JPH01314898A - Heat transfer tube - Google Patents

Heat transfer tube

Info

Publication number
JPH01314898A
JPH01314898A JP14762788A JP14762788A JPH01314898A JP H01314898 A JPH01314898 A JP H01314898A JP 14762788 A JP14762788 A JP 14762788A JP 14762788 A JP14762788 A JP 14762788A JP H01314898 A JPH01314898 A JP H01314898A
Authority
JP
Japan
Prior art keywords
grooves
heat exchanger
heat transfer
exchanger tube
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14762788A
Other languages
Japanese (ja)
Other versions
JP2773872B2 (en
Inventor
Hiroshi Kawaguchi
川口 寛
Hideto Yoshida
吉田 英登
Yasuhiko Yoshida
康彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP63147627A priority Critical patent/JP2773872B2/en
Publication of JPH01314898A publication Critical patent/JPH01314898A/en
Application granted granted Critical
Publication of JP2773872B2 publication Critical patent/JP2773872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To provide a heat transfer tube wit heat transfer performance not inferior to a traditional heat transfer tube with cross grooves and contrive an extremely enhanced production by forming repeatedly projections, having a predetermined length and provided with slanted parts slanted into the same direction on the upper surface thereof, between respective grooves, along the lengthwise direction of the heat transfer tube. CONSTITUTION:When a material tube (a) is pushed against the tip end of a grooved plug 4 from the outer periphery thereof by rolling rolls 7 rotated through planetary rotation while penetrating the material tube (a) between the grooved plug 4 and a plurality of rolling rolls 7 and moving it with a given speed, a part, pushed many times against the grooved plug by the rolling rolls 7, and another part, pushed only few times against the end of the grooved plug 4, are generated on the material tube (a) while the part, pushed many times, is invaded deeply into the grooves 40 of the plug 4 and is protruded and the part, pushed few times, is invaded slightly into the groove 40 whereby the projections 3 having the slanted part 31 is formed repeatedly and continuously simultaneously with the forming of the grooves 2. The projection 3 is provided with the slanted parts 31, formed higher at the tip end side of the moving direction of the material tube (a) and lower as the position thereof approaches to the rear end side of the same, while the slanted parts 31 are formed so as to be arranged in spiral form with intermediary of the grooves 2.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は冷凍機や空調機器等の熱交換器に使用される伝
熱管に関するものであり、特に、内部で冷媒を沸凰又は
凝縮させ、管外の流体との間で熱交換を行なう沸騰型又
は凝縮型の内面加工伝熱管に関するものである。
Detailed Description of the Invention "Field of Industrial Application" The present invention relates to a heat exchanger tube used in a heat exchanger such as a refrigerator or an air conditioner. The present invention relates to a boiling type or condensing type internally processed heat exchanger tube that exchanges heat with a fluid outside the tube.

「従来の技術」 空調機器等の熱交換器については近年小型・軽量化の要
請が強く、ヒートポンプ式エアコンの普及とも相まって
、これ等に使用する伝熱管についても一層の小径・高性
能化が要請されている。
"Conventional technology" In recent years, there has been a strong demand for smaller and lighter heat exchangers for air conditioning equipment, etc., and with the spread of heat pump air conditioners, there is also a demand for smaller diameter and higher performance heat transfer tubes used in these devices. has been done.

このような要請に応えるものとして、最近では内面に交
叉した!!線状溝を多数加工することによって、内面に
角錐状又は角錐台状の無数の突起を形成した内面クロス
溝付き伝熱管が提供されている。
In response to these requests, we have recently crossed over into the inner world! ! By machining a large number of linear grooves, an inner cross-grooved heat exchanger tube is provided in which numerous pyramid-shaped or truncated pyramid-shaped projections are formed on the inner surface.

[発明か解決しようとする課題] 前述の内面クロス溝付き伝熱管は、一方向へ第−法螺線
状溝を加工した後、第−法螺線状溝と交叉するように第
二次@線状溝を加工するので、加工工程が二工程となっ
て製造コストか高くなる問題かある。
[Problems to be Solved by the Invention] The above-mentioned internal cross-grooved heat exchanger tube has a method in which, after machining a first normal spiral groove in one direction, a second @linear groove is formed so as to intersect with the first normal spiral groove. Since the grooves are machined, there are two processing steps, which increases the manufacturing cost.

また、例えば特開昭61−140321号公報に開示さ
れているように、前記のような伝熱管を一工程で加工す
る技術が提案されているが、この加工方法によると、素
管に加わる加工時の荷重か大きく。
Furthermore, as disclosed in, for example, Japanese Patent Application Laid-Open No. 61-140321, a technique has been proposed for processing the heat exchanger tube in one step. When the load is large.

肉薄の管では加工中破断するおそれがあるほか、破断を
防ぐには加工速度を極めて遅くしなければならないのて
、生産性が低くコスト高になる欠点がある。
Thin-walled tubes are at risk of breaking during processing, and the processing speed must be extremely slow to prevent breakage, resulting in low productivity and high costs.

本発明の目的は、従来のクロス溝付き伝熱管に劣らない
伝熱性能をもち、−工程で内面加工することかてきて、
従来のクロス溝付き伝熱管よりもはるかに生産性よく製
造することができる伝熱管を提供することにある。
The purpose of the present invention is to have heat transfer performance comparable to that of conventional cross-grooved heat transfer tubes, and to have an inner surface processed in the process.
It is an object of the present invention to provide a heat exchanger tube that can be manufactured with much higher productivity than conventional cross-grooved heat exchanger tubes.

「課題を解決するための手段」 本発明に係る伝熱管の一つは、前述の目的な達成するた
め、内面へ長手方向に沿って直線状又は螺線状に溝を多
数形成した伝熱管において、前記各溝の間に、長芋方向
に沿い上面に同一方向に傾斜した傾斜部を有する所定長
さの突起を繰返し形成したもの、である。
"Means for Solving the Problem" In order to achieve the above-mentioned purpose, one of the heat exchanger tubes according to the present invention is a heat exchanger tube in which a large number of grooves are formed on the inner surface in a linear or spiral shape along the longitudinal direction. , between each of the grooves, protrusions of a predetermined length are repeatedly formed along the yam direction and have sloped portions on the upper surface that are inclined in the same direction.

また本発明に係る伝熱管の他の一つは、内面へ長手方向
に沿って直線状又は螺線状に溝を多数形成した伝熱管に
おいて、前記各溝の間に、長芋方向に沿い上面に同一方
向に傾斜した傾斜部を有する所定長さの突起を繰返し形
成し、前記各溝の底部には、前記突起との隣接部分毎に
当該突起の傾斜部とは反対方向に傾斜する傾斜部を長手
方向に繰返し形成したものである。前記した溝は、その
底部か登り傾斜方向へ徐々に幅狭くなる状態に形成する
ことができる。
Another heat exchanger tube according to the present invention is a heat exchanger tube in which a large number of linear or spiral grooves are formed along the longitudinal direction on the inner surface, and between each of the grooves, a groove is formed on the upper surface along the yam direction. A protrusion of a predetermined length having an inclined part inclined in the same direction is repeatedly formed, and the bottom of each groove has an inclined part inclined in a direction opposite to the inclined part of the protrusion at each adjacent portion to the protrusion. It is formed repeatedly in the longitudinal direction. The groove described above can be formed so that the width of the groove gradually becomes narrower in the upward slope direction from the bottom thereof.

前記各発明においては、鰻返し形成される突起の長さは
0.20〜3mmであるのが好ましい。
In each of the above inventions, it is preferable that the length of the protrusion formed is 0.20 to 3 mm.

前記のような各伝熱管は、公知の製造装置によって製造
できる。
Each heat exchanger tube as described above can be manufactured using a known manufacturing apparatus.

例えば、自在に回転するように保持された溝付きプラグ
を素管に挿入し、素管な一定方向へ移動させながら、溝
付きプラグの周囲を遊星回転する回転自在な複数の転造
ロールにより、素管な外周より溝付きプラグの先端部分
へ押圧することによって、−工程で容易に製造すること
ができる。この製造工程において、前記のような形状の
溝や突起か形成される過程については、実施例で詳細に
述べるとおりである。
For example, a grooved plug held so as to rotate freely is inserted into the raw pipe, and a plurality of rotatable rolling rolls rotate planetarily around the grooved plug while moving the raw pipe in a fixed direction. By pressing the tip of the grooved plug from the outer periphery of the raw pipe, it can be easily manufactured in one step. In this manufacturing process, the process of forming grooves and protrusions having the above-mentioned shapes will be described in detail in the Examples.

「作用」 本発明に係る伝熱管は、前述のように、溝相互の間に長
手方向に沿い上面に同一方向に類語した傾斜部を有する
所定長さの突起を繰返し形成し。
"Function" As described above, the heat exchanger tube according to the present invention repeatedly forms protrusions of a predetermined length on the upper surface along the longitudinal direction between the grooves and having sloped portions that are synonymous in the same direction.

あるいはこのような構成に加えて、溝の底部に。Or in addition to such a configuration, at the bottom of the groove.

前記突起との隣接部分毎に当該突起の傾斜部とは反対方
向に傾斜する傾斜面を長手方向に繰返し形成したもので
あり、これによって管内面に無数の凹凸か形成されるか
ら、従来の内面クロス溝付き伝熱管に劣らない伝熱性能
を発揮する。
The sloped surface that slopes in the opposite direction to the sloped part of the projection is repeatedly formed in the longitudinal direction at each adjacent portion of the projection, and this creates countless unevenness on the inner surface of the tube, so it is different from the conventional inner surface. Demonstrates heat transfer performance comparable to cross-grooved heat transfer tubes.

また、本発明に係る伝熱管は、前述のように公知の製造
設備により一工程で製造できるから、従来のクロス溝付
き伝熱管より生産性がよく、より安価に製造できるほか
、肉薄の素管でも加工中破断等のおそれがない。
In addition, since the heat exchanger tube according to the present invention can be manufactured in one step using known manufacturing equipment as described above, it has better productivity and can be manufactured at a lower cost than conventional cross-grooved heat exchanger tubes. However, there is no risk of breakage during processing.

「実施例」 第1図はその一例を示す伝熱管の一部を展開した拡大斜
視図であり、管内面に形成した螺線状の溝2の数60.
溝2の管軸に対するねじれ角018度の鋼管よりなる伝
熱管lを示している。
"Example" FIG. 1 is an enlarged perspective view of a part of a heat exchanger tube showing one example, and there are 60 spiral grooves 2 formed on the inner surface of the tube.
A heat exchanger tube 1 made of a steel tube in which the groove 2 has a helix angle of 018 degrees with respect to the tube axis is shown.

溝2相互の間には、溝2の長芋方向に沿い、上面に一定
の方向に傾斜した傾斜部31を有する長さfL3111
の突起3が繰返し間断なく形成され、突起3と隣接の突
起3との間は段部32に形成されている。各突起3の最
高部の高さh(溝2の深さ)は0.15+s■であり、
伝熱管1の外径は9.53mmである。
Between the grooves 2, there is a length fL3111 having an inclined part 31 inclined in a certain direction on the upper surface along the yam direction of the groove 2.
The protrusions 3 are formed repeatedly without interruption, and a stepped portion 32 is formed between the protrusions 3 and the adjacent protrusions 3. The height h of the highest part of each protrusion 3 (depth of groove 2) is 0.15+s■,
The outer diameter of the heat exchanger tube 1 is 9.53 mm.

この実施例の伝熱管1は、前記のように繰返し間断なく
続く無数の突起3を形成したことにより、従来の内面ク
ロス溝付き伝熱管と同様な伝熱性悌を発揮する。
The heat exchanger tube 1 of this embodiment exhibits the same heat transfer properties as the conventional heat exchanger tube with internal cross grooves by forming the countless protrusions 3 that repeat without interruption as described above.

前記実施例の構造の伝熱管1のサンプルEx−1と、内
面へ一方向にds縁線状溝を形成した従来の伝熱管のサ
ンプルEx−2(外径9.53mm、 yt数60. 
fJO’)ねじれ角18度、溝の深さ0.20mm)と
をそれぞれ製造し、二重管式熱交換器に組込んで伝!測
定を行なったところ、第6図及び第7図のような結果を
得た。この結果によると、前記実施例の伝熱管であるサ
ンプルEx−1はサンプルEx−2の伝熱管に対し、蒸
発熱伝達率で約60%、凝縮熱伝達率で約30%それぞ
れ勝っている。
Sample Ex-1 of the heat exchanger tube 1 having the structure of the above embodiment, and sample Ex-2 of the conventional heat exchanger tube with a DS edge line groove formed in one direction on the inner surface (outer diameter 9.53 mm, yt number 60.
fJO') with a helix angle of 18 degrees and a groove depth of 0.20 mm), and incorporated them into a double-tube heat exchanger. When measurements were carried out, the results shown in FIGS. 6 and 7 were obtained. According to the results, sample Ex-1, which is the heat exchanger tube of the above example, is superior to sample Ex-2 in terms of evaporative heat transfer coefficient by about 60% and condensation heat transfer coefficient by about 30%.

前記実施例の伝熱管1は、例えば第4図のような公知の
製造装置により容易に製造できる。
The heat exchanger tube 1 of the above embodiment can be easily manufactured using a known manufacturing apparatus as shown in FIG. 4, for example.

同図において、素管aを図示しない適当な引抜き機等で
右方向に定速で移動させながら、伝熱管lに製造される
前に、フローティングプラグ5と縮径ダイス6との共働
で縮径させる。
In the figure, while the raw tube a is moved at a constant speed to the right by an appropriate drawing machine (not shown), it is shrunk by the cooperation of a floating plug 5 and a diameter-reducing die 6 before being manufactured into a heat exchanger tube l. diameter.

フローティングプラグ5には、先端側にロット41が固
定され、このロッド41の先端には、周面に所定のねじ
れ角の互いに平行な螺線状の溝40を有する溝付きプラ
グ4が、素管a内で自在に回転するよう保持され、この
溝付きプラグ4の周囲には、120度の等角度間隔に回
転自在な転造ロール7か設けである。各転造ロール7は
、素管aの挿入側が適当なテーパー71に形成しである
A rod 41 is fixed to the tip end of the floating plug 5, and a grooved plug 4 having parallel spiral grooves 40 with a predetermined helix angle on the circumferential surface is attached to the tip of the rod 41. Around the grooved plug 4, rolling rolls 7 are provided that are rotatable at equal angular intervals of 120 degrees. Each rolling roll 7 is formed with a suitable taper 71 on the insertion side of the raw tube a.

この転造ロール7を遊星回転させながら溝付きプラグ4
の先端部分に押圧させ、縮径された素管aを外周よりプ
ラグ4の先端部分に圧迫して、素管aをm径しながら、
内部に前記のように多数の溝2と突起3とを有する伝熱
管lを製造する。
While rotating this rolling roll 7 planetarily, the grooved plug 4
The diameter-reduced raw tube a is pressed against the tip of the plug 4 from the outer periphery, and while the diameter of the raw tube a is m,
A heat exchanger tube l having a large number of grooves 2 and protrusions 3 inside as described above is manufactured.

このように、溝付きプラグ4と複数の転造ロール7との
間に素管aを通して一定の速度で移動させながら、遊星
回転する転造ロール7により素管aを外周より溝付きプ
ラク4の先端部分に圧迫すると、素管aには転造ロール
7て溝付プラグに多10圧迫される部分と少ない回数し
か圧迫されない部分が生じ、圧迫される回数か多い部分
はプラグ4の溝40内に深くめり込んで高く隆起し、圧
迫される回数の少ない部分は溝40内みめり込む度合が
少なくなるので、溝2と同時に前記のような傾斜部コl
を有する突起3か繰返し間断なく形成される。
In this way, while the raw pipe a is passed between the grooved plug 4 and the plurality of rolling rolls 7 and moved at a constant speed, the raw pipe a is rolled into the grooved plug 4 from the outer periphery by the planetary rolling rolls 7. When the tip is compressed, there are parts of the raw pipe a that are compressed many times by the grooved plug by the rolling roll 7 and parts that are compressed only a few times, and the parts that are compressed more often are inside the grooves 40 of the plug 4. The part that is deeply sunk into the groove 40 and raised high, and is compressed less often, is less likely to sink into the groove 40, so the inclined part col as described above is
The protrusions 3 having the same shape are formed repeatedly and without interruption.

突起3は、素管aの移動方向先端側が高く、後端側に行
く程徐々に低くなるようなMM部31を有する形状に形
成される。
The protrusion 3 is formed in a shape having an MM portion 31 which is high on the distal end side in the moving direction of the blank tube a and gradually becomes lower toward the rear end side.

伝熱管工に対する転造ロール7の接触軌跡は管lに対し
て螺線状になり、これによって突起3は溝2を介在して
螺線状に並ぶ状態に形成され、したがって、伝熱管1を
管軸に対して直角に切断した場合には、伝熱管1の内周
方向に並ぶ突起3は第5図のように一方から他方へ徐々
に低くなる状態を呈する。
The contact locus of the rolling roll 7 against the heat exchanger pipework becomes a spiral with respect to the tube l, and thereby the protrusions 3 are formed in a spiral arrangement with the grooves 2 interposed between them. When cut at right angles to the tube axis, the protrusions 3 lined up in the inner circumferential direction of the heat exchanger tube 1 exhibit a state in which the protrusions 3 are gradually lowered from one side to the other as shown in FIG.

同様な理由により、突起3の所定の長さ見及び傾斜面3
1の傾多角は、転造ロール7の公転数と素管aの移動速
度との相関関係により適宜設定できる。転造ロール7の
押圧力及び公転数を一定にする場合、素管aの移動速度
を上げると突起3の長さ又は長く、傾琳面31の傾斜角
は小さくなり、素管aの移動速度を下げるとその逆にな
る。
For the same reason, the predetermined length of the protrusion 3 and the inclined surface 3
The inclination angle of 1 can be appropriately set depending on the correlation between the number of revolutions of the rolling rolls 7 and the moving speed of the blank pipe a. When the pressing force and number of revolutions of the rolling rolls 7 are kept constant, increasing the moving speed of the raw tube a increases the length of the protrusion 3, the inclination angle of the tilting surface 31 becomes smaller, and the moving speed of the raw tube a increases. If you lower it, the opposite will happen.

第4図の例では、縮径のためフローティングプラグ5及
び縮径ダイス6を使用したが、素管aの縮径を要しない
場合はこれ等は不要である。
In the example shown in FIG. 4, a floating plug 5 and a diameter reducing die 6 are used for diameter reduction, but these are unnecessary if diameter reduction of the blank pipe a is not required.

前記実施例の伝熱管1は、以上のように従来の製造装置
をほぼそのまま使用して容易に製造でき、−工程で無数
の突起3を製造できるから、生産性が高くより、安価に
製造できる。また、肉薄の素管を使用した場合でも破断
を生じさせないで製造することができ、破断を生じさせ
ないために素管aの移動速度を極端に遅くする必要はな
い。
As described above, the heat exchanger tube 1 of the embodiment can be easily manufactured using conventional manufacturing equipment almost as is, and an infinite number of protrusions 3 can be manufactured in one step, resulting in high productivity and low manufacturing cost. . Further, even when a thin-walled raw pipe is used, it can be manufactured without causing breakage, and there is no need to extremely slow down the moving speed of the raw pipe a in order to prevent breakage.

第2図は他の実施例を示すものであって、伝熱’flの
外径、溝2の数、溝2のねじれ角等は第1図の例と同様
であり、突起3の端部の高さh(溝2の深さ)は0.2
0mm、各突起3の長さ又は0.15mmである。
FIG. 2 shows another embodiment, in which the outer diameter of the heat transfer 'fl, the number of grooves 2, the helix angle of the grooves 2, etc. are the same as in the example of FIG. 1, and the end of the protrusion 3 The height h (depth of groove 2) is 0.2
0 mm, the length of each protrusion 3 or 0.15 mm.

この実施例の突起3は、第1図の実施例におけると同様
に形成されているが、谷溝2の底部は、突起3との隣接
部分毎に突起3の傾斜部31とは反対方向に傾斜する傾
斜面2Iに形成され、隣接の傾属面21相互は各同じ高
さの段部22によって区分された状態になっており、溝
2の輻Wは傾斜面21の部分において登り傾琳方向に行
く程徐々に狭くなるように形成している。
The protrusion 3 of this embodiment is formed in the same manner as in the embodiment of FIG. Adjacent inclined surfaces 21 are separated by steps 22 having the same height, and the convergence W of the groove 2 rises in the inclined surface 21. It is formed so that it gradually becomes narrower as it goes in the direction.

第2図の構造の伝熱管1は、第4図て例示した製造装置
において、転造ロール7の素管aに対する接触位置を、
図示の位置より僅かに左に寄せる(yt付きプラグ4の
先端部より僅かに左に寄せる)ることにより製造するこ
とができる。突起3が形成される過程は第4図で説明し
たものと同様であり、また、溝2の底部に前述のような
傾斜面21が形成される過程は、突起3が形成される過
程とほぼ同様なので説明を省略する。
In the heat exchanger tube 1 having the structure shown in FIG. 2, in the manufacturing apparatus illustrated in FIG.
It can be manufactured by moving it slightly to the left of the illustrated position (slightly moving it to the left of the tip of the YT plug 4). The process of forming the protrusion 3 is the same as that explained in FIG. Since they are similar, the explanation will be omitted.

第2図の伝熱管1は、溝2の底部が段部22で区分され
た傾斜面21が繰返す構造になっているので、第1図の
伝熱管より伝熱性能が向上する。
The heat transfer tube 1 shown in FIG. 2 has a structure in which the bottom of the groove 2 has a repeating slope 21 divided by steps 22, so that the heat transfer performance is improved compared to the heat transfer tube shown in FIG. 1.

第3図はさらに他の実施例を示すもので、突起3及び溝
2の形成状態は第2図の伝熱管とほぼ同様であるが、溝
2の幅を第2図の例より狭く形成している。この例の伝
熱管lの作用やその製造方法は、第2図の例におけると
ほぼ同様なので説明を省略する。
FIG. 3 shows yet another embodiment, in which the protrusions 3 and grooves 2 are formed in almost the same manner as the heat exchanger tube shown in FIG. 2, but the width of the grooves 2 is formed narrower than in the example shown in FIG. ing. The function of the heat exchanger tube l in this example and its manufacturing method are substantially the same as those in the example shown in FIG. 2, so a description thereof will be omitted.

前記各実施例は、溝2を管lの軸に対して螺線状になる
状態に形成した例であるが、この2を直線状にすること
もでき、この場合には溝付きプラグ4の溝40を直線状
に形成すればよい。
In each of the above embodiments, the groove 2 is formed in a spiral shape with respect to the axis of the pipe 1, but it is also possible to form the groove 2 in a straight line. The groove 40 may be formed in a straight line.

各実施例においては、突起3の長さ文を0.20〜3m
mの範囲で設定するのが望ましい。すなわち、0.20
厘層以下では製造が困難になり易く、また、3am以上
であると傾斜部31の傾斜が緩やかになり過ぎて伝熱性
能がさ程向上しなくなおそれがある。
In each example, the length of the protrusion 3 is 0.20 to 3 m.
It is desirable to set it within a range of m. That is, 0.20
If the thickness is less than the thickness layer, manufacturing tends to be difficult, and if the thickness is 3 am or more, the slope of the slope portion 31 becomes too gentle, and there is a possibility that the heat transfer performance will not improve much.

「発明の効果」 本発明に係る伝熱管は、溝相互の間に長手方向に沿い上
面に同一方向に傾斜した傾斜部を有する所定長さの突起
を繰返し形成し、あるいはこのような構成に加えて、溝
の底部に、前記突起との隣接部分毎に当該突起の傾斜部
とは逆方向に傾斜する傾斜面を長手方向に緑返し形成し
たものであり、内面に無数の凹凸が形成されるから、従
来の内面クロス溝付き伝熱管に劣らない伝熱性能を発揮
する。
"Effects of the Invention" The heat exchanger tube according to the present invention repeatedly forms protrusions of a predetermined length having sloped parts in the same direction on the upper surface along the longitudinal direction between the grooves, or in addition to such a structure. At the bottom of the groove, a sloped surface that slopes in the opposite direction to the slope of the projection is formed in the longitudinal direction at each adjacent part to the projection, and countless unevenness is formed on the inner surface. As a result, it exhibits heat transfer performance comparable to conventional heat transfer tubes with internal cross grooves.

また、本発明に係る伝熱管は、前述のように公知の製造
設備により一工程で、しかも素管の移動速度をさ程落さ
ないで製造できるから、従来のクロス溝付き伝熱管より
生産性がよく、より安価に製造できるほか、肉薄の素管
でも加工中破断等の3それがない。
In addition, as mentioned above, the heat exchanger tube of the present invention can be manufactured in one step using known manufacturing equipment without significantly reducing the moving speed of the raw tube, so it is more productive than the conventional cross-grooved heat exchanger tube. In addition to being cheaper to manufacture, there is no risk of breakage during processing even with thin pipes.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る伝熱管の一例を示す部分拡大展開
斜視図、第2図は他の実施例を示す部分拡大展開斜視図
、第3図は更に他の実施例を示す部分拡大展開斜視図、
第4図は本発明に係る伝熱管の製造方法を説明するため
の装置の一例を示す概略断面図、第5図は第4図の矢印
A−Aに沿う部分拡大展開断面図、第6図は従来の内面
溝付き伝熱管と第1図の実施例の伝熱管との蒸発熱伝達
率を比較した線図、第7図は従来の内面溝付き伝熱管と
第1図の実施例の伝熱管との凝縮熱伝達率を比較した!
i1図である。 主要図中符号の説明 lは伝熱管、2は溝、21は傾斜面、22は段部、3は
突起、31傾斜部、32は段部、4は溝付きプラグ、4
0は溝、41はロッド、7は転造ロール、aは素管、見
は突起3の長さ、Wは溝2の幅を示す。 第住図 第S図
FIG. 1 is a partially enlarged exploded perspective view showing an example of a heat exchanger tube according to the present invention, FIG. 2 is a partially enlarged exploded perspective view showing another embodiment, and FIG. 3 is a partially enlarged exploded perspective view showing still another embodiment. Perspective view,
FIG. 4 is a schematic cross-sectional view showing an example of an apparatus for explaining the method for manufacturing a heat exchanger tube according to the present invention, FIG. 5 is a partially enlarged developed cross-sectional view taken along arrow A-A in FIG. 4, and FIG. 7 is a diagram comparing the evaporative heat transfer coefficient between a conventional heat exchanger tube with internal grooves and the heat exchanger tube of the embodiment shown in FIG. 1, and FIG. Comparison of condensation heat transfer coefficient with heat tube!
This is a diagram i1. Explanation of the symbols in the main drawings: 1 is a heat exchanger tube, 2 is a groove, 21 is an inclined surface, 22 is a stepped portion, 3 is a protrusion, 31 is an inclined portion, 32 is a stepped portion, 4 is a grooved plug, 4
0 is the groove, 41 is the rod, 7 is the rolling roll, a is the raw pipe, sho is the length of the protrusion 3, and W is the width of the groove 2. No. House Map No. S

Claims (4)

【特許請求の範囲】[Claims] (1)、内面へ長手方向に沿って直線状又は螺線状に溝
を多数形成した伝熱管において、前記各溝の間には、長
手方向に沿い上面に同一方向に傾斜した傾斜部を有する
所定長さの突起を繰返し形成したことを特徴とする伝熱
管。
(1) In a heat exchanger tube having a plurality of linear or spiral grooves formed on the inner surface along the longitudinal direction, between each of the grooves, there is an inclined part inclined in the same direction on the upper surface along the longitudinal direction. A heat exchanger tube characterized by repeatedly forming protrusions of a predetermined length.
(2)、内面へ長手方向に沿って直線状又は螺線状に溝
を多数形成した伝熱管において、前記各溝の間には、長
手方向に沿い上面に同一方向に傾斜した傾斜部を有する
所定長さの突起を繰返し形成し、前記各溝の底部には、
前記突起との隣接部分毎に当該突起の傾斜部とは逆方向
に傾斜する傾斜面を長手方向に繰返し形成したことを特
徴とする伝熱管。
(2) In a heat exchanger tube in which a large number of grooves are formed in a linear or spiral shape along the longitudinal direction on the inner surface, between each of the grooves, there is an inclined part inclined in the same direction on the upper surface along the longitudinal direction. Protrusions of a predetermined length are repeatedly formed, and at the bottom of each groove,
A heat exchanger tube characterized in that an inclined surface inclined in a direction opposite to the inclined portion of the protrusion is repeatedly formed in the longitudinal direction at each portion adjacent to the protrusion.
(3)、前記溝は、その底部が登り傾斜方向へ徐々に幅
狭くなる状態に形成された、請求項2に記載の伝熱管。
(3) The heat exchanger tube according to claim 2, wherein the groove is formed so that the width of the groove gradually becomes narrower in an upward slope direction.
(4)、前記突起の長さが0.20〜3mmである請求
項1ないし請求項3のいずれかに記載の伝熱管。
(4) The heat exchanger tube according to any one of claims 1 to 3, wherein the length of the protrusion is 0.20 to 3 mm.
JP63147627A 1988-06-15 1988-06-15 Heat transfer tube for boiling and condensation Expired - Fee Related JP2773872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63147627A JP2773872B2 (en) 1988-06-15 1988-06-15 Heat transfer tube for boiling and condensation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63147627A JP2773872B2 (en) 1988-06-15 1988-06-15 Heat transfer tube for boiling and condensation

Publications (2)

Publication Number Publication Date
JPH01314898A true JPH01314898A (en) 1989-12-20
JP2773872B2 JP2773872B2 (en) 1998-07-09

Family

ID=15434603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63147627A Expired - Fee Related JP2773872B2 (en) 1988-06-15 1988-06-15 Heat transfer tube for boiling and condensation

Country Status (1)

Country Link
JP (1) JP2773872B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941795A (en) * 1982-09-01 1984-03-08 Toshiba Corp Heat transfer tube and its manufacture

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941795A (en) * 1982-09-01 1984-03-08 Toshiba Corp Heat transfer tube and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6000466A (en) * 1995-05-17 1999-12-14 Matsushita Electric Industrial Co., Ltd. Heat exchanger tube for an air-conditioning apparatus
US6026892A (en) * 1996-09-13 2000-02-22 Poongsan Corporation Heat transfer tube with cross-grooved inner surface and manufacturing method thereof

Also Published As

Publication number Publication date
JP2773872B2 (en) 1998-07-09

Similar Documents

Publication Publication Date Title
US5775411A (en) Heat-exchanger tube for condensing of vapor
US4733698A (en) Heat transfer pipe
EP0495453B1 (en) Heat transmission tube
US4438807A (en) High performance heat transfer tube
CN1258668C (en) Heating exchanger pipe with two-sided structure and its manufacturing method
US6786072B2 (en) Method of fabricating a heat exchanger tube
EP1502067B1 (en) Heat transfer tubes, including methods of fabrication and use thereof
US5996686A (en) Heat transfer tubes and methods of fabrication thereof
JP2004524502A (en) Improved heat transfer tube with grooved inner surface
US4938282A (en) High performance heat transfer tube for heat exchanger
US4653163A (en) Method for producing a heat transfer wall for vaporizing liquids
US6427767B1 (en) Nucleate boiling surface
JPH01314898A (en) Heat transfer tube
JP3592149B2 (en) Internal grooved tube
JPH02165875A (en) Heat exchanger tube and its manufacture
JP2737799B2 (en) Heat transfer tube
JP2706339B2 (en) Manufacturing method of heat transfer tube for inner surface processing
WO2000031486A8 (en) Internally grooved heat exchanger pipe and metal bar working roll for internally grooved heat exchanger pipes
JPS6239359B2 (en)
JP2628712B2 (en) Method of forming heat transfer surface
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
GB2160450A (en) Method of manufacture of an enhanced boiling surface heat transfer tube and the tube produced thereby
JP2721253B2 (en) Heat transfer tube manufacturing method
JPH0615950B2 (en) Liquid-liquid heat exchanger heat transfer tubes
JPS6056413A (en) Manufacture of pipe with grooved inner surface

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees