JPS62182595A - Heat transfer tube and manufacture thereof and plug with groove for manufacturing it - Google Patents

Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Info

Publication number
JPS62182595A
JPS62182595A JP2478186A JP2478186A JPS62182595A JP S62182595 A JPS62182595 A JP S62182595A JP 2478186 A JP2478186 A JP 2478186A JP 2478186 A JP2478186 A JP 2478186A JP S62182595 A JPS62182595 A JP S62182595A
Authority
JP
Japan
Prior art keywords
tube
groove
grooves
section
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2478186A
Other languages
Japanese (ja)
Inventor
Katsuumi Hosokawa
細川 勝海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2478186A priority Critical patent/JPS62182595A/en
Publication of JPS62182595A publication Critical patent/JPS62182595A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • F28F13/185Heat-exchange surfaces provided with microstructures or with porous coatings
    • F28F13/187Heat-exchange surfaces provided with microstructures or with porous coatings especially adapted for evaporator surfaces or condenser surfaces, e.g. with nucleation sites

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Abstract

PURPOSE:To restrict pressure loss to the same level as a smooth tube and permit to promote boiling phenomenon by a method wherein a multitude of axial or spiral grooves are formed on the inner surface of a tube while cavities, having V-shape or sector-shape sections and communicated with the grooves, are formed at the tip ends of the grooves on the wall along the direction of the grooves. CONSTITUTION:Axial or spiral grooves 2 are formed on the inner surface of a tube 1 and cavities 5, having sector-shape or V-shape sections and communicated with the grooves 2, are formed continuously along the direction of the groove 2. One or a plurality of grooves 7, intersecting said grooves 2 and having a depth to arrive at said cavities, is formed on the inner surface of the tube 1. According to this method, the width of the opening of the groove can be narrowed and cavities, communicating with said grooves, can be formed in the wall of the tube 1, therefore, boiling phenomenon in the heat transfer tube may be promoted and the evaporating heat transfer rate of refrigerant, flowing in the tube, may be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空調機や冷凍機等の熱交換器に用いられる伝熱
管と、その製造法及び製造用プラグに関し、特に管内に
通すフレオン等の冷媒の蒸発性能を向上せしめたもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a heat exchanger tube used in a heat exchanger such as an air conditioner or a refrigerator, a manufacturing method thereof, and a plug for manufacturing the same. This improves the evaporation performance of refrigerant.

〔従来の技術〕[Conventional technology]

一般に小型空調機や冷凍機の熱交換器には機器の小型化
や省エネルギーの推進により、伝熱性能の優れた伝熱管
として、例えば第7図に示すように、管(1)の内面に
溝(2)を形成した内面溝付管が用いられている。しか
し伝熱管自体の薄肉化も加わり、管内面の溝形状の改良
には限界がある。そこで内面溝付管を更に二次加工して
第8図に示すように管(1)の内面に形成した溝(2)
の山側先端部(3)を溝側に押し潰して溝開口部(4)
を狭め、該開口部(4)により管(1)と連通づる空胴
(5)を形成した特殊溝付伝熱管が用いられるようにな
った。この伝熱管によれば管内を流れる冷媒の蒸発性能
を向上し、沸騰熱伝達率を高め得ることが知られている
In general, heat exchangers for small air conditioners and refrigerators are being made with grooves on the inner surface of the tube (1), as shown in Figure 7, as heat exchanger tubes with excellent heat transfer performance due to the miniaturization of equipment and promotion of energy conservation. (2) An internally grooved tube is used. However, due to the thinning of the heat exchanger tube itself, there is a limit to the improvement of the groove shape on the inner surface of the tube. Therefore, the internally grooved tube was further processed to form grooves (2) on the internal surface of the tube (1) as shown in Figure 8.
Squeeze the tip of the mountain side (3) toward the groove side to create the groove opening (4).
Specially grooved heat transfer tubes have been used which have narrowed openings (4) to form cavities (5) that communicate with the tubes (1). It is known that this heat transfer tube can improve the evaporation performance of the refrigerant flowing inside the tube and increase the boiling heat transfer coefficient.

(発明が解決しようとする問題点) 特殊溝付伝熱管は一般に従来の内面構付管内に、平滑面
を有するフローティングプラグを挿入し、抽伸加工によ
る拡管又は縮管によって造られている。しかし単に従来
型内面構付管の管内にフローティングプラグを挿入して
拡管を行なうだけでは山側先端部を一方向にのみ変形さ
せるだけであり、溝開口部の幅を狭くして沸騰現象を活
発に促進させ得る構造とはならない。
(Problems to be Solved by the Invention) Specially grooved heat transfer tubes are generally manufactured by inserting a floating plug having a smooth surface into a conventional internally structured tube and expanding or contracting the tube by drawing. However, simply inserting a floating plug into a conventional internally structured pipe to expand the pipe only deforms the tip of the mountain side in one direction, narrowing the width of the groove opening and actively promoting the boiling phenomenon. It is not a structure that can promote this.

そのため加工率を高くして溝開口部の幅を狭めようとす
ると、管内壁部に形成しようとする空胴部自体も塞がれ
てしまい、蒸発熱伝達率の向上が不可能となる。また縮
径をともなう抽伸加工では底肉厚の盛り上りと山側先端
部の圧迫が重合し、これもまた管壁内部に空胴部を形成
することが難しくなる等の問題を生じる。
Therefore, if an attempt is made to increase the processing rate to narrow the width of the groove opening, the cavity itself to be formed in the inner wall of the tube will be blocked, making it impossible to improve the evaporative heat transfer coefficient. Furthermore, in the drawing process that involves diameter reduction, the swelling of the bottom wall thickness and the compression of the peak side tip overlap, which also causes problems such as making it difficult to form a cavity inside the tube wall.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々検討の結果管壁内部に管内と連
通ずる空胴部を形成しやすい新形状の伝熱管とその製造
法及び製造用溝付プラグを開発したものである。
In view of this, as a result of various studies, the present invention has developed a heat exchanger tube with a new shape that facilitates forming a cavity inside the tube wall that communicates with the inside of the tube, a method for manufacturing the same, and a grooved plug for manufacturing the same.

本発明伝熱管の一つは、管内面に管内と連通する管軸方
向又は螺旋状の多数の溝を形成し、該溝の壁内先端に溝
と連通ずる断面V字状又は扇形状の空胴を溝方向に形成
したことを特徴とするものである。
One of the heat exchanger tubes of the present invention has a large number of axial or spiral grooves formed on the inner surface of the tube that communicate with the inside of the tube, and a V-shaped or sector-shaped cavity in cross section that communicates with the grooves at the inner end of the groove. It is characterized in that the body is formed in the direction of the groove.

本発明伝熱管の他の一つは、管内面に管内と連通する管
軸方向又は螺旋状の多数の溝を形成し、該溝の壁内先端
に溝と連通ずる断面V字状又は扇形状の空胴を溝方向に
形成し、かつ管内面に上記溝と交差して空胴に達する深
さの1個又は複数個の溝を形成したことを特徴とするも
のである。
Another heat transfer tube of the present invention has a large number of axial or spiral grooves formed on the inner surface of the tube that communicate with the inside of the tube, and a V-shaped or fan-shaped cross section that communicates with the grooves at the inner end of the groove. A cavity is formed in the direction of the groove, and one or more grooves are formed on the inner surface of the tube to intersect with the groove and reach the cavity.

また本発明伝熱管の製造法の一つは、溝付プラグを用い
た転造加工により、管内面に管軸方向又は螺旋状の断面
双頭形山部又は該山部と断面三角形状の突起を有する谷
部を多数形成し、続いてテーパプラグを用いた拡管又は
縮管加工により、双頭山部を左右に押し潰して管内に連
通ずる溝開口部を形成すると共に、該溝の壁内先端に溝
と連通ずる断面V字状又は扇形状の空胴を溝方向に形成
することを特徴とするものである。
In addition, one of the methods for manufacturing the heat exchanger tube of the present invention is to form a double-headed peak in the tube axis direction or a spiral cross section, or a projection having a triangular cross section in conjunction with the peak, on the inner surface of the tube by rolling using a grooved plug. A large number of troughs are formed, and then a taper plug is used to expand or contract the double-headed crest to the left and right to form a groove opening that communicates with the inside of the tube, and a groove is formed at the tip of the wall of the groove. It is characterized by forming a cavity with a V-shaped or sector-shaped cross section in communication with the groove in the direction of the groove.

本発明伝熱管の製造法の他の一つは溝付プラグを用いた
転造加工により、管内面に管軸方向又は螺旋状の断面双
頭形山部又は該山部と断面三角形状の突起を有する谷部
を多数形成し、続いて上記山部と交差する1個又は複数
の突起を設けたテーパプラグを用いた拡管又は縮管加工
により、双頭形山部を左右に押し潰して管内に連通ずる
溝開口部を形成すると共に、該溝の壁内先端に溝と連通
する断面V字状又は扇形状の空胴を溝方向に形成し、か
つ管内面に上記溝と交差して空胴に達する深さの1個又
は複数個の溝を形成することを特徴とするものである。
Another method of manufacturing the heat exchanger tube of the present invention is to form a double-headed peak in the tube axis direction or a spiral cross section, or a protrusion that is triangular in cross section with the peak, by rolling using a grooved plug. A groove that communicates with the inside of the pipe by forming a large number of valleys and then expanding or shrinking the double-headed peak using a taper plug provided with one or more protrusions that intersect with the peaks to the left and right. In addition to forming an opening, a cavity with a V-shaped or fan-shaped cross section communicating with the groove is formed in the groove direction at the inner end of the wall of the groove, and a cavity with a depth that intersects with the groove and reaches the cavity is formed on the inner surface of the tube. It is characterized by forming one or more grooves in the groove.

更に本発明伝熱管製造用溝付プラグは、転造用プラグ外
周面に、軸方向又は螺旋状の多数の溝を形成し、該溝の
底部に断面三角形状の突起を形成するか、又は該突起を
形成すると共に山頂部を断面双頭形としたことを特徴と
するものである。
Furthermore, the grooved plug for manufacturing heat exchanger tubes of the present invention has a large number of axial or spiral grooves formed on the outer peripheral surface of the rolling plug, and protrusions having a triangular cross section are formed at the bottoms of the grooves. It is characterized by the formation of protrusions and the top of the mountain having a double-headed cross section.

即ち本発明伝熱管の一つは、第1図(イ〉(ロ)に拡大
して示すように管(1)の内面に管内と連通ずる管軸方
向又は螺旋状の溝(2)を形成し、該溝(2)の壁(1
a)内先端に、(イ)に示すように溝(2)と連通ずる
断面扇形状の空洞(5)を溝(2)の方向に連続して形
成するか、又は(ロ)に示すように溝(2)と連通する
断面V字状の空洞(5)を溝(2)の方向に連続して形
成したものである。また本発明伝熱管の他の一つは、第
2図に示すように管(1)の内面に第1図(イ)又は(
ロ)に示す管内と連通する管軸方向又は螺旋状の溝(2
)を形成し、該溝(2)の壁内先端に溝(2)と連通ず
る断面扇形状又はV字状の空胴を溝(2)の方向に連続
して形成し、かつ管(1)の内面に上記溝(2)と交差
して空胴に達する深さの1個又は複数個の溝(7)を形
成したものである。
That is, one of the heat exchanger tubes of the present invention, as shown in enlarged view in FIGS. and the wall (1) of the groove (2)
a) At the inner tip, a cavity (5) with a fan-shaped cross section communicating with the groove (2) is formed continuously in the direction of the groove (2) as shown in (B), or as shown in (B). A cavity (5) having a V-shaped cross section and communicating with the groove (2) is formed continuously in the direction of the groove (2). In addition, as shown in FIG. 2, another heat exchanger tube of the present invention has the inner surface of the tube (1) as shown in FIG.
B) A groove in the axial direction or a spiral shape communicating with the inside of the pipe (2)
), and a cavity having a fan-shaped or V-shaped cross section communicating with the groove (2) is formed continuously in the direction of the groove (2) at the inner end of the wall of the groove (2), and ) is formed with one or more grooves (7) having a depth that intersects with the groove (2) and reaches the cavity.

本発明伝熱管は第3図に示す従来と同様の設備を用いて
製造される。即ち管(1)内に挿入した抽伸プラグ(8
)の後方に、溝付はプラグ(9)と更にその後方にテー
パプラグ(10)を連結ピン(11)により同軸状に回
転自在に連結し、管(1)の外側の抽伸プラグ(8)に
対応する位置に抽伸ダイス(12)、溝付はプラグ(9
)に対応する位置に転造ローラ(13)、テーパプラグ
(10)に対応する位置に縮径又は拡径ダイス(14)
を配置し、先ず管(1)を抽伸加工した後、溝付はプラ
グ(9)により管(1)の内面に溝を形成し、続いてテ
ーパプラグ(10)を用いた拡管又は縮管加工により、
溝の山部を押し潰す。尚図において(15)はスラスト
ベアリングを示す。
The heat exchanger tube of the present invention is manufactured using the same conventional equipment as shown in FIG. That is, the draw plug (8) inserted into the pipe (1)
), a grooved plug (9) and a taper plug (10) are coaxially rotatably connected to the rear of the grooved plug (9) by a connecting pin (11), and a draw plug (8) on the outside of the pipe (1) is connected. The drawing die (12) is placed in the position corresponding to the slotted one, and the plug (9
) and a diameter-reducing or expanding die (14) at a position corresponding to the tapered plug (10).
After arranging the tube (1) and first drawing the tube (1), grooves are formed on the inner surface of the tube (1) using a plug (9), and then expanded or contracted using a taper plug (10). According to
Squeeze the peaks of the groove. In the figure, (15) indicates a thrust bearing.

溝付はプラグ(9)は第4図(イ)に示すように外周に
軸方向又は螺旋状の多数の溝(17)を設け、その谷側
底部に断面三角形状の突起(18)を形成するか、又は
第4図(ロ)に示すように谷側底部に断面三角形状の突
起(18)を形成すると共に、山側頂部(19)を断面
双頭形とする。このようにして転造加工により第5図(
イ)に示すように管(1)の内面に溝(2°)を形成す
ると共に、山側頂部(3°)を断面双頭形状とでるか、
又は第5図(ロ)に示すように山側頂部(3°)を断面
双頭形状とすると共に、谷側底部に断面三角形状の突起
(6“)を形成する。次にこれをテーパプラグ(10)
を用いた拡管又は縮管加工により山側頂部(3′)の双
頭形を左右に押し潰し、第1図(イ)(ロ)に示すよう
に、管(1)の内面に溝(2)と連通ずる断面V字状又
は扇形状の空胴(5)を形成する。このときテーパプラ
グ(10)の外周に管(1)内面に形成した溝(2)と
交差する1個又は複数個の突起(16)を設け、溝(2
)と交差して断面V字状又は扇形状の空胴に達する溝(
7)を形成する。
As shown in Figure 4 (a), the grooved plug (9) has a large number of axial or spiral grooves (17) on its outer periphery, and a protrusion (18) with a triangular cross section at the bottom of the valley side. Alternatively, as shown in FIG. 4(B), a protrusion (18) having a triangular cross section is formed at the bottom of the valley side, and the top portion (19) of the mountain side is made to have a double-headed cross section. In this way, the rolling process is performed as shown in Figure 5 (
As shown in a), a groove (2°) is formed on the inner surface of the tube (1), and the top of the mountain side (3°) has a double-headed cross section;
Alternatively, as shown in FIG. 5(b), the top of the mountain side (3°) is made double-headed in cross section, and the bottom of the valley side is formed with a protrusion (6") having a triangular cross section. Next, this is formed into a taper plug (10"). )
The double-headed shape of the mountain side top (3') is crushed from side to side by expanding or shrinking the pipe using a pipe, and grooves (2) are formed on the inner surface of the pipe (1) as shown in Figure 1 (a) and (b). A cavity (5) having a V-shaped or sector-shaped cross section is formed. At this time, one or more protrusions (16) are provided on the outer periphery of the taper plug (10) to intersect with the groove (2) formed on the inner surface of the tube (1).
) to reach a V-shaped or sector-shaped cavity in cross section (
7).

〔作用〕[Effect]

本発明によれば溝開口部の幅を狭くすると共に、該溝と
連通する壁内空胴を形成するように仕上げることができ
るため、伝熱管として沸騰現象の促進が計れ、管内を流
れる冷媒の蒸発熱伝達率を著しく向上することができる
。また該溝と交差して空胴に達する深さの第2の溝の形
成も容易で、沸騰による気泡群の拡散を向上することが
できる。
According to the present invention, the width of the groove opening can be narrowed and it can be finished to form a cavity in the wall communicating with the groove, so that the boiling phenomenon can be promoted as a heat transfer tube, and the refrigerant flowing inside the tube can be heated. The evaporative heat transfer coefficient can be significantly improved. Further, it is easy to form a second groove that is deep enough to intersect with the groove and reach the cavity, and it is possible to improve the diffusion of bubbles due to boiling.

本発明伝熱管の製造における管内面の溝付は加工におい
て、管内面に形成した溝の山側先端部の双頭形量の開き
角度(θ)は60〜100°とすることが望ましい。即
ち開き角度(θ)が60°未満では山頂部が同一方向に
押し潰される恐れがあり、100°を越えると双頭形山
部の高さが不十分となり、押し潰した後の溝開口部を狭
くしたり、かつ溝と連通ずる空胴の形成を困難にする。
When grooving the inner surface of the tube in the production of the heat exchanger tube of the present invention, it is preferable that the opening angle (θ) of the double-headed shape at the top end of the groove formed on the inner surface of the tube is 60 to 100°. In other words, if the opening angle (θ) is less than 60°, there is a risk that the peaks will be crushed in the same direction, and if it exceeds 100°, the height of the double-headed peak will be insufficient, and the groove opening after crushing will be narrowed. This also makes it difficult to form a cavity that communicates with the groove.

〔実施例〕〔Example〕

第3図に示す製造工程において、第4図(イ)(ロ)に
示す溝加ニブラグを用い、第1表に示す寸法の伝熱管を
鋼管により製造し、得られた伝熱管について、第2表に
示す条件により蒸発熱伝達率と圧力損失を測定した。そ
の結果を第6図(イ)(ロ)に示す。尚測定には二重管
式%式% 熱交換器を使用した。
In the manufacturing process shown in Figure 3, heat exchanger tubes having the dimensions shown in Table 1 were manufactured using steel pipes using the grooved nib lugs shown in Figures 4 (a) and (b). Evaporative heat transfer coefficient and pressure drop were measured under the conditions shown in the table. The results are shown in Figures 6(a) and 6(b). A double-tube heat exchanger was used for the measurement.

第6図(イ)は冷媒流!(Kff/hr)と管内蒸発熱
伝達率(Kcal/ Tl1h ’C)の関係を示し、
第6図(ロ)は冷媒流it(Kg/hr)と管内圧力損
失(K!j / ctA )の関係を示したもので、図
から明らかなように本発明伝熱管NO,A−Dは平滑管
NO,Fとほぼ同等の圧力損失で、従来伝熱管NO,F
の蒸発熱伝達率よりはるかに優れていることが判る。特
に冷媒流量が5ONg/hで比較すると、本発明伝熱管
NO,A−Dは平滑管No、Fに対して3.0〜4.0
倍、また従来伝熱管No、Eに対して2.0〜2.5倍
も管内蒸発熱伝達率が向上する。
Figure 6 (a) shows the refrigerant flow! (Kff/hr) and the in-pipe evaporative heat transfer coefficient (Kcal/Tl1h'C),
Figure 6 (b) shows the relationship between the refrigerant flow it (Kg/hr) and the pressure loss inside the tube (K!j/ctA), and as is clear from the figure, the heat exchanger tubes NO. With almost the same pressure loss as smooth tubes NO, F, conventional heat exchanger tubes NO, F
It can be seen that the evaporative heat transfer coefficient is far superior to that of . Particularly when compared at a refrigerant flow rate of 5ONg/h, the heat exchanger tubes No., A-D of the present invention have a 3.0 to 4.0
The evaporative heat transfer coefficient within the tube is improved by 2.0 to 2.5 times compared to conventional heat exchanger tubes No. and E.

〔発明の効果〕〔Effect of the invention〕

このように本発明による伝熱管は、圧力損失を平滑管と
同一レベルに抑えることができるばかりか、沸騰現象を
促進させて、優れた熱伝達特性を示すもので、しかも製
造工程は1回のパスラインで管内壁に溝付は加工と溝部
の壁内先端に空胴を形成することができるため、製造コ
ストを低減し、更には熱交換器本体の小型化、−13= 軽量化を可能にする等工業上顕著な効果を奏するもので
ある。
As described above, the heat transfer tube according to the present invention not only can suppress pressure loss to the same level as a smooth tube, but also promotes boiling phenomenon and exhibits excellent heat transfer characteristics. Grooving the inner wall of the pipe with a pass line allows processing and forming a cavity at the tip of the wall of the groove, which reduces manufacturing costs, and also allows the heat exchanger body to be smaller and lighter. It has remarkable industrial effects such as:

【図面の簡単な説明】[Brief explanation of drawings]

第1図(イ)(口〉はそれぞれ本発明伝熱管の一例を示
す断面図、第2図は本発明伝熱管の更に他の一例を示す
側断面図、第3図は本発明の伝熱管の製造工程を示す説
明図、第4図(イ)(ロ)はそれぞれ本発明伝熱管の溝
付はプラグの一例を示す要部拡大断面図、第5図(イ)
(ロ)はそれぞれ本発明伝熱管の溝付は工程における管
内面形状を示す側断面図、第6図(イ)(ロ)は伝熱管
の蒸発熱伝達率と圧力損失の測定値を示すもので、(イ
)は冷媒流量と蒸発熱伝達率、(ロ)は冷媒流量と圧力
損失の関係を示す。 1、  管        2.  溝3、山 頂 部
 4.溝開口部 5、空   胴 8.抽伸プラグ 9、溝付はプラグ  10.テーパプラグ12、抽伸ダ
イス 13.転造ロール 14、拡管(縮管)用ダイス 第 (イ) 第 (イ) 第6図 4図 (ロ) 5図 (ロ) :+a流i(Kg/h) 二令ケ算流t (K9/旧 手続ネm正書(方式) 昭和61年5月7日 1、事件の表示 昭和61年 特許願 第24781号 2、発明の名称 伝熱管とその製造法及び製造用溝付はプラグ3、補正を
する者 4、代理人 住  所   東京都千代田区神田北乗物町16番地〒
101     英ビル3階 5、拒絶理由通知の日付 補正の内容 1、第14頁第14行〜第15行の「冷ts’amと圧
力損失の関係を示す。」の次に下記の文章を加入する。 し第7図は従来伝熱管の一例を一部切欠いて示す斜視図
、第8図は従来伝熱管の他の一例を示す断面図である。 」
Figures 1 (a) and (opening) are a cross-sectional view showing an example of the heat exchanger tube of the present invention, Figure 2 is a side cross-sectional view showing still another example of the heat exchanger tube of the present invention, and Figure 3 is a heat exchanger tube of the present invention. 4(a) and 4(b) are an explanatory diagram showing the manufacturing process of the heat exchanger tube of the present invention, and FIG.
(B) is a side cross-sectional view showing the inner surface shape of the grooved tube of the heat transfer tube of the present invention in the process, and Figures 6 (A) and (B) show the measured values of the evaporative heat transfer coefficient and pressure loss of the heat transfer tube. (a) shows the relationship between refrigerant flow rate and evaporative heat transfer coefficient, and (b) shows the relationship between refrigerant flow rate and pressure loss. 1. Pipe 2. Groove 3, mountain top 4. Groove opening 5, cavity 8. Drawn plug 9, grooved plug 10. Taper plug 12, drawing die 13. Rolling roll 14, pipe expansion (pipe contraction) die No. (a) No. (a) Fig. 6 Fig. 4 (b) Fig. 5 (b): +a flow i (Kg/h) Second age calculated flow t (K9 /Old procedure manual (method) May 7, 1985 1, Indication of the case 1988 Patent application No. 24781 2, Name of the invention Heat exchanger tube and its manufacturing method and grooved for manufacturing is a plug 3, Person making amendment 4, agent address: 16 Kanda Kita Jorimono-cho, Chiyoda-ku, Tokyo
101 5th floor, 3rd floor of Ei Building, content 1 of date correction of notice of reasons for refusal, page 14, lines 14 to 15, added the following sentence next to "Shows the relationship between cold ts'am and pressure loss." do. FIG. 7 is a partially cutaway perspective view of an example of a conventional heat exchanger tube, and FIG. 8 is a cross-sectional view of another example of a conventional heat exchanger tube. ”

Claims (5)

【特許請求の範囲】[Claims] (1)管内面に管内と連通する管軸方向又は螺旋状の多
数の溝を形成し、該溝の壁内先端に溝と連通する断面V
字状又は扇形状の空胴を溝方向に形成したことを特徴と
する伝熱管。
(1) A large number of axial or spiral grooves are formed on the inner surface of the tube to communicate with the inside of the tube, and a cross-section V communicating with the grooves is formed at the inner end of the groove.
A heat exchanger tube characterized in that a letter-shaped or sector-shaped cavity is formed in the direction of the groove.
(2)管内面に管内と連通する管軸方向又は螺旋状の多
数の溝を形成し、該溝の壁内先端に溝と連通する断面V
字状又は扇形状の空胴を溝方向に形成し、かつ管内面に
上記溝と交差して空胴に達する深さの1個又は複数個の
溝を形成したことを特徴とする伝熱管。
(2) A large number of axial or spiral grooves are formed on the inner surface of the tube to communicate with the inside of the tube, and a cross section V communicating with the grooves is formed at the inner end of the groove.
A heat exchanger tube characterized in that a letter-shaped or sector-shaped cavity is formed in the direction of the groove, and one or more grooves are formed on the inner surface of the tube with a depth that intersects with the groove and reaches the cavity.
(3)溝付けプラグを用いた転造加工により、管内面に
管軸方向又は螺旋状の断面双頭山部又は該山部と断面三
角形状の突起を有する谷部を多数形成し、続いてテーパ
プラグを用いた拡管又は縮管加工により、双頭形山部を
左右に押し潰して管内に連通する溝開口部を形成すると
共に、該溝の壁内先端に溝と連通する断面V字状又は扇
形状の空胴を溝方向に形成することを特徴とする伝熱管
の製造法。
(3) By rolling using a grooved plug, a large number of double-headed peaks with a cross-section in the tube axis direction or in a spiral shape, or valleys having protrusions with a triangular cross-section in conjunction with the peaks, are formed on the inner surface of the tube, and then a taper is formed. By expanding or contracting the pipe using a plug, the double-headed crest is crushed left and right to form a groove opening that communicates with the inside of the pipe, and the inner tip of the groove has a V-shaped or fan-shaped cross section that communicates with the groove. A method for manufacturing a heat transfer tube, characterized in that a cavity is formed in the direction of the groove.
(4)溝付けプラグを用いた転造加工により、管内面に
管軸方向又は螺旋状の断面双頭形山部又は該山部と三角
形状の突起を有する谷部を多数形成し、続いて上記山部
と交差する1個又は複数個の突起を設けたテーパプラグ
を用いた拡管又は縮管加工により、双頭山部を左右に押
し潰して管内に連通する溝開口部を形成すると共に、該
溝の壁内先端に溝と連通する断面V字状又は扇形状の空
胴を溝方向に形成し、かつ管内面に上記溝と交差して空
胴に達する深さの1個又は複数個の溝を形成することを
特徴とする伝熱管の製造法。
(4) By rolling using a grooved plug, a large number of double-headed peaks in the tube axis direction or a spiral cross section or valleys having triangular protrusions in conjunction with the peaks are formed on the inner surface of the tube, and then the above-mentioned peaks are By expanding or shrinking the double-headed portion using a taper plug provided with one or more protrusions that intersect with the portion, the double-headed portion is crushed from side to side to form a groove opening that communicates with the inside of the tube. A cavity with a V-shaped or sector-shaped cross section communicating with the groove is formed at the tip of the wall in the direction of the groove, and one or more grooves are formed on the inner surface of the tube with a depth that intersects with the groove and reaches the cavity. A method for manufacturing a heat exchanger tube, characterized by forming a heat exchanger tube.
(5)転造用プラグ外周面に、軸方向又は螺旋状の多数
の溝を形成し、該溝の底部に断面三角形状の突起を形成
するか、又は該突起を形成すると共に山頂部を断面双頭
形としたことを特徴とする伝熱管製造用溝付プラグ。
(5) Form a large number of axial or spiral grooves on the outer circumferential surface of the rolling plug, and form protrusions with a triangular cross section at the bottom of the grooves, or form the protrusions and have the top part cross-sectionally A grooved plug for manufacturing heat exchanger tubes characterized by its double-headed shape.
JP2478186A 1986-02-06 1986-02-06 Heat transfer tube and manufacture thereof and plug with groove for manufacturing it Pending JPS62182595A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2478186A JPS62182595A (en) 1986-02-06 1986-02-06 Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2478186A JPS62182595A (en) 1986-02-06 1986-02-06 Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Publications (1)

Publication Number Publication Date
JPS62182595A true JPS62182595A (en) 1987-08-10

Family

ID=12147724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2478186A Pending JPS62182595A (en) 1986-02-06 1986-02-06 Heat transfer tube and manufacture thereof and plug with groove for manufacturing it

Country Status (1)

Country Link
JP (1) JPS62182595A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317637A (en) * 1988-06-20 1989-12-22 Furukawa Electric Co Ltd:The Heat transfer tube with internal surface groove
JPH0275427A (en) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The Method for forming heating surface
JPH02165875A (en) * 1988-12-16 1990-06-26 Furukawa Electric Co Ltd:The Heat exchanger tube and its manufacture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01317637A (en) * 1988-06-20 1989-12-22 Furukawa Electric Co Ltd:The Heat transfer tube with internal surface groove
JPH0275427A (en) * 1988-09-12 1990-03-15 Furukawa Electric Co Ltd:The Method for forming heating surface
JPH02165875A (en) * 1988-12-16 1990-06-26 Furukawa Electric Co Ltd:The Heat exchanger tube and its manufacture

Similar Documents

Publication Publication Date Title
US4733698A (en) Heat transfer pipe
KR950007759B1 (en) Method of producing in small electric tube
JPS62797A (en) Improved heat transfer tube with internal protruded streak section and manufacture thereof
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JPH06201286A (en) Heat transfer pipe
JPS62182595A (en) Heat transfer tube and manufacture thereof and plug with groove for manufacturing it
JPS6298200A (en) Heat transfer tube of fine diameter and manufacture thereof
JPH046448B2 (en)
CN205090854U (en) Compound heat exchange tube of arris vertebra shape fin double metal
CN101458048A (en) Heat transfer tube for evaporator and method of manufacturing same
JP2001074384A (en) Internally grooved tube
JPS61125595A (en) Heat transfer tube for boiling and manufacture thereof
JPH06198376A (en) Metallic tube with fin for heat exchanger and its manufacture
JPS61111732A (en) Manufacture of heat exchanger
US3580026A (en) Method and apparatus for manufacturing finned pipes
GB2160450A (en) Method of manufacture of an enhanced boiling surface heat transfer tube and the tube produced thereby
JPH08174044A (en) Production of small-diameter heat transfer tube with groove on inside surface
JP2628712B2 (en) Method of forming heat transfer surface
JPS61209723A (en) Manufacture of heat exchanger tube
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JPS59110435A (en) Manufacture of heat exchange tube
JP2749673B2 (en) Heat transfer tube and method of manufacturing the same
CN106643259A (en) Composite tooth-shaped internal thread copper pipe structure
JP3786789B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
WO2007097321A1 (en) Tube with grooves formed in inner surface thereof, method of producing the tube, and grooved plug