JPH0970612A - Manufacture of heat transfer tube with double groove - Google Patents

Manufacture of heat transfer tube with double groove

Info

Publication number
JPH0970612A
JPH0970612A JP22807495A JP22807495A JPH0970612A JP H0970612 A JPH0970612 A JP H0970612A JP 22807495 A JP22807495 A JP 22807495A JP 22807495 A JP22807495 A JP 22807495A JP H0970612 A JPH0970612 A JP H0970612A
Authority
JP
Japan
Prior art keywords
balls
row
ball
heat transfer
transfer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22807495A
Other languages
Japanese (ja)
Other versions
JP3337880B2 (en
Inventor
Tetsuya Sumitomo
哲也 住友
Koji Yamamoto
孝司 山本
Toshiaki Hashizume
利明 橋爪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP22807495A priority Critical patent/JP3337880B2/en
Publication of JPH0970612A publication Critical patent/JPH0970612A/en
Application granted granted Critical
Publication of JP3337880B2 publication Critical patent/JP3337880B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method to manufacture a heat transfer tube with a double groove suitable for promoting boiling of non-azeotropic refrigerant at high speed by holding balls in a first row and a second row by flanges arranged on the outer side of the balls in the first row and the second row, and a ball holder to specify the space between balls to firmly hold each ball. SOLUTION: In a method in which two plugs 21, 22 provided with grooves on their outer periphery are arranged in a metallic tube 20, balls 31, 32 in the first row and the second row are pressed against the outer side of the metallic tube 20 at the position where the plugs 21, 22 are arranged wile planetarily rotating the balls to form a double groove on the inner surface of the metallic tube 20, the balls 31, 32 in the first row and the second row are held by flanges 54, 55 arranged on the outer side of the balls 31, 32 in the first row and the second row and ball holders 51, 52 to specify the space between the balls 31, 32.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、冷凍機や空調機等
の熱交換器用等に使用される二重溝付伝熱管を高速度で
引抜加工する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for drawing a double grooved heat transfer tube used for a heat exchanger such as a refrigerator or an air conditioner at a high speed.

【0002】[0002]

【従来の技術】冷凍機やルームエアコン等の空調機用の
熱交換器に使用される伝熱管は、管内にフレオンガス
(フレオンは炭化水素のフルオルクロル置換体類に対す
るデュポン社の商品名)等の冷媒を流し、前記冷媒を蒸
発又は凝縮させて管外を流れる流体との間で熱交換を行
うものである。前記伝熱管には、図6に示すように内面
に微細な溝27を多数形成して伝熱特性を高めた内面溝付
伝熱管が多用されている。ところで、冷媒には、従来よ
りフレオンR22、R12が用いられているが、これらはオ
ゾン層を破壊する為、環境保全の上から全廃する計画が
進められている。フレオンR22、R12の代替品には、オ
ゾン層に影響を及ぼさないフレオンR32、R134a、R12
5 等が挙げられている。特にこれら冷媒を混合した [R
32/R134a/R125]や [R32/R125]等の混合冷媒は、
従来のフレオンR22等に近い冷却能力を有し、しかも不
燃性の為、代替品として高い評価を得ている。
2. Description of the Related Art Heat transfer tubes used in heat exchangers for air conditioners such as refrigerators and room air conditioners have a refrigerant such as Freon gas (Freon is a DuPont trade name for fluorochloro substitution products of hydrocarbons). Is flowed to evaporate or condense the refrigerant to exchange heat with the fluid flowing outside the pipe. As the heat transfer tube, as shown in FIG. 6, an inner grooved heat transfer tube having a large number of fine grooves 27 formed on the inner surface to improve heat transfer characteristics is often used. By the way, Freon R22 and R12 have been conventionally used as refrigerants, but since these destroy the ozone layer, a plan to completely abolish them is being promoted from the viewpoint of environmental protection. Alternatives to Freon R22 and R12 include Freon R32, R134a and R12 that do not affect the ozone layer.
5 etc. are listed. Especially when these refrigerants are mixed [R
32 / R134a / R125] and [R32 / R125] mixed refrigerant,
It has a cooling capacity close to that of the conventional Freon R22 and is nonflammable, so it is highly evaluated as a substitute.

【0003】前述の混合冷媒には、共沸冷媒と非共沸冷
媒とがあり、前記の [R32/R134a/R125]や [R32/
R125]等の混合冷媒は非共沸冷媒である。共沸冷媒は、
液化開始温度(露点)と液化終了温度(沸点)とが同一
で、単一冷媒と同じ挙動を示すので特に問題はないが、
非共沸冷媒は、液化開始温度と液化終了温度が異なる
為、冷媒が蒸発又は凝縮する際に、液相側に高沸点成分
が濃縮し、気相側に低沸点成分が濃縮する。この濃度差
が拡散抵抗や熱抵抗を惹起して、蒸発又は凝縮での熱伝
達率を低下させる。このようなことから、非共沸冷媒を
用いる沸騰型伝熱管では、図7に示すように、二重に溝
25,26 を形成(キャビティ構造)し、冷媒の乱流効果を
活発化して沸騰を促進させた二重溝付伝熱管が開発され
た(特開平1-317637)。
The above-mentioned mixed refrigerant includes an azeotropic refrigerant and a non-azeotropic refrigerant, and the above-mentioned [R32 / R134a / R125] and [R32 /
R125] and other mixed refrigerants are non-azeotropic refrigerants. The azeotropic refrigerant is
Since the liquefaction start temperature (dew point) and the liquefaction end temperature (boiling point) are the same and behaves the same as a single refrigerant, there is no particular problem,
Since the non-azeotropic refrigerant has different liquefaction start temperature and liquefaction end temperature, when the refrigerant evaporates or condenses, the high boiling point component is concentrated on the liquid phase side and the low boiling point component is concentrated on the gas phase side. This difference in concentration causes diffusion resistance and heat resistance, and reduces the heat transfer coefficient in evaporation or condensation. Therefore, as shown in FIG. 7, the boiling heat transfer tube using the non-azeotropic refrigerant has double grooves.
A double grooved heat transfer tube has been developed in which 25 and 26 are formed (cavity structure) and the turbulent effect of the refrigerant is activated to promote boiling (JP-A-1-317637).

【0004】ところで、前記二重溝付伝熱管は、溝を二
重に加工する為、引抜加工の際の摩擦抵抗や塑性変形抵
抗が、単一溝(図6)の場合に較べて2倍になり、引抜
加工を高速度で行えないという問題があった。この対策
として、2つの溝付プラグに設けられる螺旋状突起を軸
線に対する傾きが同一方向で角度が異なるものとし、押
圧部材をロールからボールに替えて、管に加わる抵抗を
軽減する方法が(特開昭57-36016) 応用された。この方
法は、図8に示すように、金属管10をダイス11とフロー
ティングプラグ12により縮径し、次にこの縮径された金
属管20内に、外周に螺旋溝を彫った2個のプラグ21,22
を配し、外側からボール31,32 を遊星回転させながら押
付けて引抜き、最後に仕上げダイス59を通して二重溝付
伝熱管28に加工するものである。前記方法におけるボー
ル31,32 の把持方法は、図9に示すように、スペーサー
70で相互の間隔が規定されたボール31,32 に、外側から
円錐面を有する部材71〜73の前記円錐面を押付けてなさ
れていた。
By the way, since the double-groove heat transfer tube has double grooves, the frictional resistance and plastic deformation resistance during drawing are doubled as compared with the case of a single groove (FIG. 6). Therefore, there is a problem that the drawing process cannot be performed at a high speed. As a countermeasure against this, there is a method of reducing the resistance applied to the tube by changing the pressure member from a roll to a ball by changing the angle of the spiral projections provided in the two grooved plugs in the same direction with respect to the axis and different angles. Kaisho 57-36016) was applied. In this method, as shown in FIG. 8, the metal tube 10 is reduced in diameter by a die 11 and a floating plug 12, and then, in the diameter-reduced metal tube 20, two plugs each having a spiral groove engraved on the outer periphery are engraved. 21,22
Is arranged, and the balls 31 and 32 are pressed from the outside while rotating the planets and pulled out, and finally the heat transfer tube with double groove 28 is processed through the finishing die 59. The method of gripping the balls 31 and 32 in the above method is as shown in FIG.
The conical surfaces of the members 71 to 73 having conical surfaces are pressed against the balls 31 and 32 whose intervals are defined by 70 from the outside.

【0005】[0005]

【発明が解決しようとする課題】しかし、前述の二重溝
付伝熱管の製造方法では、金属管20は、第1の溝加工に
より硬化し、しかも表面にボール31の跡が残る。この
為、第2の溝加工ではボール32は金属管20の表面を不規
則に転動して暴れ出し、この暴れは、部材71〜73の円錐
面だけでは抑え切れず、この為形成される内面溝の形状
が不均一になり、伝熱特性が低下した。更に、ボールの
遊星回転(公転)を速めて高速引抜きを行おうとする
と、ボールに働く遠心力が大きくなってボールの暴れは
益々酷くなり、このボールの暴れが大きな摩擦抵抗とな
って管が破断するという問題があった。本発明の目的
は、高速度で引抜加工が行える二重溝付伝熱管の製造方
法を提供することにある。
However, in the above-described method for manufacturing the double-groove heat transfer tube, the metal tube 20 is hardened by the first groove processing, and the mark of the ball 31 remains on the surface. Therefore, in the second grooving, the balls 32 roll irregularly on the surface of the metal tube 20 and ramp up, and this rampage cannot be suppressed only by the conical surfaces of the members 71 to 73, and thus the inner surface formed. The shape of the groove became non-uniform and the heat transfer characteristics deteriorated. Furthermore, when attempting to perform high-speed withdrawal by speeding up the planetary rotation (revolution) of the ball, the centrifugal force acting on the ball becomes large and the rampage of the ball becomes even more severe. There was a problem of doing. It is an object of the present invention to provide a method for manufacturing a double grooved heat transfer tube which can be drawn at a high speed.

【0006】[0006]

【課題を解決する為の手段】本発明は、所定方向に引抜
かれている金属管内に、外周面に多数の溝を設けた溝付
プラグを2個、引抜方向に、順に、回転自在に保持さ
せ、前記金属管の前記プラグを保持させた2箇所の外周
面に、それぞれ1列目と2列目のボールを配し、前記1
列目と2列目のボールを、遊星回転させながら前記金属
管の外周面に押圧させて、前記金属管の内面に二重溝を
形成する方法において、前記1列目と2列目のボール
を、前記1列目と2列目のボールの外側にそれぞれ配し
たフランジと、ボール同士の間隔を規定するボール保持
器とにより把持することを特徴とする二重溝付伝熱管の
製造方法である。
DISCLOSURE OF THE INVENTION According to the present invention, two grooved plugs having a large number of grooves on the outer peripheral surface are held in a metal pipe drawn in a predetermined direction so as to be rotatable in the drawing direction in order. Then, the balls in the first row and the balls in the second row are arranged on the outer peripheral surfaces of the two places of the metal tube holding the plug, respectively.
A method of pressing the balls of the first and second rows against the outer peripheral surface of the metal tube while rotating the planets to form double grooves on the inner surface of the metal tube, wherein the balls of the first and second rows are Is held by flanges arranged outside the balls in the first and second rows and a ball retainer that defines the distance between the balls, respectively. is there.

【0007】本発明では、1列目と2列目のボールを、
前記1列目と2列目のボールの外側にそれぞれ配したフ
ランジと、ボール同士の間隔を規定するボール保持器と
により把持するので、ボールの暴れを十分防止できる。
従って、向きが管軸に対して異なる二重溝を高速度で形
成できる。更に、本発明では、1列目のボールと2列目
のボールの引抜方向にかかる力を1個のボール保持器で
受けるので加工ヘッドが小型化し又軽量化して、加工ヘ
ッド回転用の駆動モーターの消費電力の節減等が計れ
る。
In the present invention, the balls in the first row and the balls in the second row are
The balls are gripped by the flanges arranged outside the balls in the first row and the balls in the second row, respectively, and the ball retainers that define the intervals between the balls.
Therefore, it is possible to form the double groove having a different direction with respect to the tube axis at a high speed. Further, in the present invention, since the force applied in the pulling direction of the balls in the first row and the balls in the second row is received by the single ball retainer, the machining head can be made smaller and lighter, and the drive motor for rotating the machining head can be obtained. Power consumption can be reduced.

【0008】本発明において、ボール保持器に開けられ
た2列目のボールの穴62の角度θを40〜90度にして穴62
の壁部の内面又は表面端部を厚くすることにより、その
破損を確実に防止できる。又ボール32と穴62とのクリア
ランスCを0.50mm以下にすることにより、ボール32の暴
れをより確実に防止できる(図2参照)。
In the present invention, the angle 62 of the holes 62 of the balls in the second row formed in the ball cage is set to 40 to 90 degrees.
By thickening the inner surface or the end of the surface of the wall portion, it is possible to reliably prevent the damage. Further, by setting the clearance C between the ball 32 and the hole 62 to be 0.50 mm or less, it is possible to more surely prevent the ball 32 from being rough (see FIG. 2).

【0009】ボール保持器にボールをしっかり押しつけ
てボールの暴れを抑えるには、溝加工時にボール1個に
掛かる引抜方向の力を、径方向にかかるボール1個当た
りの遠心力よりも十分大きくする必要がある。エアコン
等で通常使用されている外径10〜6mm の二重溝付伝熱管
を、本発明により高速度で製造する場合、1列目と2列
目のボール総数を4〜6個、ボール径を 6〜15mm、溝
付プラグの外径を 5〜12mm、溝深さを 0.1〜0.3 mm
とするのが適当である。
In order to firmly press the ball against the ball retainer to prevent the ball from moving roughly, the pulling force applied to each ball during the groove processing is made sufficiently larger than the centrifugal force applied to each ball in the radial direction. There is a need. When a double grooved heat transfer tube with an outer diameter of 10 to 6 mm, which is normally used in air conditioners, is manufactured at high speed according to the present invention, the total number of balls in the first and second rows is 4 to 6, and the ball diameter is 6 to 15 mm, grooved plug outer diameter 5 to 12 mm, groove depth 0.1 to 0.3 mm
Is appropriate.

【0010】本発明において、1列目と2列目のボール
総数が4個未満では、引抜加工中に金属管の軸が振れて
溝加工が困難になる。他方、ボールは引抜力によりボー
ル保持器に把持されるもので、ボール数があまり多くな
るとボール1個当たりに掛かる引抜応力が小さくなり、
遠心力がこれに勝るようになるとボールが暴れ出す。従
って1列目と2列目のボール総数は4〜6個が好まし
い。1列目と2列目のボールの配分数は、溝加工力の大
きい方に多くするのが効果的である。溝加工力は溝の深
さ、数等に左右される。ボール総数が4個の場合、2個
ずつ配分するのと、1個と3個に配分するのとの2通り
あるが、後者の方が、金属管の軸芯が3個のボールで確
実に保持されて引抜加工中軸ぶれが起き難いというメリ
ットがある。
In the present invention, when the total number of balls in the first row and the second row is less than 4, the shaft of the metal tube swings during the drawing process, which makes groove processing difficult. On the other hand, the balls are gripped by the ball cage by the pulling force, and if the number of balls is too large, the pulling stress applied to each ball becomes small,
When the centrifugal force becomes higher than this, the ball begins to rampage. Therefore, the total number of balls in the first and second rows is preferably 4 to 6. It is effective to increase the number of balls distributed in the first and second rows to the larger groove machining force. Grooving force depends on the depth and number of grooves. If the total number of balls is four, there are two ways, one is for each two and one is for three, but the latter is more reliable with three balls having a metal tube axis. There is an advantage that it is held and it is difficult for shaft deviation to occur during the drawing process.

【0011】[0011]

【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)図1イは、本発明の二重溝付伝熱管の製造
方法の実施例を示す説明図である。外径13mmの銅管10を
ダイス11とフローティングプラグ12とにより縮径し、次
に、縮径された銅管20の内側に第1と第2の2個の外周
溝付プラグ(以下プラグと略記する)21,22 を配し、そ
の外側から遊星回転する1列目のボール31と2列目のボ
ール32をそれぞれ押圧して、銅管内面に二重溝を形成
し、最後に仕上げダイス(図示せず)を通して所定の外
径に仕上げる。前記の第1と第2の2個のプラグ21,22
は、フローティングプラグ12の先にマンドレル13で一体
に結合して支持した。1列目と2列目のボール31,32
は、それぞれボール保持器51、52の穴に遊嵌されてい
る。ボール保持器52は加工ヘッド53に、ベアリング54を
介して回転自在に取付けられている。前記加工ヘッド53
の端部には第1と第2の円筒状のフランジ54,55 が2個
取付けられ、前記円筒状フランジ54,55 の内面にそれぞ
れ1列目と2列目のボール31,32 が接して、その径方向
への動きが抑えられている。1列目と2列目のボール3
1,32 の引抜方向への動きはボール保持器52により抑え
られている。
The present invention will be described below in detail with reference to examples. (Embodiment 1) FIG. 1A is an explanatory view showing an embodiment of a method for manufacturing a double grooved heat transfer tube of the present invention. The copper tube 10 having an outer diameter of 13 mm is reduced in diameter by the die 11 and the floating plug 12, and then the first and second two outer peripheral grooved plugs (hereinafter referred to as plugs) are provided inside the reduced diameter copper tube 20. 21 and 22 are arranged, and the balls 31 in the first row and the balls 32 in the second row that rotate in a planetary state are pressed from the outside to form a double groove on the inner surface of the copper pipe and finally finish die. Finished to a specified outer diameter through (not shown). The first and second two plugs 21,22
Was supported integrally with the mandrel 13 at the tip of the floating plug 12. First and second row balls 31,32
Are loosely fitted in the holes of the ball holders 51 and 52, respectively. The ball holder 52 is rotatably attached to the processing head 53 via a bearing 54. The processing head 53
Two first and second cylindrical flanges 54 and 55 are attached to the ends of the cylindrical flanges 54 and 55, and the balls 31 and 32 of the first and second rows are in contact with the inner surfaces of the cylindrical flanges 54 and 55, respectively. , Its radial movement is suppressed. Balls 1 and 2
The movement of 1,32 in the pull-out direction is suppressed by the ball retainer 52.

【0012】ここで、円筒状のフランジ54,55 の内周面
は、引抜方向に僅かに縮径されており、フランジ54,55
を軸方向に移動させることにより、フランジ54,55 と銅
管20との距離を微調整してボール31,32 による銅管20へ
の押圧力を調整する。フランジ54,55 を軸方向に移動さ
せるには、ライナー56,57 の厚みを変えて行う。図1ロ
はA−A矢視図である。2列目の2個のボール32は第2
のボール保持器52にあけられた穴62に嵌まり込んで銅管
20を挟んで対向配置されている。1列目のボール部分
は、2列目のボール部分と同じ構成なので説明を省略す
る。
Here, the inner peripheral surfaces of the cylindrical flanges 54, 55 are slightly reduced in diameter in the pulling-out direction.
Is moved in the axial direction to finely adjust the distance between the flanges 54, 55 and the copper tube 20 and adjust the pressing force of the balls 31, 32 on the copper tube 20. To move the flanges 54 and 55 in the axial direction, the thickness of the liners 56 and 57 is changed. FIG. 1B is a view on arrow AA. The two balls 32 in the second row are the second
The copper tube that fits into the hole 62 formed in the ball cage 52 of
They are arranged opposite to each other with 20 in between. Since the ball portion in the first row has the same structure as the ball portion in the second row, the description thereof will be omitted.

【0013】ここで、加工ヘッド53を回転させると、ボ
ール31,32 は銅管20の回りを遊星回転する。この状態で
銅管20を引抜くと、1列目のボール31により第1の溝が
形成され、次に2列目のボール32により第2の溝が形成
される。
Here, when the processing head 53 is rotated, the balls 31 and 32 are rotated around the copper tube 20 as a planet. When the copper pipe 20 is pulled out in this state, the balls 31 in the first row form a first groove, and then the balls 32 in the second row form a second groove.

【0014】図1に示した方法により、外径9.53mmの二
重溝付伝熱管を製造した。第1プラグには、外径9.8 m
m、溝数70、ねじれ角度25度(ねじれ方向は左)、溝深
さ0.10mmのものを用いた。第2プラグには、外径9.5
mm、溝数50、ねじれ角度10度(ねじれ方向は右)、溝
深さ0.20mmのものを用いた。ボールには外径14.0mm
のものを使用し、溝加工中の2列目のボールと第2保持
器の穴とのクリアランスCは 0.1mm、穴角度θは60度
にした(図2参照)。1列目と2列目のボールの数は種
々に変化させた。
A double grooved heat transfer tube having an outer diameter of 9.53 mm was manufactured by the method shown in FIG. The first plug has an outer diameter of 9.8 m
m, the number of grooves was 70, the twist angle was 25 degrees (the twist direction was left), and the groove depth was 0.10 mm. The second plug has an outer diameter of 9.5
mm, the number of grooves was 50, the twist angle was 10 degrees (the twist direction was right), and the groove depth was 0.20 mm. The ball has an outer diameter of 14.0 mm
The clearance C between the ball in the second row and the hole of the second cage during groove processing was 0.1 mm, and the hole angle θ was 60 degrees (see FIG. 2). The number of balls in the first and second rows was changed variously.

【0015】製造した伝熱管の内面溝の形状は、図4に
示すように、溝25,26の向きが管軸に対して異なるもの
である。第1の溝加工で高さ0.20mmのフィン24と溝25
を形成し、第2の溝加工でフィン24を間欠的に潰して前
記溝26を形成した。溝加工に要する力は第1溝加工の方
が第2溝加工より大きかった。
The shape of the inner surface grooves of the manufactured heat transfer tube is such that the directions of the grooves 25 and 26 are different from the tube axis, as shown in FIG. Fin 24 and groove 25 with a height of 0.20 mm in the first groove processing
Then, the fins 24 were intermittently crushed by the second groove processing to form the grooves 26. The force required for grooving was larger in the first grooving than in the second grooving.

【0016】(実施例2)図3は、本発明の第2の実施
例を示すボール保持方法の説明図である。この方法で
は、1列目のボール31と2列目のボール32を1個のボー
ル保持器58により保持し、且つこのボール保持器58によ
り引抜方向へのボール31,32 の動きを抑えている。その
他は図1と同じである。
(Embodiment 2) FIG. 3 is an explanatory view of a ball holding method showing a second embodiment of the present invention. In this method, the balls 31 in the first row and the balls 32 in the second row are held by one ball holder 58, and the movement of the balls 31, 32 in the pulling direction is suppressed by the ball holder 58. . Others are the same as those in FIG.

【0017】図3に示した方法によりボールを把持し
て、外径が 6.5mmφの二重溝付伝熱管を製造した。銅
管には、外径10mmのものを用いた。第1プラグには、
外径7.6 mm、溝数50、ねじれ角度20度(ねじれ方向は
右)、溝深さ0.20mmのものを用い、第2プラグには、
外径7.2 mm、溝数20、ねじれ角度20度(ねじれ方向は
左)、溝深さ0.30mmのものを用いた。ボール径は1列
目が 7.0mm、2列目が6.5 mmとした。
A ball was gripped by the method shown in FIG. 3 to produce a double grooved heat transfer tube having an outer diameter of 6.5 mmφ. A copper tube having an outer diameter of 10 mm was used. The first plug has
The outer diameter is 7.6 mm, the number of grooves is 50, the twist angle is 20 degrees (the twist direction is right), the groove depth is 0.20 mm, and the second plug is
The outer diameter was 7.2 mm, the number of grooves was 20, the twist angle was 20 degrees (the twist direction was left), and the groove depth was 0.30 mm. The ball diameter was 7.0 mm in the first row and 6.5 mm in the second row.

【0018】(比較例1)図9に示した従来法によりボ
ールを把持し、その他は、実施例1と同じ方法により、
二重溝付伝熱管を製造した。
(Comparative Example 1) A ball is gripped by the conventional method shown in FIG.
A double grooved heat transfer tube was manufactured.

【0019】前記各々の方法により製造した二重溝付伝
熱管について、内面溝形状と外観を調査した。結果を表
1に示す。
The inner groove shape and appearance of the double grooved heat transfer tube manufactured by each of the above-mentioned methods were investigated. The results are shown in Table 1.

【0020】[0020]

【表1】 *:○良好、△やや不良、×不良。[Table 1] *: Good, Fair, Poor

【0021】表1より明らかなように、本発明例品 (N
o.1〜5)は、いずれも、内面溝形状と外観が良好であっ
た。ボールの1列目と2列目の配置数は、溝加工力の大
きい1列目にボールを多く配した4−2(No.1)の方が、
2−4(No.2)より安定して引抜きが行えた。ボール総数
を7個(4−3)にして同様の製造を行ったが、ボール
1個当たりに掛かる引抜応力が低下した為、外観及び引
抜安定性が若干低下した。これに対し、従来品は、公転
速度が2万rpm で引抜速度が40m/min.と遅い場合(No.6)
でも、内面溝形状と外観がやや不良となり、ボールの公
転速度と引抜速度をそれぞれ3万rpm と50m/min.に速め
た場合(No.7)では、2列目のボールの暴れが酷くなって
内面溝形状と外観がともに不良となった。更に、ボール
数を少なくした場合(No.8)は、金属管が破断した。尚、
本発明では、1列目のボールと2列目のボールの引抜方
向にかかる力を1個のボール保持器で受けるので加工ヘ
ッドが小型化し又軽量化して、加工ヘッド回転用モータ
ーの消費電力が節減された。
As is clear from Table 1, the products of the present invention (N
All of o.1 to 5) had good inner groove shape and appearance. Regarding the number of balls arranged in the first and second rows, 4-2 (No. 1) in which more balls are arranged in the first row, which has a large groove processing force, is
2-4 (No. 2) could be pulled out more stably. The same production was carried out with the total number of balls being 7 (4-3), but the drawing stress applied to each ball was lowered, and the appearance and the drawing stability were slightly lowered. On the other hand, in the conventional product, when the revolution speed is 20,000 rpm and the drawing speed is as low as 40 m / min. (No. 6)
However, when the inner groove shape and appearance became a little poor, and the ball revolution speed and drawing speed were increased to 30,000 rpm and 50 m / min. Respectively (No. 7), the rampage of the ball in the second row became severe. The internal groove shape and appearance were both poor. Furthermore, when the number of balls was reduced (No. 8), the metal tube broke. still,
In the present invention, since the force applied in the pull-out direction of the balls in the first row and the balls in the second row is received by the single ball retainer, the machining head becomes smaller and lighter, and the power consumption of the machining head rotating motor is reduced. It was saved.

【0022】(実施例3)実施例1において、ボール保
持器の穴の形状を種々に変化させて二重溝付伝熱管を製
造した。結果を表2に示す。
Example 3 In Example 1, a double grooved heat transfer tube was manufactured by changing the shape of the hole of the ball cage variously. Table 2 shows the results.

【0023】[0023]

【表2】 [Table 2]

【0024】表2より明らかなように、ボール保持器の
穴角度が40〜90度、クリアランスが0.1〜0.5 mmのもの
(No.10〜13,15)は、穴壁端部が破損したりせず、又ボー
ルの自転も良好になされた。しかし、No.9,14 は、穴角
度θが小さすぎ又は大きすぎた為、穴壁内面側又は表面
側端部が薄くなって一部破損し、又No.16 はクリアラン
スが狭くボールの自転が若干阻害され、No.17 はクリア
ランスが大きすぎてボールが若干暴れた。しかし、いず
れも得られた伝熱管の品質には実用上特に問題はなかっ
た。
As is clear from Table 2, the ball cage has a hole angle of 40 to 90 degrees and a clearance of 0.1 to 0.5 mm.
In Nos. 10 to 13 and 15, the end of the hole wall was not damaged, and the ball rotated well. However, in Nos. 9 and 14, the hole angle θ was too small or too large, and the hole wall inner surface side or surface side edge was thinned and partly damaged. Was slightly hindered, and No. 17 had too much clearance and the ball ran a little. However, there was no particular problem in practical use in the quality of the obtained heat transfer tube.

【0025】本発明方法により製造したNo.1の二重溝付
伝熱管に非共沸冷媒 [R32/R134a/R125]を入れて管
内蒸発熱伝達率を測定した。その結果、図5に示すよう
に、従来の単一溝の内面溝付管にR−22を入れたものよ
り高い伝熱特性を示した。
Non-azeotropic refrigerant [R32 / R134a / R125] was placed in the No. 1 double grooved heat transfer tube manufactured by the method of the present invention, and the evaporation heat transfer coefficient in the tube was measured. As a result, as shown in FIG. 5, the heat transfer characteristics were higher than those of the conventional single-grooved inner grooved tube with R-22.

【0026】[0026]

【効果】以上に述べたように、本発明によれば、非共沸
冷媒の沸騰促進に適した二重溝付伝熱管を高速度で製造
することができ、工業上顕著な効果を奏する。
As described above, according to the present invention, a double grooved heat transfer tube suitable for promoting boiling of a non-azeotropic refrigerant can be manufactured at a high speed, and a remarkable effect is industrially achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の二重溝付伝熱管の製造方法の第1の実
施例を示す説明図である。
FIG. 1 is an explanatory view showing a first embodiment of a method for manufacturing a double grooved heat transfer tube of the present invention.

【図2】ボール保持器の穴とボールとの接触部分の説明
図である。
FIG. 2 is an explanatory diagram of a contact portion between a ball and a hole of a ball cage.

【図3】本発明の二重溝付伝熱管の製造方法の第2の実
施例を示すボール保持方法の説明図である。
FIG. 3 is an explanatory view of a ball holding method showing a second embodiment of the method for manufacturing the double grooved heat transfer tube of the present invention.

【図4】二重溝付伝熱管の溝の向きが管軸に対して異な
る内面溝の斜視図である。
FIG. 4 is a perspective view of an inner surface groove in which the direction of the groove of the double grooved heat transfer tube is different from the tube axis.

【図5】本発明方法により製造した二重溝付伝熱管の管
内蒸発熱伝達率と冷媒流速との関係図である。
FIG. 5 is a relationship diagram between the in-tube evaporation heat transfer coefficient and the refrigerant flow velocity of the double grooved heat transfer tube manufactured by the method of the present invention.

【図6】単一溝付伝熱管の内面溝の斜視図である。FIG. 6 is a perspective view of inner surface grooves of the heat transfer tube with a single groove.

【図7】二重溝付伝熱管の斜視図である。FIG. 7 is a perspective view of a double grooved heat transfer tube.

【図8】従来の二重溝付伝熱管の製造方法の説明図であ
る。
FIG. 8 is an explanatory view of a conventional method for manufacturing a double-grooved heat transfer tube.

【図9】従来の二重溝付伝熱管の製造方法のボール部分
の説明図である。
FIG. 9 is an explanatory diagram of a ball portion of a conventional method for manufacturing a double-grooved heat transfer tube.

【符号の説明】[Explanation of symbols]

10…………金属管 11…………ダイス 12…………フローティングプラグ 13…………マンドレル 20…………縮径された金属管 21,22 ……外周溝付プラグ 24…………フィン 25,26,27…溝 28…………二重溝付伝熱管 31…………1列目のボール 32…………2列目のボール 51,52,58…ボール保持器 53…………加工ヘッド 54,55 ……フランジ 56,57 ……ライナー 59…………仕上げダイス 61,62 ……ボール保持器に開けられた穴 70…………スペーサー 71,72,73…円錐面を有する部材 10 ………… Metal tube 11 ………… Die 12 ………… Floating plug 13 ………… Mandrel 20 ………… Reduced diameter metal tube 21,22 …… Peripheral grooved plug 24 ………… … Fin 25,26,27… Groove 28 ………… Double grooved heat transfer tube 31 ………… First row ball 32 ………… Second row ball 51,52,58… Ball cage 53 ………… Machining head 54,55 …… Flange 56,57 …… Liner 59 ………… Finishing dies 61,62 …… Hole drilled in the ball cage 70 ………… Spacer 71,72,73… A member having a conical surface

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定方向に引抜かれている金属管内に、
外周面に多数の溝を設けた溝付プラグを2個、引抜方向
に、順に、回転自在に保持させ、前記金属管の前記プラ
グを保持させた2箇所の外周面に、それぞれ1列目と2
列目のボールを配し、前記1列目と2列目のボールを、
遊星回転させながら前記金属管の外周面に押圧させて、
前記金属管の内面に二重溝を形成する方法において、前
記1列目と2列目のボールを、前記1列目と2列目のボ
ールの外側にそれぞれ配したフランジと、ボール同士の
間隔を規定するボール保持器とにより把持することを特
徴とする二重溝付伝熱管の製造方法。
1. A metal pipe that is pulled out in a predetermined direction,
Two grooved plugs provided with a large number of grooves on the outer peripheral surface thereof were rotatably held in order in the drawing direction, and two rows of outer peripheral surfaces were held on the outer peripheral surfaces of the metal pipes holding the plugs, respectively. Two
Arrange the balls in the first row and the balls in the first and second rows,
Press the outer peripheral surface of the metal tube while rotating the planet,
In the method of forming a double groove on the inner surface of the metal tube, a flange in which the balls in the first row and the second row are respectively arranged outside the balls in the first row and the second row, and an interval between the balls A method for manufacturing a double-grooved heat transfer tube, characterized in that it is gripped by a ball retainer that defines the above.
【請求項2】 ボール保持器を2個用い、第1のボール
保持器により、1列目のボール同士の間隔を規定し、第
2のボール保持器により、2列目のボール同士の間隔を
規定するとともに、1列目と2列目のボールを把持する
ことを特徴とする請求項1記載の二重溝付伝熱管の製造
方法。
2. Two ball cages are used, the first ball cage defines the spacing between the balls in the first row, and the second ball cage defines the spacing between the balls in the second row. The method for manufacturing a double-grooved heat transfer tube according to claim 1, wherein the balls of the first row and the balls of the second row are gripped while being regulated.
【請求項3】 1列目と2列目のボールの合計数が4〜
6個であることを特徴とする請求項1又は請求項2記載
の二重溝付伝熱管の製造方法。
3. The total number of balls in the first and second rows is 4 to 4.
The method for manufacturing a double-grooved heat transfer tube according to claim 1 or 2, wherein the number is six.
JP22807495A 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove Expired - Fee Related JP3337880B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22807495A JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22807495A JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Publications (2)

Publication Number Publication Date
JPH0970612A true JPH0970612A (en) 1997-03-18
JP3337880B2 JP3337880B2 (en) 2002-10-28

Family

ID=16870794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22807495A Expired - Fee Related JP3337880B2 (en) 1995-09-05 1995-09-05 Manufacturing method of heat transfer tube with double groove

Country Status (1)

Country Link
JP (1) JP3337880B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
EP2187159A2 (en) 2008-11-14 2010-05-19 Frantisek Lapacek A pressed-in joint of a pipe and a vane of a heater, its production method and the device used for performing the method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063196A1 (en) * 2000-02-25 2001-08-30 The Furukawa Electric Co., Ltd. Tube with inner surface grooves and method of manufacturing the tube
EP2187159A2 (en) 2008-11-14 2010-05-19 Frantisek Lapacek A pressed-in joint of a pipe and a vane of a heater, its production method and the device used for performing the method

Also Published As

Publication number Publication date
JP3337880B2 (en) 2002-10-28

Similar Documents

Publication Publication Date Title
EP1845327B1 (en) Method of manufacturing a heat transfer tube
US5996686A (en) Heat transfer tubes and methods of fabrication thereof
AU2003231750C1 (en) Heat transfer tubes, including methods of fabrication and use thereof
US7509828B2 (en) Tool for making enhanced heat transfer surfaces
US8573022B2 (en) Method for making enhanced heat transfer surfaces
US4938282A (en) High performance heat transfer tube for heat exchanger
US5010643A (en) High performance heat transfer tube for heat exchanger
CN1898520B (en) Method and tool for making enhanced heat transfer surfaces
WO2001063196A1 (en) Tube with inner surface grooves and method of manufacturing the tube
JPH0970612A (en) Manufacture of heat transfer tube with double groove
JPS6298200A (en) Heat transfer tube of fine diameter and manufacture thereof
JP2006130558A (en) Method for manufacturing heat exchanger
JPH10211537A (en) Heat transfer tube and its production
JP3592149B2 (en) Internal grooved tube
JP3050795B2 (en) Heat transfer tube
JPS6239359B2 (en)
JP4588267B2 (en) Internal grooved tube processing method
JPH0952127A (en) Manufacture and its device for heat transfer tube with inner groove
JP3743342B2 (en) Spiral inner grooved tube and manufacturing method thereof
JP3743330B2 (en) Manufacturing method of internally grooved tube
JPH1110268A (en) Production of outer face grooved tube
JPH11319934A (en) Manufacture of and device for interior grooved tube
JP4712160B2 (en) Manufacturing method of internally grooved tube
JPH09314264A (en) Manufacture of tube having double groove in inner surface
JPH07256336A (en) Production of inner surface grooved tube

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070809

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080809

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090809

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100809

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110809

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120809

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130809

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees