JPH0769117B2 - Small diameter heat transfer tube and its manufacturing method - Google Patents

Small diameter heat transfer tube and its manufacturing method

Info

Publication number
JPH0769117B2
JPH0769117B2 JP60237135A JP23713585A JPH0769117B2 JP H0769117 B2 JPH0769117 B2 JP H0769117B2 JP 60237135 A JP60237135 A JP 60237135A JP 23713585 A JP23713585 A JP 23713585A JP H0769117 B2 JPH0769117 B2 JP H0769117B2
Authority
JP
Japan
Prior art keywords
heat transfer
tube
transfer tube
diameter
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP60237135A
Other languages
Japanese (ja)
Other versions
JPS6298200A (en
Inventor
勝海 細川
年弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP60237135A priority Critical patent/JPH0769117B2/en
Publication of JPS6298200A publication Critical patent/JPS6298200A/en
Publication of JPH0769117B2 publication Critical patent/JPH0769117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は細径伝熱管とその製造法に関し、特にフレオン
等の冷媒を蒸発又は凝縮させて熱交換を行なう熱交換器
の伝熱管として薄肉軽量化を可能にすると共に伝熱性能
の向上を図ったものである。
TECHNICAL FIELD The present invention relates to a small diameter heat transfer tube and a method for manufacturing the same, and particularly to a thin wall as a heat transfer tube of a heat exchanger for evaporating or condensing a refrigerant such as Freon to perform heat exchange. It is possible to reduce the weight and improve the heat transfer performance.

〔従来の技術〕[Conventional technology]

一般にフレオン等の冷媒を用いるカーエアコンやルーム
エアコン等の小型熱交換器には、省エネルギー化の推進
から第9図に示すように管(6)の内面に螺旋状又は管
軸方向に連続する多数の溝(7)を形成した伝熱管が用
いられている。
Generally, in a small heat exchanger such as a car air conditioner or a room air conditioner using a refrigerant such as Freon, a large number of spiral or continuous pipes are formed on the inner surface of the pipe (6) as shown in FIG. 9 in order to promote energy saving. The heat transfer tube having the groove (7) is used.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

近年熱交換器のコストダウンを図るため、伝熱管に対し
ても薄肉化が要求されるようになり、伝熱性能の向上と
は別に管内の冷媒圧力に対する耐圧強度が問題となり、
これが伝熱管の薄肉化の妨げとなっている。この対策と
して伝熱管の細径化により耐圧強度の向上を図ってい
る。
In recent years, in order to reduce the cost of heat exchangers, it has become necessary to reduce the thickness of heat transfer tubes, and in addition to improving heat transfer performance, pressure resistance against the refrigerant pressure inside the tubes becomes a problem,
This hinders the thinning of the heat transfer tube. As a countermeasure, the pressure resistance is improved by reducing the diameter of the heat transfer tube.

伝熱管の耐圧強度は一般に下記(1)式で表わされ、こ
れから細径化による耐圧強度の増大が推進できる。例え
ば同じ肉厚の脱酸銅管では第10図に示す管外径と耐圧強
度の関係から細径化と共に耐圧強度が増大することが判
る。
The compressive strength of the heat transfer tube is generally expressed by the following formula (1), and from this, an increase in the compressive strength due to the reduction in diameter can be promoted. For example, in the case of a deoxidized copper pipe having the same wall thickness, it can be seen from the relationship between the pipe outer diameter and the pressure resistance strength shown in FIG. 10 that the pressure resistance strength increases as the diameter decreases.

但しは耐圧強度(kg f/mm2) σは許容応力(kg f/mm2) tは管の肉厚(mm) Dは管の外径(mm) 管の細径化には通常抽伸加工が用いられているが、外径
が5mm以下の細径管では管内に溝付けプラグを挿入して
抽伸加工すると管が破断するため、外径5mm以下の伝熱
管には内面平滑管が用いられている。しかしながら内面
平滑な伝熱管では伝熱性能が劣るためその改善が強く望
まれている。
Where P is compressive strength (kg f / mm 2 ) σ is allowable stress (kg f / mm 2 ) t is the wall thickness of the pipe (mm) D is the outer diameter of the pipe (mm) Ordinary drawing for thinning the pipe Processing is used, but for thin pipes with an outer diameter of 5 mm or less, the pipe breaks when the grooved plug is inserted into the pipe and the pipe is broken.Therefore, an inner smooth tube is used for heat transfer pipes with an outer diameter of 5 mm or less. Has been. However, the heat transfer performance of a heat transfer tube with a smooth inner surface is inferior, so improvement thereof is strongly desired.

〔問題点を解決するための手段〕[Means for solving problems]

本発明はこれに鑑み種々の検討の結果、優れた伝熱性能
を示す細径伝熱管とその製造法を開発したものである。
In view of this, the present invention has developed a small-diameter heat transfer tube that exhibits excellent heat transfer performance and a method for manufacturing the same, as a result of various studies.

本発明伝熱管は、外径3〜5mmの細径伝熱管において、
管内面に螺旋状又は管軸方向に連続する溝深さ0.15〜0.
3mm、溝幅0.05〜0.2mm、溝数30〜60、且つ側壁を15〜30
゜の角度の斜面とした溝を周方向に等間隔に形成したこ
とを特徴とするものである。
The heat transfer tube of the present invention is a small-diameter heat transfer tube having an outer diameter of 3 to 5 mm,
A groove depth of 0.15 to 0, which is spiral on the inner surface of the pipe or continuous in the pipe axial direction.
3 mm, groove width 0.05 to 0.2 mm, number of grooves 30 to 60, and side walls 15 to 30
It is characterized in that grooves having inclined surfaces at an angle of ° are formed at equal intervals in the circumferential direction.

また本発明製造法は、外径3〜5mmの細径伝熱管の製造
において、外径6mm以上の管内面に溝付けプラグを用い
た転造又は抽伸加工により、螺旋状又は管軸方向に連続
する溝深さ0.11〜0.6mm、溝幅0.15〜0.6mm、溝数30〜60
で側壁を15〜30゜の角度の斜面とした溝を周方向に等間
隔に形成した後、別工程で1回又は2回以上の空引抽伸
により40〜70%の縮径加工を行なって管外径を3〜5mm
とすることを特徴とするものである。
Further, the manufacturing method of the present invention, in the manufacture of a small-diameter heat transfer tube having an outer diameter of 3 to 5 mm, is continuous in the spiral or pipe axial direction by rolling or drawing using a grooved plug on the inner surface of the tube having an outer diameter of 6 mm or more. Groove depth 0.11 to 0.6 mm, groove width 0.15 to 0.6 mm, number of grooves 30 to 60
After forming grooves with side walls inclined at an angle of 15 to 30 ° at equal intervals in the circumferential direction, reduce the diameter to 40 to 70% by performing the drawing once or twice in a separate process. Pipe outer diameter is 3 to 5 mm
It is characterized by

即ち本発明伝熱管は第1図に示すように外径3〜5mmの
細径伝熱管(1)の内面に、螺旋状又は管軸方向に連続
する溝深さ(h)0.15〜0.3mm、溝幅(w1)0.05〜0.2m
m、溝数30〜60、且つ側壁を15〜30゜の角度の斜面とし
た溝(2)を周方向に等間隔に形成したものである。こ
の伝熱管は第2図に示すように外径6mm以上の管(3)
内面に溝付けプラグを用いた転造又は抽伸加工により螺
旋状又は管軸方向に連続する溝深さ(h′)0.11〜0.6m
m、溝幅(w1′)0.15〜0.6mm、溝数30〜60で溝側壁を15
〜30゜の角度(θ)の斜面とした溝を周方向に等間隔に
形成し、これを別工程で1回又は2回以上の空引抽伸に
より40〜70%の縮径加工を行なって造られる。
That is, as shown in FIG. 1, the heat transfer tube of the present invention has a groove depth (h) of 0.15 to 0.3 mm, which is continuous in the spiral or tube axial direction on the inner surface of the small diameter heat transfer tube (1) having an outer diameter of 3 to 5 mm. Groove width (w 1 ) 0.05 to 0.2m
A groove (2) having m, the number of grooves of 30 to 60, and a side wall having an inclined surface of an angle of 15 to 30 ° is formed at equal intervals in the circumferential direction. This heat transfer tube is a tube (3) with an outer diameter of 6 mm or more, as shown in Fig. 2.
A groove depth (h ') of 0.11 to 0.6 m that is continuous in the spiral or pipe axial direction by rolling or drawing using a grooved plug on the inner surface.
m, groove width (w 1 ′) 0.15 to 0.6 mm, number of grooves 30 to 60
Grooves with slopes at an angle (θ) of ~ 30 ° are formed at equal intervals in the circumferential direction, and this is subjected to 40-70% diameter reduction processing in a separate process by one or more empty drawing. Built.

〔作 用〕 本発明伝熱管は上記の如く薄肉化の目的で細径化した管
内面に、特定の溝を形成することにより、伝熱管の伝熱
特性を改善したもので、管外径を3〜5mmと限定したの
は、外径が3mm未満では所定の溝形成が困難となるばか
りか厚肉となって薄肉化の目的が達成できず、5mmを越
えると耐圧性の面から薄肉化できないためである。また
溝深さ(h)を0.15〜0.3mm、溝幅(w1)を0.05〜0.2m
m、溝数を30〜60と限定したのは、溝深さ(h)が0.15m
m未満でも、溝幅(w1)が0.05mm未満でも冷媒流路とし
ての溝効果が発揮されないため、伝熱管としての伝熱特
性を向上することができず、溝数が60を越える場合も同
様のことがいえるが、溝部、山部の加工がきわめて困難
となるためであり、溝深さ(h)が0.3mmを越えると管
径に対して溝深さ(h)が大きくなり、管内を流れる冷
媒の圧損が増大し、溝幅(w1)が0.2mmを越えても溝数
が30未満でも溝幅w1/w2の比が大きくなって溝効果がう
すれ、伝熱性能の向上が得られないためである。
[Operation] The heat transfer tube of the present invention improves heat transfer characteristics of the heat transfer tube by forming specific grooves on the inner surface of the tube that has been thinned for the purpose of thinning as described above. The limitation of 3 to 5 mm is that if the outer diameter is less than 3 mm, it will be difficult to form a predetermined groove and the thickness will be too thick to achieve the purpose of thinning, and if it exceeds 5 mm, the thickness will be reduced from the viewpoint of pressure resistance. This is because it cannot be done. The groove depth (h) is 0.15 to 0.3 mm and the groove width (w 1 ) is 0.05 to 0.2 m.
m, the number of grooves was limited to 30 to 60 because the groove depth (h) was 0.15 m
Even if the groove width (w 1 ) is less than m, even if the groove width (w 1 ) is less than 0.05 mm, the groove effect as a refrigerant flow path is not exerted, so the heat transfer characteristics as a heat transfer tube cannot be improved. The same can be said for the reason that it is extremely difficult to process the groove portion and the mountain portion. If the groove depth (h) exceeds 0.3 mm, the groove depth (h) becomes large relative to the pipe diameter, and The pressure loss of the refrigerant flowing through the refrigerant increases, and even if the groove width (w 1 ) exceeds 0.2 mm and the number of grooves is less than 30, the groove width w 1 / w 2 ratio becomes large, and the groove effect is reduced, and the heat transfer performance is improved. This is because no improvement can be obtained.

また伝熱管の製造において、素管の外径を6mm以上と限
定したのは、外径が6mm未満では溝付けプラグを用いた
転造や抽伸加工により溝付け加工が極めて困難となるた
めであり、素管内面に形成する溝数を30〜60と限定した
のは空引抽伸により溝数が変化しないため、本発明伝熱
管の溝数に合せたものである。素管内面に形成する溝深
さ(h′)を0.11〜0.6mmと限定したのは、空引抽伸に
よる40〜70%の縮径加工における減深比が0.9〜0.5とな
るところから、これを加味して仕上り溝深さ(h)に合
せるためである。素管内面に形成する溝幅(w1′)を0.
15〜0.6mmと限定したのは縮径加工による溝幅(w1′)
の縮幅率と山幅(w2′)の縮幅率が異なり、特に溝幅
(w1′)の縮幅率のほうがはるかに大きく、両者の縮幅
率のバランスが良い縮幅率40〜70%の範囲内で縮径後の
溝幅が0.05〜0.2mmとなるように合せたものである。ま
た溝を形成する側壁斜面の角度(θ)を15〜30゜と限定
したのは、15゜未満では溝付けプラグを用いた転造加工
等による溝付けが困難となり、30゜を越えると40%以上
の縮径加工により第3図に示すように溝幅(w1)がなく
なり、山同士がくっついて溝(2)の深さが浅くなるた
めである。更に空引抽伸により縮径率を40〜70%と限定
したのは、縮径率が40%未満では素管自体が細径となる
ため、溝付け加工が困難となり、70%を越えると溝深さ
が急激に減少すると共に肉厚が増大するため、素管に極
薄肉のものが必要となり、素管の溝付け加工が困難とな
るためである。
Also, in the production of heat transfer tubes, the reason for limiting the outer diameter of the raw pipe to 6 mm or more is that if the outer diameter is less than 6 mm, grooving will be extremely difficult due to rolling or drawing using a grooving plug. The number of grooves formed on the inner surface of the blank tube is limited to 30 to 60 because the number of grooves does not change due to blank drawing, so that the number of grooves is matched with that of the heat transfer tube of the present invention. The groove depth (h ') formed on the inner surface of the blank is limited to 0.11 to 0.6 mm because the reduction ratio of 40 to 70% in the diameter reduction by the empty drawing is 0.9 to 0.5. This is for adjusting the finished groove depth (h) by taking into account The groove width (w 1 ′) formed on the inner surface of the blank tube is 0.
Limited to 15-0.6 mm is the groove width (w 1 ′) by diameter reduction processing
And the width reduction ratio of the mountain width (w 2 ′) are different. Especially, the width reduction ratio of the groove width (w 1 ′) is much larger, and the width reduction ratio is well balanced. The groove width after diameter reduction is adjusted to 0.05 to 0.2 mm within a range of up to 70%. The angle (θ) of the side wall slope forming the groove is limited to 15 to 30 °. If it is less than 15 °, it becomes difficult to make a groove by rolling such as using a grooved plug, and if it exceeds 30 °, it becomes 40 °. This is because, as shown in FIG. 3, the groove width (w 1 ) disappears due to the diameter reduction processing of not less than%, the ridges stick to each other, and the depth of the groove (2) becomes shallow. Furthermore, the reason for limiting the diameter reduction rate to 40-70% by empty drawing is that if the diameter reduction rate is less than 40%, the raw pipe itself becomes thin, making grooving difficult, and if it exceeds 70%, the groove size is reduced. This is because the depth sharply decreases and the wall thickness increases, so that it is necessary to use an extremely thin wall for the raw pipe, which makes it difficult to groove the raw pipe.

〔実施例〕〔Example〕

溝付けプラグを用いた転造加工により第1表に示すりん
脱酸銅からなる各種溝付管を作成し、これを1回乃至数
回の空引抽伸により縮径加工し、第1表に示す細径伝熱
管を製造した。その製造工程における縮径率と溝幅、溝
深さ及び肉厚の関係を調べた。その代表的結果を第4図
乃至第6図に示す。また得られた細径伝熱管を二重管式
熱交換器に組込み、伝熱管内にフレオンR−22を流し、
管外に被冷却水を流して第2表に示す測定条件で管内蒸
発熱伝達率と圧力損失を測定し、その代表的結果を第7
図及び第8図に示す。
Various grooved pipes made of phosphorous deoxidized copper shown in Table 1 were prepared by rolling using a grooved plug, and the pipes were subjected to diameter reduction processing by one or several times of blank drawing, and shown in Table 1. The small diameter heat transfer tube shown was manufactured. The relationship between the diameter reduction ratio and the groove width, groove depth and wall thickness in the manufacturing process was examined. The representative results are shown in FIGS. 4 to 6. In addition, the obtained small diameter heat transfer tube was installed in a double tube heat exchanger, and Freon R-22 was flown in the heat transfer tube.
The evaporation heat transfer coefficient and the pressure loss in the tube were measured under the measurement conditions shown in Table 2 by flowing the water to be cooled outside the tube, and the representative results are shown in Section 7.
It is shown in FIGS.

第4図は縮径率と溝幅(w1)と山幅(w2)の縮幅比の関
係を示し、第5図は縮径率と溝深さ(h)の縮減比の関
係を示し、第6図は縮径率と肉厚増加比の関係を示した
もので、第1表及び第4図乃至第6図から判るように、
空引抽伸による良好な縮径率が40〜70%で得られること
が判る。また第7図及び第8図は従来の平滑管の値を1
として冷媒流量と管内蒸発伝熱比及び管内圧力損失比の
関係を示したもので、第1表及び第7図乃至第8図から
判るように外径6mm以上の管内面に転造又は抽伸加工に
より溝深さ0.11〜0.6mm、溝幅0.15〜0.6mm、溝数30〜60
で、側壁を15〜30゜の角度の斜面とした溝を形成し、こ
れを空引抽伸により40〜70%の縮径加工を行なった直径
3〜5mmの細管内面に溝深さ0.15〜0.3mm、溝幅0.05〜0,
2mmを形成した本発明伝熱管No.1〜7は、平滑管に比
し、圧力損失を著しく損なうことなく優れた伝熱性能を
有することが判る。又本発明の製造条件及び本発明伝熱
管の規定条件から外れるNo.8〜15は熱伝達比、圧力損失
比の両者又はいずれかが、本発明品より劣るものであっ
た。
Fig. 4 shows the relationship between the diameter reduction ratio, the groove width (w 1 ) and the peak width (w 2 ) reduction ratio, and Fig. 5 shows the relationship between the diameter reduction ratio and the groove depth (h). FIG. 6 shows the relationship between the diameter reduction ratio and the wall thickness increase ratio. As can be seen from Table 1 and FIGS. 4 to 6,
It can be seen that a good diameter reduction ratio of 40-70% can be obtained by drawing by drawing. 7 and 8 show the value of the conventional smooth tube as 1
The relationship between the refrigerant flow rate, the heat transfer ratio in the pipe, and the pressure loss ratio in the pipe is shown below. As can be seen from Table 1 and Figs. 7 to 8, the inner surface of the pipe with an outer diameter of 6 mm or more is rolled or drawn. Groove depth 0.11 to 0.6 mm, groove width 0.15 to 0.6 mm, number of grooves 30 to 60
Then, a groove was formed with the side wall as an inclined surface at an angle of 15 to 30 °, and this was subjected to a diameter reduction process of 40 to 70% by idle drawing, and a groove depth of 0.15 to 0.3 was formed on the inner surface of a thin tube of 3 to 5 mm. mm, groove width 0.05 to 0,
It can be seen that the heat transfer tubes Nos. 1 to 7 of the present invention having a thickness of 2 mm have excellent heat transfer performance without significantly impairing the pressure loss, as compared with the smooth tube. Further, in Nos. 8 to 15, which deviate from the manufacturing conditions of the present invention and the specified conditions of the heat transfer tube of the present invention, both or either of the heat transfer ratio and the pressure loss ratio were inferior to the product of the present invention.

〔発明の効果〕〔The invention's effect〕

このように本発明によれば、軽量化の目的で細径化した
伝熱管の伝熱性能を向上し、かつ製造が容易で安価に供
給できる等工業上顕著な効果を奏するものである。
As described above, according to the present invention, the heat transfer performance of the heat transfer tube whose diameter is reduced for the purpose of weight reduction is improved, and the industrially remarkable effects such as easy manufacture and low cost supply are achieved.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明伝熱管の一例を示す要部断面図、第2図
は本発明伝熱管の空引抽伸前の形状を示す要部断面図、
第3図は縮径加工後の不良溝を説明する要部断面図、第
4図は縮径率と溝幅及び山幅の縮幅比の関係図、第5図
は縮径率と溝深さの縮減比の関係図、第6図は縮径率と
肉厚増加比の関係図、第7図及び第8図は本発明の実施
例における伝熱管の特性を示すもので、第7図は冷媒流
量と熱伝達比の関係を示し、第8図は冷媒流量と圧力損
失比の関係を示し、第9図は従来の内面溝付伝熱管の一
例を一部切欠いて示す斜視図、第10図は伝熱管外径と耐
圧強度の関係を示す説明図である。 1,6……伝熱管 2,4,7……溝 3……素管 5……溝側壁
FIG. 1 is a sectional view of an essential part showing an example of the heat transfer tube of the present invention, and FIG. 2 is a sectional view of an essential part showing the shape of the heat transfer tube of the present invention before drawing by drawing.
FIG. 3 is a sectional view of an essential part for explaining a defective groove after the diameter reduction processing, FIG. 4 is a relationship diagram of the diameter reduction ratio and the groove width and the width reduction ratio of the crest width, and FIG. 5 is the diameter reduction ratio and the groove depth. FIG. 6 is a relationship diagram of the reduction ratio of the thickness, FIG. 6 is a relationship diagram of the diameter reduction ratio and the wall thickness increase ratio, and FIGS. 7 and 8 show the characteristics of the heat transfer tube in the embodiment of the present invention. Shows the relationship between the refrigerant flow rate and the heat transfer ratio, FIG. 8 shows the relationship between the refrigerant flow rate and the pressure loss ratio, and FIG. 9 is a perspective view showing an example of a conventional inner grooved heat transfer tube with a part cut away, FIG. 10 is an explanatory diagram showing the relationship between the outer diameter of the heat transfer tube and the pressure resistance. 1,6 Heat transfer tube 2,4,7 Groove 3 …… Element tube 5 …… Groove sidewall

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】外径3〜5mmの細径伝熱管において、管内
面に螺旋状又は管軸方向に連続する溝深さ0.15〜0.3m
m、溝幅0.05〜0.2mm、溝数30〜60、且つ側壁を15〜30゜
の角度の斜面とした溝を周方向に等間隔に形成したこと
を特徴とする細径伝熱管。
1. A small-diameter heat transfer tube having an outer diameter of 3 to 5 mm, which has a groove depth of 0.15 to 0.3 m which is spiral on the inner surface of the tube or which is continuous in the tube axial direction.
A small-diameter heat transfer tube characterized in that m, groove width is 0.05 to 0.2 mm, the number of grooves is 30 to 60, and the side walls are sloped at an angle of 15 to 30 ° at equal intervals in the circumferential direction.
【請求項2】外径3〜5mmの細径伝熱管の製造におい
て、外径6mm以上の管内面に溝付けプラグを用いた転造
又は抽伸加工により、螺旋状又は管軸方向に連続する溝
深さ0.11〜0.6mm、溝幅0.15〜0.6mm、溝数30〜60で、側
壁を15〜30゜の角度の斜面とした溝を周方向に等間隔に
形成した後、別工程で1回又は2回以上の空引抽伸によ
り40〜70%の縮径加工を行なって管外径を3〜5mmとす
ることを特徴とする細径伝熱管の製造法。
2. In the production of a small diameter heat transfer tube having an outer diameter of 3 to 5 mm, the inner surface of the tube having an outer diameter of 6 mm or more is rolled or drawn by using a grooved plug to form a spiral or continuous groove in the axial direction of the tube. Depth of 0.11 to 0.6 mm, groove width of 0.15 to 0.6 mm, number of grooves of 30 to 60, and sidewalls formed as slopes with an angle of 15 to 30 ° at equal intervals in the circumferential direction, then once in another process Alternatively, a method for producing a small diameter heat transfer tube, characterized in that the outer diameter of the tube is set to 3 to 5 mm by reducing the diameter to 40 to 70% by drawing at least twice.
JP60237135A 1985-10-23 1985-10-23 Small diameter heat transfer tube and its manufacturing method Expired - Fee Related JPH0769117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237135A JPH0769117B2 (en) 1985-10-23 1985-10-23 Small diameter heat transfer tube and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237135A JPH0769117B2 (en) 1985-10-23 1985-10-23 Small diameter heat transfer tube and its manufacturing method

Publications (2)

Publication Number Publication Date
JPS6298200A JPS6298200A (en) 1987-05-07
JPH0769117B2 true JPH0769117B2 (en) 1995-07-26

Family

ID=17010920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237135A Expired - Fee Related JPH0769117B2 (en) 1985-10-23 1985-10-23 Small diameter heat transfer tube and its manufacturing method

Country Status (1)

Country Link
JP (1) JPH0769117B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2212899B (en) * 1987-11-30 1991-11-20 American Standard Inc Heat exchanger tube having minute internal fins
JPH01299707A (en) * 1988-05-27 1989-12-04 Sumitomo Light Metal Ind Ltd Manufacture of small and thin wall thickness heat transfer tube
JPH0342112A (en) * 1989-07-07 1991-02-22 Sumitomo Light Metal Ind Ltd Manufacture of tube having grooves on inside surface
JPH0357510A (en) * 1989-07-27 1991-03-12 Sumitomo Light Metal Ind Ltd Manufacture of inside surface grooved tube
MY110330A (en) * 1991-02-13 1998-04-30 Furukawa Electric Co Ltd Heat-transfer small size tube and method of manufacturing the same
KR100455884B1 (en) * 1998-07-01 2004-11-08 미쓰비시덴키 가부시키가이샤 Alternating - current generator for vehicles and heat sink incorporated therein
DE10392626T5 (en) * 2002-05-10 2005-06-30 Usui Kokusai Sangyo Kaisha, Ltd. Heat pipe and heat exchanger with such a heat pipe
FR2855601B1 (en) * 2003-05-26 2005-06-24 Trefimetaux GROOVED TUBES FOR THERMAL EXCHANGERS WITH TYPICALLY AQUEOUS MONOPHASIC FLUID
WO2009131072A1 (en) * 2008-04-24 2009-10-29 三菱電機株式会社 Heat exchanger and air conditioner using the same
TWI381144B (en) 2009-07-31 2013-01-01 Sintered heat pipe, manufacturing method thereof and manufacturing method for groove tube thereof
JP2011185589A (en) * 2010-02-09 2011-09-22 Sumitomo Light Metal Ind Ltd Serpentine heat exchanger for air conditioner
CN110132042A (en) * 2019-05-09 2019-08-16 金龙精密铜管集团股份有限公司 A kind of thinning high voltage efficient heat conducting tube and its processing technology

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56113998A (en) * 1980-02-15 1981-09-08 Hitachi Ltd Heat conducting pipe
JPS6188918A (en) * 1984-10-09 1986-05-07 Kobe Steel Ltd Equipment for producing heat exchange tube

Also Published As

Publication number Publication date
JPS6298200A (en) 1987-05-07

Similar Documents

Publication Publication Date Title
CN1062951C (en) Heat-transfer small size tube and method of manufacturing same
JP2788793B2 (en) Heat transfer tube
US4159739A (en) Heat transfer surface and method of manufacture
JPH0769117B2 (en) Small diameter heat transfer tube and its manufacturing method
JP2006130558A (en) Method for manufacturing heat exchanger
CN110849196A (en) High-efficient type flooded heat exchange tube
JP2524983B2 (en) Small diameter heat transfer tube
JPH04260793A (en) Heat transfer tube with inner surface groove
JP2756192B2 (en) Heat transfer tube manufacturing method
JP2001074384A (en) Internally grooved tube
JPS59110435A (en) Manufacture of heat exchange tube
JPH08174044A (en) Production of small-diameter heat transfer tube with groove on inside surface
JP2628712B2 (en) Method of forming heat transfer surface
JP2726480B2 (en) Heat transfer tube
JPS61125595A (en) Heat transfer tube for boiling and manufacture thereof
JPS61111732A (en) Manufacture of heat exchanger
JP3129565B2 (en) Heat exchanger tubes for heat exchangers
CN217155125U (en) Stainless steel pipe for condenser
CN212692657U (en) Evaporating pipe for shell-and-tube heat exchanger
JPH04260792A (en) Small-diameter heat transfer tube
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP3076167B2 (en) Manufacturing method of heat exchanger tube for heat exchanger by rolling method
JP2773872B2 (en) Heat transfer tube for boiling and condensation
JPS6396492A (en) Finned tubular body and manufacture thereof
JPH0734949B2 (en) Heat transfer tube manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees