JPH01299707A - Manufacture of small and thin wall thickness heat transfer tube - Google Patents

Manufacture of small and thin wall thickness heat transfer tube

Info

Publication number
JPH01299707A
JPH01299707A JP12822188A JP12822188A JPH01299707A JP H01299707 A JPH01299707 A JP H01299707A JP 12822188 A JP12822188 A JP 12822188A JP 12822188 A JP12822188 A JP 12822188A JP H01299707 A JPH01299707 A JP H01299707A
Authority
JP
Japan
Prior art keywords
tube
grooves
diameter
heat transfer
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12822188A
Other languages
Japanese (ja)
Other versions
JPH0457406B2 (en
Inventor
Kunio Nakamori
中森 邦夫
Hiroshi Meji
目時 寛
Hiroyuki Morita
浩之 森田
Kiyoshi Ide
井手 清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP12822188A priority Critical patent/JPH01299707A/en
Publication of JPH01299707A publication Critical patent/JPH01299707A/en
Publication of JPH0457406B2 publication Critical patent/JPH0457406B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Abstract

PURPOSE:To perform mass production with good workability by forming grooves on the inside surface of a tube whose outside diameter exceeds a specific value and sinking a tube with a backward tension of a specific condition for heat transfer tubes having specific outer diameter, spiral grooves of a specific depth, width, and of a specific number. CONSTITUTION:A heat transfer tube having an outside diameter D0 of 3-7mm and spiral grooves or continued grooves in the tube axial direction whose groove depth (h) of 0.1-0.3mm, groove width W1 of 0.05-0.45mm, and the number of grooves in 25-70 is manufactured. On the inside surface of a tube whose outside diameter D0 exceeds 7mm, grooves of a depth (h), width W1 in the above ranges, and a specific number of grooves are formed. Sinking by draft ratio of 16% per sinking with a backward tension being 30-60% of the breaking force of a tube is performed to reduce the D0 to 3-6mm. By synergetic effect of the backward tension and draft ratio, reduction of a diameter to 3-6mm with a very little variation range of wall thickness and groove depth is performable for even a small tube having a diameter of <=7mm. Hence, mass production of small diameter heat transfer tubes with good workability is performable without complicated working design.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、小型熱交換器に用いる伝熱管の製造方法、詳
しくは細径薄肉伝熱管の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a heat exchanger tube used in a small-sized heat exchanger, and more particularly to a method for manufacturing a small-diameter, thin-walled heat exchanger tube.

〔従来の°技術〕[Conventional ° technology]

フレオンなどの冷媒を用いる小型熱交換器には、省エネ
ルギー化を図るために管の内面に連続する多数のらせん
溝を形成した伝熱管が適用されている。
Heat exchanger tubes in which a large number of continuous spiral grooves are formed on the inner surface of the tube are used in small heat exchangers that use refrigerants such as Freon in order to save energy.

近時、熱交換器のコストダウンを進める要素として、伝
熱管の薄肉化が要求されているが、管の薄肉化は耐圧強
度の低下を伴うため、管径を縮小することによって耐圧
強度を保持する方法が採られている。通常、内面らせん
溝付きの伝熱管は、管内に溝付プラグを挿入して遊星回
転するロールにより管を縮径しながら抽伸する方法で加
工されており、外径8m++までの伝熱管についてはこ
の加工手段を用いて円滑に製造することができる。とこ
ろが、この方法では、外径が7mm以下になると管が破
断する現象を増す傾向がある。
Recently, there has been a demand for thinner heat exchanger tubes as a factor in reducing the cost of heat exchangers. However, thinner tubes are accompanied by a decrease in pressure resistance, so it is necessary to maintain pressure resistance by reducing the tube diameter. A method has been adopted to do so. Normally, heat exchanger tubes with internal spiral grooves are processed by inserting a grooved plug into the tube and drawing the tube while reducing its diameter using planetary rotating rolls.This method is used for heat exchanger tubes with an outer diameter of up to 8m++. It can be manufactured smoothly using processing means. However, in this method, when the outer diameter becomes 7 mm or less, the phenomenon of pipe breakage tends to increase.

この問題を解決するために、予め外径7IIIIIIを
越える管内面に溝付プラグを用いた転造加工を施して溝
を形成し、ついで空引抽伸をおこなうことによって管外
径を7mm以下に縮径加工する方法が開発されている(
特開昭62−98200号公報)。
In order to solve this problem, the outer diameter of the tube is reduced to 7 mm or less by rolling the inner surface of the tube with a grooved plug in advance to form a groove, and then performing dry drawing. A method for diameter machining has been developed (
JP-A-62-98200).

〔発明が解決しようとする課題] しかしながら、上記の縮径化方法においては、空引抽伸
時に溝が相互に近接して溝幅および溝深さが小さくなる
ことを補償するため、空引抽伸前の素管の溝幅および溝
深さを抽伸加工度も考慮して加工による減少分だけ大き
くしておかねばならないという加工設計上の難点がある
[Problems to be Solved by the Invention] However, in the above-mentioned diameter reduction method, in order to compensate for the fact that the grooves become close to each other during dry drawing and the groove width and groove depth become small, There is a problem in processing design that the groove width and groove depth of the raw pipe must be increased by the amount reduced by processing, taking into account the degree of drawing.

本発明は、このような難点を解消し、力■1設計上の煩
雑性なしに細径薄肉伝熱管を製造する方法を提供するも
のである。
The present invention solves these difficulties and provides a method for manufacturing a small-diameter, thin-walled heat exchanger tube without complicating the design.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明による細径薄肉伝熱管の製造方法は、
外径(DO)3〜7I、溝深さ(h)0.1〜0.3 
mm、溝幅(Wl)0.05〜0.45IIII11、
溝数25〜70のらせん状もしくは管軸方向に連続する
溝を備える伝熱管を製造するにあたり、外径(D、 )
 ’y閣を越える管内面に前記範囲内の溝深さ(h)、
溝幅(Wl)および溝数の溝を設け、管の破断力に対し
30〜60%の後方張力を加えながら1回につき加工度
16%以下の空引抽伸を施して、管の外径(D0)を3
〜6IIII11に縮径化することを特徴とするもので
ある。
That is, the method for manufacturing a small-diameter thin-walled heat exchanger tube according to the present invention is as follows:
Outer diameter (DO) 3~7I, groove depth (h) 0.1~0.3
mm, groove width (Wl) 0.05-0.45III11,
When manufacturing a heat exchanger tube with 25 to 70 grooves in a spiral shape or continuous in the tube axis direction, the outer diameter (D, )
Groove depth (h) within the above range on the inner surface of the pipe beyond the
The outer diameter of the tube ( D0) to 3
It is characterized in that the diameter is reduced to ~6III11.

本発明では、第1図におけるD+1を外径、D。In the present invention, D+1 in FIG. 1 is the outer diameter, D.

を内径、W、を溝幅、W2を山幅、hを溝深さ、tを底
肉厚、rを山の頂角とし、加工度は空引抽伸の前後にお
ける管の外径変化率を指す。
is the inner diameter, W is the groove width, W2 is the peak width, h is the groove depth, t is the bottom wall thickness, r is the peak angle of the peak, and the degree of processing is the rate of change in the outer diameter of the pipe before and after dry drawing. Point.

空引抽伸の過程で加えられる後方張力は30〜60%の
範囲に設定する必要があり、これが30%を下回ると抽
伸加工による底肉厚の増加が大となり、他方、60%を
越えると抽伸過程のおける管の破断が起こり易くなる。
The rear tension applied during the dry drawing process must be set in the range of 30 to 60%; if it is less than 30%, the bottom wall thickness will increase significantly due to the drawing process, while if it exceeds 60%, the drawing will fail. The pipe is more likely to break during the process.

また、加工度は16%以下に抑えることが重要で、この
比率を越すと抽伸加工による底肉厚の増大化ならびに溝
深さの減少を招く。しかし、加工度を5%より小さくす
ると、作業効率が著しく低下する。したがって、望まし
い加工度の範囲は5〜16%である。
Further, it is important to keep the working ratio to 16% or less; if this ratio is exceeded, the drawing process will result in an increase in the bottom wall thickness and a decrease in the groove depth. However, when the degree of processing is made smaller than 5%, the working efficiency decreases significantly. Therefore, the desirable working degree range is 5 to 16%.

〔作用〕[Effect]

本発明によれば、空引抽伸加工時に付加される管の破断
力に対し30〜60%の後方張力と1回につき16%以
下の加工度とが相乗的に作用して、外径が7mm以下の
細径管であっても僅小肉厚および溝深さの変動範囲で3
〜6mmまで極めて円滑に縮径化することが可能となる
。このため、空引抽伸前に煩雑な加工設計をする必要も
なくなる。
According to the present invention, the rear tension of 30 to 60% and the working degree of 16% or less per time act synergistically against the breaking force of the pipe applied during air drawing, and the outer diameter is reduced to 7 mm. Even with the following small diameter pipes, 3.
It becomes possible to reduce the diameter extremely smoothly to ~6 mm. Therefore, there is no need for complicated processing design before dry drawing.

〔実施例〕〔Example〕

管の内面に溝付プラグを用いた転造加工を施して外径(
Do ) 7.94mm、内径(D + ) 6.92
mm、溝幅(Wl ) 0.30mm、溝深さ(h )
 0.20mm、底肉厚(t ) 0.31mm、山の
頂角(r ) 56°、溝数50の寸法形状を有する内
面らせん溝付銅管(らせん溝のねじれ角18°)を製造
した。
The inner surface of the tube is rolled using a grooved plug to increase the outer diameter (
Do ) 7.94mm, inner diameter (D + ) 6.92
mm, groove width (Wl) 0.30mm, groove depth (h)
A copper tube with an internal spiral groove (helix angle of the spiral groove of 18 degrees) was manufactured, having dimensions of 0.20 mm, bottom wall thickness (t) of 0.31 mm, peak angle (r) of 56°, and number of grooves of 50. .

この内面らせん溝付銅管につき、管の破断力に対する後
方張力(後方張力/破断力)と加工度の条件を変えて後
方張力を加えなから空引抽伸をおこなった。
For this inner spiral grooved copper tube, air drawing was performed without applying any backward tension by changing the conditions of the backward tension relative to the breaking force of the tube (backward tension/breaking force) and the processing degree.

後方張力/破断力と底肉厚変化量との関係を第2図に、
後方張力/破断力と溝深さ変化量との関係を第3図に示
した。また、後方張力/破断力と溝間の山の形状を拡大
断面写真により判定した結果を表1に示した。表1の符
号のうち、Qは山の形状が正常なもの、Δは山が低く、
若干形状の悪いもの(2〜3フイン/60フイン)、×
は元の形状と変形しており、欠けているケースもあるも
の(2〜3フイン/60フイン)を示す。
Figure 2 shows the relationship between rear tension/breaking force and bottom wall thickness change.
FIG. 3 shows the relationship between rear tension/breaking force and groove depth change. Further, Table 1 shows the results of determining the rear tension/breaking force and the shape of the peaks between the grooves using enlarged cross-sectional photographs. Among the codes in Table 1, Q indicates a normal peak shape, Δ indicates a low peak shape,
Items with slightly bad shape (2-3 fins/60 fins), ×
indicates a shape that has been deformed from its original shape and is missing in some cases (2 to 3 fins/60 fins).

表1 穢方1αL0LL祉工渡M名LID工 20% ■1度
25%o      o     o     。
Table 1 穢方1αL0LL Welfare Works M Name LID Work 20% ■1 degree 25%o o o.

20    0    Δ    × 40     0     Δ    ×60    
0    △    × 80   0  Δ  破断 1000   破断 140   破断  −− 第2図の結果から、後方張力を加えることにより肉厚の
増加が軽減でき、後方張力が等しいときは加工度が一定
水準(16%)以下になると薄肉化が顕著となり、しか
も後方張力/破断力が30〜60%の範囲において肉厚
変動がほとんど認められなくなることが判る。
20 0 Δ × 40 0 Δ × 60
0 △ × 80 0 Δ Fracture 1000 Fracture 140 Fracture -- From the results in Figure 2, the increase in wall thickness can be reduced by applying rear tension, and when the rear tension is equal, the degree of processing is below a certain level (16%) It can be seen that the thickness becomes noticeably thinner as the thickness increases, and that thickness fluctuations are hardly recognized in the range of rear tension/rupture force of 30 to 60%.

第3図は、溝深さは後方張力に影響されずに加工度が大
きくなるほど減少する挙動を示している。
FIG. 3 shows that the groove depth decreases as the degree of machining increases, without being influenced by the rear tension.

そして、加工度16%以下の例では、後方張力/破断力
が30〜60%の領域で溝深さの変動が少ないことが認
められる。
In examples where the degree of processing is 16% or less, it is recognized that there is little variation in groove depth in the region where the rear tension/breaking force is 30 to 60%.

また、表1の結果は、山の形状が後方張力の増減とは関
係なく、加工度が大きくなるほど劣化するが、加工度1
2%の例では破断限界まで常に正常な形状を維持してい
ることが判明する。
In addition, the results in Table 1 show that the shape of the mountain deteriorates as the degree of work increases, regardless of the increase or decrease in rear tension;
It is found that in 2% of cases, the normal shape is always maintained up to the breaking limit.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明に従えば高性能の細径薄肉伝熱管
が極めて加工性よく製造することができる。したがって
、低コストで量産しえる技術として工業的に有用である
As described above, according to the present invention, a high-performance, narrow-diameter, thin-walled heat exchanger tube can be manufactured with extremely good workability. Therefore, it is industrially useful as a technology that can be mass-produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の細径薄肉伝熱管を示した概略説明図、
第2図は実施例による後方張力/破断力と底肉厚変化量
との関係図、第3図は実施例による後方張力/破断力と
溝深さ変化量との関係図である。 Do・・・外径      D+・・・内径W、・・・
溝幅      W2・・・山幅h・・・溝深さ   
   t・・・底肉厚r・・・山の頂角 出願人 住友軽金属工業株式会社
FIG. 1 is a schematic explanatory diagram showing a small-diameter thin-walled heat exchanger tube of the present invention,
FIG. 2 is a diagram showing the relationship between the rear tension/breaking force and the amount of change in bottom wall thickness according to the embodiment, and FIG. 3 is a diagram showing the relationship between the rear tension/breaking force and the amount of change in groove depth according to the example. Do...Outer diameter D+...Inner diameter W,...
Groove width W2...Mountain width h...Groove depth
t...Bottom thickness r...Apex angle of mountain Applicant Sumitomo Light Metal Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 外径(D_0)3〜7mm、溝深さ(h)0.1〜0.
3mm、溝幅(W_1)0.05〜0.45mm、溝数
25〜70のらせん状もしくは管軸方向に連続する溝を
備える伝熱管を製造するにあたり、外径(D_0)7m
mを越える管内面に前記範囲内の溝深さ(h)、溝幅(
W_1)および溝数の溝を設け、管の破断力に対し30
〜60%の後方張力を加えながら1回につき加工度16
%以下の空引抽伸を施して、管の外径(D_0)を3〜
6mmに縮径化することを特徴とする細径薄肉伝熱管の
製造方法。
Outer diameter (D_0) 3-7mm, groove depth (h) 0.1-0.
3 mm, groove width (W_1) 0.05 to 0.45 mm, and groove number 25 to 70 in a spiral shape or continuous in the tube axis direction.
Groove depth (h) and groove width (within the above range) on the inner surface of the tube exceeding
W_1) and the number of grooves are provided, and 30
Processing degree 16 per run while applying ~60% rear tension
% or less, and the outer diameter (D_0) of the tube is 3~
A method for manufacturing a small diameter thin-walled heat exchanger tube characterized by reducing the diameter to 6 mm.
JP12822188A 1988-05-27 1988-05-27 Manufacture of small and thin wall thickness heat transfer tube Granted JPH01299707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12822188A JPH01299707A (en) 1988-05-27 1988-05-27 Manufacture of small and thin wall thickness heat transfer tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12822188A JPH01299707A (en) 1988-05-27 1988-05-27 Manufacture of small and thin wall thickness heat transfer tube

Publications (2)

Publication Number Publication Date
JPH01299707A true JPH01299707A (en) 1989-12-04
JPH0457406B2 JPH0457406B2 (en) 1992-09-11

Family

ID=14979492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12822188A Granted JPH01299707A (en) 1988-05-27 1988-05-27 Manufacture of small and thin wall thickness heat transfer tube

Country Status (1)

Country Link
JP (1) JPH01299707A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499257A2 (en) * 1991-02-13 1992-08-19 The Furukawa Electric Co., Ltd. Heat-transfer small size tube and method of manufacturing the same
US5275234A (en) * 1991-05-20 1994-01-04 Heatcraft Inc. Split resistant tubular heat transfer member
US5704424A (en) * 1995-10-19 1998-01-06 Mitsubishi Shindowh Co., Ltd. Heat transfer tube having grooved inner surface and production method therefor
EP1482269A2 (en) * 2003-05-26 2004-12-01 Tréfimétaux S.A. Grooved tubes for heat exchangers for single-phased typically aqueous fluids
ES2228189A1 (en) * 2000-07-06 2005-04-01 Lg Electronics, Inc. Refrigerant tube for heat exchangers
JP2008020166A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Inner surface grooved heat-transfer tube for evaporator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483666A (en) * 1977-12-16 1979-07-03 Dainichi Nippon Cables Ltd Drawing method for metallic pipe
JPS6298200A (en) * 1985-10-23 1987-05-07 Furukawa Electric Co Ltd:The Heat transfer tube of fine diameter and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5483666A (en) * 1977-12-16 1979-07-03 Dainichi Nippon Cables Ltd Drawing method for metallic pipe
JPS6298200A (en) * 1985-10-23 1987-05-07 Furukawa Electric Co Ltd:The Heat transfer tube of fine diameter and manufacture thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0499257A2 (en) * 1991-02-13 1992-08-19 The Furukawa Electric Co., Ltd. Heat-transfer small size tube and method of manufacturing the same
US5555622A (en) * 1991-02-13 1996-09-17 The Furukawa Electric Co., Ltd. Method of manufacturing a heat transfer small size tube
US5275234A (en) * 1991-05-20 1994-01-04 Heatcraft Inc. Split resistant tubular heat transfer member
US5704424A (en) * 1995-10-19 1998-01-06 Mitsubishi Shindowh Co., Ltd. Heat transfer tube having grooved inner surface and production method therefor
ES2228189A1 (en) * 2000-07-06 2005-04-01 Lg Electronics, Inc. Refrigerant tube for heat exchangers
EP1482269A2 (en) * 2003-05-26 2004-12-01 Tréfimétaux S.A. Grooved tubes for heat exchangers for single-phased typically aqueous fluids
FR2855601A1 (en) * 2003-05-26 2004-12-03 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS WITH TYPICALLY AQUEOUS MONOPHASIC FLUID
EP1482269A3 (en) * 2003-05-26 2005-11-09 Tréfimétaux S.A. Grooved tubes for heat exchangers for single-phased typically aqueous fluids
JP2008020166A (en) * 2006-07-14 2008-01-31 Kobelco & Materials Copper Tube Inc Inner surface grooved heat-transfer tube for evaporator

Also Published As

Publication number Publication date
JPH0457406B2 (en) 1992-09-11

Similar Documents

Publication Publication Date Title
JP2788793B2 (en) Heat transfer tube
KR950007759B1 (en) Method of producing in small electric tube
US4330036A (en) Construction of a heat transfer wall and heat transfer pipe and method of producing heat transfer pipe
KR100300237B1 (en) Grooved tubes and heat exchangers for heat exchangers of chillers and freezers
JPH01299707A (en) Manufacture of small and thin wall thickness heat transfer tube
CN106802103A (en) A kind of inside and outside fin multiple tube and its processing method
JPS6298200A (en) Heat transfer tube of fine diameter and manufacture thereof
JP2006130558A (en) Method for manufacturing heat exchanger
JPH04260793A (en) Heat transfer tube with inner surface groove
CN1759950A (en) Technique for fabricating copper tube with fins of high teeth
JPH11351791A (en) Aluminum inner face grooved tube
JP3592149B2 (en) Internal grooved tube
JPH08174044A (en) Production of small-diameter heat transfer tube with groove on inside surface
RU2450880C1 (en) Method of fabricating heat exchange bimetallic ribbed tube
JPS6239359B2 (en)
JP2524983B2 (en) Small diameter heat transfer tube
JPH04260792A (en) Small-diameter heat transfer tube
JPH0952127A (en) Manufacture and its device for heat transfer tube with inner groove
JP2756192B2 (en) Heat transfer tube manufacturing method
CN209866997U (en) Aluminum pipe thread extrusion die
CN216282970U (en) Novel combined finned tube structure
RU1838746C (en) Method of manufacture of heat-exchange pipe with transverse split fins
JP2812786B2 (en) Manufacturing method of small diameter inner grooved pipe
JPH09303985A (en) Copper tube for heat exchanger excellent in tube expansion
JPH02230092A (en) Heat transfer tube