JP2000283680A - Pipe with grooved inside face and its manufacture - Google Patents

Pipe with grooved inside face and its manufacture

Info

Publication number
JP2000283680A
JP2000283680A JP11361951A JP36195199A JP2000283680A JP 2000283680 A JP2000283680 A JP 2000283680A JP 11361951 A JP11361951 A JP 11361951A JP 36195199 A JP36195199 A JP 36195199A JP 2000283680 A JP2000283680 A JP 2000283680A
Authority
JP
Japan
Prior art keywords
groove
pipe
grooved
cross
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11361951A
Other languages
Japanese (ja)
Inventor
Mamoru Ishikawa
守 石川
Chikara Saeki
主税 佐伯
Kiyonori Koseki
清憲 小関
Nobuaki Hinako
伸明 日名子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11361951A priority Critical patent/JP2000283680A/en
Publication of JP2000283680A publication Critical patent/JP2000283680A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a pipe having a grooved inside face and a method of manufacturing of the pipe suitable as a heat transfer pipe of a condenser and an evaporator capable of attaining a high condensing performance and a high evaporating performance even in a zone having a less flow rate of refrigerant. SOLUTION: Helically grooved belts 1 having a helical groove in an inside surface of a metallic pipe or an alloy pipe and cross-grooved belts 2 having a group of cross-grooves formed by crossing a plurality of grooves at the inside surface of the metallic pipe or the alloy pipe are arranged in regions that are different from each other. One or a plurality of the helically-grooved belts 1 and the cross-grooved belts 2 are arranged alternately in a circumferential direction of the metallic pipe or the alloy pipe. When the width of the helically grooved belts 1 in the circumferentical direction of the pipe is set as W1 and the width of the cross-grooved belts 2 is set as W2, the ratio W1/W2 of W1 and W2 is 1.1 to 3.0. In addition, it is also possible to set this ratio of W1/W2 to 0.3 to 0.9.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はルームエアコン等の
熱交換器に使用される凝縮器及び蒸発器用伝熱管として
好適な内面溝付管及びその製造方法に関し、特に、冷媒
流量が少ない領域であっても高い凝縮性能及び蒸発性能
を発揮する内面溝付管及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inner grooved tube suitable for a heat exchanger for a condenser or an evaporator used in a heat exchanger of a room air conditioner or the like, and a method for manufacturing the same. The present invention relates to an inner grooved tube which exhibits high condensation performance and high evaporation performance, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、エアコン等の熱交換器では、熱交
換性能を高めるために、伝熱管として管の内面に複数の
螺旋状溝を有する内面溝付管が使用されている。
2. Description of the Related Art Conventionally, in a heat exchanger such as an air conditioner, an internally grooved tube having a plurality of spiral grooves on the inner surface of the tube has been used as a heat transfer tube in order to enhance heat exchange performance.

【0003】エアコン等の熱交換は冷媒液を蒸発させた
り、冷媒ガスを凝縮させるときの潜熱を利用したもので
あり、蒸発性能の向上には、冷媒液を伝熱管内全体に広
めて、伝熱面全体で蒸発が生じる構造が必要である。一
方、凝縮性能の向上には、伝熱面で凝縮した冷媒液が容
易に除去できると共に、除去した液により伝熱面が再び
覆われることがないように、液を1ヶ所に集めやすい構
造が好ましい。
[0003] The heat exchange of an air conditioner or the like utilizes latent heat when evaporating a refrigerant liquid or condensing refrigerant gas. To improve the evaporation performance, the refrigerant liquid is spread over the entire heat transfer tube and transferred. A structure in which evaporation occurs on the entire hot surface is required. On the other hand, in order to improve the condensing performance, a structure in which the refrigerant liquid condensed on the heat transfer surface can be easily removed and the liquid is easily collected in one place so that the heat transfer surface is not covered again by the removed liquid. preferable.

【0004】近時、エアコン等においては、省エネルギ
のために、伝熱性能(蒸発性能及び凝縮性能)の高性能
化が求められており、このため、運転負荷の小さい条
件、即ち、冷媒流量が少ない領域であっても高い伝熱性
能を発揮する伝熱管が不可欠となっている。
Recently, in air conditioners and the like, it is required to improve heat transfer performance (evaporation performance and condensation performance) in order to save energy. A heat transfer tube that exhibits high heat transfer performance even in an area with a small amount of heat is indispensable.

【0005】従来、伝熱性能を高めるために管の内面に
加工を施した内面溝付管として、以下に示す伝熱管が提
案されている。
Conventionally, the following heat transfer tubes have been proposed as inner grooved tubes in which the inner surface of the tube is processed to improve the heat transfer performance.

【0006】特開平4−158193号公報に記載され
た伝熱管においては、複数種の螺旋溝群が設けられてお
り、これらの螺旋溝群は、隣接する螺旋溝間で管軸方向
に対する溝のピッチ、溝の寸法、溝の形状及び管軸方向
に対する溝群の捩れ角度のうち、少なくとも1以上の要
素が異なるように形成されている。
In the heat transfer tube described in Japanese Patent Application Laid-Open No. 4-158193, a plurality of types of spiral grooves are provided, and these spiral grooves are formed between adjacent spiral grooves in the direction of the tube axis. At least one or more of the pitch, the groove size, the groove shape, and the torsion angle of the groove group with respect to the pipe axis direction are different from each other.

【0007】また、特開平8−121984号公報に記
載された伝熱管においては、管軸方向に互いに交差しな
いように形成された連続する複数のフィンと、この連続
フィンと隣接し連続フィンと交差しないように長手方向
に沿って不連続又は鋸歯状に形成された不連続フィン
と、この不連続フィンと連続フィンとの間に形成された
溝とが設けられている。
In the heat transfer tube described in JP-A-8-121984, a plurality of continuous fins are formed so as not to cross each other in the tube axis direction, and the continuous fins are adjacent to the continuous fins and intersect with the continuous fins. Discontinuous or sawtooth-shaped discontinuous fins along the longitudinal direction and grooves formed between the discontinuous fins and the continuous fins are provided so as to prevent the fins from being disturbed.

【0008】更に、特開平8−178574号公報に記
載された内面クロス溝付伝熱管においては、管内面に主
溝を管軸に対し7°乃至25°傾斜させて成形すると共
に、副溝を管軸に平行に設けるか、又は主溝と副溝との
間に残された3次元的な突起にバリを設けることによ
り、副溝方向に冷媒の流れを誘導するようにしている。
Further, in the heat transfer tube having an inner cross groove described in Japanese Patent Application Laid-Open No. 8-178574, a main groove is formed on the inner surface of the tube with an inclination of 7 ° to 25 ° with respect to the tube axis, and a sub groove is formed. The flow of the refrigerant is guided in the direction of the sub-groove by being provided parallel to the pipe axis or by providing burrs on the three-dimensional protrusions left between the main groove and the sub-groove.

【0009】更にまた、特開平10−206060号公
報に記載された内面溝付伝熱管においては、管円周方向
の溝ピッチが同一で管軸方向に対する捩れ角度及び捩れ
方向が相違する第1及び第2の溝群を設け、これらの第
1及び第2の溝群が形成された第1及び第2の溝加工領
域を異なる幅で複数組管円周方向に配置し、各溝加工領
域間に、管軸方向に延びる直線溝領域を配置している。
Furthermore, in the heat transfer tube with an inner surface groove described in Japanese Patent Application Laid-Open No. Hei 10-206060, the first and second heat transfer tubes having the same groove pitch in the circumferential direction of the tube and different twist angles and twist directions with respect to the tube axial direction. A second groove group is provided, and the first and second groove processing regions in which the first and second groove groups are formed are arranged in a plurality of sets in circumferential directions with different widths. , A straight groove region extending in the pipe axis direction is arranged.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、上述し
た従来の伝熱管には以下に示す問題点がある。先ず、特
開平4−158193号公報に記載された伝熱管におい
ては、冷媒液の流れは阻害されないが、蒸発時には圧力
損失を十分に低減できないので、蒸発性能が低下してし
まうと共に、凝縮時には凝縮液の排出性が十分でないの
で伝熱面と冷媒ガスとの接触性が低下して凝縮性能が低
下してしまう。また、管軸方向に対して同一の捩れ角度
を有する螺旋溝群を管内面全体に設けると、凝縮時に凝
縮液が伝熱面全体に拡がりやすくなり、伝熱面が凝縮液
に覆われてしまい、凝縮性能が低下してしまうという問
題点がある。
However, the above-mentioned conventional heat transfer tubes have the following problems. First, in the heat transfer tube described in Japanese Patent Application Laid-Open No. 4-158193, the flow of the refrigerant liquid is not hindered, but the pressure loss cannot be sufficiently reduced at the time of evaporation. Since the liquid discharge performance is not sufficient, the contact between the heat transfer surface and the refrigerant gas is reduced, and the condensation performance is reduced. In addition, if spiral grooves having the same twist angle with respect to the tube axis direction are provided on the entire inner surface of the tube, condensate tends to spread over the entire heat transfer surface during condensation, and the heat transfer surface is covered with the condensate. However, there is a problem that the condensation performance is reduced.

【0011】また、特開平8−121984号公報及び
特開平8−178574号公報に記載された伝熱管にお
いては、伝熱面は連続溝を基準に設計されているため、
凝縮器として使用した場合には、冷媒ガス凝縮液が溝に
沿って旋回流を生じやすい。この結果、凝縮に必要な乾
いた伝熱面の確保が困難になるため、凝縮性能の低下を
招く。従って、蒸発性能及び凝縮性能が要求されるヒー
トポンプ式エアコンには好ましくないという欠点があ
る。
Further, in the heat transfer tubes described in JP-A-8-121984 and JP-A-8-178574, the heat transfer surface is designed on the basis of the continuous groove.
When used as a condenser, the refrigerant gas condensate is likely to produce a swirling flow along the groove. As a result, it becomes difficult to secure a dry heat transfer surface necessary for the condensation, and the condensation performance is reduced. Therefore, there is a disadvantage that it is not preferable for a heat pump type air conditioner that requires evaporation performance and condensation performance.

【0012】更に、特開平10−206060号公報に
記載された伝熱管においては、冷媒流量が少ない条件で
は、逆方向の溝によって冷媒の旋回流が阻害されるた
め、蒸発性能が低下するという問題点がある。
Further, in the heat transfer tube described in Japanese Patent Application Laid-Open No. H10-206060, when the flow rate of the refrigerant is small, the swirling flow of the refrigerant is obstructed by the grooves in the opposite direction, and the evaporation performance is reduced. There is a point.

【0013】このように、いずれの従来技術においても
一長一短があり、蒸発性能及び凝縮性能が共に優れた性
能を確保することはできないという問題点がある。
As described above, each of the conventional techniques has advantages and disadvantages, and there is a problem in that it is not possible to ensure excellent performance in both the evaporation performance and the condensation performance.

【0014】本発明はかかる問題点に鑑みてなされたも
のであって、冷媒流量が少ない領域であっても、高い凝
縮性能及び高い蒸発性能を得ることができ、凝縮器及び
蒸発器の伝熱管として好適な内面溝付管及びその製造方
法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and can provide high condensation performance and high evaporation performance even in a region where the flow rate of refrigerant is small. It is an object of the present invention to provide an inner grooved pipe suitable as the above and a method for manufacturing the same.

【0015】[0015]

【課題を解決するための手段】本発明に係る内面溝付管
は、金属又は合金管の内面に螺旋状溝が形成された螺旋
溝加工帯と、前記金属又は合金管の内面の前記螺旋溝加
工帯とは異なる領域に配置され複数の溝を交差させた交
差溝群が形成された交差溝加工帯と、を有し、前記螺旋
溝加工帯と前記交差溝加工帯とが前記金属又は合金管の
内周方向に交互に1又は複数配置されると共に、前記内
周方向における前記螺旋溝加工帯の加工幅をW1とし、
前記交差溝加工帯の加工幅をW2としたとき、W1とW2
との比W1/W2が0.3乃至0.9又は1.1乃至3.
0であることを特徴とする。
According to the present invention, there is provided an inner grooved pipe having a spiral groove formed on an inner surface of a metal or alloy pipe and a spiral groove formed on the inner surface of the metal or alloy pipe. A cross-groove processing band in which a cross-groove group formed by intersecting a plurality of grooves arranged in a region different from the processing band, and wherein the spiral groove processing band and the cross-groove processing band are the metal or alloy. One or more are alternately arranged in the inner peripheral direction of the pipe, and the processing width of the spiral groove processing band in the inner peripheral direction is W 1 ,
When the processing width of the intersecting grooved zone was W 2, W 1 and W 2
The ratio W 1 / W 2 is 0.3 to 0.9 or 1.1 to 3.
It is characterized by being 0.

【0016】本発明においては、本発明の内面溝付管を
蒸発器として使用した場合、内面溝付管内に冷媒液が供
給されると、交差溝加工帯においては、複数の溝群が相
互に交差した交差溝群が形成されているため、各溝が交
差した交差溝部が沸騰核となり、冷媒液の蒸発が促進さ
れるため、蒸発性能を向上させることができる。
In the present invention, when the inner grooved tube of the present invention is used as an evaporator, when a refrigerant liquid is supplied into the inner grooved tube, a plurality of groove groups are mutually formed in the cross groove processing zone. Since the intersecting intersecting groove group is formed, the intersecting groove portion where the respective grooves intersect becomes a boiling nucleus, and the evaporation of the refrigerant liquid is promoted, so that the evaporation performance can be improved.

【0017】一方、内面溝付管を凝縮器として使用した
場合、内面溝付管内に冷媒ガスが供給されると、この冷
媒ガスは伝熱面と接触し冷却されて凝縮する。この凝縮
した冷媒液(冷媒ガス凝縮液)は加工幅が広い領域に形
成された溝群に沿って旋回流を生じようとするが、液化
初期の冷媒ガス凝縮液はその流れの慣性が小さいため、
加工幅が狭い領域に形成されて前記溝群と逆方向に傾斜
する溝群により旋回流の流れが抑制される。このため、
冷媒ガス凝縮液は重力により内面溝付管内の下部に集液
しやすくなり、伝熱面全体が冷媒ガス凝縮液に覆われる
ことがないと共に、内面溝付管内の上部では、常に伝熱
面が冷媒ガスと接触して連続的な凝縮を維持するため、
高い凝縮性能を得ることができる。
On the other hand, when the inner grooved tube is used as a condenser, when a refrigerant gas is supplied into the inner grooved tube, the refrigerant gas comes into contact with the heat transfer surface and is cooled and condensed. This condensed refrigerant liquid (refrigerant gas condensate) tends to generate a swirl flow along the grooves formed in the region with a wide processing width, but the refrigerant gas condensate in the early stage of liquefaction has a small inertia of the flow. ,
The flow of the swirling flow is suppressed by a groove group formed in a region having a narrow processing width and inclined in a direction opposite to the groove group. For this reason,
The refrigerant gas condensate tends to collect at the lower part of the inner grooved pipe due to gravity, so that the entire heat transfer surface is not covered with the refrigerant gas condensate, and the heat transfer surface is always in the upper part of the inner grooved pipe. To maintain continuous condensation in contact with the refrigerant gas,
High condensation performance can be obtained.

【0018】また、W1/W2が0.3未満であると、冷
媒の旋回流の流れが促進されるため、蒸発性能が向上す
るものの、冷媒ガスが凝縮した凝縮液が伝熱面全体に広
がりやすくなり伝熱面を覆うことにより、伝熱面と冷媒
ガスとの接触が阻害されるため、凝縮性能の低下が生じ
る。一方、W1/W2が0.9を超え1.0以下である
と、凝縮性能が向上するものの、螺旋溝加工帯の螺旋状
溝群により冷媒の旋回流が抑止されることによる蒸発性
能の低下が生じる。
When W 1 / W 2 is less than 0.3, the flow of the swirling flow of the refrigerant is promoted, so that the evaporation performance is improved. When the heat transfer surface is covered with the refrigerant gas, the contact between the heat transfer surface and the refrigerant gas is hindered. On the other hand, when W 1 / W 2 is more than 0.9 and not more than 1.0, the condensation performance is improved, but the evaporation performance due to the suppression of the swirling flow of the refrigerant by the spiral grooves in the spiral groove processing zone. Is reduced.

【0019】更に、W1/W2が1.1未満であると、凝
縮性能は向上するものの、狭い交差溝加工帯の交差溝部
による冷媒の旋回流の抑止効果が大きくなり、蒸発性能
の低下が生じる。一方、W1/W2が3.0を超えると、
冷媒の旋回流が促進されて蒸発性能は向上するものの、
凝縮時に液化した凝縮液が内面溝付管の伝熱面全体に広
がりやすくなり、凝縮液が内面溝付管の伝熱面を覆って
冷媒ガスと伝熱面との接触が阻害され凝縮性能が低下す
る。従って、W1/W2を0.3乃至0.9又はW1/W2
を1.1乃至3.0とすることにより、蒸発性能及び凝
縮性能のいずれも高い性能を得ることができる。
Further, when W 1 / W 2 is less than 1.1, the condensation performance is improved, but the effect of suppressing the swirling flow of the refrigerant due to the cross groove portion of the narrow cross groove processing zone is increased, and the evaporation performance is reduced. Occurs. On the other hand, when W 1 / W 2 exceeds 3.0,
Although the swirling flow of the refrigerant is promoted and the evaporation performance is improved,
Condensate liquefied during condensation tends to spread over the entire heat transfer surface of the inner grooved tube, and the condensate covers the heat transfer surface of the inner grooved tube, preventing contact between the refrigerant gas and the heat transfer surface and condensing performance. descend. Therefore, W 1 / W 2 is set to 0.3 to 0.9 or W 1 / W 2
Is set to 1.1 to 3.0, high performance can be obtained in both the evaporation performance and the condensation performance.

【0020】また、前記交差溝加工帯に形成された交差
溝群を構成する一の溝群及びこれに交差する他の溝群の
うち、前記一の溝群は前記金属又は合金管の管軸に対す
る捩れ方向が、前記螺旋状溝とは逆向きに形成され、前
記一の溝群の溝底幅は前記他の溝群の溝底幅よりも広く
形成されていることが好ましい。この場合に、前記一の
溝群はその溝底が長手方向に連続し、前記他の溝群はそ
の溝底が長手方向に断続的になるように形成することが
できる。このように、一の溝群の連続性を他の溝群より
強くすることにより、冷媒液は他の溝群に比較して連続
性が強い一の溝群に沿って旋回流を生じ、管内面全体に
広がる。このため、内面溝付管の蒸発性能を更に向上さ
せることができる。
Further, among one groove group and another groove group that intersect the cross groove group formed in the cross groove processing zone, the one groove group is a pipe shaft of the metal or alloy pipe. Is preferably formed in a direction opposite to the spiral groove, and the groove bottom width of the one groove group is wider than the groove bottom width of the other groove group. In this case, the one groove group may be formed such that the groove bottom is continuous in the longitudinal direction, and the other groove group may be formed such that the groove bottom is discontinuous in the longitudinal direction. As described above, by making the continuity of one groove group stronger than that of the other groove groups, the refrigerant liquid generates a swirling flow along the one groove group having a stronger continuity than the other groove groups, and the inside of the pipe is formed. Spread over the entire surface. For this reason, the evaporation performance of the inner grooved tube can be further improved.

【0021】本発明に係る内面溝付管の製造方法は、金
属又は合金からなる帯状の条材の表面に、圧延により、
請求項1乃至3に記載の条件の前記交差溝加工帯及び前
記螺旋溝加工帯を形成し、前記交差溝加工帯及び前記螺
旋溝加工帯が形成された面を内側にして前記条材を丸め
ながらその突き合わせ端部を溶接することを特徴とす
る。
[0021] The method for manufacturing an inner grooved pipe according to the present invention is characterized in that the surface of a band-shaped strip made of a metal or an alloy is rolled,
The cross groove processing band and the spiral groove processing band are formed under the conditions according to claim 1, and the strip material is rounded with the surface on which the cross groove processing band and the spiral groove processing band are formed inside. It is characterized in that the butted ends are welded.

【0022】[0022]

【発明の実施の形態】以下、本発明の実施例に係る内面
溝付管及びその製造方法について、添付の図面を参照し
て具体的に説明する。図1は本発明の第1の実施例に係
る内面溝付管の内面を管の円周方向に展開した状態を示
す模式図である。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an inner grooved pipe according to an embodiment of the present invention and a method for manufacturing the same will be specifically described with reference to the accompanying drawings. FIG. 1 is a schematic view showing a state in which the inner surface of an inner grooved tube according to a first embodiment of the present invention is developed in a circumferential direction of the tube.

【0023】本実施例の内面溝付管においては、金属又
は合金管の内面に管軸方向に連なる螺旋状溝群6を形成
した螺旋溝加工帯1が配置されている。この螺旋溝加工
帯1に隣接して、管軸方向に連なる溝からなる複数の溝
群3を交差させた交差溝群を形成した交差溝加工帯2が
配置されている。即ち、金属又は合金管内に螺旋溝加工
帯1と交差溝加工帯2とが交互に夫々3つ配置されてい
る。なお、螺旋溝加工帯1と交差溝加工帯2との管円周
方向における加工幅は夫々W1、W2であり、W 1はW2
り大きい。
In the inner grooved pipe of this embodiment, metal or metal is used.
Forms a spiral groove group 6 continuous in the pipe axis direction on the inner surface of the alloy pipe
Spiral groove processing zone 1 is arranged. This spiral groove processing
A plurality of grooves adjacent to the band 1 and formed of grooves extending in the pipe axis direction
Intersecting groove processing zone 2 forming an intersecting groove group which intersected group 3
Are located. That is, spiral groove processing in metal or alloy pipe
Three bands 1 and three cross-grooved bands 2 are alternately arranged.
You. The pipe circumference of the spiral groove processing zone 1 and the cross groove processing zone 2
The processing width in the direction is W1, WTwoAnd W 1Is WTwoYo
Bigger.

【0024】このような溝形状を有する内面溝付管は、
金属又は合金からなる帯状の条材の片側表面に図1に示
すように、加工幅がW1の螺旋溝加工帯1と加工幅がW2
の交差溝加工帯2とが交互に配置されるように溝形状を
圧延成形により転写し、この条材の溝形成面を内側にし
て管状に湾曲させ、条材を管周方向に丸めながら突合せ
端部を溶接接合することにより製造することができる。
An inner grooved pipe having such a groove shape is as follows.
A As shown in FIG. 1 one surface of the strip-shaped elongated member made of metal or alloy, processed width processing width and helical grooves band 1 of W 1 is W 2
The groove shape is transferred by rolling so that the cross groove processing bands 2 are alternately arranged, and the groove is curved into a tubular shape with the groove forming surface of the material inward, and the material is abutted while being rounded in the pipe circumferential direction. It can be manufactured by welding the ends.

【0025】次に、上述のような構成の内面溝付管の動
作について説明する。この内面溝付管を蒸発器として使
用する場合には、先ず、内面溝付管内に冷媒液が供給さ
れる。内面溝付管内に管軸方向に連なる管円周方向の加
工幅の異なる溝加工帯を設け、夫々異なる形状の溝を配
置すると、冷媒液は管円周方向の加工幅がW1と広い螺
旋溝加工帯1の溝に沿った流れが生じやすくなる。この
ため、管円周方向の加工幅がW1と広い螺旋溝加工帯1
に螺旋状溝を形成することにより、内面溝付管内におい
て冷媒の旋回流が生じる。従って、内面溝付管全体に冷
媒液が広がり、高い蒸発性能を得ることができる。
Next, the operation of the inner grooved pipe having the above-described structure will be described. When this inner grooved tube is used as an evaporator, first, a refrigerant liquid is supplied into the inner grooved tube. The different grooved zones of the pipe circumferential direction of the processing width continuous with the tube axis direction to the tube with the inner surface groove is provided, placing grooves each different shapes, refrigerant liquid wide working width of the pipe circumferential direction and W 1 helix The flow along the groove of the grooved band 1 is likely to occur. Therefore, the pipe circumferential direction of the processing width W 1 and a broad helical grooving band 1
By forming a spiral groove on the inner surface, a swirling flow of the refrigerant is generated in the inner grooved pipe. Therefore, the refrigerant liquid spreads over the entire inner grooved pipe, and high evaporation performance can be obtained.

【0026】また、管円周方向の加工幅がW2と狭い方
の交差溝加工帯2に、複数の溝を交差させた溝群3を形
成することにより、夫々の溝の交差溝部4が沸騰核とな
り、蒸発が促進されて内面溝付管の蒸発性能を高めるこ
とができる。
Further, by forming a groove group 3 having a plurality of grooves intersecting in the cross groove processing band 2 having a processing width in the pipe circumferential direction narrower than W 2 , the cross groove portions 4 of the respective grooves are formed. It becomes a boiling nucleus, and evaporation is promoted, so that the evaporation performance of the inner grooved tube can be enhanced.

【0027】ところで、冷媒流量が少ない条件では、冷
媒流速が遅くなるため、冷媒液の旋回流が生じ難くなる
が、伝熱面における冷媒液に覆われた部位においては、
溝の交差溝部4が沸騰核として冷媒液の蒸発が促進され
るため、冷媒流量が少ない領域においても高い蒸発性能
を確保することができる。
By the way, when the flow rate of the refrigerant is small, the flow velocity of the refrigerant is low, so that the swirling flow of the refrigerant liquid is unlikely to occur.
Since the crossing grooves 4 of the grooves serve as boiling nuclei to promote evaporation of the refrigerant liquid, high evaporation performance can be ensured even in a region where the refrigerant flow rate is small.

【0028】一方、内面溝付管を凝縮器として使用した
場合に、内面溝付管には冷媒ガスが供給される。この冷
媒ガスは伝熱面と接触して冷却されて凝縮(液化)す
る。この凝縮した冷媒液(冷媒ガス凝縮液)は管円周方
向の加工幅がW1と広い螺旋溝加工帯1の溝に沿って、
旋回流を生じようとするが、このとき、冷媒液は流れの
慣性が小さいため、加工幅がW2と狭い交差溝加工帯2
に形成された交差溝部4により旋回流が抑制される。こ
のため、凝縮した冷媒液は重力により伝熱管下方面側に
凝縮しやすくなり、伝熱面全体が凝縮した冷媒液に覆わ
れることなく、伝熱管上方面側では常に伝熱面が冷媒ガ
スと接触して連続的な凝縮を維持する。このため、高い
凝縮性能を得ることができる。
On the other hand, when the inner grooved tube is used as a condenser, the refrigerant gas is supplied to the inner grooved tube. This refrigerant gas contacts the heat transfer surface and is cooled and condensed (liquefied). The condensed refrigerant liquid (refrigerant gas condensate) is processing width of the tube circumferential direction along the groove of W 1 and a broad helical grooving band 1,
To about to fail the swirl flow, but this time, the refrigerant liquid for the inertia of the flow is small, the processing width is narrow and W 2 intersect groove processing zone 2
The swirling flow is suppressed by the intersecting groove portion 4 formed in the ridge. For this reason, the condensed refrigerant liquid tends to condense on the lower surface of the heat transfer tube due to gravity, and the entire heat transfer surface is not covered with the condensed refrigerant liquid. Maintain continuous condensation on contact. For this reason, high condensation performance can be obtained.

【0029】なお、溝形成領域の夫々の加工幅に関し
て、W1/W2が1.1未満であると、凝縮性能は向上す
るものの、狭い交差溝加工帯2の交差溝部4による冷媒
の旋回流の抑止効果が大きくなり、蒸発性能の低下が生
じる。一方、W1/W2が3.0を超えると、冷媒の旋回
流が促進されて蒸発性能は向上するものの、凝縮時に液
化した凝縮液が内面溝付管の伝熱面全体に広がりやすく
なり、凝縮液が内面溝付管の伝熱面を覆って冷媒ガスと
伝熱面との接触が阻害され凝縮性能が低下する。従っ
て、W1/W2は1.1乃至3.0とする。
When W 1 / W 2 is less than 1.1 with respect to each processing width of the groove forming area, the condensing performance is improved, but the refrigerant is swirled by the cross grooves 4 of the narrow cross groove processing zone 2. The effect of suppressing the flow is increased, and the evaporation performance is reduced. On the other hand, if W 1 / W 2 exceeds 3.0, the swirling flow of the refrigerant is promoted and the evaporation performance is improved, but the condensed liquid liquefied at the time of condensation tends to spread over the entire heat transfer surface of the inner grooved tube. In addition, the condensed liquid covers the heat transfer surface of the inner grooved tube, so that contact between the refrigerant gas and the heat transfer surface is hindered, and condensing performance is reduced. Therefore, W 1 / W 2 is set to 1.1 to 3.0.

【0030】本実施例においては、管軸方向に連なる溝
からなる複数の溝群3が交差された交差溝群を形成した
交差溝加工帯2を形成する構成としたが、本発明は特に
これに限定されるものではなく、交差溝加工帯2に形成
された交差溝群のうち、1つの溝群3は管軸に対して捩
れを有し、この捩れは螺旋溝加工帯1に形成された螺旋
状溝とは逆向きに形成してもよい。また、この1つの溝
群3は交差溝加工帯2の他の溝群5と比較して、管軸断
面における溝群3の溝底幅を他の溝群5の溝底幅よりも
広く形成してもよい。これにより、冷媒等が流れやすく
なる。
In this embodiment, the cross groove machining zone 2 is formed by forming a cross groove group in which a plurality of groove groups 3 formed of grooves continuous in the pipe axis direction are intersected. However, the present invention is not limited to this. Among the cross groove groups formed in the cross groove processing band 2, one groove group 3 has a twist with respect to the pipe axis, and this twist is formed in the spiral groove processing band 1. The spiral groove may be formed in the opposite direction. Also, this one groove group 3 is formed such that the groove bottom width of the groove group 3 in the tube axis cross section is wider than the other groove groups 5 in comparison with the other groove groups 5 of the cross groove processing band 2. May be. This makes it easier for the refrigerant and the like to flow.

【0031】また、本実施例においては、螺旋溝加工帯
1と交差溝加工帯2とを夫々3つ交互に配置する構成と
したが、本発明は特にこれに限定されるものではなく、
螺旋溝加工帯1と交差溝加工帯2との夫々の加工幅に関
して、W1/W2が1.1乃至3.0の範囲内で金属又は
合金管の内面に交互に1又は複数配置することができ
る。
In this embodiment, three spiral groove machining zones 1 and three cross groove machining zones 2 are alternately arranged. However, the present invention is not particularly limited to this.
For the respective pieces of processing width of the spiral grooving band 1 and crossing grooves band 2, W 1 / W 2 is alternately to one or more arranged on the inner surface of the metal or alloy tube within the 1.1 to 3.0 be able to.

【0032】次に、本発明の第2の実施例について説明
する。図2は本発明の第2の実施例に係る内面溝付管の
内面を管の円周方向に展開した状態を示す模式図、図3
は図2の交差溝加工帯2の表面の溝形状を示す斜視図で
ある。なお、図2において、図1に示す第1の実施例と
同一構成物には同一符号を付してその詳細な説明は省略
する。
Next, a second embodiment of the present invention will be described. FIG. 2 is a schematic view showing a state in which the inner surface of an inner grooved pipe according to a second embodiment of the present invention is developed in the circumferential direction of the pipe, and FIG.
FIG. 3 is a perspective view showing a groove shape on the surface of the cross groove processing band 2 in FIG. 2. In FIG. 2, the same components as those of the first embodiment shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.

【0033】図2に示すように、本実施例の内面溝付管
においては、金属又は合金管の内面に交差溝加工帯2と
螺旋溝加工帯1とが管の円周方向に交互に夫々3個づつ
配置されている。この交差溝加工帯2の管円周方向の加
工帯幅W2は螺旋溝加工帯1の管円周方向の加工幅W1
り大きい。
As shown in FIG. 2, in the inner grooved tube of the present embodiment, the cross grooved band 2 and the spiral grooved band 1 are alternately formed on the inner surface of the metal or alloy tube in the circumferential direction of the tube. They are arranged three by three. The processing width W 2 of the cross groove processing band 2 in the pipe circumferential direction is larger than the processing width W 1 of the spiral groove processing band 1 in the pipe circumferential direction.

【0034】螺旋溝加工帯1においては、管軸方向に対
して所定の捩れ角度で延びる複数の螺旋状溝からなる螺
旋状溝群6が形成されている。一方、交差溝加工帯2に
おいては、螺旋状溝からなる複数の溝群が、その管軸方
向に対する捩れ角度を相互に異ならせ、相互に交差する
ように形成されている。この交差溝加工帯2における複
数の溝群のうち、溝の連続性が強い溝群3はその管軸方
向に対する捩れ方向が、螺旋溝加工帯1に形成された螺
旋状溝群6の捩れ方向とは逆の方向に形成されている。
In the spiral groove machining zone 1, a spiral groove group 6 composed of a plurality of spiral grooves extending at a predetermined twist angle with respect to the tube axis direction is formed. On the other hand, in the intersecting groove processing zone 2, a plurality of groove groups formed of spiral grooves are formed so that the twist angles with respect to the tube axis direction are different from each other, and cross each other. Among the plurality of groove groups in the cross groove processing band 2, the groove group 3 having strong groove continuity has a twist direction with respect to the tube axis direction, which is the twist direction of the spiral groove group 6 formed in the spiral groove processing band 1. Are formed in the opposite direction.

【0035】図3に示すように、交差溝加工帯2におい
ては、螺旋状に延びる複数の溝からなる溝群3,5が相
互に交差するように形成されており、このうち、連続性
が強い溝群3は、その溝底面11が溝の長手方向に連続
しており、連続性が弱い溝群5は、その溝底面12が溝
の長手方向に断続している。また、連続性が強い溝群3
の溝底の幅D1は連続性が弱い溝群5の溝底の幅D2より
広くなっており(D1>D2)、以上の点で、連続性が強
い溝群3内の方が連続性が弱い溝群5内よりも冷媒等が
流れやすくなっている。
As shown in FIG. 3, in the intersecting groove processing zone 2, groove groups 3 and 5 composed of a plurality of spirally extending grooves are formed so as to intersect with each other. In the strong groove group 3, the groove bottom surface 11 is continuous in the longitudinal direction of the groove, and in the groove group 5 with weak continuity, the groove bottom surface 12 is discontinuous in the longitudinal direction of the groove. Groove group 3 with strong continuity
The width D 1 of the groove bottom is wider than the width D 2 of the groove bottom of the groove group 5 having weak continuity (D 1 > D 2 ). However, the refrigerant and the like are easier to flow than in the groove group 5 where the continuity is weak.

【0036】このような溝形状を有する内面溝付管は、
金属又は合金からなる帯状の条材の片側表面に図2に示
すように、加工幅がW2の交差溝加工帯2と加工幅がW1
の螺旋溝加工帯1とが交互に配置されるように溝形状を
圧延成形により転写し、この条材の溝形成面を内側にし
て管状に湾曲させ、条材を管周方向に丸めながら突合せ
端部を溶接接合することにより製造することができる。
An inner grooved tube having such a groove shape is as follows.
On one surface of a strip-shaped elongated member made of a metal or alloy, as shown in FIG. 2, the processing width processing width cross groove processing zone 2 of W 2 is W 1
The groove shape is transferred by rolling so that the spiral groove processing strips 1 are alternately arranged, and the groove is curved into a tubular shape with the groove forming surface of the material inside, and the material is joined while being rounded in the pipe circumferential direction. It can be manufactured by welding the ends.

【0037】このように構成された本実施例の内面溝付
管においては、蒸発器として使用した場合には、先ず、
内面溝付管内に冷媒液が供給される。内面溝付管内面に
は相互に形状の異なる溝群が形成された交差溝加工帯2
と螺旋溝加工帯1とが管の円周方向に交互に配置されて
おり、交差溝加工帯2の幅が螺旋溝加工帯1の幅より広
いため、冷媒液の流れは交差溝加工帯2の影響を強く受
ける。
In the inner grooved pipe of the present embodiment having the above-described structure, when used as an evaporator, first,
The coolant liquid is supplied into the inner grooved pipe. Cross groove machining zone 2 in which grooves having mutually different shapes are formed on the inner surface of the inner grooved pipe.
And the spiral groove processing bands 1 are alternately arranged in the circumferential direction of the pipe, and since the width of the cross groove processing band 2 is wider than the width of the spiral groove processing band 1, the flow of the refrigerant liquid is caused by the cross groove processing band 2. Strongly influenced by

【0038】このとき、交差溝加工帯2を構成する複数
の溝群のうち一の溝群3は、管軸に対し捩れを有して成
形されていると共に、連続性を強く成形されているた
め、冷媒液は溝群3に沿って旋回流を生じ、管内面全体
に広がる。このため、内面溝付管の蒸発性能が向上す
る。
At this time, one groove group 3 of the plurality of groove groups constituting the cross groove machining zone 2 is formed with a twist with respect to the tube axis and is formed with strong continuity. Therefore, the coolant liquid generates a swirling flow along the groove group 3 and spreads over the entire inner surface of the pipe. For this reason, the evaporation performance of the inner grooved tube is improved.

【0039】更に、交差溝加工帯2においては、複数の
溝群が交差した交差溝群が形成されているため、夫々の
溝が交差した交差溝部4が沸騰核となり、冷媒液の蒸発
が促進されるため、内面溝付管の蒸発性能を更に向上さ
せることができる。
Further, in the cross groove processing zone 2, since a plurality of cross groove groups intersect with each other, an intersecting groove portion 4 where each groove intersects serves as a boiling nucleus, thereby promoting the evaporation of the refrigerant liquid. Therefore, the evaporation performance of the inner surface grooved tube can be further improved.

【0040】ところで、冷媒流量が少ない条件では、冷
媒流速が遅くなるため、冷媒液の旋回流が生じ難くなる
が、伝熱面における冷媒液に覆われた部位においては、
溝の交差溝部4が沸騰核として冷媒液の蒸発が促進され
るため、冷媒流量が少ない領域においても高い蒸発性能
を確保することができる。
By the way, when the flow rate of the refrigerant is small, the flow velocity of the refrigerant is slow, so that the swirling flow of the refrigerant liquid is hardly generated.
Since the crossing grooves 4 of the grooves serve as boiling nuclei to promote evaporation of the refrigerant liquid, high evaporation performance can be ensured even in a region where the refrigerant flow rate is small.

【0041】一方、内面溝付管を凝縮器として使用した
場合には、内面溝付管内に冷媒ガスが供給される。この
冷媒ガスは伝熱面と接触し冷却されて凝縮(液化)す
る。この凝縮した冷媒液(冷媒ガス凝縮液)は交差溝加
工帯2に形成された溝群3に沿って旋回流を生じようと
するが、このとき、冷媒ガス凝縮液はその流れの慣性が
小さいため、螺旋溝加工帯1に形成されて交差溝加工帯
2に形成された溝群3とは捩れ方向が逆向きの螺旋状溝
群6により旋回流の流れが抑制される。
On the other hand, when the inner grooved tube is used as a condenser, the refrigerant gas is supplied into the inner grooved tube. This refrigerant gas comes into contact with the heat transfer surface and is cooled and condensed (liquefied). The condensed refrigerant liquid (refrigerant gas condensate) tends to generate a swirling flow along the groove group 3 formed in the cross groove machining zone 2, and at this time, the refrigerant gas condensate has a small inertia of the flow. Therefore, the flow of the swirling flow is suppressed by the spiral groove group 6 whose twisting direction is opposite to that of the groove group 3 formed in the spiral groove processing band 1 and formed in the cross groove processing band 2.

【0042】このため、冷媒ガス凝縮液は重力により内
面溝付管下方面側に集液しやすくなり、伝熱面全体が冷
媒ガス凝縮液に覆われることがないと共に、内面溝付管
上方面側では、常に伝熱面が冷媒ガスと接触して連続的
な凝縮を維持する。このため、高い凝縮性能を得ること
ができる。
Therefore, the refrigerant gas condensate tends to collect on the lower surface side of the inner grooved tube due to gravity, so that the entire heat transfer surface is not covered with the refrigerant gas condensate, and the upper surface of the inner grooved tube is not covered. On the side, the heat transfer surface is always in contact with the refrigerant gas to maintain continuous condensation. For this reason, high condensation performance can be obtained.

【0043】なお、交差溝加工帯2の幅W2と螺旋溝加
工帯1の幅W1との比、即ち、W1/W2が0.9を超え
1.0以下であると、凝縮性能が向上するものの、螺旋
溝加工帯1の螺旋状溝群6により冷媒の旋回流が抑止さ
れることによる蒸発性能の低下が生じる。
Incidentally, the ratio between the width W 2 and the width W 1 of the spiral groove processing zone 1 of the cross groove processing zone 2, i.e., when W 1 / W 2 is in exceed 0.9 1.0, condensed Although the performance is improved, the evaporation performance is reduced due to the suppression of the swirling flow of the refrigerant by the spiral groove group 6 of the spiral groove processing zone 1.

【0044】一方、W1/W2が0.3未満であると、冷
媒の旋回流の流れが促進されるため、蒸発性能が向上す
るものの、冷媒ガスが凝縮した凝縮液が伝熱面全体に広
がりやすくなり伝熱面を覆って、伝熱面と冷媒ガスとの
接触が阻害されるため、凝縮性能の低下が生じる。
On the other hand, if W 1 / W 2 is less than 0.3, the flow of the swirling flow of the refrigerant is promoted, so that the evaporation performance is improved. The heat transfer surface covers the heat transfer surface, and the contact between the heat transfer surface and the refrigerant gas is hindered.

【0045】従って、蒸発性能及び凝縮性能共に高性能
を得るためには、W1/W2は0.3乃至0.9である。
Therefore, W 1 / W 2 is 0.3 to 0.9 in order to obtain high performance in both evaporation performance and condensation performance.

【0046】また、管軸に対し相互に逆方向の捩れを有
し溝底幅が広く成形された2種類の溝群を形成すると、
圧力損失が増加するので、夫々の捩れ角を異ならせるこ
とが好ましい。
Further, when two types of groove groups are formed which are twisted in opposite directions to the pipe axis and are formed with a wide groove bottom width,
Since the pressure loss increases, it is preferable to make the respective twist angles different.

【0047】また、本実施例においては、交差溝加工帯
2と螺旋溝加工帯1とを夫々3つ交互に配置する構成と
したが、本発明は特にこれに限定されるものではなく、
交差溝加工帯2と螺旋溝加工帯1との夫々の加工幅に関
して、W1/W2が0.3乃至0.9の範囲内で金属又は
合金管の内面に交互に1又は複数配置することができ
る。
Further, in this embodiment, three cross groove processing bands 2 and three spiral groove processing bands 1 are alternately arranged. However, the present invention is not particularly limited to this.
Regarding the respective processing widths of the cross groove processing band 2 and the spiral groove processing band 1, one or more are arranged alternately on the inner surface of the metal or alloy pipe within a range of W 1 / W 2 of 0.3 to 0.9. be able to.

【0048】[0048]

【実施例】以下、本発明の実施例に係る内面溝付管を製
造し、その特性を比較例の内面溝付管と比較した結果に
ついて具体的に説明する。
EXAMPLES Hereinafter, the results of manufacturing an inner grooved pipe according to an embodiment of the present invention and comparing the characteristics of the pipe with the inner grooved pipe of a comparative example will be specifically described.

【0049】実施例及び比較例の内面溝付管用の素材と
して、厚さが0.45mmのりん脱酸銅(JIS H3
100 C1220)コイルにより所定幅にスリットし
た帯状の条材を使用した。この条材への溝付け加工は下
側に平滑ロールを配し、上側に所定形状の溝形成ロール
を配した圧延機に条材を通過させ、上ロールの凹凸形状
を条材に転写させることにより行った。本発明の螺旋溝
及び交差溝を同一の条材に形成させるには、1ラインに
2台の圧延機を有するタンデム式圧延機を使用してもよ
く、また、ロールを1組しか有しない圧延装置を使用す
る場合には、例えば最初に螺旋溝を圧延形成してロール
アップし、その後、上ロールを組替えて行う2回目の圧
延で1回目と逆方向の螺旋溝を形成することによって所
定の位置に交差溝を形成してもよい。本実施例及び比較
例においては、圧延機が2台連続して配列するタンデム
圧延機を使用することによって溝付条材を製作した。
As a material for the inner grooved pipe of the examples and comparative examples, a phosphorous deoxidized copper (JIS H3) having a thickness of 0.45 mm was used.
100 C1220) A strip-shaped strip material slit to a predetermined width by a coil was used. The grooving process on this strip is performed by arranging a smooth roll on the lower side and passing the strip through a rolling mill having a groove forming roll of a predetermined shape on the upper side, and transferring the uneven shape of the upper roll to the strip. Was performed. In order to form the spiral groove and the cross groove of the present invention on the same strip, a tandem type rolling mill having two rolling mills in one line may be used, or a rolling having only one set of rolls. In the case of using the apparatus, for example, a spiral groove is first formed by rolling and rolled up, and then a second rolling performed by rearranging the upper roll forms a spiral groove in a direction opposite to that of the first time. Intersecting grooves may be formed at positions. In this example and the comparative example, a grooved strip was manufactured by using a tandem rolling mill in which two rolling mills were continuously arranged.

【0050】このように、2台の圧延機が連続配列する
タンデム圧延機を使用し、1段目の圧延機で溝深さが
0.2mm、管の円周方向の溝ピッチが0.41mm及
び管軸に対して右ネジ方向の捩れ角が15°の1次溝群
を条材の両端部を夫々1mm残して片側表面全体に圧延
形成した。なお、フィン(突起部)の頂角は25°、溝
底肉厚(最小肉厚)は0.25mmとした。
As described above, a tandem rolling mill in which two rolling mills are continuously arranged is used, and the groove depth is 0.2 mm and the groove pitch in the circumferential direction of the pipe is 0.41 mm in the first rolling mill. A primary groove group having a twist angle of 15 ° in the right-hand screw direction with respect to the pipe axis was roll-formed on the entire surface on one side except for 1 mm at both ends of the strip. The fins (protrusions) had an apex angle of 25 ° and a groove bottom thickness (minimum thickness) of 0.25 mm.

【0051】1段目の圧延機で溝圧延された条材は引き
続いて2段目の圧延機に導かれ、溝深さが0.2mm、
管の円周方向の溝ピッチが0.41mm及び管軸に対し
て左ネジ方向の捩れ角が30°の2次溝群(1次溝群と
は捩れ角度と捩れ方向が異なる)を、板厚方向(管の円
周方向に相当)の3ヵ所に、所定の間隔を空けて所定の
加工幅で圧延成形した。なお、この2次圧延で圧下を受
けない部位は1次圧延時の溝がそのまま存続する。即
ち、板幅方向には1次圧延による螺旋溝加工帯と、2次
圧延による交差溝加工帯とが交互に配置された溝付銅板
が得られる。また、2段目の圧延機において、幅の異な
る溝形成上ロールを組み込むことにより、螺旋溝加工帯
の加工幅と交差溝加工帯の加工幅との比を変化させた。
The strip which has been groove-rolled by the first-stage rolling mill is subsequently led to the second-stage rolling mill, where the groove depth is 0.2 mm.
A secondary groove group having a circumferential groove pitch of 0.41 mm in the circumferential direction of the pipe and a twist angle of 30 ° in the left-hand thread direction with respect to the pipe axis (having a different twist angle and twist direction from the primary groove group) At three places in the thickness direction (corresponding to the circumferential direction of the tube), rolling was performed with a predetermined working width at predetermined intervals. It should be noted that, in the portion that is not subjected to the reduction in the secondary rolling, the groove in the primary rolling remains as it is. That is, a grooved copper plate in which spiral grooved bands formed by primary rolling and cross grooved bands formed by secondary rolling are alternately arranged in the plate width direction is obtained. In the second-stage rolling mill, the ratio between the processing width of the spiral groove processing band and the processing width of the cross groove processing band was changed by incorporating a groove forming upper roll having a different width.

【0052】このように溝加工が施された条材の溝加工
面を内側にして、この条材を丸めながら板幅端部を突き
合わせて高周波溶接しつつ、管径をサイジングすること
により、外径が7.0mmの内面溝付管を形成した。
With the grooved surface of the grooved material turned inward as described above, the width of the grooved material is rounded, the ends of the width of the plate are abutted, and high-frequency welding is performed. An inner grooved tube having a diameter of 7.0 mm was formed.

【0053】このように形成された内面溝付管を長さが
3000mmの2重管式熱交換器(以下、外管という)
の内側に配置し、内面溝付管内に冷媒(R−410A)
を供給し、内面溝付管と外管との間の環状部に水を供給
して熱交換を行い、伝熱性能を測定した。
The thus formed inner grooved pipe is connected to a double-pipe heat exchanger having a length of 3000 mm (hereinafter referred to as an outer pipe).
The refrigerant (R-410A) is placed inside the inner grooved pipe.
Was supplied, and water was supplied to the annular portion between the inner grooved tube and the outer tube to perform heat exchange, and the heat transfer performance was measured.

【0054】なお、本実施例と伝熱性能を比較するため
の標準材として、螺旋状溝群のみが形成された外径が
7.0mmの内面溝付管(溝深さ:0.2mm、管の円
周方向溝ピッチ:0.41mm、管軸に対する捩れ角
度:18°(右ネジ方向)、フィン頂角:20°、溝底
肉厚:0.25mm)を製造し、その伝熱性能を測定
し、以下、実施例及び比較例の内面溝付管の性能をこの
標準材の伝熱性能に対する比で表した。
As a standard material for comparing the heat transfer performance with that of the present embodiment, an internally grooved pipe having an outer diameter of 7.0 mm (groove depth: 0.2 mm, Circumferential groove pitch of pipe: 0.41 mm, twist angle to pipe axis: 18 ° (right-hand screw direction), fin apex angle: 20 °, groove bottom wall thickness: 0.25 mm), and its heat transfer performance Was measured, and the performance of the internally grooved tubes of the examples and comparative examples was expressed as a ratio to the heat transfer performance of this standard material.

【0055】図4は縦軸に伝熱性能比、横軸に交差溝群
が形成された交差溝加工帯の加工幅(W1)と螺旋状溝
群が形成された螺旋溝加工帯の加工幅(W2)との比
(W1/W2)をとって、比(W1/W2)と伝熱性能比と
の関係を示すグラフ図である。なお、図中の▲は蒸発性
能比を示し、●は凝縮性能比を示す。
FIG. 4 shows the heat transfer performance ratio on the vertical axis, the processing width (W 1 ) of the cross groove processing band in which the cross groove group is formed on the horizontal axis, and the processing of the spiral groove processing band in which the spiral groove group is formed. FIG. 4 is a graph showing the relationship between the ratio (W 1 / W 2 ) and the heat transfer performance ratio by taking the ratio (W 1 / W 2 ) to the width (W 2 ). In the figure, ▲ indicates the evaporation performance ratio, and ● indicates the condensation performance ratio.

【0056】冷媒流量が20kg/時間の場合における
本実施例の内面溝付管の伝熱性能と標準材の内面溝付管
の伝熱性能との比(蒸発性能比及び凝縮性能比)を下記
表1及び図4に示す。
The ratio (evaporation performance ratio and condensation performance ratio) between the heat transfer performance of the inner grooved tube of this embodiment and the heat transfer performance of the inner grooved tube of the standard material when the refrigerant flow rate is 20 kg / hour is as follows. It is shown in Table 1 and FIG.

【0057】[0057]

【表1】 [Table 1]

【0058】表1及び図4に示すように、W1/W2が1
であれば、標準材と同等な伝熱性能を有していた。W1
/W2が1よりも小さくなるか、又は大きくなるに連
れ、伝熱性能(蒸発性能及び凝縮性能)が急激に上昇
し、W1/W2が0.3乃至0.9及びW1/W2が1.1
乃至3.0の領域においては、標準材と比較して伝熱性
能が20%以上も大幅に改善された。また、W1/W2
0.3未満の領域においては、凝縮性能が低下し、W1
/W2が3.0を超える領域においては、蒸発性能が低
下した。なお、W1/W2が0.3乃至0.9の領域にお
いては特に蒸発性能が優れており、一方、W1/W2
1.1乃至3.0の領域においては特に凝縮性能が優れ
ていた。
As shown in Table 1 and FIG. 4, W 1 / W 2 is 1
, The heat transfer performance was equivalent to that of the standard material. W 1
As / W 2 becomes smaller or larger than 1, the heat transfer performance (evaporation performance and condensation performance) sharply increases, and W 1 / W 2 becomes 0.3 to 0.9 and W 1 / W 2. W 2 is 1.1
In the range from 3.0 to 3.0, the heat transfer performance was significantly improved by 20% or more compared to the standard material. In the region of less than W 1 / W 2 is 0.3, the condensation performance is lowered, W 1
In the region where / W 2 exceeds 3.0, the evaporation performance was reduced. The evaporation performance is particularly excellent in the region where W 1 / W 2 is 0.3 to 0.9, while the condensation performance is particularly excellent in the region where W 1 / W 2 is 1.1 to 3.0. It was excellent.

【0059】[0059]

【発明の効果】以上詳述したように本発明によれば、W
1/W2が0.3乃至0.9又は1.1乃至3.0である
から、蒸発性能及び凝縮性能の双方が優れており、この
本発明の内面溝付管を使用することにより、冷媒流量が
少ない場合であっても熱交換器の性能が極めて優れたも
のとなり、エアコン等の省エネルギ効果も著しく向上す
る。また、室内の冷房性能を特に重視する熱交換器には
1/W2が0.3乃至0.9の蒸発性能比が優れた伝熱
管を使用し、室内の暖房性能を特に重視する熱交換器に
はW1/W2が1.1乃至3.0の凝縮性能比が優れた伝
熱管を使用することにより、更に一層熱交換器性能を高
めることができる。
As described above in detail, according to the present invention, W
Since 1 / W 2 is 0.3 to 0.9 or 1.1 to 3.0, both the evaporation performance and the condensation performance are excellent, and by using the inner grooved tube of the present invention, Even when the flow rate of the refrigerant is small, the performance of the heat exchanger is extremely excellent, and the energy saving effect of an air conditioner or the like is significantly improved. In addition, a heat exchanger with an excellent evaporation performance ratio of W 1 / W 2 of 0.3 to 0.9 is used for the heat exchanger in which the indoor cooling performance is particularly important, and a heat exchanger in which the indoor heating performance is particularly important. By using a heat transfer tube having an excellent condensation performance ratio of W 1 / W 2 of 1.1 to 3.0 as the exchanger, the heat exchanger performance can be further enhanced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例に係る内面溝付管の内面
を管の円周方向に展開した状態を示す模式図である。
FIG. 1 is a schematic view showing a state in which an inner surface of an inner grooved tube according to a first embodiment of the present invention is developed in a circumferential direction of the tube.

【図2】本発明の第2の実施例に係る内面溝付管の内面
を管の円周方向に展開した状態を示す模式図である。
FIG. 2 is a schematic view showing a state in which the inner surface of an inner grooved pipe according to a second embodiment of the present invention is developed in a circumferential direction of the pipe.

【図3】図2の交差溝加工帯の表面の溝形状を示す斜視
図である。
FIG. 3 is a perspective view showing a groove shape on the surface of the cross groove processing band of FIG. 2;

【図4】縦軸に伝熱性能比、横軸に交差溝群が形成され
た交差溝加工帯の加工幅(W1)と螺旋状溝群が形成さ
れた螺旋溝加工帯の加工幅(W2)との比(W1/W2
をとって、比(W1/W2)と伝熱性能比との関係を示す
グラフ図である。
FIG. 4 shows the heat transfer performance ratio on the vertical axis, the processing width (W 1 ) of the cross groove processing band in which the cross groove group is formed on the horizontal axis, and the processing width of the spiral groove processing band in which the spiral groove group is formed ( Ratio to W 2 ) (W 1 / W 2 )
FIG. 3 is a graph showing the relationship between the ratio (W 1 / W 2 ) and the heat transfer performance ratio.

【符号の説明】[Explanation of symbols]

1;螺旋溝加工帯 2;交差溝加工帯 3、5;溝群 4;交差溝部 6;螺旋状溝群 11、12;溝底面 1; spiral groove processing band 2: cross groove processing band 3, 5; groove group 4: cross groove portion 6; spiral groove group 11, 12; groove bottom surface

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小関 清憲 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 (72)発明者 日名子 伸明 神奈川県秦野市平沢65番地 株式会社神戸 製鋼所秦野工場内 Fターム(参考) 4E028 EA07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Kiyonori Koseki 65, Hirasawa, Hadano City, Kanagawa Prefecture Inside the Hadano Plant, Kobe Steel Co., Ltd. (72) Inventor Nobuaki Hinako 65, Hirasawa, Hadano City, Kanagawa Prefecture Hadano Plant, Kobe Steel Corporation F-term (reference) 4E028 EA07

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 金属又は合金管の内面に螺旋状溝が形成
された螺旋溝加工帯と、前記金属又は合金管の内面の前
記螺旋溝加工帯とは異なる領域に配置され複数の溝を交
差させた交差溝群が形成された交差溝加工帯と、を有
し、前記螺旋溝加工帯と前記交差溝加工帯とが前記金属
又は合金管の内周方向に交互に1又は複数配置されると
共に、前記内周方向における前記螺旋溝加工帯の加工幅
をW1とし、前記交差溝加工帯の加工幅をW2としたと
き、W1とW2との比W1/W2が0.3乃至0.9又は
1.1乃至3.0であることを特徴とする内面溝付管。
1. A helical groove processing band in which a helical groove is formed on an inner surface of a metal or alloy pipe, and a plurality of grooves arranged in a different region from the helical groove processing band on the inner surface of the metal or alloy tube. And a plurality of crossed groove processing bands in which a set of crossed groove groups are formed, wherein one or a plurality of the spiral groove processing bands and the cross groove processing bands are alternately arranged in the inner circumferential direction of the metal or alloy pipe. together, the processing width of the helical groove machining zone in the inner peripheral direction is W 1, the intersecting when the working width of the grooved zone and the W 2, W 1 and W: W and W 2 1 / W 2 is 0 0.3 to 0.9 or 1.1 to 3.0.
【請求項2】 前記交差溝加工帯に形成された交差溝群
を構成する一の溝群及びこれに交差する他の溝群のう
ち、前記一の溝群は前記金属又は合金管の管軸に対する
捩れ方向が、前記螺旋状溝とは逆向きに形成され、前記
一の溝群の溝底幅は前記他の溝群の溝底幅よりも広く形
成されていることを特徴とする請求項1に記載の内面溝
付管。
2. One of a group of grooves forming a group of cross grooves formed in the cross groove processing zone and another group of grooves intersecting with the group of grooves, the one group of grooves is a tube axis of the metal or alloy pipe. The twist direction with respect to is formed in the opposite direction to the spiral groove, and the groove bottom width of the one groove group is formed wider than the groove bottom width of the other groove group. 2. The inner grooved pipe according to 1.
【請求項3】 前記一の溝群はその溝底が長手方向に連
続して形成されており、前記他の溝群はその溝底が長手
方向に断続的に形成されていることを特徴とする請求項
2に記載の内面溝付管。
3. The groove group according to claim 1, wherein the bottom of the groove is formed continuously in the longitudinal direction, and the bottom of the other groove is formed intermittently in the longitudinal direction. The inner grooved pipe according to claim 2.
【請求項4】 請求項1乃至3のいずれか1項に記載の
内面溝付管を製造する方法において、金属又は合金から
なる帯状の条材の表面に、圧延により前記交差溝加工帯
及び前記螺旋溝加工帯を形成し、前記交差溝加工帯及び
前記螺旋溝加工帯が形成された面を内側にして前記条材
を丸めながらその突き合わせ端部を溶接することを特徴
とする内面溝付管の製造方法。
4. The method for producing an inner grooved pipe according to claim 1, wherein the cross-grooved band and the cross-grooved band are formed by rolling on the surface of a strip-shaped member made of a metal or an alloy. An inner grooved pipe, wherein a spiral grooved band is formed, and a butt end thereof is welded while rolling the strip with the surface on which the cross grooved band and the spiral grooved band are formed inside. Manufacturing method.
JP11361951A 1998-12-25 1999-12-20 Pipe with grooved inside face and its manufacture Pending JP2000283680A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11361951A JP2000283680A (en) 1998-12-25 1999-12-20 Pipe with grooved inside face and its manufacture

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP37140898 1998-12-25
JP2332099 1999-01-29
JP10-371408 1999-01-29
JP11-23320 1999-01-29
JP11361951A JP2000283680A (en) 1998-12-25 1999-12-20 Pipe with grooved inside face and its manufacture

Publications (1)

Publication Number Publication Date
JP2000283680A true JP2000283680A (en) 2000-10-13

Family

ID=27284213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11361951A Pending JP2000283680A (en) 1998-12-25 1999-12-20 Pipe with grooved inside face and its manufacture

Country Status (1)

Country Link
JP (1) JP2000283680A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210016A1 (en) * 2002-03-07 2003-09-25 Wieland Werke Ag Heat exchange tube with a ribbed inner surface
JP2007310341A (en) * 2006-05-18 2007-11-29 Lg Electronics Inc Heat sink of plasma display apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10210016A1 (en) * 2002-03-07 2003-09-25 Wieland Werke Ag Heat exchange tube with a ribbed inner surface
DE10210016B4 (en) * 2002-03-07 2004-01-08 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface
DE10210016B9 (en) * 2002-03-07 2004-09-09 Wieland-Werke Ag Heat exchange tube with a ribbed inner surface
JP2007310341A (en) * 2006-05-18 2007-11-29 Lg Electronics Inc Heat sink of plasma display apparatus

Similar Documents

Publication Publication Date Title
JP4065785B2 (en) Improved heat transfer tube with grooved inner surface
US5934128A (en) Heat transfer tube having grooved inner surface
KR100245383B1 (en) Pipe with crossing groove and manufacture thereof
KR100227209B1 (en) Heat transfer tube having grooved inner surface and production method therefor
US6336501B1 (en) Tube having grooved inner surface and its production method
US6298909B1 (en) Heat exchange tube having a grooved inner surface
JP3751393B2 (en) Tube inner surface grooved heat transfer tube
JP2000283680A (en) Pipe with grooved inside face and its manufacture
JP3286171B2 (en) Heat transfer tube with internal groove
JP2948515B2 (en) Heat transfer tube with inner groove and method of manufacturing the same
JP4632487B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2628712B2 (en) Method of forming heat transfer surface
JP3199636B2 (en) Heat transfer tube with internal groove
JP2000274983A (en) Inner surface grooved pipe
JP2721755B2 (en) Heat transfer tube and method of manufacturing the same
JP4020678B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2001289584A (en) Inner helically grooved tube and method of its manufacture
JP3779794B2 (en) Internal grooved heat transfer tube and manufacturing method thereof
JP2721253B2 (en) Heat transfer tube manufacturing method
JPH11108579A (en) Pipe with grooved inner face
US20220170702A1 (en) Heat transfer tube for air conditioner application
JP4630005B2 (en) Internal grooved tube and manufacturing method thereof
JP2001280882A (en) Tube with internal surface groove
JPH02161290A (en) Inner face processed heat transfer tube
JP3069277B2 (en) Heat transfer tube with inner groove and method of manufacturing the same