレオンR
22、R12の代替品には、オゾン層に影響を及ぼさないフ
レオンR32、R134a、R125 等が挙げられている。特に
これら冷媒を混合した [R32/R134a/R125]や [R32
/R125]等の混合冷媒は、従来のフレオンR22等に近い
冷却能力を有し、しかも不燃性の為、代替品として高い
評価を得ている。
2. Description of the Related Art Heat transfer tubes used in heat exchangers for air conditioners such as refrigerators and room air conditioners are filled with freon gas (Freon is a trade name of DuPont for fluorochloro-substituted hydrocarbons). A refrigerant is caused to flow, and the refrigerant is evaporated or condensed to exchange heat with a fluid flowing outside the pipe. In the heat transfer tube, as shown in FIG.
A heat transfer tube with an inner surface groove having a large number of fine spiral grooves 20 formed on the inner surface to improve heat transfer characteristics is frequently used (the groove portion is shown in a developed view in FIG. 6A). In this heat transfer tube 10 with an inner groove,
Various groove shapes have been proposed (JP-A-60-1421).
No. 95), but the lead angle θ between the direction of the groove 20 and the pipe axis is
It is usually designed around 20 degrees. FIG. 6B is a perspective view of the spiral groove. In the figure, 20 is a spiral groove, and 21 is a groove crest. By the way, Freon R22 and R12 have been conventionally used as the refrigerant, but since these destroy the ozone layer, a plan to completely eliminate them from the viewpoint of environmental conservation is being advanced. Freon R
22 and R12 substitutes include Freon R32, R134a, R125, etc. which do not affect the ozone layer. In particular, [R32 / R134a / R125] and [R32
/ R125] has a cooling capacity close to that of the conventional Freon R22 and the like, and is highly evaluated as a substitute because it is nonflammable.

【0003】前述の混合冷媒には、共沸冷媒と非共沸冷
媒とがあり、前記の [R32/R134a/R125]や [R32/
R125]等の混合冷媒はともに非共沸冷媒である。共沸冷
媒は、液化開始温度(露点)と液化終了温度(沸点)と
が同一で、単一冷媒と同じ挙動を示すので特に問題はな
いが、非共沸冷媒は、液化開始温度と液下終了温度が異
なる為、凝縮の場合は、気液界面で、高沸点成分が多く
凝縮し、低沸点成分が気相側に濃縮される。この濃度差
が拡散抵抗や熱抵抗を惹起して、凝縮熱伝達率を低下さ
せる。蒸発の場合も同様の現象が起きて、蒸発熱伝達率
が低下する。前記濃度差を低減する方法として、蒸発の
場合に対しては、溝の山部に切込みを設けて沸騰を促進
させる方法が知られている(特平1-317637号)。又凝縮
の場合に対しては、溝の山部にハイフィンを一定のピッ
チで設けて、乾き度の高い領域で冷媒の流れを乱して凝
縮を促進する方法が提案されている(特開平6-307787号
等)。
The above-mentioned mixed refrigerants include an azeotropic refrigerant and a non-azeotropic refrigerant, and the above-mentioned [R32 / R134a / R125] and [R32 /
R125] and the like are both non-azeotropic refrigerants. The azeotropic refrigerant has the same liquefaction start temperature (dew point) and liquefaction end temperature (boiling point) and exhibits the same behavior as a single refrigerant, so there is no particular problem. Since the end temperatures are different, in the case of condensation, many high-boiling components are condensed at the gas-liquid interface, and low-boiling components are concentrated on the gas phase side. This concentration difference causes diffusion resistance and thermal resistance, and lowers the condensation heat transfer coefficient. In the case of evaporation, the same phenomenon occurs, and the heat transfer coefficient of evaporation decreases. As a method for reducing the concentration difference, a method is known in which, in the case of evaporation, a notch is provided in a crest of a groove to promote boiling (Japanese Patent Publication No. 1-317637). Also, in the case of condensation, a method has been proposed in which high fins are provided at a constant pitch in the crests of the grooves to disturb the flow of the refrigerant in a region where the dryness is high to promote the condensation (Japanese Patent Laid-Open No. Hei 6 (1994)). -307787).

【0004】[0004]

【発明が解決しようとする課題】しかし、前述のハイフ
ィンを設けて凝縮を促進する方法は、乾き度の高い領域
では冷媒の多くが蒸気であり、蒸気は体積流速が大きい
為、管内圧力損失が増加し、その結果消費電力が増大す
るという問題があった。このようなことから、本発明者
等は、非共沸冷媒を用いた内面溝付伝熱管の凝縮熱伝達
率について研究を行い、凝縮熱伝達率には、内面溝のリ
ード角が大きく影響することを知見し、更に研究を重ね
て本発明を完成させるに至った。本発明の目的は、圧力
損失を増加させずに、凝縮熱伝達率を向上させ得る、非
共沸冷媒を用いた凝縮促進型内面溝付伝熱管を提供する
ことにある。
However, in the method of providing condensation by providing the above-mentioned high fins, most of the refrigerant is steam in a region where the dryness is high, and since the steam has a large volume flow velocity, the pressure loss in the pipe is reduced. There is a problem that the power consumption increases as a result. From these facts, the present inventors have studied the condensation heat transfer coefficient of a heat transfer tube with an inner groove using a non-azeotropic refrigerant, and the lead angle of the inner groove has a great effect on the heat transfer coefficient of condensation. Having found that, the present inventors have further studied and completed the present invention. An object of the present invention is to provide a condensation-promoting heat transfer tube with a non-azeotropic refrigerant, which can improve the condensation heat transfer coefficient without increasing the pressure loss.

【0005】[0005]

【課題を解決するための手段】請求項1記載の発明は、
冷媒に非共沸冷媒を用いた凝縮促進型の内面溝付伝熱管
において、内面溝のリード角が25度以上で、かつ溝深
さが0.15〜0.35mmであることを特徴とする凝
縮促進型内面溝付伝熱管である。
According to the first aspect of the present invention,
In the condensation-promoting heat transfer tube with an inner groove using a non-azeotropic refrigerant as the refrigerant, the lead angle of the inner groove is 25 degrees or more , and the groove depth is
A condensation-promoting heat transfer tube with an inner surface groove having a diameter of 0.15 to 0.35 mm .

【0006】この発明の内面溝付伝熱管は、内面溝のリ
ード角θを25度以上にしたので、溝内の液膜が充分に攪
拌されるようになり、溝内の冷媒の濃度差が低減して凝
縮熱伝達率が向上する。又本発明では、溝の山部にハイ
フィンを設けないので、圧力損失が低く抑えられ、少な
い電力消費量で、高い凝縮熱伝達率が得られる。本発明
において、リード角θを25度以上に限定した理由は、リ
ード角が25度未満では溝内の冷媒液膜が充分に攪拌され
ず、冷媒内の濃度差が低減しない為である。尚、本発明
の内面溝付伝熱管に単一冷媒(共沸冷媒)を流しても、
単一冷媒は、溝内の冷媒液膜に濃度差が生じない為、内
面溝のリード角を大きくした効果は現れない。
In the heat transfer tube with an inner groove according to the present invention, the lead angle θ of the inner groove is set to 25 degrees or more, so that the liquid film in the groove is sufficiently stirred, and the difference in the concentration of the refrigerant in the groove is reduced. It reduces and improves the condensation heat transfer coefficient. Further, in the present invention, since no high fin is provided at the peak of the groove, the pressure loss can be suppressed low, and a high condensing heat transfer coefficient can be obtained with a small amount of power consumption. In the present invention, the reason why the lead angle θ is limited to 25 degrees or more is that when the lead angle is less than 25 degrees, the refrigerant liquid film in the groove is not sufficiently stirred, and the concentration difference in the refrigerant does not decrease. In addition, even if a single refrigerant (azeotropic refrigerant) flows through the inner grooved heat transfer tube of the present invention,
Since a single refrigerant does not cause a concentration difference in the refrigerant liquid film in the groove, the effect of increasing the lead angle of the inner surface groove does not appear.

【0007】本発明の内面溝付伝熱管を図を参照して説
明する。図1は、本発明の内面溝付伝熱管の溝形状の態
様を示す部分切欠き図である。図で10は内面溝付伝熱管
で、管10の内面に螺旋状の溝20が形成されたものであ
る。螺旋溝20の方向と軸方向とのなすリード角θは45°
に形成されている(図1で溝部分は展開図で示してあ
る)。本発明の内面溝付伝熱管は、素管をフローティン
グプラグ引きする等の通常の製法により製造することが
できる。図4に示すように、内面溝の向きが変化したよ
うな特殊形状の内面溝付伝熱管は、例えば、条の一面に
溝を形成し、この条を溝形成面を内側にしてロールフォ
ーミングにより管状に成形し、端部を溶接する方法によ
り製造できる。
A heat transfer tube with an inner groove according to the present invention will be described with reference to the drawings. FIG. 1 is a partially cutaway view showing a groove shape of a heat transfer tube with an inner surface groove according to the present invention. In the figure, reference numeral 10 denotes a heat transfer tube having an inner surface groove, in which a spiral groove 20 is formed on the inner surface of the tube 10. The lead angle θ between the direction of the spiral groove 20 and the axial direction is 45 °
(The groove portion is shown in a developed view in FIG. 1). The heat transfer tube with an inner surface groove of the present invention can be manufactured by a normal manufacturing method such as drawing a raw tube with a floating plug. As shown in FIG. 4, a heat transfer tube with an inner surface groove having a special shape in which the direction of the inner surface groove is changed, for example, a groove is formed on one surface of the line, and the line is formed by roll forming with the groove forming surface inside. It can be manufactured by a method of forming into a tube and welding the ends.

【0008】本発明において、前記内面溝の深さが0.
15mm未満では液膜が溝のフィンを越えて流れるよう
になり、液膜が充分攪拌されなくなる。又0.35mm
を超えると圧力損失が増加する傾向を示す。従って溝の
深さは0.15〜0.35mmにする。
[0008] In the present invention, the depth of the inner surface groove may be set to 0.1.
If it is less than 15 mm, the liquid film flows over the groove fins, and the liquid film is not sufficiently stirred. 0.35mm
When the pressure exceeds, the pressure loss tends to increase. Thus the depth of the groove you to 0.15-0.35 mm.

【0009】[0009]

【実施例】以下に、本発明を実施例により詳細に説明す
る。 (実施例1)外径 7.0mmφの銅管の内面に、螺旋溝をフ
ローティングプラグ法により形成して、有効長さ4mの
内面溝付伝熱管を作製した。螺旋溝の深さ(山部の高
さ、図6ロのH)は0.25mm、溝数は50とした。リード角
は種々に変化させた。
The present invention will be described below in detail with reference to examples. (Example 1) A spiral groove was formed on the inner surface of a copper tube having an outer diameter of 7.0 mm by a floating plug method to produce a heat transfer tube with an inner surface groove having an effective length of 4 m. The depth of the spiral groove (height of the peak, H in FIG. 6B) was 0.25 mm, and the number of grooves was 50. The lead angle was varied.

【0010】得られた各々の内面溝付伝熱管について管
内凝縮熱伝達率を図2に示す装置を用いて測定した。図
2に示す装置は、テストセクションが内管と外管の二重
管式になっており、内管として内面溝付伝熱管10をセッ
トし、内面溝付伝熱管10内に冷媒を流し、内面溝付伝熱
管10と外管30との間の環状間隙部31に冷却水を所定量流
し、このときの冷却水の上昇温度(T2 −T1)から管内
凝縮熱伝達率を測定する装置である。内面溝付伝熱管10
の入口と出口の冷媒の平均凝縮飽和温度は48℃に、入口
の過熱度は35℃に、出口の過冷却度は5℃にそれぞれ制
御した。前記制御は、前記装置に具備された蒸発器40、
圧縮機41、膨張弁42を調節することにより行った。冷媒
には、非共沸冷媒のフレオンR407C、又はR22を用い
た。フレオンR407Cは、フレオンR32、R134a、R125
を、23:52:25の重量比で混合した [R32/R134a/R12
5]の混合冷媒である。内面溝付伝熱管内の冷媒流速は、
エアコン等で通常使用される 200kg/m2sec. とした。結
果を図3に示す。
The condensed heat transfer coefficient of each of the thus obtained heat transfer tubes with internal grooves was measured using the apparatus shown in FIG. In the apparatus shown in FIG. 2, the test section is a double tube type of an inner tube and an outer tube, and an inner grooved heat transfer tube 10 is set as an inner tube, and a refrigerant flows through the inner grooved heat transfer tube 10, flowing a predetermined amount of coolant in the annular gap 31 between the outer tube 30 and an inner surface grooved heat transfer tube 10, to measure the tube condensation heat transfer rate from the elevated temperature of the cooling water at this time (T 2 -T 1) Device. Heat transfer tube with internal groove 10
The average condensed saturation temperature of the refrigerant at the inlet and outlet was controlled at 48 ° C, the superheat at the inlet was controlled at 35 ° C, and the supercooling at the outlet was controlled at 5 ° C. The control is performed by an evaporator 40 provided in the device,
The adjustment was performed by adjusting the compressor 41 and the expansion valve. As the refrigerant, non-azeotropic refrigerant Freon R407C or R22 was used. Freon R407C is Freon R32, R134a, R125
Were mixed in a weight ratio of 23:52:25 [R32 / R134a / R12
5]. Refrigerant flow rate in the inner grooved heat transfer tube is
It was set to 200kg / m 2 sec. Normally used for air conditioners. The results are shown in FIG.

【0011】図3より明らかなように、冷媒がR22の場
合は、管内凝縮熱伝達率はリード角が18°のところでピ
ーク値(4.1kw/m2k) を示し、その後漸減する。冷媒がR
407Cの場合は、管内凝縮熱伝達率はリード角が20°〜30
°のところで急上昇し、30°を超えたあたりから漸増す
る。R407Cの管内凝縮熱伝達率は、リード角18°ではR
22のピーク値より24%も低い。しかしリード角25°では
10%低く、リード角40°では3%低いだけとなる。即
ち、代替品のR407Cを用いても、リード角を25°以上に
することにより、従来のR22の冷媒とほぼ同等の熱伝達
率が得られる。
As is clear from FIG. 3, when the refrigerant is R22, the condensed heat transfer coefficient in the tube shows a peak value (4.1 kw / m 2 k) at a lead angle of 18 °, and then gradually decreases. Refrigerant is R
In the case of 407C, the condensed heat transfer coefficient in the tube is from 20 ° to 30
It rises sharply at ° and gradually increases from around 30 °. The condensation heat transfer coefficient in the pipe of R407C is R at the lead angle of 18 °.
24% lower than the peak value of 22. But at a lead angle of 25 °
10% lower and only 3% lower at 40 ° lead angle. That is, even when the substitute R407C is used, a heat transfer coefficient almost equal to that of the conventional refrigerant of R22 can be obtained by setting the lead angle to 25 ° or more.

【0012】(実施例2)外径 7.0mmφの銅管の内面に
リード角θが25°以上の螺旋溝をフローティングプラグ
法により形成して内面溝付伝熱管を製造した。溝数は50
とした。リード角と溝深さは種々に変化させた。
Example 2 A spiral groove having a lead angle θ of 25 ° or more was formed on the inner surface of a copper tube having an outer diameter of 7.0 mmφ by a floating plug method to manufacture a heat transfer tube with an inner surface groove. 50 grooves
And The lead angle and groove depth were varied.

【0013】(比較例1)リード角θを20°とした他
は、実施例1と同じ方法により内面溝付伝熱管を製造し
た。
Comparative Example 1 A heat transfer tube with an inner surface groove was manufactured in the same manner as in Example 1 except that the lead angle θ was changed to 20 °.

【0014】(比較例2)溝の山部に所定間隔を開けて
高さ 0.3mmのハイフィンを形成した他は、比較例1と同
じ方法により内面溝付伝熱管を製造した。
Comparative Example 2 A heat transfer tube with an inner surface groove was manufactured in the same manner as in Comparative Example 1, except that a high fin having a height of 0.3 mm was formed at a predetermined interval in the crest of the groove.

【0015】得られた内面溝付伝熱管について、管内凝
縮熱伝達率を実施例1と同じ方法により測定した。冷媒
にはR407Cを用いた。結果を表1に示す。
The condensed heat transfer coefficient of the obtained inner grooved heat transfer tube was measured in the same manner as in Example 1. R407C was used as a refrigerant. Table 1 shows the results.

【0016】 *溝の山部に高さ0.3 mmのハイフィンを形成した。[0016] * A 0.3 mm high hi-fin was formed at the top of the groove.

【0017】表1より明らかなように、本発明例品 (N
o.1〜4)は、いずれも管内凝縮熱伝達率が高かった。こ
れは溝内の冷媒液膜が十分攪拌され、濃度差が減少した
為である。特にリード角が大きく、又溝の深い(山部の
高い)ものは管内凝縮熱伝達率が高い値を示した。これ
に対し、比較例品のNo.5,6は、リード角が小さかった
為、管内凝縮熱伝達率が低下した。又No.7は、溝の山部
にハイフィンを形成した為に、管内凝縮熱伝達率は向上
したが、圧力損失が著しく増加した。
As is clear from Table 1, the products of the present invention (N
o.1 to 4) all had a high condensation heat transfer coefficient in the tube. This is because the refrigerant liquid film in the groove was sufficiently stirred, and the concentration difference was reduced. In particular, those having a large lead angle and a deep groove (high ridge) showed a high value of the condensed heat transfer coefficient in the tube. On the other hand, in Comparative Examples Nos. 5 and 6 , since the lead angle was small, the in-tube condensation heat transfer rate was reduced. In No. 7 , the condensation heat transfer coefficient in the pipe was improved due to the formation of the high fin at the peak of the groove, but the pressure loss was significantly increased.

【0018】(実施例3)図4イ〜ハに示す溝形状の、
外径が6.0mm の内面溝付伝熱管を製造した。この内面溝
付伝熱管の溝形状は、溝の向きを途中で変化させたもの
である。この内面溝付伝熱管は、銅条の片面に溝を形成
し、この銅条を、溝形成面を内側にしてロールフォーミ
ング加工により管状に成形し、縁端部を溶接して製造し
た。リード角は40度以上、溝深さは0.25mm、溝数は50に
した。得られた内面溝付伝熱管について、実施例1と同
じ方法により管内凝縮熱伝達率を、冷媒流速を種々に変
化させて測定した。冷媒にはR407Cを用いた。比較の
為、溝深さ、溝数が同じで、リード角が20度の内面溝付
伝熱管を作製し(図4ニ)同様の測定を行った。結果を
図5に示す。
(Embodiment 3) The groove shape shown in FIGS.
An inner grooved heat transfer tube with an outer diameter of 6.0 mm was manufactured. The groove shape of the heat transfer tube with an inner surface groove is such that the direction of the groove is changed on the way. This heat transfer tube with internal grooves was manufactured by forming a groove on one surface of a copper strip, forming the copper strip into a tubular shape by roll forming with the groove forming surface inside, and welding the edge. The lead angle was 40 degrees or more, the groove depth was 0.25 mm, and the number of grooves was 50. About the obtained heat transfer tube with an inner surface groove, the condensed heat transfer coefficient in the tube was measured by changing the flow rate of the refrigerant in various manners in the same manner as in Example 1. R407C was used as a refrigerant. For comparison, a heat transfer tube with an inner surface groove having the same groove depth and the same number of grooves and a lead angle of 20 degrees was manufactured (FIG. 4D), and the same measurement was performed. FIG. 5 shows the results.

【0019】図5より明らかなように、リード角が40°
以上の本発明例品イ〜ハは、リード角が20°の比較例品
ニに較べて管内凝縮熱伝達率が高い値を示した。管内凝
縮熱伝達率は、リード角θが大きい程、冷媒流速が速い
程高い値を示した。このように、本発明の内面溝付伝熱
管は、種々の溝形状において、優れた管内凝縮熱伝達率
が得られるものである。
As apparent from FIG. 5, the lead angle is 40 °.
The above examples A to C of the present invention exhibited higher values of the in-tube condensation heat transfer coefficient than the comparative example D having a lead angle of 20 °. The condensed heat transfer coefficient in the pipe showed a higher value as the lead angle θ was larger and the refrigerant flow velocity was faster. As described above, the heat transfer tube with an inner surface groove according to the present invention can obtain an excellent heat transfer coefficient in the tube in various groove shapes.

【0020】以上、 [R32/R134a/R125](R407C)
の混合冷媒について説明したが、本発明の伝熱管は、
[R32/R125]等の他の混合冷媒を用いても、冷媒が非
共沸冷媒であれば、同様の効果が得られるものである。
又本発明の伝熱管は、蒸発型の伝熱管として用いること
も可能である。
[R32 / R134a / R125] (R407C)
Described the mixed refrigerant, the heat transfer tube of the present invention,
The same effect can be obtained by using other mixed refrigerants such as [R32 / R125] if the refrigerant is a non-azeotropic refrigerant.
The heat transfer tube of the present invention can also be used as an evaporative heat transfer tube.

【0021】[0021]

【発明の効果】以上に述べたように、本発明の非共沸冷
媒を用いた、凝縮促進型の内面溝付伝熱管は、内面溝の
リード角が25度以上と大きい為、溝内の冷媒液膜が充分
に攪拌されて、非共沸冷媒の気液界面での濃度差が減少
し、その為拡散抵抗や熱抵抗が減じて管内凝縮熱伝達率
が向上する。又本発明では、溝の山部にハイフィンを設
けたりしないので、圧力損失の増を招くことがなく、
電力消費量を少なくできる。しかも、溝の深さを0.1
5〜0.35mmに規定するので、液膜が溝のフィンを
越えて流れるのが防止されるとともに、ここでも圧力損
失の増加が抑えられる。更にオゾン層を破壊しない非共
沸冷媒が使用できる。依って、工業上顕著な効果を奏す
る。
As described above, the condensation-promoting heat transfer tube using the non-azeotropic refrigerant according to the present invention has a large inner groove lead angle of 25 degrees or more. The refrigerant liquid film is sufficiently stirred, and the concentration difference of the non-azeotropic refrigerant at the gas-liquid interface is reduced, so that the diffusion resistance and the thermal resistance are reduced, and the condensed heat transfer coefficient in the pipe is improved. Also in the present invention, since no or provided Haifin the crests of the grooves, without incurring increase in pressure loss,
Power consumption can be reduced. Moreover, the groove depth is set to 0.1
Since it is defined as 5 to 0.35 mm, the liquid film is
Is prevented from flowing over
Loss increase is suppressed. Further, a non-azeotropic refrigerant that does not destroy the ozone layer can be used. Therefore, an industrially remarkable effect is achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の内面溝付伝熱管の態様を示す部分切欠
図である。
FIG. 1 is a partially cutaway view showing an embodiment of a heat transfer tube with an inner groove according to the present invention.

【図2】管内凝縮熱伝達率を測定する装置の説明図であ
る。
FIG. 2 is an explanatory diagram of an apparatus for measuring a condensed heat transfer coefficient in a pipe.

【図3】螺旋溝を有する内面溝付伝熱管のリード角と管
内凝縮熱伝達率との関係図である。
FIG. 3 is a diagram showing a relationship between a lead angle of a heat transfer tube having an inner surface groove having a spiral groove and a heat transfer coefficient of condensation in the tube.

【図4】内面溝付伝熱管の内面溝の形状説明図である。FIG. 4 is an explanatory diagram of a shape of an inner surface groove of the heat transfer tube with an inner surface groove.

【図5】図4に示した形状の内面溝を有する内面溝付伝
熱管の冷媒流速と管内凝縮熱伝達率との関係図である。
FIG. 5 is a diagram showing the relationship between the refrigerant flow rate and the condensed heat transfer coefficient in an inner grooved heat transfer tube having an inner groove having the shape shown in FIG.

【図6】従来の内面溝付伝熱管の部分切欠図である。FIG. 6 is a partially cutaway view of a conventional heat transfer tube with internal grooves.

【符号の説明】[Explanation of symbols]

10……内面溝付伝熱管 20……螺旋状の溝 21……溝の山部 30……外管 40……蒸発器 41……圧縮機 42……膨張弁 10 Heat transfer tube with inner groove 20 Spiral groove 21 Groove crest 30 Outer tube 40 Evaporator 41 Compressor 42 Expansion valve

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−144595(JP,A) 特開 昭59−38596(JP,A) 特開 平9−42880(JP,A) 特開 昭62−98200(JP,A) 特開 平8−145585(JP,A) (58)調査した分野(Int.Cl.7,DB名) F28F 1/00 - 1/44 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-60-144595 (JP, A) JP-A-59-38596 (JP, A) JP-A-9-42880 (JP, A) JP-A-62 98200 (JP, A) JP-A-8-145585 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F28F 1/00-1/44

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 冷媒に非共沸冷媒を用いた凝縮促進型の
内面溝付伝熱管において、内面溝のリード角が25度以
上で、かつ溝深さが0.15〜0.35mmであること
を特徴とする凝縮促進型内面溝付伝熱管。
1. A condensation-promoting heat transfer tube with an inner groove using a non-azeotropic refrigerant as a refrigerant, wherein the lead angle of the inner groove is 25 degrees or more and the groove depth is 0.15 to 0.35 mm . Condensation promoting type heat transfer tubes with internal grooves.
JP7198237A 1995-08-03 1995-08-03 Condensation promoting type heat transfer tube with internal groove Expired - Lifetime JP2997189B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7198237A JP2997189B2 (en) 1995-08-03 1995-08-03 Condensation promoting type heat transfer tube with internal groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7198237A JP2997189B2 (en) 1995-08-03 1995-08-03 Condensation promoting type heat transfer tube with internal groove

Publications (2)

Publication Number Publication Date
JPH0942881A JPH0942881A (en) 1997-02-14
JP2997189B2 true JP2997189B2 (en) 2000-01-11

Family

ID=16387790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7198237A Expired - Lifetime JP2997189B2 (en) 1995-08-03 1995-08-03 Condensation promoting type heat transfer tube with internal groove

Country Status (1)

Country Link
JP (1) JP2997189B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494625B2 (en) 2001-02-20 2004-02-09 株式会社神戸製鋼所 Internal grooved heat transfer tube
KR101450648B1 (en) * 2013-08-08 2014-10-15 주식회사 모레코 Promoting apparatus for condenser of Air conditioner

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101132687B1 (en) * 2011-09-21 2012-04-02 (주)파워엔지니어링 Oxygen measuring apparatus for combustion gas in powerplant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3494625B2 (en) 2001-02-20 2004-02-09 株式会社神戸製鋼所 Internal grooved heat transfer tube
KR101450648B1 (en) * 2013-08-08 2014-10-15 주식회사 모레코 Promoting apparatus for condenser of Air conditioner
WO2015020441A1 (en) * 2013-08-08 2015-02-12 주식회사 모레코 Condensation promoting device for cooling system

Also Published As

Publication number Publication date
JPH0942881A (en) 1997-02-14

Similar Documents

Publication Publication Date Title
KR100300640B1 (en) Refrigeration cycle for using a heat transfer tube for a zeotropic refrigerant mixture
EP0148609B1 (en) Heat-transfer tubes with grooved inner surface
JP4665713B2 (en) Internal grooved heat transfer tube
US7178361B2 (en) Heat transfer tubes, including methods of fabrication and use thereof
US6390183B2 (en) Heat exchanger
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
US5992513A (en) Inner surface grooved heat transfer tube
JP4119836B2 (en) Internal grooved heat transfer tube
JP2008020166A (en) Inner surface grooved heat-transfer tube for evaporator
JP2997189B2 (en) Condensation promoting type heat transfer tube with internal groove
JPH04260793A (en) Heat transfer tube with inner surface groove
JP3494625B2 (en) Internal grooved heat transfer tube
JP3417825B2 (en) Inner grooved pipe
JP2912826B2 (en) Heat transfer tube with internal groove
JPH0798165A (en) Heat exchanger
JPH01150797A (en) Heat exchanger with internal fin
JP4119765B2 (en) Internal grooved heat transfer tube
JPH04260792A (en) Small-diameter heat transfer tube
JP2001343194A (en) Inner surface grooved heat exchanger tube and heat exchanger
JP3199621B2 (en) Heat transfer tube with internal groove using mixed refrigerant
JPH0712483A (en) Heat transfer tube with inner surface groove
JP5255249B2 (en) Heat transfer tube with internal fin
JP4015047B2 (en) Internal grooved heat transfer tube
JPH08105699A (en) Heat transfer tube with inside grooves
JP2002048487A (en) Heat transfer pipe with inner surface groove

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081029

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091029

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101029

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111029

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121029

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131029

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term