JP3337880B2 - Manufacturing method of heat transfer tube with double groove - Google Patents

Manufacturing method of heat transfer tube with double groove

Info

Publication number
JP3337880B2
JP3337880B2 JP22807495A JP22807495A JP3337880B2 JP 3337880 B2 JP3337880 B2 JP 3337880B2 JP 22807495 A JP22807495 A JP 22807495A JP 22807495 A JP22807495 A JP 22807495A JP 3337880 B2 JP3337880 B2 JP 3337880B2
Authority
JP
Japan
Prior art keywords
balls
ball
tube
heat transfer
row
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22807495A
Other languages
Japanese (ja)
Other versions
JPH0970612A (en
Inventor
哲也 住友
孝司 山本
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP22807495A priority Critical patent/JP3337880B2/en
Publication of JPH0970612A publication Critical patent/JPH0970612A/en
Application granted granted Critical
Publication of JP3337880B2 publication Critical patent/JP3337880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機や空調機等
の熱交換器用等に使用される二重溝付伝熱管を高速度で
引抜加工する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of drawing a double grooved heat transfer tube used for a heat exchanger of a refrigerator or an air conditioner at a high speed.

【0002】[0002]

【従来の技術】冷凍機やルームエアコン等の空調機用の
熱交換器に使用される伝熱管は、管内にフレオンガス
(フレオンは炭化水素のフルオルクロル置換体類に対す
るデュポン社の商品名)等の冷媒を流し、前記冷媒を蒸
発又は凝縮させて管外を流れる流体との間で熱交換を行
うものである。前記伝熱管には、図6に示すように内面
に微細な溝27を多数形成して伝熱特性を高めた内面溝付
伝熱管が多用されている。ところで、冷媒には、従来よ
りフレオンR22、R12が用いられているが、これらはオ
ゾン層を破壊する為、環境保全の上から全廃する計画が
進められている。フレオンR22、R12の代替品には、オ
ゾン層に影響を及ぼさないフレオンR32、R134a、R12
5 等が挙げられている。特にこれら冷媒を混合した [R
32/R134a/R125]や [R32/R125]等の混合冷媒は、
従来のフレオンR22等に近い冷却能力を有し、しかも不
燃性の為、代替品として高い評価を得ている。
2. Description of the Related Art A heat transfer tube used in a heat exchanger for an air conditioner such as a refrigerator or a room air conditioner is provided with a refrigerant such as freon gas (Freon is a trade name of DuPont for fluorochloro-substituted hydrocarbons). And evaporates or condenses the refrigerant to exchange heat with the fluid flowing outside the tube. As the heat transfer tube, as shown in FIG. 6, a heat transfer tube with an inner surface groove having a large number of fine grooves 27 formed on the inner surface to improve heat transfer characteristics is frequently used. By the way, Freon R22 and R12 have been conventionally used as the refrigerant, but since these destroy the ozone layer, a plan to completely eliminate them from the viewpoint of environmental conservation is being advanced. Alternatives to Freon R22, R12 include Freon R32, R134a, R12, which do not affect the ozone layer.
5 and so on. In particular, these refrigerants were mixed [R
32 / R134a / R125] and mixed refrigerants such as [R32 / R125]
It has a cooling capacity close to that of conventional Freon R22 and the like, and is highly evaluated as a substitute because of its nonflammability.

【0003】前述の混合冷媒には、共沸冷媒と非共沸冷
媒とがあり、前記の [R32/R134a/R125]や [R32/
R125]等の混合冷媒は非共沸冷媒である。共沸冷媒は、
液化開始温度(露点)と液化終了温度(沸点)とが同一
で、単一冷媒と同じ挙動を示すので特に問題はないが、
非共沸冷媒は、液化開始温度と液化終了温度が異なる
為、冷媒が蒸発又は凝縮する際に、液相側に高沸点成分
が濃縮し、気相側に低沸点成分が濃縮する。この濃度差
が拡散抵抗や熱抵抗を惹起して、蒸発又は凝縮での熱伝
達率を低下させる。このようなことから、非共沸冷媒を
用いる沸騰型伝熱管では、図7に示すように、二重に溝
25,26 を形成(キャビティ構造)し、冷媒の乱流効果を
活発化して沸騰を促進させた二重溝付伝熱管が開発され
た(特開平1-317637)。
The above-mentioned mixed refrigerants include an azeotropic refrigerant and a non-azeotropic refrigerant, and the above-mentioned [R32 / R134a / R125] and [R32 /
R125] and the like are non-azeotropic refrigerants. An azeotropic refrigerant is
Although the liquefaction start temperature (dew point) and the liquefaction end temperature (boiling point) are the same and show the same behavior as a single refrigerant, there is no particular problem,
Since the non-azeotropic refrigerant has a different liquefaction start temperature and liquefaction end temperature, when the refrigerant evaporates or condenses, the high-boiling components concentrate on the liquid phase side and the low-boiling components concentrate on the gas phase side. This concentration difference causes diffusion resistance and heat resistance, and lowers the heat transfer coefficient in evaporation or condensation. For this reason, in a boiling heat transfer tube using a non-azeotropic refrigerant, as shown in FIG.
25, 26 (cavity structure), a turbulent flow effect of the refrigerant was activated to promote the boiling, and a double grooved heat transfer tube was developed (Japanese Patent Application Laid-Open No. 1-317637).

【0004】ところで、前記二重溝付伝熱管は、溝を二
重に加工する為、引抜加工の際の摩擦抵抗や塑性変形抵
抗が、単一溝(図6)の場合に較べて2倍になり、引抜
加工を高速度で行えないという問題があった。この対策
として、2つの溝付プラグに設けられる螺旋状突起を軸
線に対する傾きが同一方向で角度が異なるものとし、押
圧部材をロールからボールに替えて、管に加わる抵抗を
軽減する方法が(特開昭57-36016) 応用された。この方
法は、図8に示すように、金属管10をダイス11とフロー
ティングプラグ12により縮径し、次にこの縮径された金
属管20内に、外周に螺旋溝を彫った2個のプラグ21,22
を配し、外側からボール31,32 を遊星回転させながら押
付けて引抜き、最後に仕上げダイス59を通して二重溝付
伝熱管28に加工するものである。前記方法におけるボー
ル31,32 の把持方法は、図9に示すように、スペーサー
70で相互の間隔が規定されたボール31,32 に、外側から
円錐面を有する部材71〜73の前記円錐面を押付けてなさ
れていた。
[0004] By the way, the heat transfer tube with a double groove has a double groove, so that the friction resistance and the plastic deformation resistance at the time of drawing are twice as large as those of a single groove (FIG. 6). Therefore, there is a problem that the drawing cannot be performed at a high speed. As a countermeasure, there is a method of reducing the resistance applied to the tube by changing the spiral projections provided on the two grooved plugs so that the inclination with respect to the axis is different in the same direction and the pressing member is changed from a roll to a ball. 57-36016) Applied. In this method, as shown in FIG. 8, a metal tube 10 is reduced in diameter by a die 11 and a floating plug 12, and then two plugs having a spiral groove formed in the outer periphery are formed in the reduced diameter metal tube 20. 21,22
The balls 31 and 32 are pressed from the outside while pulling the planets while rotating in a planetary manner, and are pulled out, and finally processed into the double grooved heat transfer tube 28 through the finishing die 59. The method of gripping the balls 31 and 32 in the above method is as shown in FIG.
The conical surfaces of the members 71 to 73 each having a conical surface are pressed against the balls 31 and 32 whose distance is defined by 70 from the outside.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述の二重溝
付伝熱管の製造方法では、金属管20は、第1の溝加工に
より硬化し、しかも表面にボール31の跡が残る。この
為、第2の溝加工ではボール32は金属管20の表面を不規
則に転動して暴れ出し、この暴れは、部材71〜73の円錐
面だけでは抑え切れず、この為形成される内面溝の形状
が不均一になり、伝熱特性が低下した。更に、ボールの
遊星回転(公転)を速めて高速引抜きを行おうとする
と、ボールに働く遠心力が大きくなってボールの暴れは
益々酷くなり、このボールの暴れが大きな摩擦抵抗とな
って管が破断するという問題があった。本発明の目的
は、高速度で引抜加工が行える二重溝付伝熱管の製造方
法を提供することにある。
However, in the above-described method of manufacturing a heat transfer tube with a double groove, the metal tube 20 is hardened by the first groove processing, and a trace of the ball 31 remains on the surface. For this reason, in the second groove processing, the ball 32 rolls irregularly on the surface of the metal tube 20 and starts to run out. This run-out cannot be suppressed only by the conical surfaces of the members 71 to 73, and therefore, the inner surface formed The shape of the grooves became non-uniform, and the heat transfer characteristics deteriorated. In addition, if the ball is accelerated in planetary rotation (revolution) and high-speed withdrawal is performed, the centrifugal force acting on the ball increases and the ball ramps up more and more. There was a problem of doing. An object of the present invention is to provide a method for manufacturing a heat transfer tube with a double groove which can be drawn at a high speed.

【0006】[0006]

【課題を解決する為の手段】本発明は、所定方向に引抜
かれている金属管内に、外周面に多数の溝を設けた溝付
プラグを2個、引抜方向に、順に、回転自在に保持さ
せ、前記金属管の前記プラグを保持させた2箇所の外周
面に、それぞれ1列目と2列目のボールを配し、前記1
列目と2列目のボールを、遊星回転させながら前記金属
管の外周面に押圧させて、前記金属管の内面に二重溝を
形成する方法において、前記1列目と2列目のボール
を、前記1列目と2列目のボールの外側にそれぞれ配し
たフランジと、円周方向のボール同士の間隔を規定する
各列のボール保持器とにより把持するとともに、加工ヘ
ッドに回転自在に取付けられるボール保持器により1列
目と2列目のボールを引き抜き方向に移動しないように
管軸方向に位置決めすることを特徴とする二重溝付伝熱
管の製造方法である。
According to the present invention, two grooved plugs provided with a large number of grooves on the outer peripheral surface thereof are rotatably held in a drawing direction in a metal tube drawn in a predetermined direction. The first and second rows of balls are arranged on two outer peripheral surfaces of the metal tube holding the plug, respectively.
The method of forming a double groove in the inner surface of the metal tube by pressing the balls in the second and second columns against the outer peripheral surface of the metal tube while rotating the planets, wherein the balls in the first and second columns are formed. Are defined on the outer sides of the balls in the first and second rows, respectively, and the distance between the balls in the circumferential direction is defined.
While gripped by the ball cage for each row, machining f
One row by a ball retainer rotatably mounted on a pad
Do not move the ball in the eye and the second row in the pull-out direction
A method for manufacturing a heat transfer tube with double grooves, characterized in that the heat transfer tube is positioned in a tube axis direction .

【0007】本発明では、1列目と2列目のボールを、
前記1列目と2列目のボールの外側にそれぞれ配したフ
ランジと、ボール同士の間隔を規定するボール保持器と
により把持するので、ボールの暴れを十分防止できる。
従って、向きが管軸に対して異なる二重溝を高速度で形
成できる。更に、本発明では、1列目のボールと2列目
のボールの引抜方向にかかる力を1個のボール保持器で
受けるので加工ヘッドが小型化し又軽量化して、加工ヘ
ッド回転用の駆動モーターの消費電力の節減等が計れ
る。
In the present invention, the balls in the first and second rows are
Since the ball is held by the flanges arranged on the outer sides of the balls in the first and second rows and the ball retainer that defines the distance between the balls, the ball can be sufficiently prevented from ramping up.
Therefore, a double groove having different directions with respect to the tube axis can be formed at a high speed. Further, in the present invention, the force applied in the pulling-out direction of the first row of balls and the second row of balls is received by one ball holder, so that the processing head can be reduced in size and weight, and a drive motor for rotating the processing head can be obtained. Power consumption can be reduced.

【0008】本発明において、ボール保持器に開けられ
た2列目のボールの穴62の角度θを40〜90度にして穴62
の壁部の内面又は表面端部を厚くすることにより、その
破損を確実に防止できる。又ボール32と穴62とのクリア
ランスCを0.50mm以下にすることにより、ボール32の
暴れをより確実に防止できる(図2参照)。
In the present invention, the angle θ of the holes 62 of the second row of balls formed in the ball retainer is set to 40 to 90 degrees,
By increasing the thickness of the inner surface or the end of the surface of the wall portion, the damage can be reliably prevented. By setting the clearance C between the ball 32 and the hole 62 to 0.50 mm or less, it is possible to more reliably prevent the ball 32 from running out (see FIG. 2).

【0009】ボール保持器にボールをしっかり押しつけ
てボールの暴れを抑えるには、溝加工時にボール1個に
掛かる引抜方向の力を、径方向にかかるボール1個当た
りの遠心力よりも十分大きくする必要がある。エアコン
等で通常使用されている外径10〜 6mmの二重溝付伝熱
管を、本発明により高速度で製造する場合、1列目と2
列目のボール総数を4〜6個、ボール径を 6〜15mm、
溝付プラグの外径を 5〜12mm、溝深さを 0.1〜 0.3m
mとするのが適当である。
[0009] In order to press the ball firmly against the ball retainer and to prevent the ball from running out, the force in the pulling direction applied to one ball at the time of grooving is made sufficiently larger than the centrifugal force applied per ball in the radial direction. There is a need. When a double grooved heat transfer tube having an outer diameter of 10 to 6 mm commonly used in an air conditioner or the like is manufactured at a high speed according to the present invention, the first row and the second row are used.
The total number of balls in the row is 4-6, the ball diameter is 6-15mm,
Outer diameter of grooved plug is 5 to 12 mm, groove depth is 0.1 to 0.3 m
m is appropriate.

【0010】本発明において、1列目と2列目のボール
総数が4個未満では、引抜加工中に金属管の軸が振れて
溝加工が困難になる。他方、ボールは引抜力によりボー
ル保持器に把持されるもので、ボール数があまり多くな
るとボール1個当たりに掛かる引抜応力が小さくなり、
遠心力がこれに勝るようになるとボールが暴れ出す。従
って1列目と2列目のボール総数は4〜6個が好まし
い。1列目と2列目のボールの配分数は、溝加工力の大
きい方に多くするのが効果的である。溝加工力は溝の深
さ、数等に左右される。ボール総数が4個の場合、2個
ずつ配分するのと、1個と3個に配分するのとの2通り
あるが、後者の方が、金属管の軸芯が3個のボールで確
実に保持されて引抜加工中軸ぶれが起き難いというメリ
ットがある。
In the present invention, if the total number of balls in the first row and the second row is less than 4, the axis of the metal tube swings during the drawing process, making it difficult to form grooves. On the other hand, the balls are gripped by the ball retainer by the pulling force. When the number of balls is too large, the pulling stress applied per ball decreases,
When the centrifugal force exceeds this, the ball starts to rampage. Therefore, the total number of balls in the first and second rows is preferably 4 to 6. It is effective to increase the number of balls to be distributed in the first row and the second row to the greater groove processing force. The grooving force depends on the depth, number, etc. of the groves. When the total number of balls is four, there are two ways of distributing them, two each, and one and three. There is an advantage that the shaft is less likely to run out during the drawing process while being held.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1) 図1イは、本発明の二重溝付伝熱管の製造方法の実施例
を示す説明図である。外径13mmの銅管10をダイス11と
フローティングプラグ12とにより縮径し、次に、縮径さ
れた銅管20の内側に第1と第2の2個の外周溝付プラグ
(以下プラグと略記する)21,22 を配し、その外側から
遊星回転する1列目のボール31と2列目のボール32をそ
れぞれ押圧して、銅管内面に二重溝を形成し、最後に仕
上げダイス(図示せず)を通して所定の外径に仕上げ
る。前記の第1と第2の2個のプラグ21,22 は、フロー
ティングプラグ12の先にマンドレル13で一体に結合して
支持した。1列目と2列目のボール31,32 は、それぞれ
ボール保持器51、52の穴に遊嵌されている。ボール保持
器52は加工ヘッド53に、ベアリング54を介して回転自在
に取付けられている。前記加工ヘッド53の端部には第1
と第2の円筒状のフランジ54,55 が2個取付けられ、前
記円筒状フランジ54,55 の内面にそれぞれ1列目と2列
目のボール31,32 が接して、その径方向への動きが抑え
られている。1列目と2列目のボール31,32 の引抜方向
への動きはボール保持器52により抑えられている。
The present invention will be described below in detail with reference to examples. Example 1 FIG. 1A is an explanatory view showing an example of a method for manufacturing a heat transfer tube with double grooves according to the present invention. A copper tube 10 having an outer diameter of 13 mm is reduced in diameter by a die 11 and a floating plug 12, and first and second two outer peripheral grooved plugs (hereinafter referred to as plugs) are provided inside the reduced diameter copper tube 20. Abbreviations) 21 and 22 are arranged, and the first row of balls 31 and the second row of balls 32, which rotate in a planetary manner, are pressed from the outside to form a double groove on the inner surface of the copper tube. (Not shown) to finish to a predetermined outer diameter. The first and second two plugs 21 and 22 were integrally connected to and supported by the mandrel 13 at the end of the floating plug 12. The balls 31 and 32 in the first and second rows are loosely fitted in the holes of the ball holders 51 and 52, respectively. The ball retainer 52 is rotatably mounted on the processing head 53 via a bearing 54. The first end of the processing head 53
And two second cylindrical flanges 54 and 55 are attached, and the first and second rows of balls 31 and 32 are in contact with the inner surfaces of the cylindrical flanges 54 and 55, respectively. Is suppressed. The movement of the balls 31 and 32 in the first and second rows in the pulling-out direction is suppressed by the ball holder 52.

【0012】ここで、円筒状のフランジ54,55 の内周面
は、引抜方向に僅かに縮径されており、フランジ54,55
を軸方向に移動させることにより、フランジ54,55 と銅
管20との距離を微調整してボール31,32 による銅管20へ
の押圧力を調整する。フランジ54,55 を軸方向に移動さ
せるには、ライナー56,57 の厚みを変えて行う。図1ロ
はA−A矢視図である。2列目の2個のボール32は第2
のボール保持器52にあけられた穴62に嵌まり込んで銅管
20を挟んで対向配置されている。1列目のボール部分
は、2列目のボール部分と同じ構成なので説明を省略す
る。
Here, the inner peripheral surfaces of the cylindrical flanges 54, 55 are slightly reduced in diameter in the pull-out direction.
Is moved in the axial direction to finely adjust the distance between the flanges 54 and 55 and the copper tube 20 to adjust the pressing force of the balls 31 and 32 on the copper tube 20. To move the flanges 54 and 55 in the axial direction, the thickness of the liners 56 and 57 is changed. FIG. 1B is a view taken in the direction of the arrow AA. The two balls 32 in the second row are the second
The copper tube fits into the hole 62
They are arranged to face each other with 20 therebetween. The configuration of the ball portion in the first row is the same as that of the ball portion in the second row, and a description thereof will be omitted.

【0013】ここで、加工ヘッド53を回転させると、ボ
ール31,32 は銅管20の回りを遊星回転する。この状態で
銅管20を引抜くと、1列目のボール31により第1の溝が
形成され、次に2列目のボール32により第2の溝が形成
される。
When the processing head 53 is rotated, the balls 31 and 32 rotate around the copper tube 20 in a planetary rotation. When the copper tube 20 is pulled out in this state, a first groove is formed by the balls 31 in the first row, and a second groove is formed by the balls 32 in the second row.

【0014】図1に示した方法により、外径9.53mmの
二重溝付伝熱管を製造した。第1プラグには、外径 9.8
mm、溝数70、ねじれ角度25度(ねじれ方向は左)、溝
深さ0.10mmのものを用いた。第2プラグには、外径
9.5mm、溝数50、ねじれ角度10度(ねじれ方向は
右)、溝深さ0.20mmのものを用いた。ボールには外径
14.0mmのものを使用し、溝加工中の2列目のボールと
第2保持器の穴とのクリアランスCは 0.1mm、穴角度
θは60度にした(図2参照)。1列目と2列目のボール
の数は種々に変化させた。
According to the method shown in FIG. 1, a double grooved heat transfer tube having an outer diameter of 9.53 mm was manufactured. The first plug has an outer diameter of 9.8
mm, the number of grooves was 70, the twist angle was 25 degrees (the twist direction was left), and the groove depth was 0.10 mm. The second plug has an outer diameter
9.5 mm, the number of grooves was 50, the twist angle was 10 degrees (the twist direction was right), and the groove depth was 0.20 mm. Outer diameter for ball
The clearance C between the ball in the second row during the groove processing and the hole of the second cage was 0.1 mm, and the hole angle θ was 60 degrees (see FIG. 2). The number of balls in the first and second rows was varied.

【0015】製造した伝熱管の内面溝の形状は、図4に
示すように、溝25,26の向きが管軸に対して異なるもの
である。第1の溝加工で高さ0.20mmのフィン24と溝25
を形成し、第2の溝加工でフィン24を間欠的に潰して前
記溝26を形成した。溝加工に要する力は第1溝加工の方
が第2溝加工より大きかった。
As shown in FIG. 4, the shape of the inner surface groove of the manufactured heat transfer tube is such that the direction of the grooves 25 and 26 is different from the tube axis. Fins 24 and grooves 25 with a height of 0.20 mm in the first groove processing
The fins 24 were intermittently crushed by the second groove processing to form the grooves 26. The force required for the groove processing was larger in the first groove processing than in the second groove processing.

【0016】(実施例2) 図3は、本発明の第2の実施例を示すボール保持方法の
説明図である。この方法では、1列目のボール31と2列
目のボール32を1個のボール保持器58により保持し、且
つこのボール保持器58により引抜方向へのボール31,32
の動きを抑えている。その他は図1と同じである。
(Embodiment 2) FIG. 3 is an explanatory view of a ball holding method according to a second embodiment of the present invention. In this method, the ball 31 in the first row and the ball 32 in the second row are held by one ball holder 58, and the balls 31 and 32 in the drawing direction are held by the ball holder 58.
The movement of is suppressed. Others are the same as FIG.

【0017】図3に示した方法によりボールを把持し
て、外径が 6.5mmφの二重溝付伝熱管を製造した。銅
管には、外径10mmのものを用いた。第1プラグには、
外径 7.6mm、溝数50、ねじれ角度20度(ねじれ方向は
右)、溝深さ0.20mmのものを用い、第2プラグには、
外径 7.2mm、溝数20、ねじれ角度20度(ねじれ方向は
左)、溝深さ0.30mmのものを用いた。ボール径は1列
目が 7.0mm、2列目が 6.5mmとした。
The ball was gripped by the method shown in FIG. 3 to produce a double grooved heat transfer tube having an outer diameter of 6.5 mmφ. A copper tube having an outer diameter of 10 mm was used. In the first plug,
The outer diameter is 7.6mm, the number of grooves is 50, the torsion angle is 20 degrees (the torsion direction is right), and the groove depth is 0.20mm.
The outer diameter was 7.2 mm, the number of grooves was 20, the twist angle was 20 degrees (the twist direction was left), and the groove depth was 0.30 mm. The ball diameter was 7.0 mm for the first row and 6.5 mm for the second row.

【0018】(比較例1) 図9に示した従来法によりボールを把持し、その他は、
実施例1と同じ方法により、二重溝付伝熱管を製造し
た。
Comparative Example 1 A ball was gripped by the conventional method shown in FIG.
A double grooved heat transfer tube was manufactured in the same manner as in Example 1.

【0019】前記各々の方法により製造した二重溝付伝
熱管について、内面溝形状と外観を調査した。結果を表
1に示す。
The inner groove shape and appearance of the double grooved heat transfer tube manufactured by each of the above methods were examined. Table 1 shows the results.

【0020】[0020]

【表1】 [Table 1]

【0021】表1より明らかなように、本発明例品 (N
o.1〜5)は、いずれも、内面溝形状と外観が良好であっ
た。ボールの1列目と2列目の配置数は、溝加工力の大
きい1列目にボールを多く配した4−2(No.1)の方が、
2−4(No.2)より安定して引抜きが行えた。ボール総数
を7個(4−3)にして同様の製造を行ったが、ボール
1個当たりに掛かる引抜応力が低下した為、外観及び引
抜安定性が若干低下した。これに対し、従来品は、公転
速度が2万rpm で引抜速度が40m/min.と遅い場合(No.6)
でも、内面溝形状と外観がやや不良となり、ボールの公
転速度と引抜速度をそれぞれ3万rpm と50m/min.に速め
た場合(No.7)では、2列目のボールの暴れが酷くなって
内面溝形状と外観がともに不良となった。更に、ボール
数を少なくした場合(No.8)は、金属管が破断した。尚、
本発明では、1列目のボールと2列目のボールの引抜方
向にかかる力を1個のボール保持器で受けるので加工ヘ
ッドが小型化し又軽量化して、加工ヘッド回転用モータ
ーの消費電力が節減された。
As is clear from Table 1, the products of the present invention (N
o.1 to 5) all had good inner groove shape and appearance. Regarding the number of balls arranged in the first and second rows, 4-2 (No. 1), in which a larger number of balls are arranged in the first row having a greater groove processing force,
Pulling was performed more stably than 2-4 (No. 2). The same production was performed with the total number of balls being 7 (4-3). However, since the drawing stress applied per ball was reduced, the appearance and the drawing stability were slightly reduced. On the other hand, the conventional product has a low revolving speed of 20,000 rpm and a low drawing speed of 40 m / min. (No. 6)
However, the inner groove shape and appearance were slightly poor, and when the revolving speed and pulling speed of the ball were increased to 30,000 rpm and 50 m / min, respectively (No. 7), the ball in the second row became severer. Both the inner groove shape and the appearance were poor. Further, when the number of balls was reduced (No. 8), the metal tube was broken. still,
In the present invention, the force applied in the pulling-out direction of the first row of balls and the second row of balls is received by one ball holder, so that the processing head is reduced in size and weight, and the power consumption of the processing head rotating motor is reduced. Savings.

【0022】(実施例3) 実施例1において、ボール保持器の穴の形状を種々に変
化させて二重溝付伝熱管を製造した。結果を表2に示
す。
Example 3 In Example 1, a heat transfer tube with double grooves was manufactured by changing the shape of the hole of the ball cage in various ways. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】表2より明らかなように、ボール保持器の
穴角度が40〜90度、クリアランスが0.1〜 0.5mmのも
の(No.10〜13,15)は、穴壁端部が破損したりせず、又ボ
ールの自転も良好になされた。しかし、No.9,14 は、穴
角度θが小さすぎ又は大きすぎた為、穴壁内面側又は表
面側端部が薄くなって一部破損し、又No.16 はクリアラ
ンスが狭くボールの自転が若干阻害され、No.17 はクリ
アランスが大きすぎてボールが若干暴れた。しかし、い
ずれも得られた伝熱管の品質には実用上特に問題はなか
った。
As is clear from Table 2, when the hole angle of the ball cage is 40 to 90 degrees and the clearance is 0.1 to 0.5 mm (Nos. 10 to 13, 15), the hole wall ends may be damaged. Without the ball, the ball also rotated well. However, in Nos. 9 and 14, the hole angle θ was too small or too large, so the inner or inner side of the hole wall became thin and partially damaged, and in No. 16 the clearance was narrow and the ball rotated. Was slightly hindered, and in No. 17, the clearance was too large and the ball was slightly hit. However, there was no practical problem in the quality of the obtained heat transfer tubes.

【0025】本発明方法により製造したNo.1の二重溝付
伝熱管に非共沸冷媒 [R32/R134a/R125]を入れて管
内蒸発熱伝達率を測定した。その結果、図5に示すよう
に、従来の単一溝の内面溝付管にR−22を入れたものよ
り高い伝熱特性を示した。
A non-azeotropic refrigerant [R32 / R134a / R125] was placed in the No. 1 double grooved heat transfer tube manufactured by the method of the present invention, and the evaporative heat transfer coefficient in the tube was measured. As a result, as shown in FIG. 5, the heat transfer characteristic was higher than that of a conventional single grooved inner grooved tube with R-22.

【0026】[0026]

【効果】以上に述べたように、本発明によれば、非共沸
冷媒の沸騰促進に適した二重溝付伝熱管を高速度で製造
することができ、工業上顕著な効果を奏する。
As described above, according to the present invention, a double grooved heat transfer tube suitable for accelerating the boiling of a non-azeotropic refrigerant can be produced at a high speed, which has a remarkable industrial effect.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の二重溝付伝熱管の製造方法の第1の実
施例を示す説明図である。
FIG. 1 is an explanatory view showing a first embodiment of a method for manufacturing a heat transfer tube with double grooves according to the present invention.

【図2】ボール保持器の穴とボールとの接触部分の説明
図である。
FIG. 2 is an explanatory diagram of a contact portion between a hole of a ball retainer and a ball.

【図3】本発明の二重溝付伝熱管の製造方法の第2の実
施例を示すボール保持方法の説明図である。
FIG. 3 is an explanatory view of a ball holding method showing a second embodiment of the method of manufacturing a double grooved heat transfer tube of the present invention.

【図4】二重溝付伝熱管の溝の向きが管軸に対して異な
る内面溝の斜視図である。
FIG. 4 is a perspective view of an inner surface groove in which the direction of the groove of the double grooved heat transfer tube is different from the tube axis.

【図5】本発明方法により製造した二重溝付伝熱管の管
内蒸発熱伝達率と冷媒流速との関係図である。
FIG. 5 is a diagram showing the relationship between the heat transfer coefficient of refrigerant and the flow rate of refrigerant in a double-groove heat transfer tube manufactured by the method of the present invention.

【図6】単一溝付伝熱管の内面溝の斜視図である。FIG. 6 is a perspective view of an inner surface groove of the heat transfer tube with a single groove.

【図7】二重溝付伝熱管の斜視図である。FIG. 7 is a perspective view of a heat transfer tube with double grooves.

【図8】従来の二重溝付伝熱管の製造方法の説明図であ
る。
FIG. 8 is an explanatory diagram of a conventional method for manufacturing a double grooved heat transfer tube.

【図9】従来の二重溝付伝熱管の製造方法のボール部分
の説明図である。
FIG. 9 is an explanatory view of a ball portion in a conventional method for manufacturing a heat transfer tube with double grooves.

【符号の説明】[Explanation of symbols]

10…………金属管 11…………ダイス 12…………フローティングプラグ 13…………マンドレル 20…………縮径された金属管 21,22 ……外周溝付プラグ 24…………フィン 25,26,27…溝 28…………二重溝付伝熱管 31…………1列目のボール 32…………2列目のボール 51,52,58…ボール保持器 53…………加工ヘッド 54,55 ……フランジ 56,57 ……ライナー 59…………仕上げダイス 61,62 ……ボール保持器に開けられた穴 70…………スペーサー 71,72,73…円錐面を有する部材 10 Metal tube 11 Die 12 Floating plug 13 Mandrel 20 Reduced metal tube 21,22 Plug with outer circumferential groove 24 ... Fins 25, 26, 27 ... Groove 28 ... Heat transfer tube with double grooves 31 ... Balls in first row 32 ... Balls in second row 51, 52, 58 ... Ball retainer 53 ……… Working head 54,55… Flange 56,57… Liner 59 ……… Finishing dies 61,62… Holes opened in the ball cage 70 ………… Spacers 71,72,73… Member having a conical surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−36016(JP,A) 特開 昭60−15015(JP,A) 特開 昭62−263820(JP,A) 特開 平6−134515(JP,A) 実開 平5−39710(JP,U) (58)調査した分野(Int.Cl.7,DB名) B21C 1/00 - 19/00 B21D 17/00 B21D 53/06 F28F 1/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-57-6016 (JP, A) JP-A-60-15015 (JP, A) JP-A-62-263820 (JP, A) JP-A-6-263820 134515 (JP, A) Japanese Utility Model Hei 5-39710 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) B21C 1/00-19/00 B21D 17/00 B21D 53/06 F28F 1/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 所定方向に引抜かれている金属管内に、
外周面に多数の溝を設けた溝付プラグを2個、引抜方向
に、順に、回転自在に保持させ、前記金属管の前記プラ
グを保持させた2箇所の外周面に、それぞれ1列目と2
列目のボールを配し、前記1列目と2列目のボールを、
遊星回転させながら前記金属管の外周面に押圧させて、
前記金属管の内面に二重溝を形成する方法において、前
記1列目と2列目のボールを、前記1列目と2列目のボ
ールの外側にそれぞれ配したフランジと、円周方向の
ール同士の間隔を規定する各列のボール保持器とにより
把持するとともに、加工ヘッドに回転自在に取付けられ
るボール保持器により1列目と2列目のボールを引き抜
き方向に移動しないように管軸方向に位置決めすること
を特徴とする二重溝付伝熱管の製造方法。
1. A metal pipe drawn in a predetermined direction,
Two grooved plugs provided with a large number of grooves on the outer peripheral surface are rotatably held in the pulling direction in order, and the first row is provided on each of the two outer peripheral surfaces of the metal tube holding the plug. 2
Arrange the balls in the first row and the balls in the first and second rows,
Pressing the outer peripheral surface of the metal tube while rotating the planet,
In the method of forming a double groove in the inner surface of the metal tube, a flange in which the first and second rows of balls are disposed outside the first and second rows of balls, respectively , It is gripped by the ball holders in each row that defines the spacing between the balls, and is rotatably attached to the processing head.
Pull out the first and second rows of balls using a ball holder
A method for manufacturing a heat transfer tube with a double groove, characterized in that the tube is positioned in the tube axis direction so as not to move in the tube direction .
【請求項2】 ボール保持器を2個用い、第1のボール
保持器により、1列目のボール同士の間隔を規定し、第
2のボール保持器により、2列目のボール同士の間隔を
規定するとともに、1列目と2列目のボールを引き抜き
方向に移動しないように管軸方向に位置決めすることを
特徴とする請求項1記載の二重溝付伝熱管の製造方法。
2. Using two ball retainers, the first ball retainer defines the distance between the balls in the first row, and the second ball retainer defines the distance between the balls in the second row. Prescribe and pull out the first and second rows of balls
2. The method for manufacturing a double grooved heat transfer tube according to claim 1, wherein the tube is positioned in the tube axis direction so as not to move in the direction .
【請求項3】 1列目と2列目のボールの合計数が4〜
6個であることを特徴とする請求項1又は請求項2記載
の二重溝付伝熱管の製造方法。
3. The total number of balls in the first and second rows is 4 to
The method according to claim 1 or 2, wherein the number of the heat transfer tubes is six.
JP22807495A 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove Expired - Fee Related JP3337880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22807495A JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22807495A JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Publications (2)

Publication Number Publication Date
JPH0970612A JPH0970612A (en) 1997-03-18
JP3337880B2 true JP3337880B2 (en) 2002-10-28

Family

ID=16870794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22807495A Expired - Fee Related JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Country Status (1)

Country Link
JP (1) JP3337880B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001241877A (en) * 2000-02-25 2001-09-07 Furukawa Electric Co Ltd:The Inner helically grooved tube and method of manufacture
CZ301687B6 (en) 2008-11-14 2010-05-26 Lapácek@František Pressed-in joint of heating body pipe and lamella, process of its manufacture and tool for making the process

Also Published As

Publication number Publication date
JPH0970612A (en) 1997-03-18

Similar Documents

Publication Publication Date Title
US5992512A (en) Heat exchanger tube and method for manufacturing the same
EP1502067B1 (en) Heat transfer tubes, including methods of fabrication and use thereof
CA1150723A (en) Heat transfer surface and method of manufacture
US5996686A (en) Heat transfer tubes and methods of fabrication thereof
US5690167A (en) Inner ribbed tube of hard metal and method
US20050241150A1 (en) Method of manufacture of heat-exchanger tube structured on both sides
US4938282A (en) High performance heat transfer tube for heat exchanger
US5010643A (en) High performance heat transfer tube for heat exchanger
JP3337880B2 (en) Manufacturing method of heat transfer tube with double groove
WO2001063196A1 (en) Tube with inner surface grooves and method of manufacturing the tube
US4353234A (en) Heat transfer surface and method of manufacture
JPS6298200A (en) Heat transfer tube of fine diameter and manufacture thereof
JP3050795B2 (en) Heat transfer tube
JPH10211537A (en) Heat transfer tube and its production
JPH04260793A (en) Heat transfer tube with inner surface groove
JPS6239359B2 (en)
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof
JP2005315556A (en) Inner-grooved pipe
JPS642878B2 (en)
JP4588267B2 (en) Internal grooved tube processing method
JPH0952127A (en) Manufacture and its device for heat transfer tube with inner groove
JPH01299707A (en) Manufacture of small and thin wall thickness heat transfer tube
JP2001074384A (en) Internally grooved tube
JP2706339B2 (en) Manufacturing method of heat transfer tube for inner surface processing
JP3770124B2 (en) Internal grooved tube processing method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees