JPS6239359B2 - - Google Patents
Info
- Publication number
- JPS6239359B2 JPS6239359B2 JP55100100A JP10010080A JPS6239359B2 JP S6239359 B2 JPS6239359 B2 JP S6239359B2 JP 55100100 A JP55100100 A JP 55100100A JP 10010080 A JP10010080 A JP 10010080A JP S6239359 B2 JPS6239359 B2 JP S6239359B2
- Authority
- JP
- Japan
- Prior art keywords
- tube
- heat exchanger
- grooves
- heat transfer
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000005494 condensation Effects 0.000 description 8
- 238000009833 condensation Methods 0.000 description 8
- 238000009835 boiling Methods 0.000 description 6
- 239000003507 refrigerant Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/40—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Geometry (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Metal Extraction Processes (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Description
【発明の詳細な説明】
この発明は管内液体の相変化を利用して管内外
間の熱伝達を行う伝熱管の改良に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a heat transfer tube that transfers heat between the inside and outside of the tube by utilizing a phase change of a liquid inside the tube.
伝熱管の内壁面に一種類のらせん角を有する複
数の溝を加工する例は公知である(例えば実公昭
55−14956号公報)。 Examples of machining a plurality of grooves having one type of helical angle on the inner wall surface of a heat exchanger tube are known (for example, Jikkosho et al.
55-14956).
また管軸に対して互に逆方向のねじれ角をもつ
主条溝と副条溝を加工した伝熱管も知られている
(例えば実開昭55−60089号公報)。 Heat exchanger tubes are also known in which main grooves and sub grooves are formed with twist angles in opposite directions with respect to the tube axis (for example, see Japanese Utility Model Application No. 55-60089).
前者を空調機用伝熱管として使用する場合、管
内冷媒の沸騰熱伝達を利用した蒸発器の場合と、
凝縮熱伝達を利用した凝縮器の場合とでは管内熱
伝達率に差があることが知られており、一つの熱
交換器を蒸発器と凝縮器の両方に切替えて使用す
るヒートポンプ型の空調機の場合、管内熱伝達率
の小さい方、即ち凝縮性能を基準として熱交換器
を設計しなければならないので、熱交換器自体を
大型化しなければならず不経済である。 When the former is used as a heat transfer tube for an air conditioner, when the former is used as an evaporator using boiling heat transfer of the refrigerant inside the tube,
It is known that there is a difference in the heat transfer coefficient within the tubes between a condenser that uses condensation heat transfer, and a heat pump type air conditioner that uses one heat exchanger as both an evaporator and a condenser. In this case, the heat exchanger must be designed based on the smaller in-tube heat transfer coefficient, that is, the condensing performance, and the heat exchanger itself must be enlarged, which is uneconomical.
後者は凝縮性能が前者より向上するが、主とし
て量産技術上に次の様な欠点がある。 Although the latter has better condensation performance than the former, it has the following drawbacks mainly in terms of mass production technology.
内面溝加工は一般に、被加工管内に、外周面上
に所要の溝をつけたプラグを挿入し、管外より何
らかの方法で縮管して管壁を前記プラグに押付け
ると共に、管を軸方向にプラグと相対的に移動さ
せる方式が採用される。 In general, internal groove machining involves inserting a plug with a required groove on the outer circumferential surface into the pipe to be machined, then contracting the pipe from outside the pipe by some method to press the pipe wall against the plug, and axially moving the pipe. A method is adopted in which the plug is moved relative to the plug.
工業的に成功した縮管の方法の一例は、管の外
壁に沿つて複数個のロールを遊星状に回転させる
ものであるが、経験的には、材料の移動に伴つて
生ずる管内の溝付プラグの回転方向と、縮管用ロ
ールの管まわりの回転方向とが逆になる方が加工
が円滑に行なわれることが知られている。 One example of an industrially successful tube shrinking method is to rotate multiple rolls in a planetary manner along the outer wall of the tube, but experience has shown that the grooves in the tube that occur as the material moves It is known that processing can be carried out more smoothly if the direction of rotation of the plug is opposite to the direction of rotation of the tube shrinking roll around the tube.
伝熱管が空調機の様な大量生産品に使用される
には価格が合理的なものでなければならず、従つ
て二重溝の加工も一工程で行われなければコスト
倒れで使用が不可能になる恐れがある。 In order for heat exchanger tubes to be used in mass-produced products such as air conditioners, the price must be reasonable, and therefore, if the double groove processing is not done in one process, the cost will be high and its use will become impossible. There is a possibility that it may become possible.
上記の例に示されたように、管軸に対して互に
逆方向のらせん角をもつ溝を加工する場合、互に
逆方向に回転する二組の遊星回転ロールをもつ縮
管装置を用いて加工しなければならないが、その
ような装置は構造が複雑で、操作も難しくなり、
延いては製品のコスト高につながる。 As shown in the example above, when machining grooves with helical angles in opposite directions relative to the tube axis, a tube shrinking device with two sets of planetary rotating rolls rotating in opposite directions is used. However, such equipment has a complicated structure and is difficult to operate.
This ultimately leads to higher product costs.
この発明の目的は、管内冷媒の沸騰および凝縮
熱伝達率がいずれも裸管より大きく且つバランス
のとれた、工業的に利用可能な伝熱管を提供する
ことにある。 An object of the present invention is to provide an industrially usable heat transfer tube in which the boiling and condensation heat transfer coefficients of the refrigerant inside the tube are both larger and more balanced than those of a bare tube.
斯かる目的を達成するために、この発明では、
管の内壁面に二重に施される溝を、管軸に対して
同一方向に傾斜させて交叉させた。 In order to achieve this purpose, this invention:
The double grooves formed on the inner wall surface of the tube were inclined in the same direction with respect to the tube axis and crossed.
この場合、施される二種類の溝は公知の伝熱管
の溝と同様、平均深さが0.05〜0.5mm程度、ピツ
チが0.1〜0.5mm程度の寸法が採用される。またそ
のような溝の管軸に対する傾きは0〜45゜の範囲
にあるのが望ましい。 In this case, the two types of grooves formed have dimensions of an average depth of about 0.05 to 0.5 mm and a pitch of about 0.1 to 0.5 mm, similar to the grooves of known heat exchanger tubes. The inclination of such grooves with respect to the tube axis is preferably in the range of 0 to 45 degrees.
第1図は従来公知の管内二重溝付管の例を示し
たものである。同図において、管1の内壁面2に
は管軸に対してθ1なるらせん角で複数の断面V
字形の溝3が加工されており、更に管軸に対して
θ1と逆方向のθ2なるらせん角で複数の溝4が
加工されている。この二種類の溝3,4の交叉に
よつて管内壁面には多数の凹凸5が生じ、これが
管内冷媒の沸騰及び凝縮熱伝達率の向上に寄与し
ている。 FIG. 1 shows an example of a conventionally known double-grooved tube. In the figure, the inner wall surface 2 of the tube 1 has a plurality of cross sections V at a helical angle of θ 1 with respect to the tube axis.
A groove 3 in the shape of a letter is machined, and a plurality of grooves 4 are further machined at a helical angle of θ 2 in the opposite direction to θ 1 with respect to the tube axis. The intersection of these two types of grooves 3 and 4 creates a large number of unevenness 5 on the inner wall surface of the tube, which contributes to improving the boiling and condensation heat transfer coefficient of the refrigerant in the tube.
第2図はこの発明に係る伝熱管の例を示してい
る。管1の内壁面に二種類の溝6,7が交叉して
設けられていることは第1図の場合と同様である
が、一方の溝7は管軸に対してθ3なるらせん角
をもつており、他方の溝6はθ3と同方向にθ4
なるらせん角をもつて加工されている。 FIG. 2 shows an example of a heat exchanger tube according to the present invention. The fact that two types of grooves 6 and 7 are provided intersectingly on the inner wall surface of the tube 1 is the same as in the case of FIG. 1, but one groove 7 has a helical angle of θ 3 with respect to the tube axis. The other groove 6 is θ 4 in the same direction as θ 3 .
It is machined with a helical angle.
このような組合せの溝6,7をもつた伝熱管
は、前記したような加工方法において、二種類の
マンドレルと同一方向に遊星回転するロール等を
二段に配置した簡略化された装置を用いることに
よつて容易に加工できる。 A heat exchanger tube having such a combination of grooves 6 and 7 can be manufactured by using a simplified device in which two types of mandrels and rolls that rotate planetarily in the same direction are arranged in two stages in the processing method described above. Therefore, it can be easily processed.
この発明の具体例として、外径9.53mmの薄肉銅
管の内壁面にθ3=7゜、θ4=25゜のらせん角
で二種類の細い溝(深さはθ3に対応するもの
0.07mm、θ4に対応するもの0.15mm)を、横断面
で数えて夫々65本ずつ施した管を作成した。 As a specific example of this invention, two types of narrow grooves (the depth corresponds to θ 3) with helical angles of θ 3 = 7° and θ 4 = 25° are formed on the inner wall surface of a thin-walled copper tube with an outer diameter of 9.53 mm .
0.07 mm and 0.15 mm corresponding to θ 4 ), 65 tubes were prepared in each cross section.
この管について単管における管内冷媒(フロン
R−22)の沸騰および凝縮特性を求めた結果を第
3図に示す。 Figure 3 shows the boiling and condensation characteristics of the refrigerant (Freon R-22) in the tube in this single tube.
このときの主要な測定条件は、凝縮圧力14.0
Kg/cm2G(1.5MPa)、冷媒流量46Kg/h、測定部
における管内冷媒平均乾度0.65である。 The main measurement conditions at this time are condensation pressure 14.0
Kg/cm 2 G (1.5 MPa), refrigerant flow rate 46 Kg/h, and average dryness of the refrigerant in the pipe at the measurement part was 0.65.
尚、第3図には内面が平滑な管と、らせん角が
7゜の内面溝付管について、夫々同一条件で測定
した結果を併記した。 In addition, FIG. 3 also shows the results of measurement under the same conditions for a tube with a smooth inner surface and a tube with an inner groove with a helical angle of 7 degrees.
空調機用熱交換器の熱流束が20KW/m2である
とすると、この発明の例の場合の沸騰および凝縮
熱伝達率は、内面平滑管に較べて夫々1.7倍およ
び1.9倍に達している。 Assuming that the heat flux of a heat exchanger for an air conditioner is 20 KW/ m2 , the boiling and condensing heat transfer coefficients in the case of the example of this invention are 1.7 times and 1.9 times, respectively, compared to the smooth inner surface pipe. .
この結果からも明らかなように、この発明によ
れば二種類の溝の管軸に対するらせん角を同一方
向としているため、一種類の溝をもつ管と同様に
量産可能であり、凝縮特性と蒸発特性もバランス
がとれているのでヒートポンプへの適用も直ちに
可能である等の利点があり、その工業的価値は高
い。またこの発明による伝熱管は、管内液体の沸
騰および凝縮という相変化を利用して熱伝達を行
うのに適したものであり、従つて空調機用だけで
なく、例えばヒートポンプのコンテナ材として使
用すれば、性能に優れ、しかも低コストのヒート
パイプを得ることも可能である。 As is clear from this result, according to this invention, since the helical angles of the two types of grooves with respect to the tube axis are in the same direction, mass production is possible in the same way as a tube with one type of groove, and the condensation characteristics and evaporation Since the characteristics are well-balanced, it has the advantage of being immediately applicable to heat pumps, and its industrial value is high. Furthermore, the heat transfer tube according to the present invention is suitable for transferring heat by utilizing the phase change of boiling and condensation of the liquid inside the tube, and therefore can be used not only for air conditioners but also as a container material for heat pumps, for example. For example, it is possible to obtain a heat pipe with excellent performance and low cost.
第1図イ,ロは、公知の内面溝付伝熱管の例を
示す断面図、第2図はこの発明に係る内面溝付伝
熱管の例を示す部分断面図、第3図はこの発明に
係る内面溝付伝熱管の例の単管熱伝達特性を示す
グラフである。
1:管、2:内壁面、3,4,6及び7:溝、
5:凹凸。
1A and 1B are cross-sectional views showing examples of known internally grooved heat exchanger tubes, FIG. 2 is a partial cross-sectional view showing an example of an internally grooved heat exchanger tube according to the present invention, and FIG. 3 is a cross-sectional view showing an example of a known internally grooved heat exchanger tube. It is a graph which shows the single tube heat transfer characteristic of the example of the internally grooved heat exchanger tube which concerns. 1: pipe, 2: inner wall surface, 3, 4, 6 and 7: groove,
5: Unevenness.
Claims (1)
する複数の細い溝を有するものに於いて、管軸に
対する傾きが同一方向で0〜45゜の範囲にある互
に平行でない二種類の同じ数の溝を重ね合せて成
ることを特徴とする内面溝付伝熱管。1. In heat exchanger tubes that have a plurality of thin grooves continuous in the axial direction on the inner wall surface, there are two types of heat exchanger tubes that are not parallel to each other and have an inclination of 0 to 45 degrees in the same direction with respect to the tube axis. An internally grooved heat exchanger tube characterized by having the same number of grooves stacked one on top of the other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010080A JPS5726394A (en) | 1980-07-22 | 1980-07-22 | Heat conduction pipe with grooves in internal surface |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10010080A JPS5726394A (en) | 1980-07-22 | 1980-07-22 | Heat conduction pipe with grooves in internal surface |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5726394A JPS5726394A (en) | 1982-02-12 |
JPS6239359B2 true JPS6239359B2 (en) | 1987-08-22 |
Family
ID=14264972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP10010080A Granted JPS5726394A (en) | 1980-07-22 | 1980-07-22 | Heat conduction pipe with grooves in internal surface |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5726394A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63227165A (en) * | 1987-03-17 | 1988-09-21 | Toshiba Corp | Terminal equipment |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60142195A (en) * | 1983-12-28 | 1985-07-27 | Hitachi Cable Ltd | Heat transfer tube equipped with groove on internal surface thereof |
GB2212899B (en) * | 1987-11-30 | 1991-11-20 | American Standard Inc | Heat exchanger tube having minute internal fins |
CN1084876C (en) * | 1994-08-08 | 2002-05-15 | 运载器有限公司 | Heat transfer tube |
US5992512A (en) * | 1996-03-21 | 1999-11-30 | The Furukawa Electric Co., Ltd. | Heat exchanger tube and method for manufacturing the same |
DE10156374C1 (en) * | 2001-11-16 | 2003-02-27 | Wieland Werke Ag | Heat exchange tube structured on both sides has inner fins crossed by secondary grooves at specified rise angle |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521914A (en) * | 1975-06-23 | 1977-01-08 | Asahi Chemical Ind | Sound insulation panel |
JPS5325881A (en) * | 1976-08-21 | 1978-03-10 | Motomu Miyamoto | Contact device for switch |
JPS54116765A (en) * | 1978-03-02 | 1979-09-11 | Daikin Ind Ltd | Heat exchange tube |
JPS555176A (en) * | 1978-06-29 | 1980-01-16 | Sumitomo Light Metal Ind Ltd | Production of heat transer pipe |
JPS56117097A (en) * | 1980-02-20 | 1981-09-14 | Hitachi Ltd | Heat transferring pipe |
-
1980
- 1980-07-22 JP JP10010080A patent/JPS5726394A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS521914A (en) * | 1975-06-23 | 1977-01-08 | Asahi Chemical Ind | Sound insulation panel |
JPS5325881A (en) * | 1976-08-21 | 1978-03-10 | Motomu Miyamoto | Contact device for switch |
JPS54116765A (en) * | 1978-03-02 | 1979-09-11 | Daikin Ind Ltd | Heat exchange tube |
JPS555176A (en) * | 1978-06-29 | 1980-01-16 | Sumitomo Light Metal Ind Ltd | Production of heat transer pipe |
JPS56117097A (en) * | 1980-02-20 | 1981-09-14 | Hitachi Ltd | Heat transferring pipe |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63227165A (en) * | 1987-03-17 | 1988-09-21 | Toshiba Corp | Terminal equipment |
Also Published As
Publication number | Publication date |
---|---|
JPS5726394A (en) | 1982-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5690167A (en) | Inner ribbed tube of hard metal and method | |
CN1258668C (en) | Heating exchanger pipe with two-sided structure and its manufacturing method | |
US6164370A (en) | Enhanced heat exchange tube | |
CN1062951C (en) | Heat-transfer small size tube and method of manufacturing same | |
JPH0421117B2 (en) | ||
US4938282A (en) | High performance heat transfer tube for heat exchanger | |
JPS6158757B2 (en) | ||
JPS6239359B2 (en) | ||
US5010643A (en) | High performance heat transfer tube for heat exchanger | |
US2586653A (en) | Method of producing heat exchange elements | |
US3789915A (en) | Process for improving heat transfer efficiency and improved heat transfer system | |
JPS60216190A (en) | Heat transfer pipe and manufacture thereof | |
JPH04260793A (en) | Heat transfer tube with inner surface groove | |
JP3592149B2 (en) | Internal grooved tube | |
JP2912826B2 (en) | Heat transfer tube with internal groove | |
JPH01299707A (en) | Manufacture of small and thin wall thickness heat transfer tube | |
JPS61111732A (en) | Manufacture of heat exchanger | |
JPH02161290A (en) | Inner face processed heat transfer tube | |
JP3743330B2 (en) | Manufacturing method of internally grooved tube | |
JP3829727B2 (en) | Manufacturing method of internally grooved tube | |
JP2812786B2 (en) | Manufacturing method of small diameter inner grooved pipe | |
JP2737799B2 (en) | Heat transfer tube | |
JP2524983B2 (en) | Small diameter heat transfer tube | |
JP4036044B2 (en) | Internal grooved tube processing method | |
JPH01314898A (en) | Heat transfer tube |